Stachiw et al. Advanced Modeling and Simulation H H H
i Eraimasing Sciomeas (203015 ® Advanced Modeling and Simulation

https://doi.org/10.1186/540323-022-00227-7 in En g ineerin g Sciences

RESEARCH ARTICLE Open Access

. . -
A physics-based neural network for flight ==

dynamics modelling and simulation

Terrin Stachiw, Alexander Crain® and Joseph Ricciardi

“Correspondence: Abstract

alexander.crain@nrc-cnrc.gc.ca

Flight Research Laboratory The authors have developed a novel physics-based nonlinear autoregressive

National Research Council . . . .
Canads, 1200 Montreal Rd, Bldg exogeneous neural network model arc‘h|tectur.e‘ for flight modellmg across the entire
U-61, K1A OR6 Ottawa, Canada flight envelope, called FlyNet. When using traditional parameter estimation and

output-error methods, aircraft models are captured about a single point in the flight
envelope using a first-order Taylor series to approximate forces and moments. To
enable analysis throughout the entire operational envelope, the traditional models can
be extended by interpolating or stitching between a number of these single-condition
models. This paper completes the evolutionary next step in aircraft modelling to
consider all second-order Taylor series terms instead of a subset of those and by
exploiting the ability of neural networks to capture more complex and nonlinear
behaviour for the efficient development of a continuous flight simulation model valid
across the entire envelope. This method is valid for fixed- and rotary-wing aircraft. The
behaviour of a conventional model is compared to FlyNet using flight test data
collected from the National Research Council of Canada’s Bell 412HP in forward flight.
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Introduction

Flight modelling and simulation plays a major role in the life of an aircraft. From the
aircraft development to assess the aircraft stability and develop controls, to pilot training,
flight models must provide a realistic representation of aircraft behaviour throughout the
entire flight envelope. This includes the aircraft’s possible range of speeds, altitudes, angles
of attack and sideslip, and aircraft configurations, such as the flap position and centre of
gravity (CG) location. A flight simulator model that spans the operational space of an
aircraft is known as a global model or a stitch model.

Neural networks (NN) are known for their ability to accurately capture the complex and
nonlinear behaviour of systems by exploiting efficient optimization algorithms. Accord-
ingly, NNs have been studied for applications in flight modelling, both about a single
flight condition and across the entire envelope. Since the development of a flight simula-
tion model is typically a lengthy process requiring manual interference and expert physical
insight, this paper describes a method that employs neural networks for the efficient devel-
opment of an aircraft global model. This paper seeks to take an evolutionary step from the
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traditional methods by using an approach that is still rooted in physics but instead uses
a neural network to capture the complex behaviour of the forces and moments through
the flight envelope. This approach would significantly reduce the difficulty of developing
a global model, thereby opening it up to more end-users, as well as decreasing model
development time. This approach is applicable to both fixed- and rotary-wing aircraft and
is demonstrated using flight test data collected from the National Research Council of
Canada’s (NRC) Bell 412HP.

Flight simulation and global modelling

In a typical flight modelling process, several aerodynamic models are determined across
a range of speeds, altitudes, and aircraft configurations by assuming small perturbations
about the trim condition. The model is linear and called a point model or an anchor
point [1], which is linearized about the trim condition of the flight test point. The point
model may be estimated using time-domain or frequency-domain system identification
techniques, which are presented in the popular textbooks by Klein and Morelli [2] or
Tischler and Remple [3].

A global model is a connection of the point models through some regression technique.
The regressors typically include some measure of the forward speed, air density, and
other parameters that vary between fixed- and rotary-wing aircraft. These regressors
may be selected using stepwise regression, expert insight, or another method for model
structure determination. A global model is a combination of linear models that vary
throughout the flight envelope so such a model may be referred to as quasi-non-linear.
When simulating using a global model, the parameter values at the instantaneous state are
used [1], essentially turning the global model simulation into a non-linear one; because
the point model uses the trim condition instead of the instantaneous one, this creates a
disconnect between the point model and global model simulation methods.

Brandon and Morelli [4] indicate that a variety of techniques may be used to develop
global models, including stepwise regression with splines or model stitching [2,5-18] or
multivariate B-splines [19,20], stepwise regression with polynomial regression [21-26],
multivariate orthogonal functions [2,27-31], fuzzy logic [32,33], data partitioning with
simplified local models [2,34,35], and combining local models [36,37]. These techniques
fall into two general approaches: model structure determination with curve fitting and
model partitioning.

Model structure determination with curve fitting
The approach of model structure determination followed by curve fitting is the one most
often seen in practice. In this approach, the structure of the model is dictated by a set of
independent variables that span the flight envelope, called the regressors. The regressors
may be selected from the aircraft states and controls using convention, expert insight,
stepwise regression, or orthogonal functions. Since several aircraft states and controls
are correlated, such as the angle of attack and the elevator position, a set of orthogonal
functions removes any correlation between regressors [27].

