Alexandrov N, Lewis R, Gumbert C, Alex N, Green L, Newman P. Optimization with variable-fidelity models applied to wing design. Opt Model. 2000. https://doi.org/10.2514/6.2000-841.
Article
Google Scholar
Alexandrov NM, Dennis JE, Lewis RM, Torczon V. A trust-region framework for managing the use of approximation models in optimization. Struct Optim. 1998;15(1):16–23. https://doi.org/10.1007/BF01197433.
Article
Google Scholar
Alexandrov NM, Lewis RM. An overview of first-order model management for engineering optimization. Optimi Eng. 2001;2:413–30.
Article
Google Scholar
Alexandrov NM, Lewis RM, Gumbert CR, Green LL, Newman PA. Approximation and model management in aerodynamic optimization with variable-fidelity models. J Aircraft. 2001;38(6):1093–101.
Article
Google Scholar
Amabili M, Touzé C. Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: Comparison of POD and asymptotic nonlinear normal modes methods. J Fluids Struct. 2007;23(6):885–903. https://doi.org/10.1016/j.jfluidstructs.2006.12.004.
Article
Google Scholar
Amsallem D, Deolalikar S, Gurrola F, Farhat C. Model Predictive Control under Coupled Fluid-Structure Constraints Using a Database of Reduced-Order Models on a Tablet. 21st AIAA Computational Fluid Dynamics Conference. 2013; https://doi.org/10.2514/6.2013-2588
Amsallem D, Farhat C. Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 2008;46:1803–13. https://doi.org/10.2514/1.35374.
Article
Google Scholar
Amsallem D, Zahr MJ, Farhat C. Nonlinear model order reduction based on local reduced-order bases. Int J Numer Methods Eng. 2012;92(10):891–916.
Article
MathSciNet
Google Scholar
Aubry N, Holmes P, Lumley J, Stone E. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J Fluid Mech. 1988;192:115–73.
Article
MathSciNet
Google Scholar
Audouze C, De Vuyst F, Nair PB. Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations. Numer Methods Part Diff Eq. 2013;29(5):1587–628. https://doi.org/10.1002/num.21768.
Article
MathSciNet
MATH
Google Scholar
Auer P. Using confidence bounds for exploitation-exploration trade-offs. J Mach Learn Res. 2002;3:397–422. https://doi.org/10.1162/153244303321897663.
Article
MathSciNet
MATH
Google Scholar
Bagheri S, Konen W, Allmendinger R, Branke J, Deb K, Fieldsend J, Quagliarella D, Sindhya K. Constraint handling in efficient global optimization. Proceedings of the Genetic and Evolutionary Computation Conference on - GECCO ’17, 2017;673–680.
Bai Z. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl Numer Math. 2002;43(1):9–44. https://doi.org/10.1016/S0168-9274(02)00116-2.
Article
MathSciNet
MATH
Google Scholar
Bakr MH, Bandler JW, Madsen K, Søndergaard J. Review of the space mapping approach to engineering optimization and modeling. 2000. p. 36.
Balabanov V, Haftka R, Grossman B, Mason W, Watson L. Multifidelity response surface model for hsct wing bending material weight. Surface. 1998. https://doi.org/10.2514/6.1998-4804.
Article
Google Scholar
Bandler J, Cheng Q, Dakroury S, Mohamed A, Bakr M, Madsen K, Sondergaard J. Space Mapping: The State of the Art. IEEE Trans Microwave Theory Techniq. 2004;52(1):337–61. https://doi.org/10.1109/TMTT.2003.820904.
Article
Google Scholar
Bartoli N, Lefebvre T, Dubreuil S, Olivanti R, Priem R, Bons N, Martins JRRA, Morlier J. Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design. Aerospace Sci Technol. 2019;2:78.
Google Scholar
Baur U, Beattie C, Benner P, Gugercin S. Interpolatory projection methods for parameterized model reduction. SIAM J Sci Computing. 2011;33(5):2489–518. https://doi.org/10.1137/090776925.
Article
MathSciNet
MATH
Google Scholar
Ben Salem M. Model selection and adaptive sampling in surrogate modeling: Kriging and beyond. UNIVERSITE DE LYON. 2018; https://tel.archives-ouvertes.fr/tel-03097719.
Benamara T. Full-field Multi-Fidelity Surrogate Models for Optimal Design of Turbomachines. 2017;
Benamara T, Breitkopf P, Lepot I, Sainvitu C. Adaptive infill sampling criterion for multi-fidelity optimization based on Gappy-POD: Application to the flight domain study of a transonic airfoil. Struct Multidiscipl Optim. 2016;54(4):843–55. https://doi.org/10.1007/s00158-016-1440-3.
Article
Google Scholar
Benamara T, Breitkopf P, Lepot I, Sainvitu C, Villon P. Multi-fidelity POD surrogate-assisted optimization: concept and aero-design study. Struct Multidiscipl Optim. 2017;56(6):1387–412.
Article
Google Scholar
Benner P, Gugercin S, Willcox K. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 2015;57:483–531. https://doi.org/10.1137/130932715.
Article
MathSciNet
MATH
Google Scholar
Bergmann M, Cordier L. Contrôle optimal par réduction de modèle POD et méthode à région de confiance du sillage laminaire d’un cylindre circulaire. Mécan Ind. 2007;8(2):111–8. https://doi.org/10.1051/meca:2007028.
Article
Google Scholar
Berkooz G, Holmes P, Lumley J. The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech. 2003;25:539–75. https://doi.org/10.1146/annurev.fl.25.010193.002543.
Article
Google Scholar
Bjorkman M. Global optimization of costly nonconvex functions using radial Basis functions. Optimiz Eng. 2001;25:9.
MathSciNet
Google Scholar
Boopathy K, Rumpfkeil M. A multivariate interpolation and regression enhanced kriging surrogate model. In: 21st AIAA Computational Fluid Dynamics Conference. 2013.
Box GEP, Behnken DW. Some new three level designs for the study of quantitative variables. Technometrics. 1960;2(4):455–75.
Article
MathSciNet
Google Scholar
Braconnier T, Ferrier M, Jouhaud J-C, Montagnac M, Sagaut P. Towards an adaptive POD/SVD surrogate model for aeronautic design. Computers Fluids. 2011;40(1):195–209. https://doi.org/10.1016/j.compfluid.2010.09.002.
Article
MathSciNet
MATH
Google Scholar
Brochu E, Cora VM, de Freitas N. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. 2010; arXiv:1012.2599 [cs].
