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' Department of Mechanical The embedded finite element technique provides a unique approach for modeling of
E’;?V'Qrej&”%nplsgrzlfyta;;k Usa fiber-reinforced composites. Meshing fibers as distinct bundles represented by truss
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Alamos, USA specific material properties for each component rather than homogenization of all of

the properties. However, the implementations of the embedded element technique
available in commercial software do not replace the material of the matrix elements
with the material of the embedded elements. This causes a redundancy in the volume
calculation of the overlapping meshes leading to artificially increased stiffness and
mass. This paper investigates the consequences in the energy calculations of an explicit
dynamic model due to this redundancy. A method for the correction of the edundancy
within a finite element code is suggested which removes extra energy and is shown to
be effective at correcting the energy calculations for large amounts of redundant
volume.

Keywords: Finite element analysis (FEA), Fibers, Polymer-matrix composites,
Embedded elements

Introduction

The embedded element method is a superposition technique in finite element analysis
(FEA) where two independent element meshes are superimposed on one another. One
mesh is embedded in the other by tying the degrees of freedom of the embedded nodes
to the degrees of freedom of the host elements. The embedded element method has
evolved both in its implementation and application since it originated and has been used
under many different names. Initially, it was used as a localization method, similar to the
extended finite element method, where the element shape functions were modified to
include embedded regions that could accommodate highly localized strain fields [1,2].
Later, these embedded regions influenced the creation of higher order elements [3-5] as
well as separate refined meshes that replaced a coarse mesh in localized regions [6,7]. This
technique was used in various ways to model woven fiber reinforced composites, from
multi-scale localization models [8] to microscale models of fiber regions meshed with
continuum elements embedded in a matrix material [4,9,10]. Rather than using a solid
element mesh, some authors used truss or spring elements to represent the stiffness of
fibers embedded in continuum element mesh of a matrix material [11-13]. This has been
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a popular method for modeling rebar reinforced concrete as well [14—17]. In the last few
years, embedded truss elements have also been used to model bio-material such as white
matter in the brain [18-20].

However, in the implementation of the embedded element method, the volume of the
host elements is not modified to “make room” for the embedded elements. The volumes
of the two meshes occupy the same space. If this is unaccounted for, it causes internal
energy and kinetic energy to be miscalculated by double counting volume of the embedded
mesh [20,21].The amount of redundant volume is equal to the volume of the embedded
mesh so in some cases, such as in reinforced concrete, the redundancy is considered
negligible. However, as the volume of the embedded regions increases the additional mass
and stiffness of the redundant volume need to be addressed. There have been several
different methods introduced to account for the redundant volume [2,4,8-10,21]. The
most common way is, rather than using the matrix material’s true properties, to use an
effective medium. This is found from taking measured properties (stiffness, density) of the
total composite and subtracting the stiffness of the embedded elements [4,9,19,21,22].
Some authors have used modified integration schemes, averaging or ignoring overlapping
integration points [2,10,23]. However, these methods were created for elastic problems,
and none for time-dependent dynamic problems or explicit finite element techniques. In
a paper on modeling brain matter, Garimella et al. [20] proposed a modification to the
explicit finite element method to internally correct the volume redundancy that examined
the stress response but did not analyze energy.

We are extending Garimella’s work to study energy to investigate the possibility of using
the embedded element method of FEA to create meso-scale models of fiber reinforced
composites, particularly for ballistic applications. If fibers could be modeled as an inde-
pendent mesh of truss elements, it would simplify mesh generation while maintaining
a distinction between the fiber and matrix material, which is useful for meso or macro-
scale modeling [6,21]. By using a continuum material to represent the composite’s matrix
and embedded line elements to represent bundles of fibers, the orthotropic nature of the
material would be naturally captured. It could also have the ability to model curved plates
without the complexity of defining local material axes. The element mesh is easy to create,
yet retains distinction between the fiber and matrix components for meso-scale analysis.
An example of this type of mesh is shown in Fig. 1. Since fiber reinforced composites have
a large fiber volume fraction (87% is common for ballistic composites), it is important to
take into account the effects of the volume redundancy in the embedded element method
in order to get accurate measures of the amount of energy absorbed and dispersed by the
material.

This paper investigates the energy terms affected by volume redundancy in the embed-
ded element method and how the volume redundancy effects problem solutions, partic-
ularly in dynamic problems with high fiber volume fraction materials.