A curve fitting method may be applied for regression of the stability and control deriva-
tives. The use of polynomial regression allows for a smooth function that may be a func-
tion of several variables. This may serve to smooth out the effects of over-specialized point
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models given a sufficiently low-ordered polynomial or a sufficiently high number of point
models. This approach begins to break down for highly non-linear behaviour, such as that
which may occur near stall or during aircraft upsets. This may be addressed by adding
in more terms or higher-ordered terms at the risk of generating a high variance model.
Alternatively, splines may be used or the model may be partitioned, for example, to low
angle of attack and high angle of attack models.

Splines allow one to fit a lower-ordered polynomial through a subset of points. Tobias
and Tischler [1] provide a review of the spline method, which is core to the stitching tech-
nique. This model stitching approach was first proposed by Aiken [5] and Tischler [6], and
is commonly seen in practice for frequency-domain system identification models with a
small number of anchor points [9-17]. Depending on the order of the chosen interpolating
polynomial, various levels of continuity may be enforced. A linear interpolating function
permits C° continuity, and a cubic interpolating function provides C! continuity with
clamped endpoints for extrapolation. A drawback of this method is the computational
complexity when considering more than two regressors [27]. Further, there is no basis
for determining the model structure so the spline may match noise and is unsuitable for
a scattered dataset [27]. Accordingly, the spline method is typically applied to models
identified in the frequency-domain since spectral smoothing techniques allow the com-
bination of several points about a flight condition to form a single frequency response
for identification. A more recent publication from Millidere et al. [38] proposes the Lasso
technique as yet another means of determining the global model regressors. The down-
side of this method when compared to the proposed method is that it depends on first
determining local linear models through Jacobian Linearisation. The Lasso technique is
then used to stitch the individual models.

Model partitioning

The model partitioning approach is less commonly seen in literature. This approach sepa-
rates the data into bins and identifies a model for each bin. In the model partitioning with
simplified local models approach [2,34,35], there is a discrete number of models and only
one model is considered at a time. This is essentially a nearest-neighbour interpolation
and may result in discontinuities when transitioning between bins. These discontinuities
may be addressed through combining local models where models are combined using
model superposition and Gaussian weighting [36,37].

The model partitioning approach has several limitations compared to other methods.
Each partition must have a sufficient number of data points to fit a model. This require-
ment generally makes it infeasible to consider more than one regressor. Although the
models in each bin are generally linear and each bin is relatively small, the model parti-
tioning approach can be combined with one of the previous curve-fitting approaches. This
technique generally uses larger bin sizes and may, for example, separate the model to sub-
sonic, transonic, and supersonic bins; high angle of attack and low angle of attack bins for
fixed-wing aircraft; or hover and forward flight bins for rotary-wing aircraft. The simplic-
ity and computational efficiency of the model partitioning approach have attractiveness
for real-time global model identification [39].
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Aircraft trim
Not only must the aircraft model match the aircraft dynamics, but it must also have similar
static behaviour, which is represented by the trim solution. A trim solution refers to the
control settings and initial conditions that result in zero net forces and moments applied
to the aircraft such that there is no rectilinear or angular acceleration in any axis. The
establishment of a trim solution is important for cases such as evaluating performance in
steady flight and for evaluating the handling qualities where a linear model is established
about the initial point. For most analyses, it is desirable to begin at a specific flight condition
instead of beginning on the ground, taking off, then flying to the desired condition [40].
The ability of the simulator to find a trim solution to begin the simulation may become a
challenge for global modelling. In general, point models are tabulated for the trim solution
and a line is fit through each of the point models. A simulator will then refer to the saved
trim point for a particular test when beginning a simulation. However, the inevitable
errors that arise in the regression process result in discrepancies between global and local
model parameters that will likely result in the test beginning out of a trimmed state. The
ease in which an optimization method can find small offsets to the desired initial states
and control positions such that the simulation begins in trim is referred to herein as the
trimmability of the model. The Code of Federal Regulations Title 14, Part 60 outlines the
trim requirements for flight simulators. For example, Appendix C to Part 60 states that a
helicopter full flight simulation model must be in a trim condition when the pitch angle
is within 41.5deg, the sideslip angle is within +=2deg and all control positions are within
5% of the actual values from flight testing to be compliant with the regulations [41].

Neural networks

NNs are known for their potential to capture the nonlinear behaviour of systems accurately
and efficiently. Since aircraft exhibit nonlinear behaviour across their flight envelope, NNs
have seen successful application for aircraft flight modelling. A NN for this application is
typically in the form of a nonlinear autoregressive exogeneous (NARX) model [42-47].
Such a model is represented in the following algebraic form:

Viey = F (Vo1 Yie—2ps - - o Wity -1y U(—2) - . ) + € 1)

where y(; is the output state vector at timestep £, 1) is the input control vector at timestep
t, and ¢ is an error term. Thus, the output at a certain time step is conditioned by the
inputs and states at previous timesteps. Instead of directly passing the inputs and states
from previous timesteps, the model may also be captured in the form of a recurrent neural
network (RNN) [48,49]. An RNN takes the activation values at the previous timestep and
combines these with the inputs at the current timestep.