Bui-Thanh T, Damodaran M, Willcox K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J. 2004;42(8):1505–16. https://doi.org/10.2514/1.2159.
Article
Google Scholar
Bui-Thanh T, Willcox K, Ghattas O. Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J Sci Comput. 2008;30(6):3270–88. https://doi.org/10.1137/070694855.
Article
MathSciNet
MATH
Google Scholar
Bunnell S, Gorrell S, Salmon J. Multi-fidelity surrogates from shared principal components: application to structural design exploration and optimization. Struct Multidiscipl Optim. 2021. https://doi.org/10.1007/s00158-020-02793-z.
Article
Google Scholar
Cai X, Qiu H, Gao L, Wei L, Shao X. Adaptive radial-basis-function-based multifidelity metamodeling for expensive black-box problems. AIAA J. 2017;55:1–13. https://doi.org/10.2514/1.J055649.
Article
Google Scholar
Chakir R, Maday Y. Une méthode combinée d’éléments finis à deux grilles/bases réduites pour l’approximation des solutions d’une E.D.P. paramétrique. Comptes Rendus Mathematique. 2009;347(7–8):435–40.
Article
MathSciNet
Google Scholar
Chang KJ, Haftka RT, Giles GL, Kao P-J. Sensitivity-based scaling for approximating structural response. J Aircraft. 1993;30(2):283–8. https://doi.org/10.2514/3.48278.
Article
Google Scholar
Cheng B, Titterington DM. Neural networks: A review from a statistical perspective. Stat Sci. 1994;9(1):2–30.
MathSciNet
MATH
Google Scholar
Cheng C, Peng Z, Zhang W, Meng G. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review. Mech Syst Signal Process. 2016. https://doi.org/10.1016/j.ymssp.2016.10.029.
Article
Google Scholar
Cheng K, Lu Z, Zhen Y. Multi-level multi-fidelity sparse polynomial chaos expansion based on gaussian process regression. Computer Methods Appl Mech Eng. 2019;349:360–77. https://doi.org/10.1016/j.cma.2019.02.021.
Article
MathSciNet
MATH
Google Scholar
Chevalier C, Bect J, Ginsbourger D, Vazquez E, Picheny V, Richet Y. Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set. Technometrics. 2014;56(4):455–65. https://doi.org/10.1080/00401706.2013.860918.
Article
MathSciNet
Google Scholar
Chinesta F, Ladeveze P, Cueto E. A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng. 2011;18(4):395–404. https://doi.org/10.1007/s11831-011-9064-7.
Article
Google Scholar
Chinesta F, Ladevèze P. 3 Proper generalized decomposition. De Gruyter. 2020. https://doi.org/10.1515/9783110671490-003.
Article
MATH
Google Scholar
Chocat R, Brevault L, Balesdent M, Defoort S. Modified covariance matrix adaptation—evolution strategy algorithm for constrained optimization under uncertainty, application to rocket design. Int J Simul Multidiscip Design Optim. 2015;6:A1. https://doi.org/10.1051/smdo/2015001.
Article
Google Scholar
Choi S, Alonso JJ, Kroo IM. Two-level multifidelity design optimization studies for supersonic jets. J Aircraft. 2009;46(3):776–90. https://doi.org/10.2514/1.34362.
Article
Google Scholar
Choi Y, Amsallem D, Farhat C. Gradient-based Constrained Optimization Using a Database of Linear Reduced-Order Models. 2015; arXiv:1506.07849.
Chowdhury S, Mehmani A, Messac A. Quantifying regional error in surrogates by modeling its relationship with sample density. Molecule. 2013. https://doi.org/10.2514/6.2013-1751.
Article
Google Scholar
Coelho R, Breitkopf P, Knopf-Lenoir C. Reduced models for coupled aerodynamic and structural optimization of a flexible wing. 2008.
Coelho R, Breitkopf P, Knopf-Lenoir C, Villon P. Bi-level model reduction for coupled problems:application to a 3d wing. Struct Multidiscip Optim. 2010. https://doi.org/10.1007/s00158-008-0335-3.
Article
MATH
Google Scholar
Cohen K, Siegel S, McLaughlin T. A heuristic approach to effective sensor placement for modeling of a cylinder wake. Computer Fluids. 2006;35(1):103–20.
Article
Google Scholar
Colomer J, Bartoli N, Lefebvre T, Martins J, Morlier J. An mdo-based methodology for static aeroelastic scaling of wings under non-similar flow. Struct Multidiscip Optim. 2021. https://doi.org/10.1007/s00158-020-02804-z.
Article
MathSciNet
Google Scholar
Conn AR, Scheinberg K, Vicente LN. Global convergence of general derivative-free trust-region algorithms to first- and second-order critical points. SIAM J Optim. 2009;20(1):387–415. https://doi.org/10.1137/060673424.
Article
MathSciNet
MATH
Google Scholar
Courrier N, Boucard P-A, Soulier B. Variable-fidelity modeling of structural analysis of assemblies. J Glob Optim. 2016;64(3):577–613.
Article
MathSciNet
Google Scholar
Cozad A, Sahinidis NV, Miller DC. A combined first-principles and data-driven approach to model building. Computers Chem Eng. 2015;73:116–27. https://doi.org/10.1016/j.compchemeng.2014.11.010.
Article
Google Scholar
Craig PS, Goldstein M, Seheult AH, Smith JA. Constructing partial prior specifications for models of complex physical systems. 1998.
Cressie N. The origins of kriging. Math Geol. 1990;22(3):239–52. https://doi.org/10.1007/BF00889887.
Article
MathSciNet
MATH
Google Scholar
Cumming JA, Goldstein M. Small sample bayesian designs for complex high-dimensional models based on information gained using fast approximations. Technometrics. 2009;51(4):377–88. https://doi.org/10.1198/TECH.2009.08015.
Article
MathSciNet
Google Scholar
Currin C, Mitchell T, Morris M, Ylvisaker D. A bayesian approach to the design and analysis of computer experiments. 1988. https://www.osti.gov/biblio/6734087.
Currin C, Mitchell T, Morris M, Ylvisaker D. Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. J Am Stat Assoc. 1991;86(416):953–63.
Article
MathSciNet
Google Scholar
Dalle DJ, Fidkowski K. Multifidelity airfoil shape optimization using adaptive meshing. J Aircraft. 2014;463:776–90.
Google Scholar
De Lozzo M. Modèles de substitution spatio-temporels et multifidélité Application à l’ingénierie thermique. 2013.
Demange J, Savill AM, Kipouros T. A multifidelity multiobjective optimization framework for high-lift airfoils. Multidicp. 2016. https://doi.org/10.2514/6.2016-3367.
Article
Google Scholar
Du X, Ren J, Leifsson L. Aerodynamic inverse design using multifidelity models and manifold mapping. Aerospace Sci Technol. 2019;85:371–85. https://doi.org/10.1016/j.ast.2018.12.008.
Article
Google Scholar
Dubreuil S, Bartoli N, Gogu C, Lefebvre T. Reduction of uncertainties in multidisciplinary analysis based on a polynomial chaos sensitivity study. Sensor. 2021. https://doi.org/10.1002/9781119817635.ch4.
Article
Google Scholar
Dubreuil S, Bartoli N, Gogu C, Lefebvre T, Mas Colomer J. Extreme value oriented random field discretization based on an hybrid polynomial chaos expansion - kriging approach. Comput Methods Appl Mech Eng. 2018;332:540–71. https://doi.org/10.1016/j.cma.2018.01.009.
Article
MathSciNet
MATH
Google Scholar
Dupuis R, Jouhaud J-C, Sagaut P. Surrogate modeling of aerodynamic simulations for multiple operating conditions using machine learning. AIAA J. 2018;56(9):3622–35. https://doi.org/10.2514/1.J056405.
Article
Google Scholar
Durantin C, Rouxel J, Désidéri J-A, Glière A. Multifidelity surrogate modeling based on radial basis functions. Struct Multidiscip Optim. 2017;56(5):1061–75. https://doi.org/10.1007/s00158-017-1703-7.
Article
Google Scholar
Dutta S, Farthing M, Perracchione E, Savant G, Putti M. A greedy non-intrusive reduced order model for shallow water equations. In: Computational Physics; 2020.
Dyn N, Levin D, Rippa S. Numerical procedures for surface fitting of scattered data by radial functions. SIAM J Sci Stat Comput. 1986. https://doi.org/10.1137/0907043.
Article
MathSciNet
MATH
Google Scholar
Efron B. Bootstrap methods: Another look at the jackknife. Ann Stat. 1979;7(1):1–26.
Article
MathSciNet
Google Scholar
Everson R, Sirovich L. Karhunen-loève procedure for gappy data. JOSA A. 1995;12:9. https://doi.org/10.1364/JOSAA.12.001657.
Article
Google Scholar
Feliot P, Bect J, Vazquez E. A bayesian approach to constrained single-and multi-objective optimization. J Glob Optim. 2017;67(1–2):97–133.
Article
MathSciNet
Google Scholar
Fernández-Godino MG, Park C, Kim N-H, Haftka RT. Review of multi-fidelity models. Statistics. 2016;41:8.
Google Scholar
Forrester AI, Keane AJ. Recent advances in surrogate-based optimization. Progr Aerospace Sci. 2009;45(1–3):50–79. https://doi.org/10.1016/j.paerosci.2008.11.001.
Article
Google Scholar
Forrester AI, Sóbester A, Keane AJ. Multi-fidelity optimization via surrogate modelling. Proc R Soc. 2007;463(2088):3251–69. https://doi.org/10.1098/rspa.2007.1900.
Article
MathSciNet
MATH
Google Scholar
Giselle Fernández-Godino M, Park C, Kim NH, Haftka RT. Issues in deciding whether to use multifidelity surrogates. AIAA J. 2019;57(5):2039–54. https://doi.org/10.2514/1.J057750.
Article
Google Scholar
Giunta A, Golividov O, Knill D, Grossman B, Mason W, Watson L, Haftka R. Multidisciplinary design optimization of advanced aircraft configurations. Multidiscip Anal Design. 2007;490:14–34. https://doi.org/10.1007/BFb0107076.
Article
Google Scholar
Giunta A, Wojtkiewicz S, Eldred M. Overview of Modern Design of Experiments Methods for Computational Simulations (Invited). In: 41st Aerospace Sciences Meeting and Exhibit. 2003; https://doi.org/10.2514/6.2003-649.
Goel T, Haftka R, Shyy W, Queipo N. Ensemble of surrogates. Struct Multidiscip Optimiz. 2007;33:199–216. https://doi.org/10.1007/s00158-006-0051-9.
Article
Google Scholar
Gunes H, Liakopoulos A, Sahan R. Low-dimensional description of oscillatory thermal convection: the small prandtl number limit. Theor Comput Fluid Dyn. 1997;9:1–16. https://doi.org/10.1007/s001620050028.
Article
MATH
Google Scholar
Guo Q, Hang J, Wang S, Hui W, Xie Z. Design optimization of variable stiffness composites by using multi-fidelity surrogate models. Struct Multidiscip Optim. 2021;63(1):439–61. https://doi.org/10.1007/s00158-020-02684-3.
Article
MathSciNet
Google Scholar
Gutmann H-M. A radial basis function method for global optimization. J Glob Optim. 2001;27:8.
MathSciNet
MATH
Google Scholar
Guénot M, Lepot I, Sainvitu C, Goblet J, Filomeno Coelho R. Adaptive sampling strategies for non-intrusive POD-based surrogates. Eng Comput. 2013;30(4):521–47. https://doi.org/10.1108/02644401311329352.
Article
Google Scholar
Görtz S, Zimmermann R, Han Z-H. Variable-fidelity and reduced-order models for aero data for loads predictions. Model. 2013;123:99–112. https://doi.org/10.1007/978-3-642-38877-4-8.
Article
Google Scholar
Haasdonk B, Ohlberger M. Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM. 2008;42(2):277–302. https://doi.org/10.1051/m2an:2008001.
Article
MathSciNet
MATH
Google Scholar
Haftka R. Combining global and local approximations. AIAA J. 1991;29:1523–5. https://doi.org/10.2514/3.10768.
Article
Google Scholar
Hall KC, Thomas JP, Clark WS. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J. 2002;40(5):879–86. https://doi.org/10.2514/2.1754.
Article
Google Scholar
Halton J. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik. 1960;2:84–90.
Article
MathSciNet
Google Scholar
Hampton J, Doostan A. Basis adaptive sample efficient polynomial chaos (BASE-PC). J Comput Phys. 2018;371:20–49. https://doi.org/10.1016/j.jcp.2018.03.035.
Article
MathSciNet
MATH
Google Scholar
Han Z-H, Görtz S. Hierarchical kriging model for variable-fidelity surrogate modeling. AIAA J. 2012;50(9):1885–96. https://doi.org/10.2514/1.J051354.