The NN in literature often model output state derivatives such that they are analogous
toalinearized state-space representation at a single flight condition. An alternate approach
is to model the force and moment coefficients at a given timestep [50,51]. When the NN
outputs force and moment coefficients, the corresponding derivatives at a given condition
can be estimated by a method such as the “modified delta” approach used by Chauhan
and Singh [50].

The NN architectures in literature typically consist of three total layers (input layer,
one hidden layer, and output layer), where the hidden layer may use a rectified linear
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unit (ReLU), as in Punjani [44], or a smooth nonlinear activation function, such as a
sigmoid function, as in Norouzi et al. [47], or a hyperbolic tangent, as in Fekih et al. [43].
The number of neurons in the hidden layer ranges from 10, as in Norouzi et al. [47],
to 2500, as in Punjani [44]. Since flight simulation systems must operate in real-time or
faster, simpler networks are preferred, thus explaining use of a single hidden layer and a
preference toward a small number of neurons.

Roudbari and Saghafi demonstrated the use of a neural network with a multidimensional
output for modelling across the complete flight envelope [48]. This neural network archi-
tecture simultaneously outputs the states in multiple dimensions for a range of altitudes
and Mach numbers from which the value at the current state can be interpolated. Since
the model results are output in a multidimensional matrix, the model is computationally
intensive and concurrently predicts the outputs at discrete values in the flight envelope,
which may be non-smooth between states. Further, the model grows exponentially in
complexity if additional parameters are considered. This motivates the work presented
herein where the NN model outputs results in a single dimension while maintaining
smooth behaviour throughout the flight envelope.

The approach described in this paper assumes a sufficiently deep neural network can
adequately model the forces and moments acting on the aircraft. However, transitioning
between flight regimes, such as hover, forward flight, or autorotation, may result in a
non-smooth force or moment function that may require a complex neural network to
adequately model. Alternative approaches as described by Jacquemin et al. [52], such
as finite difference or point colocationmay, may simplify the potentially non-smooth
function. Future work will investigate full flight envelope modelling including hover and
autorotation.

There are also several studies in literature not directly related to flight modelling that
are of interest. Deshpande et al. [53] proposed a deep neural network architecture trained
with finite element method generated force-displacement data. The main benefit of their
method is that it is able to accurately predict large deformations in real-time, which is not
possible when using classical finite element methods. This method clearly demonstrates
how deep neural networks can be used to develop computationally simpler models that
retain the predictive capabilities of the full model.

Physics-based neural networks

NN, though powerful, are understood to be purely interpolative. The potential complexity
of NNs with one or more layers consisting of many neurons requires that the function’s
domain be restricted to that defined by the training data since the behaviour outside of
that domain is undefined. Recently, the push in machine learning and modelling with NNs
is toward physics-based or physics-informed models. Such a model may have any of the
following three properties:

1. Uses a physics-based dataset;
2. Uses physics-informed training constraints; or
3. Uses a physics-guided algorithm.

In the context of aircraft flight simulation, the dataset may consist of outputting forces
and moments rather than state derivatives. Physics-informed training constraints can be
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used by enforcing rigid body equations of motion, for example, and a physics-guided
algorithm may use multiple smaller NNs to represent force generating components, such
as the engine, skin friction, and wings, instead of one large neural network to capture all
forces and moments acting on the aircraft. The concept of building physics into the model
is hypothesized to output a model with better generalizability and may be extrapolative.

Paper overview

This paper develops and compares two global aerodynamic models using flight data col-
lected from the National Research Council of Canada’s Bell 412HP aircraft in forward
flight. The first approach, herein the Classical approach, is a conventional one using
polynomial regression of point models. The second approach uses a physics-based neu-
ral network, called FlyNet. The structure of the neural network is determined by tuning
hyperparameters and the output models are compared in terms of their time history
matches, generalizability, and trimmability.

Global modelling architecture

Background theory

A linear state-space approximation is typically used for point modelling and the determi-
nation of the frequency-response or stability characteristics. Consider first the conven-
tional linear state space approximation of a helicopter model

%= A% +Bil )

where the states, ¥, and controls, , are

5c=[uvaqr9¢]T 3)
u= [Alon Ajat Aped A<:011|T (4)

A helicopter uses deflection of the longitudinal cyclic stick, Aoy, lateral cyclic stick,
Alat, pedals, Apeq, and the collective, Ao, for control. The body velocities, u, v, and w,
and the angular velocities, p, g, and r, are fixed to the aircraft’s centre of gravity and given
relative to the inertial frame. Neglecting the effect of the spinning rotors, the rigid body

equations of motion are

mi = X — mgsin — mgw + mrv (5)

mv =Y — mg cos O sin ¢ + mpw — mru (6)

mw = Z + mg cos 0 cos ¢ — mpv + mqu (7)