Article
Google Scholar
Han Z-H, Xu C-Z, Liang Z, Zhang Y, Ke-Shi Z, Song W-P. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids. Optim. 2020;6:9.
Google Scholar
Han Z-H, Zhang K-S. Surrogate-based optimization. 2012. p. 21.
Hao P, Feng S, Li Y, Wang B, Chen H. Adaptive infill sampling criterion for multi-fidelity gradient-enhanced kriging model. Struct Multidiscip Optimiz. 2020;62(1):353–73. https://doi.org/10.1007/s00158-020-02493-8.
Article
MathSciNet
Google Scholar
Hennig P, Schuler C. Entropy search for information-efficient global optimization. J Mach Learn Res. 2011;13:e23.
MathSciNet
Google Scholar
Hu J, Yang Y, Zhou Q, Jiang P, Shao X, Shu L, Zhang Y. Comparative studies of error metrics in variable fidelity model uncertainty quantification. J Eng Design. 2018;29(8–9):512–38. https://doi.org/10.1080/09544828.2018.1513126.
Article
Google Scholar
Huang D, Allen TT, Notz WI, Zeng N. Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models. J Glob Optimiz. 2006;34(3):441–66. https://doi.org/10.1007/s10898-005-2454-3.
Article
MathSciNet
MATH
Google Scholar
Hutchison MG, Unger ER, Mason WH, Grossman B, Haftka RT. Variable-complexity aerodynamic optimization of a high-speed civil transport wing. J Aircraft. 1994;31(1):110–6. https://doi.org/10.2514/3.46462.
Article
Google Scholar
Jameson A, Martinelli L, Vassberg J. Using computational fluid dynamics for aerodynamics- a critical assessment. 2002.
Janouchová E, Kučerová A. Competitive comparison of optimal designs of experiments for sampling-based sensitivity analysis. Computers Struct. 2013;124:47–60. https://doi.org/10.1016/j.compstruc.2013.04.009.
Article
Google Scholar
Jiang P, Cheng J, Zhou Q, Shu L, Jiexiang H. Variable-fidelity lower confidence bounding approach for engineering optimization problems with expensive simulations. AIAA J. 2019;57:1–15. https://doi.org/10.2514/1.J058283.
Article
Google Scholar
Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202.
Article
MathSciNet
MATH
Google Scholar
Jones DR, Schonlau M. Efficient global optimization of expensive black-box functions. J Glob Optim. 1998;38:9.
MathSciNet
MATH
Google Scholar
Kandasamy K, Dasarathy G, Oliva J, Schneider J, Poczos B. Multi-fidelity gaussian process bandit optimisation. J Artif Intell Res. 2016. https://doi.org/10.1613/jair.1.11288.
Article
MATH
Google Scholar
Kast M, Guo M, Hesthaven JS. A non-intrusive multifidelity method for the reduced order modeling of nonlinear problems. 2019.
Kennedy M. Predicting the output from a complex computer code when fast approximations are available. Biometrika. 2000;87(1):1–13. https://doi.org/10.1093/biomet/87.1.1.
Article
MathSciNet
MATH
Google Scholar
Khatouri H, Benamara T, Breitkopf P, Demange J, Feliot P. Constrained multi-fidelity surrogate framework using Bayesian optimization with non-intrusive reduced-order basis. 2020, p. 23.
Kim K-K, Shen D, Nagy Z, Braatz R. Wiener’s polynomial chaos for the analysis and control of nonlinear dynamical systems with probabilistic uncertainties. Control Syst. 2013;33:58–67. https://doi.org/10.1109/MCS.2013.2270410.
Article
MathSciNet
MATH
Google Scholar
Kleijnen JP. Kriging metamodeling in simulation: a review. Eur J Operat Res. 2009;192(3):707–16. https://doi.org/10.1016/j.ejor.2007.10.013.
Article
MathSciNet
MATH
Google Scholar
Knill DL, Giunta AA, Baker CA, Grossman B, Mason WH, Haftka RT, Watson LT. Response surface models combining linear and euler aerodynamics for supersonic transport design. J Aircraft. 1999;36(1):75–86. https://doi.org/10.2514/2.2415.
Article
Google Scholar
Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. 2001. p. 14.
Kontogiannis SG, Demange J, Savill AM, Kipouros T. A comparison study of two multifidelity methods for aerodynamic optimization. Aerospace Sci Technol. 2020;97:105592. https://doi.org/10.1016/j.ast.2019.105592.
Article
Google Scholar
Krige D. A statistical approach to some basic mine valuation problems on the witwatersand. J Chem Metallurgical Mining Soc South Africa. 1951;5:7.
Google Scholar
Lam R, Allaire DL, Willcox KE. Multifidelity Optimization using Statistical Surrogate Modeling for Non-Hierarchical Information Sources. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2015; https://doi.org/10.2514/6.2015-0143
Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Math Comput. 1981;37:141–58.
Article
MathSciNet
Google Scholar
Lataniotis C, Marelli S, Sudret B. Extending classical surrogate modeling to ultrahigh dimensional problems through supervised dimensionality reduction: a data-driven approach. Techn Rep. 2018;7:89.
Google Scholar
Le Gratiet L. Multi-fidelity Gaussian process regression for computer experiments. 2013.
Le Gratiet L, Garnier J. Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. Int J Uncertainty Quant. 2014;4(5):365–86.
Article
MathSciNet
Google Scholar
Le Quilliec G, Raghavan B, Breitkopf P. A manifold learning-based reduced order model for springback shape characterization and optimization in sheet metal forming. Computer Methods Appl Mech Eng. 2014;285:621–38. https://doi.org/10.1016/j.cma.2014.11.029.
Article
MathSciNet
MATH
Google Scholar
Le Riche R, Picheny V. Revisiting Bayesian Optimization in the light of the COCO benchmark. Struct Multidiscip Optimiz. 2021. https://doi.org/10.1007/s00158-021-02977-1.
Article
MathSciNet
Google Scholar
Leifsson L, Koziel S. Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: a review of recent progress. J Comput Sci. 2015;10:45–54. https://doi.org/10.1016/j.jocs.2015.01.003.
Article
MathSciNet
Google Scholar
Li G, Aute V, Azarm S. An accumulative error based adaptive design of experiments for offline metamodeling. Struct Multidiscip Optimiz. 2010;40:137–55. https://doi.org/10.1007/s00158-009-0395-z.
Article
Google Scholar
Li J, Cai J, Qu K. Adjoint-based two-step optimization method using proper orthogonal decomposition and domain decomposition. AIAA J. 2018;56(3):1133–45. https://doi.org/10.2514/1.J055773.
Article
Google Scholar
Lickenbrock M, Rumpfkeil M, Beran P, Kolonay R. Multi-fidelity, multidisciplinary analysis of an efficient supersonic air vehicle. Anal Discip. 2020. https://doi.org/10.2514/6.2020-2223.
Article
Google Scholar
Liu H, Ong Y-S, Cai J. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design. Struct Multidiscip Optimiz. 2018;57(1):393–416. https://doi.org/10.1007/s00158-017-1739-8.
Article
Google Scholar
Liu J. Comparison of Infill Sampling Criteria in Kriging-based Aerodynamic Optimization. 2012;10.
Lu K, Jin Y, Chen Y, Yang Y, Hou L, Zhang Z, Li Z, Fu C. Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems. Mech Syst Signal Process. 2019;123:264–97.
Article
Google Scholar
Lumley J, Yaglom A, Tartarsky VI. The structure of inhomogeneous turbulent flows. 1967. p. 166–177.
Mackman TJ, Allen CB. Investigation of an adaptive sampling method for data interpolation using radial basis functions. Int J Numer Methods Eng. 2010. https://doi.org/10.1002/nme.2885.
Article
MATH
Google Scholar
Malouin B, Trépanier J-Y, Gariepy M. Interpolation of transonic flows using a proper orthogonal decomposition method. Int J Aerospace Eng. 2013. https://doi.org/10.1155/2013/928904.
Article
Google Scholar
Manlig F, Koblasa F. Design of simulation experiments using doe. Appl Mech Mater. 2014;693:219–24. https://doi.org/10.4028/www.scientific.net/AMM.693.219.
Article
Google Scholar
March A, Willcox K. Multifidelity airfoil shape optimization using adaptive meshing. Struct Multidiscip Optim. 2012;461:93–109.
Article
Google Scholar
March A, Willcox K. Multifidelity Approaches for Parallel Multidisciplinary Optimization. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2012.
Martins J, Lambe A. Multidisciplinary design optimization: A survey of architectures. AIAA J. 2013;51:2049–75. https://doi.org/10.2514/1.J051895.
Article
Google Scholar
Mason RL, Gunst RF, Hess JL. Fractional Factorial Experiments, (Chapter 7, 228–270). New York: Wiley; 2003. https://doi.org/10.1002/0471458503.ch7.
Book
Google Scholar
Matheron G. Principles of geostatistics. Economic Geol. 1963;58(8):1246–66. https://doi.org/10.2113/gsecongeo.58.8.1246.
Article
Google Scholar
McKay MD, Beckman RJ, Conover WJ. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 1979;21(2):239–45. https://doi.org/10.1080/00401706.1979.10489755.
Article
MathSciNet
MATH
Google Scholar
Mehmani A, Chowdhury S, Messac A. Predictive quantification of surrogate model fidelity based on modal variations with sample density. Struct Multidiscip Optimiz. 2015;52(2):353–73. https://doi.org/10.1007/s00158-015-1234-z.
Article
Google Scholar
Meng L, Breitkopf P, Le Quilliec G, Raghavan B, Villon P. Nonlinear shape-manifold learning approach: Concepts, tools and applications. Arch Comput Methods Eng. 2018;25:3. https://doi.org/10.1007/s11831-016-9189-9.
Article
MathSciNet
MATH
Google Scholar
Meng L, Breitkopf P, Raghavan B, Mauvoisin G, Bartier O, Hernot X. Identification of material properties using indentation test and shape manifold learning approach. Computer Methods Appl Mech Eng. 2015;297:239–57. https://doi.org/10.1016/j.cma.2015.09.004.
Article
MathSciNet
MATH
Google Scholar
Mifsud MJ, MacManus DG, Shaw S. A variable-fidelity aerodynamic model using proper orthogonal decomposition: A Variable-Fidelity Aerodynamic Model Using POD. Int J Numer Methods Fluids. 2016;82(10):646–63. https://doi.org/10.1002/fld.4234.
Article
Google Scholar
Mohammadi A, Raisee M. Stochastic field representation using bi-fidelity combination of proper orthogonal decomposition and Kriging. Computer Methods Appl Mech Eng. 2019;357:112589. https://doi.org/10.1016/j.cma.2019.112589.
Article
MathSciNet
MATH
Google Scholar
Morris MD, Mitchell TJ. Exploratory designs for computational experiments. 1995. p. 22.
Mukherjee S, Lu D, Raghavan B, Breitkopf P, Dutta S, Xiao M, Zhang W. Accelerating large-scale topology optimization : state-of-the-art and challenges. Arch Comput Methods Eng. 2021;8:67.
MathSciNet
Google Scholar
Myers DE. Co-Kriging-New Developments. Netherlands: Springer; 1984. p. 295–305. https://doi.org/10.1007/978-94-009-3699-7_18.
Book
Google Scholar
Myers RH, Khuri AI, Carter WH. Response surface methodology: 1966–1988. Technometrics. 1989;31(2):137–57.
MathSciNet
MATH
Google Scholar
Nachar S, Boucard P-A, Néron D, Rey C. Multi-fidelity bayesian optimization using model-order reduction for viscoplastic structures. Finite Elements Anal Design. 2020;176:103400. https://doi.org/10.1016/j.finel.2020.103400.
Article
MathSciNet
Google Scholar
Ng L, Eldred M. Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation. Model. 2012. https://doi.org/10.2514/6.2012-1852.
Article
Google Scholar
Nguyen C, Rozza G, Phuong D, Patera A, Tenorio L, Waanders B, Mallick B, Willcox K, Biegler L, Biros G, Ghattas O, Heinkenschloss M, Keyes D. Reduced basis approximation and a posteriori error estimation for parametrized parabolic pdes; application to real-time bayesian parameter estimation. 2010.
Palar P, Shimoyama K. Multi-fidelity uncertainty analysis in cfd using hierarchical kriging. Aerodynamic Design. 2017. https://doi.org/10.2514/6.2017-3261.
Article
Google Scholar
Parr J, Keane AJ, Forrester AI, Holden CM. Infill sampling criteria for surrogate-based optimization with constraint handling. Eng Optim. 2012;44(10):1147–66. https://doi.org/10.1080/0305215X.2011.637556.