Lisp = Lg = L+ Liepq + qr (Ly — Iz) ®)
Lyg =M +1p (L = L) + (r* = P*) L )

Lyi — Lop = N + Loqr + pq (Lix — L) (10)
6 =gcos¢p —rsing (11)

¢ =p+qgtanfsing + rtané cos¢ (12)

where X, Y, Z,L, M,and N, are the forces and moments given in the body-fixed coordinate
system, 0 is the Euler pitch angle, and ¢ is the Euler roll angle. The time propagation of the
numerical solution can be completed with a second-order Adams-Bashforth integration
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scheme, which was found to be sufficient for the helicopter dynamic simulations by Crain
et al. [54].

The flight dynamics problem is characterized by the control positions, states, and inertia,
all of which are non-constant throughout the manoeuvre or flight envelope. The model
is conventionally parameterized by the stability and control derivatives that are in the
Taylor series of the forces and moments. The forces and moments can be represented by
a Taylor series in multiple dimensions, such as

T(Xl; e Xd) =

o0 _ ni . _ nyg 8n1+.‘.+nd
Yooy [(Xl alqu!...(n); aa) ( )f(al,...,ad)] (13)

00
ni uyi
=0 my=0 0x) ... 0x

where the vector ¥ is a concatenation of the states and controls and 4 is the set of
points about which the Taylor series is taken. The forces and moments are conventionally
captured by a first-order Taylor series about the initial state and control values for a
manoeuvre to form the state space approximation. That is

(ni=11m=0j€ll, ngl, j#ia =yt =0)) (14)

For demonstration, this expansion simplifies to the following expression in the case of the
longitudinal body force, X

X = X, 8u + X, 8v + Xy dw + Xpop + X48q + X, 6r

+ XAlonsAlon + XAlatSAlat + XA (SAped + XA (SACOI + Xo (15)

ped col

where the subscript notation denotes the derivative with respect to the variable. For

example

Xu

ad
—X 16
o (16)
The Xy term represents the constant portion of the Taylor series

Xo=f(ay,...,ay) (17)

The set of derivatives with respect to the states are called stability derivatives, and the
derivatives with respect to the controls are called control derivatives. The stability and
control derivatives may be estimated using two main approaches. In the first approach,
a linear state space model is formed by linearizing the rigid body equations of motion
about the initial condition and combining with the first-order Taylor series of the forces
and moments taken about the same point. The linear model can then be identified using
time- or frequency-domain methods. In the second approach, the non-linear equations
of motion are used and combined with the first-order Taylor series of the forces and
moments taken about 0 to form a grey-box system identification problem performed in
the time-domain using the output-error (OE) method—this approach was used by Crain et
al. [54]. The dynamics of a rotor-craft in a any given flight regime (such as forward flight)
are well established continuous functions, as are the forces and moments, but the collected
flight data, as described in Sect. , contains noise and is discrete. The function used to fit



Stachiw et al. Advanced Modeling and Simulation in Engineering Sciences(2022)9:13 Page 8 of 20

this data is nevertheless assumed to be smooth and continuous, as the objective of this
paper is not to capture the noise inherently present in flight data. Rather, the objective is
to capture the underlying smooth dynamics without the noise.

Point model system identification: the output-error method

Aircraft stability and control derivatives that are valid about a point in the flight envelope
can either be identified using time-domain or frequency-domain system identification
techniques. This paper uses the OE method for time-domain aircraft system identifica-
tion. OE optimization for aircraft parameter estimation was first introduced by Main and
1lift [55,56] and remains a popular method [2,57]. Aircraft dynamics are a continuous-time
system, but measurements are assumed to be taken at discrete time intervals for process-
ing. The OE method minimizes the difference between the predicted model response
corresponding to parameter vector A% (X), and the measured flight data, x, as in

N

7(X> = \/Lﬁ [Z <x(t+i) — ®(e+i) (X)>2:| (18)

i=1

where N is the number of discrete samples.

When simultaneously considering multiple channels with various unit bases and mag-
nitudes, the channel may be scalarized through mean normalization, which is necessary
to ensure that each channel is considered equally, as in

%(s) — mean(x)

= = = 19
max (x) — min (x) (19)
This improves the performance and accuracy of most optimization routines [2].
The cost for a time history is the root mean square error (RMSE) between x"°™ and its
simulated estimate, aAcnorm, when evaluated using parameter vector . For a single input
test time-history, j, the overall cost is the average cost across all N, output channels

5 6) = 2 () &

Finally, the overall cost for a set of inputs at a single flight condition is the average of J; (X)
for all s time-histories

)= () &

Global modelling

Classical approach: point modelling with polynomial regression

The development of this global model using point modelling with polynomial regression
is documented in References [54]. In this approach, the Taylor series is taken about O for
all point models. Further, the nonlinear equations of motion are used instead of a state
space model, which was found to improve the quality of global modelling matches by
reducing the errors resulting from linearisation.
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All stability and control derivatives are first determined using the output-error method.
Next, all stability and control derivatives are assumed as a function of the dynamic pres-
sure, P;, and stepwise regression determines the appropriate order of the fit up to a
maximum order of 2. For example, assuming X, is a second-order function of P, the
following line is fit using least-square regression:

Xy =f (Py) = b1P3 + byPy + b3 (22)

where b; are the fit parameters. A similar analysis is performed for each stability and

control derivative.