Article
MATH
Google Scholar
Parr JM, Holden CME, Forrester AIJ, Keane AJ. Review of efficient surrogate infill sampling criteria with constraint handling. 2010. p. 10.
Peherstorfer B, Willcox K, Gunzburger M. Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization. SIAM Rev. 2018;60(3):550–91.
Article
MathSciNet
Google Scholar
Pellegrini R, Serani A, Diez M, Wackers J, Queutey P. Adaptive sampling criteria for multi-fidelity metamodels in CFD-based shape optimization. 2018. p 11.
Perdikaris P, Venturi D, Royset JO, Karniadakis GE. Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields. Proc R Soc. 2015;471(2179):20150018.
Article
Google Scholar
Perron C, Rajaram D, Mavris D. Development of a multi-fidelity reduced-order model based on manifold alignment. Align. 2020. https://doi.org/10.2514/6.2020-3124.
Article
Google Scholar
Phalippou P, Bouabdallah S, Breitkopf P, Villon P, Zarroug M. ‘On-the-fly’ snapshots selection for Proper Orthogonal Decomposition with application to nonlinear dynamics. Computer Methods Appl Mech Eng. 2020;367:113120. https://doi.org/10.1016/j.cma.2020.113120.
Article
MathSciNet
MATH
Google Scholar
Picheny V. A Stepwise uncertainty reduction approach to constrained global optimization. In: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine Learning Research; 2014. p. 787–795. https://proceedings.mlr.press/v33/picheny14.html.
Picheny V, Wagner T, Ginsbourger D. A benchmark of kriging-based infill criteria for noisy optimization. Struct Multidiscip Optimiz. 2013;48(3):607–26. https://doi.org/10.1007/s00158-013-0919-4.
Article
Google Scholar
Pinto RN, Afzal A, D’Souza LV, Ansari Z, Mohammed Samee AD. Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art. Arch Comput Methods Eng. 2017;24(3):467–79.
Article
MathSciNet
Google Scholar
Poethke B, Völker S, Vogeler K. Aerodynamic Optimization of Turbine Airfoils Using Multi-fidelity Surrogate Models. 2019. p. 556–568. https://doi.org/10.1007/978-3-319-97773-7_50.
Powell M. Radial basis function methods for interpolation to function of many variables. 2001.
Priem R, Bartoli N, Diouane Y, Sgueglia A. Upper trust bound feasibility criterion for mixed constrained bayesian optimization with application to aircraft design. Aerospace Sci Technol. 2020. https://doi.org/10.1016/j.ast.2020.105980.
Article
Google Scholar
Prud’homme C, Rovas DV, Veroy K, Machiels L, Maday Y, Patera AT, Turinici G. Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J Fluids Eng. 2001;124(1):70–80. https://doi.org/10.1115/1.1448332.
Article
Google Scholar
Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Kevin Tucker P. Surrogate-based analysis and optimization. Prog Aerospace Sci. 2005;41(1):1–28. https://doi.org/10.1016/j.paerosci.2005.02.001.
Article
MATH
Google Scholar
Raghavan B, Breitkopf P, Tourbier Y. Towards a space reduction approach for efficient structural shape optimization. Structural Multidisciplinary Optimization. 2013;48:987–1000. https://doi.org/10.1007/s00158-013-0942-5.
Article
Google Scholar
Raghavan B, Hamdaoui M, Xiao M, Breitkopf P, Villon P. A bi-level meta-modeling approach for structural optimization using modified pod bases and diffuse approximation. Comput Struct. 2012;127(C):19–28.
Google Scholar
Raghavan B, Xiao M, Breitkopf P, Villon P. Implicit constraint handling for shape optimisation with pod-morphing. Eur J Comput Mech. 2012;21(3–6):325–36. https://doi.org/10.1080/17797179.2012.719316.
Article
MATH
Google Scholar
Rajaee M, Karlsson SKF, Sirovich L. Low-dimensional description of free-shear-flow coherent structures and their dynamical behaviour. J Fluid Mech. 1994;258:1–29. https://doi.org/10.1017/S0022112094003228.
Article
MATH
Google Scholar
Rasmussen CE, Williams CKI. Gaussian processes for machine learning (3. print ed.). Adaptive computation and machine learning. MIT Press. 2006;OCLC: 552376743.
Regis R. Trust regions in kriging-based optimization with expected improvement. Eng Optimiz. 2015. https://doi.org/10.1080/0305215X.2015.1082350.
Article
Google Scholar
Regis RG, Shoemaker CA. Improved strategies for radial basis function methods for global optimization. J Glob Optim. 2006;37(1):113–35. https://doi.org/10.1007/s10898-006-9040-1.
Article
MathSciNet
MATH
Google Scholar
Regis RG, Shoemaker CA. Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization. Eng Optim. 2013;45(5):529–55. https://doi.org/10.1080/0305215X.2012.687731.
Article
MathSciNet
Google Scholar
Regis RG, Wild SM. CONORBIT: constrained optimization by radial basis function interpolation in trust regions. Optim Methods Softw. 2017;32(3):552–80. https://doi.org/10.1080/10556788.2016.1226305.
Article
MathSciNet
MATH
Google Scholar
Reisenthel P, Love J, Lesieutre D, Dillenius M. Innovative fusion of experiment and analysis for missile design and flight simulation. 2006. https://doi.org/10.14339/RTO-MP-AVT-135-23-pdf.
Reisenthel PH, Allen TT. Application of Multifidelity Expected Improvement Algorithms to Aeroelastic Design Optimization. In: 10th AIAA Multidisciplinary Design Optimization Conference. 2014.
Rendall T, Allen C. Multidimensional aircraft data interpolation using radial basis functions. Data. 2007. https://doi.org/10.2514/6.2007-4058.
Article
Google Scholar
Robinson T, Eldred M, Willcox K, Haimes R. Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping. AIAA J. 2008;46:2814–22. https://doi.org/10.2514/1.36043.
Article
Google Scholar
Robinson T, Willcox K, Eldred M, Haimes R. Multifidelity Optimization for Variable-Complexity Design. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2006.
Rodriguez J, Renaud J, Wujek B, Tappeta R. Trust region model management in multidisciplinary design optimization. J Comput Appl Math. 2000;124:139. https://doi.org/10.1016/S0377-0427(00)00424-6.
Article
MathSciNet
MATH
Google Scholar
Rozza G, Huynh DBP, Patera AT. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch Comput Methods Eng. 2008;15(3):229–75.
Article
MathSciNet
Google Scholar
Ruan X, Jiang P, Zhou Q, Hu J, Shu L. Variable-fidelity probability of improvement method for efficient global optimization of expensive black-box problems. Struct Multidiscip Optim. 2020;62(6):3021–52. https://doi.org/10.1007/s00158-020-02646-9.
Article
MathSciNet
Google Scholar
Ruan X, Jiang P, Zhou Q, Yang Y. An improved co-kriging multi-fidelity surrogate modeling method for non-nested sampling data. 2019; https://doi.org/10.18178/ijmerr.8.4.559-564
Rugh WJ. Nonlinear system theory: The volterra / wiener approach. 1981.
Rumpfkeil MP, Lickenbrock M, Beran PS, Kolonay RM. Aeroelastic analysis and optimization with control surface deflections of an efficient supersonic air vehicle. Multi-fidelity. 2021. https://doi.org/10.2514/6.2021-0732.
Article
Google Scholar
Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Statist Sci. 1989;4(4):409–23. https://doi.org/10.1214/ss/1177012413.
Article
MathSciNet
MATH
Google Scholar
Saka Y, Gunzburger M, Burkardt J. Latinized, improved lhs, and cvt point sets in hypercubes. 2007.
Scott W, Frazier P, Powell W. The correlated knowledge gradient for simulation optimization of continuous parameters using Gaussian Process Regression. SIAM J Optimiz. 2011;21(3):996–1026. https://doi.org/10.1137/100801275.
Article
MathSciNet
MATH
Google Scholar
Sen R, Kandasamy K, Shakkottai S. Multi-fidelity black-box optimization with hierarchical partitions. In: Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, 2018. p. 4538–4547. http://proceedings.mlr.press/v80/sen18a.html.
Settles B. Active Learning Literature Survey. 2010;67.
Shan S, Wang GG. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct Multidiscip Optimiz. 2010;41(2):219–41. https://doi.org/10.1007/s00158-009-0420-2.
Article
MathSciNet
MATH
Google Scholar
Shewry MC, Wynn HP. Maximum entropy sampling. J Appl Statist. 1987;14(2):165–70. https://doi.org/10.1080/02664768700000020.
Article
Google Scholar
Shinde V, Lacazedieu E, Baj F, Hoarau Y, Braza M. Galerkin-free model reduction for fluid-structure interaction using proper orthogonal decomposition. J Comput Phys. 2019. https://doi.org/10.1016/j.jcp.2019.06.073.
Article
MathSciNet
MATH
Google Scholar
Shoesmith E, Box G, Draper N. Empirical model-building and response surfaces. Statistician. 1987;37:82–82.
Article
Google Scholar
Silva W. Identification of nonlinear aeroelastic systems based on the volterra theory: Progress and opportunities. Nonlinear Dyn. 2005;39:25–62. https://doi.org/10.1007/s11071-005-1907-z.
Article
MathSciNet
MATH
Google Scholar
Simpson T, Mauery T, Korte J, Mistree F. Comparison of response surface and kriging models for multidisciplinary design optimization. Design. 1998. https://doi.org/10.2514/6.1998-4755.
Article
Google Scholar
Simpson T, Poplinski J, Koch PN, Allen J. Metamodels for computer-based engineering design: survey and recommendations. Eng Computers. 2001;17(2):129–50. https://doi.org/10.1007/PL00007198.
Article
MATH
Google Scholar
Simpson T, Toropov V, Balabanov V, Viana F. Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come - Or Not. In: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2008; https://doi.org/10.2514/6.2008-5802.
Sipp D, de Pando MF, Schmid PJ. Nonlinear model reduction: a comparison between pod-galerkin and pod-deim methods. 2020. arXiv:2005.03173.
Sirovich L. Turbulence and the dynamics of coherent structures. i - coherent structures. ii - symmetries and transformations. iii - dynamics and scaling. Quarterly of Applied Mathematics - QUART APPL MATH, 1987;45. https://doi.org/10.1090/qam/910463
Skinner S, Zare-Behtash H. State-of-the-art in aerodynamic shape optimisation methods. Applied Soft Computing. 2017. p. 62. https://doi.org/10.1016/j.asoc.2017.09.030.
Smarandache F. Alternatives to pearson’s and spearman’s correlation coefficients. SSRN Electronic J. 2008. https://doi.org/10.2139/ssrn.2725499.
Article
MATH
Google Scholar
Smola A, Schölkopf B. A tutorial on support vector regression. Stat Comput. 2004;14:199–222. https://doi.org/10.1023/B3ASTCO.0000035301.49549.88.
Sobieszczanski-Sobieski J, Haftka R. Multidisciplinary aerospace design optimization. Surv Recent Develop. 1996. https://doi.org/10.2514/6.1996-711.
Article
Google Scholar
Sobol I. On the distribution of points in a cube and the approximate evaluation of integrals. Ussr Comput Math Mathe Phys. 1967;7:86–112.
Article
MathSciNet
Google Scholar
Song C, Yang X, Song W. Multi-infill strategy for kriging models used in variable fidelity optimization. Chin J Aeronau. 2018;31(3):448–56. https://doi.org/10.1016/j.cja.2018.01.011.
Article
Google Scholar
Song X, Lv L, Sun W, Zhang J. A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidiscip Optimiz. 2019;8:1–17.
Google Scholar
Srinivas N, Krause A, Kakade S, Seeger M. Gaussian process optimization in the bandit setting: No regret and experimental design. 2010. p. 1015–1022.
Sóbester A, Leary SJ, Keane AJ. On the Design of Optimization Strategies Based on Global Response Surface Approximation Models. J Glob Optimiz. 2005;33(1):31–59. https://doi.org/10.1007/s10898-004-6733-1.
Article
MathSciNet
MATH
Google Scholar
Tang C, Gee K, Lawrence S. Generation of aerodynamic data using a design of experiment and data fusion approach. Dyn Res. 2005. https://doi.org/10.2514/6.2005-1137.
Article
Google Scholar
Taylor J, Einbeck J. Challenging the curse of dimensionality in multivariate local linear regression. Comput Stat. 2013;28(3):955–76. https://doi.org/10.1007/s00180-012-0342-0.
Article
MathSciNet
MATH
Google Scholar
Thenon A. Utilisation de méta-modèles multi-fidélité pour l’optimisation de la production des réservoirs. 2017;
Toal DJJ. On the potential of a multi-fidelity G-POD based approach for optimization and uncertainty quantification. In: Turbomachinery, V02BT45A002. 2014. https://doi.org/10.1115/GT2014-25184.