FlyNet: physics-based neural network

The proposed global modelling approach closes the gap in the piecemeal approach of iden-
tifying linear models, connecting the points through regression, then validating using a
quasi-non-linear simulation. Consider the example of a polynomial fit approach presented
in Eq. (22). Substituting this into Eq. (15) expands to

Xuuw = (b1P5 + baPy + b3) u (23a)
Xuu = biPyu + baPyu + bsu (23b)

This expanded form can be considered part of the Taylor expansion with

d

2 np, <1
DOLER S (24)
i=1 3 np, = 2

where many of the other terms in the Taylor series are discarded. This knowledge of
the conventional global modelling approach indicates that a limited Taylor expansion
about zero to the second- or third-order has traditionally been acceptable for global
aircraft modelling. Instead of using a higher-ordered Taylor series, this paper postulates
the quality of the global model matches will be improved with a neural network. The neural
network uses the states, control positions, dynamic pressure, altitude, and longitudinal
centre of gravity position as inputs and outputs the forces and moments. The hidden layer
uses a hyperbolic tangent activation function and the output layer uses a linear activation
function. Thus, the model structure is as follows

Jo = Watanh (Wixe +bi) + b (25)

The parameter identification process for a model of this form utilizes the output-error
method. Unlike the previous approaches, a single model can consider all test points simul-
taneously. Thus, for a flight data set consisting of N; test points, the cost function is the
average across all time histories

/6) = 3506)

If all higher-ordered terms are used as inputs, this will include many more inputs than
conventional methods, many of which will have a weak influence on the model response.
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Fig. 1 Flow chart of FlyNet

The use of L2 regularization will pull these insensitive parameters toward 0 and may help
prevent model overfitting. In this case, the cost function becomes

](X):nitg:]j(i)JraZAi @)

where « is the regularization parameter.

A flow chart of the FlyNet model is shown in Fig. 1. The piecemeal approach of develop-
ing point models then using some method to connect the stability and control derivatives
makes no guarantee on the performance of the global model since this is not considered
in the curve fitting process. The approach of considering all points simultaneously with
a neural network consisting of higher-ordered input terms ensures positive global model
matches since these are directly considered in the cost function. The structure of the
neural network is informed by conventional physics-based flight simulation models and
ensures C! continuity. The simplicity of this method does not require expert insight or
manual intervention and opens it up to a larger range of non-expert users. In Fig. 1, ¥ is
the vector of states, i is the vector of controls, P is the dynamic pressure, / is the altitude,
M is the mass and inertia matrix, and x, is the longitudinal center of gravity.

Case study: comparison of global modelling methods
Aircraft and flight data collection
Flight test data collection was completed using the Advanced Systems Research Aircraft
Bell 412HP (S/N 36034), which is operated by the National Research Council of Canada
(NRCQ). It is powered by a PT6T-3BE TwinPac power plant. The maximum gross weight
of the aircraft is 119001bs. Flight testing was performed using the standard mechanical
flight control system, which incorporates dual limited-authority automatic flight control
systems. These are the standard helipilots furnished with the Bell 412HP and feature both
rate damping and attitude retention modes. The yaw axis incorporates rate damping in
either mode. The data acquisition system onboard the aircraft collects data at 128 Hz. The
data was collected for a Level D full flight simulator to the same standard as required by
FAA Title 14 CFR Part 60 [41]; additional details on the aircraft and the instrumentation
suite can be found in References [58]. The aircraft is shown in Fig. 2.

This report considers only forward flight for modelling. Each point model is developed
from a set of 2-3-1-1 inputs and control response tests. A 2-3-1-1 input is a series of
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Fig.2 Bell 412HP advanced systems research aircraft

Relative Control Displacement
(=)

Time (s)

Fig.3 Typical 2-3-1-1 control input

4 consecutive and alternative step inputs of 2, 3, 1, and 1 seconds in duration in a given
control axis. A set of four 2-3-1-1 inputs consisting of one each of inputs in the longitudinal
cyclic stick, lateral cyclic stick, pedal, and collective channels shall be referred to hereafter
as an input quartet. A typical 2-3-1-1 input is shown in Fig. 3. The quartet test points
were generally conducted around 45 Knots Indicated Airspeed (KIAS), 60KIAS, 75KIAS,
90KIAS, and 105KIAS.

The data for modelling was separated into two subsets: an optimization set and a test
set. The optimization set is used for model identification and consists of fifty 2-3-1-1 input
quartets ranging in speed from 30 Knots True Airspeed (KTAS) to 120KTAS and control
response tests for a total of 252 individual time-histories. The test set is not used in the
model identification and is used to test the ability of a model to generalize to new cases.
The test set consists of 45 time histories including control response tests and two 2-3-1-1
input quartets randomly selected from each of the aforementioned speed bins for a total
of ten quartets. It should be noted that separating the data into training and test sets is
not required by the regulations for full flight simulators [41] but this is a best practice in
the machine learning community.
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Global modelling

Classical approach

Parameter identification was performed for each 2-3-1-1 quartet for a total of 50 iden-
tified point models. The parameters were identified using a constrained interior point
optimization algorithm [59] with the cost function given by Eq. (21). Parameter values
were left unbounded. All parameters were initialized using a linear least-squares param-
eter estimate. Since dynamic stability tests from flight testing demonstrated stability in
forward flight, stability was enforced for each point model. Mathematically, a linear flight
dynamics model is stable when the real part of the eigenvalues of the state matrix, A, are
all less than zero. Thus, for stability

max (N(eig(A))) <0 (28)

The stability constraint given by Eq. (28) was imposed as a non-linear constraint. The
identification of the point model derivatives used non-linear time-varying equations of
motion with constant parameters. A full description of the modelling approach is available
in References [54].

Once all flight dynamics models were identified, the global model was created using P
as the regressor. P; was selected as the regressor since it is a metric that considers both
the forward speed, which is conventional [1], as well as the altitude, which is represented
by the density in the dynamic pressure expression. All stability and control derivatives, as
well as the constant values in the Taylor expansion, were fit using stepwise regression up
to the second-order of P,.

FlyNet
Model training

The model training consists of two parts: first is a pre-training using a feed-forward
system, and second is training the system to optimize simulation matches. In the first
step, parameters were initialized using Glorot uniform initialization [60], which randomly
initializes each parameter in the range [—e¢, ¢] where

6
e= |— (29)
Ni +No

where Nj is the number of input terms and N, is the number of output terms. The param-
eters were subsequently refined as a feed-forward system where tabulated states, controls,
and the second-order terms are the inputs, and the forces and moments calculated from
flight data are the outputs. Optimization of the parameters uses the Adam optimizer [61]
with a learning rate of 1073 for 500 epochs. Feed-forward training is faster than the closed-
loop system and minimizes the prediction error but makes no guarantee of the simulation
error. The prediction error refers to the error one time step ahead whereas the simula-
tion error is the error of the entire time history match. This approach also does not risk
simulation model divergence due to initial model instabilities.

After the model is pre-trained, the output-error method was applied to the closed-loop
system using the Adam optimizer to minimize the cost function given by Eq. (27) with
regularization parameter « = 10~%. The loss function also included the initial trim error
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as given by the normalized force and moment error in each degree of freedom. This allows
the model to simultaneously optimize for time history matches and trimmability.

Model structure determination

Hyperparameter tuning was conducted to determine the optimal input order and the
number of neurons in the hidden layer. Using first-order inputs only is intended to test if
the neural network alone is able to capture the nonlinearities of the global model instead of
using second-order input terms. The losses of models trained with first- and second-order
inputs with the number of nodes in the hidden layer € {8, 16, 32, 64, 128} were determined
and are plotted in Fig. 4. The models were all initially pre-trained in a feed-forward manner
for 500 epochs then as a closed-loop for 1000 epochs. The final MSEs of the time history
matches are plotted in Fig. 4.

This figure demonstrates that there are small gains in the performance of the model
with first-order inputs using 32 neurons in the hidden layer while the model with second-
order inputs had marginal gains with more than 16 hidden layer neurons. Models with
2nd order inputs had better performance on the training set with similar performance
on the test set. Accordingly, the model structure will use second-order input terms and
16 nodes in the hidden layer, which has a total of 2278 trainable parameters. This model
was subsequently trained for 2500 epochs using the Adam optimizer with a learning rate
of 1073, The training and test set losses are plotted in Fig. 5, which shows a stable and
asymptotic minimum was attained. Further, both training and test set losses remained
stable, thus indicating that the solution is not one of high variance.