Toal DJJ. Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models. Struct Multidiscip Optim. 2015;51(6):1223–45. https://doi.org/10.1007/s00158-014-1209-5.
Article
Google Scholar
Toal DJJ, Bressloff NW, Keane AJ. Kriging hyperparameter tuning strategies. AIAA J. 2008;46(5):1240–52. https://doi.org/10.2514/1.34822.
Article
Google Scholar
Ukeiley L, Cordier L, Manceau R, Delville J, Glauser M, BONNET J. Examination of large-scale structures in a turbulent plane mixing layer. part 2. dynamical systems model. J Fluid Mech. 2001;441:67–108. https://doi.org/10.1017/S0022112001004803.
Article
MATH
Google Scholar
van Rijn S, Schmitt S, Olhofer M, van Leeuwen M, Bäck T. Multi-fidelity surrogate model approach to optimization. Proceedings of the Genetic and Evolutionary Computation Conference Companion on - GECCO ’18, 2018. p. 225–226. https://doi.org/10.1145/3205651.3205757.
Veroy K, Prud’homme C, Rovas D. A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial dierential equations. In: 16th AIAA Computational Fluid Dynamics Conference. 2003; https://doi.org/10.2514/6.2003-3847.
Villemonteix J. Optimisation de fonctions coûteusesModèles gaussiens pour une utilisation efficace du budget d’évaluations: théorie et pratique industrielle. 2009; 172.
Volpi S, Diez M, Gaul NJ, Song H, Iemma U, Choi KK, Campana EF, Stern F. Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification. Struct Multidiscip Optim. 2015;51(2):347–68. https://doi.org/10.1007/s00158-014-1128-5.
Article
Google Scholar
Wackers J, Visonneau M, Ficini S, Pellegrini R, Serani A, Diez M. Adaptive N-Fidelity Metamodels for Noisy CFD Data. AIAA AVIATION 2020 FORUM. 2020. https://doi.org/10.2514/6.2020-3161.
Wang H, Jin Y, Sun C, Doherty J. Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles. IEEE Trans Evolut Comput. 2019;23(2):203–16. https://doi.org/10.1109/TEVC.2018.2834881.
Article
Google Scholar
Wang X, Kou J, Zhang W. Multi-fidelity surrogate reduced-order modeling of steady flow estimation. Int J Numer Methods Fluids. 2020;92(12):1826–44. https://doi.org/10.1002/fld.4850.
Article
MathSciNet
Google Scholar
Xia D. Non-Intrusive Reduced Oder Models and Their Applications. 2016.
Xia L, Raghavan B, Breitkopf P, Zhang W. Numerical material representation using proper orthogonal decomposition and diffuse approximation. Appl Math Comput. 2013;224:450–62. https://doi.org/10.1016/j.amc.2013.08.052.
Article
MathSciNet
MATH
Google Scholar
Xiao D. Non-intrusive reduced order models and their applications. 2016.
Xiao D, Fang F, Pain C, Navon I. A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications. Computer Methods Appl Mech Eng. 2017;317:868–89. https://doi.org/10.1016/j.cma.2016.12.033.
Article
MathSciNet
MATH
Google Scholar
Xiao M, Breitkopf P, Coelho R, Knopf-Lenoir C, Sidorkiewicz M, Villon P. Model reduction by cpod and kriging: application to the shape optimization of an intake port. Struct Multidiscip Optim. 2010. https://doi.org/10.1007/s00158-009-0434-9.
Article
MathSciNet
MATH
Google Scholar
Xiao M, Lu D, Breitkopf P, Raghavan B, Dutta S, Zhang W. On-the-fly model reduction for large-scale structural topology optimization using principal components analysis. Struct Multidiscip Optim. 2020. https://doi.org/10.1007/s00158-019-02485-3.
Article
MathSciNet
Google Scholar
Xiao M, Zhang G, Breitkopf P, Villon P, Zhang W. Extended co-kriging interpolation method based on multi-fidelity data. Appl Math Comput. 2018;323:120–31. https://doi.org/10.1016/j.amc.2017.10.055.
Article
MATH
Google Scholar
Xu S, Liu H, Wang X, Jiang X. A robust error-pursuing sequential sampling approach for global metamodeling based on voronoi diagram and cross validation. J Mech Design. 2014;136:071009. https://doi.org/10.1115/1.4027161.
Article
Google Scholar
Yao W, Jaiman RK. A harmonic balance technique for the reduced-order computation of vortex-induced vibration. J Fluids Struct. 2016;65:313–32. https://doi.org/10.1016/j.jfluidstructs.2016.06.002.
Article
Google Scholar
Ye P, Pan G. Surrogate-based global optimization methods for expensive black-box problems: Recent advances and future challenges. 2019. p. 96–100. https://doi.org/10.1109/IRCE.2019.00026
Yondo R, Andrés E, Valero E. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses. Progr Aerospace Sci. 2018;96:23–61. https://doi.org/10.1016/j.paerosci.2017.11.003.
Article
Google Scholar
Yondo R, Bobrowski K, Andres E, Valero E. A review of surrogate modeling techniques for aerodynamic analysis and optimization. Curr Limit Fut Challenges Ind. 2019. https://doi.org/10.1007/978-3-319-89988-6_2.
Article
Google Scholar
Zhang Y, Han Z-H, Zhang K-S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions. Struct Multidiscip Optim. 2018;58(4):1431–51.
Article
MathSciNet
Google Scholar
Zheng J, Shao X, Gao L, Jiang P, Li Z. A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction. J Eng Design. 2013;24(8):604–22. https://doi.org/10.1080/09544828.2013.788135.
Article
Google Scholar
Zhou Q, Jiang P, Shao X, Hu J, Cao L, Wan L. A variable fidelity information fusion method based on radial basis function. Adv Eng Inform. 2017;32:26–39.
Article
Google Scholar
Zimmermann R, Görtz S. Non-linear reduced order models for steady aerodynamics. Procedia Computer Sci. 2010;1(1):165–74. https://doi.org/10.1016/j.procs.2010.04.019.
Article
Google Scholar
Ştefănescu R, Sandu A, Navon I. POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation. J Comput Phys. 2015;295:569–95. https://doi.org/10.1016/j.jcp.2015.04.030.
Article
MathSciNet
MATH
Google Scholar
Žilinskas A. A review of statistical models for global optimization. J Glob Optimiz. 1992;2(2):145–53. https://doi.org/10.1007/BF00122051.
Article
MathSciNet
MATH
Google Scholar