Results

The average RMSEs for each channel between the two approaches with the 95% confidence
interval (CI) are given in Tables 1 and 2. The tables also present the one-tailed p-value
using a paired-sample ¢-test of the null hypothesis. Since the datasets are dependent, a
paired-sample ¢-test was performed on the null hypothesis, Hp, which is that mean value
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Table1 Average RMSEs in training set (N

= 252) for each channel with 95% Cl and p-value

FlyNet Classical p-value

[fts—"] 2.2220.327,6.392] 3.6231[0.753,22.473] 0.000
w [fts™'] 1.288[0.339, 3.723] 1.626 [0.455, 8.903] 0.000
q [rads " 0.012 [0.004, 0.029] 0.018 [0.005, 0.087] 0.000
6 [rad] 0.023 [0.006, 0.064] 0.038[0.009, 0.213] 0.000
v [fts™1] 2.159[0.502, 6.169] 2[0.653,14.319] 0.000
p [rads " 0.024 [0.006, 0.057] 0.035[0.010, 0.200] 0.000
rlrads~"] 0.021 [0.006, 0.053] 0.032 [0.008, 0.136] 0.000
¢ [rad] 0.044 [0.009, 0.138] 0.074[0.021, 0.648] 0.000
Table2 Average RMSEs in test set (N = 45) for each channel with 95% Cl and p-value

FlyNet Classical p-value

ulfts™"] 2.038[0.468, 6.082] 110.780,15.539] 0.081

wlfts™] 1.765 [0.657, 6.394] 1.728 0507, 6.174] 0207

g lrads™'] 0.015 [0.006, 0.043] 0.018 [0.005, 0.071] 0.020

0 [rad] 0.028 [0.007, 0.096] 0.042 [O 009, 0.225] 0.022

v [fts™'] 2.698 [0.824, 6.879] 3.508 [1.129, 14.636] 0.016

plrads™'] 0.030[0.010, 0.078] 0.037[0.015, 0 207] 0.065

rrads™"] 0.026 [0.008, 0.076] 0.032[0.010,0.110] 0.014
¢ [rad] 0.050[0.013,0.164] 0.072[0.021, 0.295] 0.071
of the Classical approach, w1, equals that of FlyNet, w1, as in

Ho, : po = p1, Ho, : (wo — 1) =0 (30)

Thus, the alternative hypothesis, Hy, is

Hyq:p1 > o, Ha -

(m1 — o) >0

(31)
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Fig. 6 Example pitch rate time history matches for FlyNet and classical models for a longitudinal stick 2-3-1-1
input in the training set. The gray area is the =2deg.s~' bounds set in [41] for full flight simulators

Table 1 demonstrates that FlyNet has a lower average RMSE than the Classical approach
in all cases for the training set with a p-value less than 5% in all cases. FlyNet also has a
lower average RMSE than the Classical approach for the test set in most cases cases except
for the w matches (p = 0.207) and the p-value approaches significance for u, p, and ¢.
Example time history matches for the best- and worst-case matches of FlyNet to the pitch
rate for a longitudinal cyclic stick input 2-3-1-1 is presented in Fig. 6.

The average of the absolute initial trim offsets with the 95% confidence interval and the
one-tailed p-value from the paired-sample ¢-test are given in Tables 3 and 4. The tables
show that the FlyNet model has superior trim performance compared to the Classical
model with greater than 95% confidence.

The difference between the overall training set losses of the two models, JriyNet —/Classicals
are plotted in Fig. 7. This figure shows that in nearly all cases, the loss of the classical
model is greater than that of FlyNet. A one-tailed paired-sample ¢-test results in a p-value
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Table3 Average absolute initial trim offsets for training set (N

= 252) with 95% Cl and p-value

FlyNet Classical p- value
Up [fts=] 0.861[0.122,4.720] 9[0.164, 5.627] 0.000
Vo [fts™2] 0.82410.121,4.179] 010[ 110,4.148] 0.001
Wo [fts=2] 1.2591[0.157,6.071] 2.7801[0.230, 8.550] 0.000
po [rads—2] 0.027 [0.002, 0.080] 5[0.014,0.551] 0.000
go [rads™] 0.010[0.001, 0.033] 0.080[0.009, 0.314] 0.000
fo [rads™2] 0.015[0.001, 0.047] 0.048 [0.004, 0.132] 0.000
Table4 Average absolute initial trim offsets for test set (N = 45) with 95% Cl and p-value

FIyNet Classical p-value
U [fts™2] 5[0.151,4.212] 2.826[0.759, 5.236] 0.000
Vo [fts=2] 0.764 [0.067, 2.603] 1.297 [0.158, 6.154] 0.006
Wo [fts=2] 1.640 [0.348, 5.404] 3.822[0.376,10.227] 0.000
po [rads™2] 0.025 [0.003, 0.061] 0.226 [0.024,0.812] 0.000
Go [rads™] 3[0.003, 0.056] 0.123[0.008,0.311] 0.000
fo [rads—2] 7[0.002, 0.074] 0.064 [0.006, 0.140] 0.000

of 0.0% for the training set and 2.9% for the test set, thus confirming with greater than 97%
confidence that FlyNet outperforms the classical model on average and better generalizes
to new data.

Observations and discussion

The reference flight test data included sixty 2-3-1-1 input quartets. The test points were
generally conducted around 45KIAS, 60KIAS, 75KIAS, 90KIAS, and 105KIAS. The test
set randomly selected two quartets from each test condition. Two points at each speed
is a small sample size and thus the average loss has a large associated standard deviation.
It is assumed that the difference between the training and test set losses is a result of the
small sample size rather than resulting from a model with high variance since Fig. 4 shows
that the difference between the losses remains similar for simpler models.

Perhaps one of the greatest limitations of the Classical piecemeal approach of first
identifying a linear model then performing regression is due to the large variances in
the point model derivatives. This approach lacks a method of implementing meaningful
bounds on derivatives for point modelling to limit the variances such that a function with
both low bias and variance can be fit to the data. One way of addressing this is using an
orthogonal function approach to fit the derivatives, such as that of Morelli [27]. However,
a good fit to stability and control derivatives does not necessarily translate to good time-
history matches. The identified stability and control derivatives are specialized for that
one point and thus there is random spread in the derivatives resulting from unmodelled
dynamics, manoeuvre execution, beginning the test out of trim, atmospheric disturbances
and other sources of random error. Obtaining a good fit to these randomly distributed
parameters will result in a high variance fit that does not generalize well. Additionally,
the disconnect between the linear model assumption when identifying point models then
subsequently using a quasi-non-linear model for global simulation, which has varying
stability and control derivatives, will further amplify the effect of a high variance fit.

Page 16 of 20
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FlyNet does not require fitting a function to point models. Since it fits all point tests
simultaneously, this has a regularization effect to prevent the over-fitting that may occur
when considering a single point at a time. Further, by considering many test points, higher-
ordered terms can be introduced without as high of a risk of obtaining a high variance
model. With the large number of terms in this second-order model, several of these terms
may not have a significant influence on the model and thus L2 regularization is used to
aid in convergence and further prevent an over-specialized model. It was shown with over
95% confidence that FlyNet generalizes better to test set data so it can be concluded that
the model does not exhibit over-fitting behaviour.

Improvements in computational power and memory permit the ability to consider all
points simultaneously and improved optimization algorithms allow for the consideration
of a large number of parameters. It should be noted, however, that FlyNet optimizes fewer
parameters overall than the classical approach. For a 6-DOF model using the classical
approach, there are 66 parameters for identification at each point. When there are 60
test points, this leaves the optimization of 3960 parameters plus the parameters for the
global model fits. The proposed approach requires the determination of a total of 2278
parameters and does require the additional step of determining global model fits.

FlyNet showed an improved ability to trim over the Classical approach. Both modelling
approaches take the Taylor expansion about 0 so the simulated time history will result in a
high cost using the output-error method if it begins out of trim. When considering only a
single point at a time, the constant terms in the Taylor expansion can adequately capture
the static behaviour and trim the model for the test. However, the global model fits to the
constant terms do not guarantee the quality of the global model trim solution in the same
manner that the fits to the stability and control derivatives do not guarantee the quality of
the global model dynamic matches. In comparison, FlyNet directly considers the cost of
the global model so the simulated time history will have a high cost if it begins out of trim.
This forces the optimization to simultaneously consider trimmability both indirectly and
by directly including the trim error in the loss function. The improved trimmability using
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FlyNet is observed in Tables 3 and 4, which shows that the novel model begins closer to
a trim condition in every axis with a one-tailed p-value from a paired-sample ¢-test of
approximately 0%.

The FlyNet architecture is physics informed. The neural network part generates forces,
thus allowing the closed-loop system to enforce rigid body equations of motion and
use physics-based data, such as the mass and inertia during closed-loop training, and
calculated forces and moments for feed-forward training. This architecture is in contrast
to more complex neural network models that merely take measured states and controls
and output state derivatives or the value one step ahead. Future work will include separate
models for the rotors, and bluff-body aerodynamics, thus furthering the physics-guided
algorithm.

Future work will also assess the handling qualities and pilot feedback using a model
developed using this novel approach. It is possible and trivial to estimate the stability and
control derivatives of this model about a given set of initial conditions. The estimation of
these derivatives would allow one to form a stability matrix from which the eigenvalues
can be determined. This may also be used to estimate the frequency response about a
given condition, which can be compared to the estimated frequency response from flight
data.

Conclusion

This study compared the performance of a two-step pseudo-non-linear global aircraft
modelling architecture to a novel single-step continuous and non-linear global modelling
method using a physics-based neural network called FlyNet. It was shown that a model
with second-order input terms consisting of states and control positions with a neural
network that outputs forces and moments outperformed the conventional global mod-
elling approach with greater than 97% confidence for both training and test sets. Since
FlyNet considers all second-order terms in the Taylor expansion, it automatically deter-
mines the model structure without the need for expert insight or manual intervention that
may be required for legacy multi-step approaches. The novel approach also had improved
trimmability compared to the legacy approach. Future work shall assess the handling
qualities of a model developed using this novel approach, as well as its performance on a
fixed-wing aircraft.
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