Methods

Energy and the finite element method

In the finite element method for structural mechanics, we wish to find the displacement
field of a structural system given the system’s initial position and a set of boundary con-
ditions on the displacement and/or stress on a surface of the system. The displacement
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Penetrator —____

Fig. 1 Example of a 1/4 disk meshed with embedded truss elements to represent fiber bundles layered in a
0/90° in a composite

field can then be used to calculate stress and strain from the strain displacement equation
and a constitutive equation. Normally, this problem results in solving the partial differen-
tial stress equilibrium equation. The principle of virtual work allows the solution of the
problem via integrals. As an expression of the conservation of energy, the principle of
virtual work states that the work done on the system by external forces is equal to the total
amount of internal energy stored in the system plus the kinetic energy and any dissipated
energy. Starting with a system with known boundary conditions, the principle of virtual
work can be derived from conservation of energy as follows. For an elastic structural
problem with negligible amounts of heat transfer involved and no energy dissipation, the
internal energy is equal to the strain energy of the structure, which is found by Eq. (1).

Wine = / Cijrauijui dV (1)

Here u; is the displacement field of the system and Cyj is the material stiffness tensor.
The kinetic energy and the work done by external forces can be expressed as Egs. (2)

and (3).
dzui
Whin = /pF”idV )
Wext = /pbiui dV—i—/ tiu; dA (3)
S2

In these equations, p is the material density, b; is a vector representing body forces (such
as gravity), and ¢; is the vector of the surface traction (applied force per unit area) on the
surface Sp. The total system potential energy is equal to the summation of these work
terms.

Evotal = Wing(;) — Wews (1) + Wkin(ui) (4)

According to the principle of minimum total potential energy, the system will move to
an equilibrium position that will minimize the total potential energy. One way to tell if a
system is at equilibrium is to perturb it by some amount and see if the system returns to the
original state. By perturbing the potential energy equation by some virtual displacement
field §u;, we get the virtual work equation with the virtual values of internal, kinetic, and
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external energy. An equilibrium solution will be one that satisfies this equation for all
kinematically admissible virtual displacements [24-26].

du;
/Ci,'klu,;jcSuk,ldV—/pbirSu,-dV—/ tiéuidA—I—/,o?L;lrSuidV:O (5)
S§2

The virtual work equation is then solved by discretizing the system into a set of nodes.
The displacement field between the nodes is assumed to be a linear interpolation of
the nodal displacements. This done by using interpolation functions, often called shape
functions, N4 (xj). The displacement field #;(x;) is then defined by Eq. (6).

ui () = Y N (x)) uf ()
a=1

The summation is over all nodes in the model, where u? is the displacement at node a.
Substituting this definition of #; into the virtual work equation gives a linear system that
can be expressed in matrix form as in Eq. (7).

Mapalyy + (Kaivuf = F) 6uf = 0 o)
AN aN“

Kaivk = / Cijkla— av ®)
x]‘ 3.761

Ff = / pbiN*dV + / tN“dA ©)
S»
aA2ub

In this system, K is known as the element stiffness matrix, F (when multiplied by uf) is
a vector of applied forces, and M is the element mass matrix. K and M are precomputed
based on known material properties and interpolation functions [24].

Implementation of the embedded element method

In the embedded element method, one finite element mesh is superimposed on another.
The embedded mesh is constrained to follow the motion of the other mesh (the host
mesh) by tying the degrees of freedom of the embedded nodes to the degrees of freedom
of the host elements. Additionally, the stiffness of the embedded mesh resists the motion
of the host mesh, thus creating a coupling system between the two meshes.

Tying the displacement degrees of freedom

If slip between the host and embedded nodes is not allowed, then the displacement degrees
of freedom of the embedded elements can be tied to the host element motion. Displace-
ments anywhere in the host element are interpolated from the displacement of the host
element nodes via the element shape functions, usually denoted in matrix form as N. For
the embedded element method, this same interpolation can be used to find the displace-
ment of the embedded nodes. This is represented by Eq. (11).

u; =Ny u, (11)

where u; is the displacement of the embedded node, gi is the natural coordinates of
the embedded node, and uy;“ are the known displacements of the host element nodes.
Figure 2 shows a two-dimensional equivalent of the scenario: the host element with nodal
coordinates x;;* and embedded node (located at x;) are shown on the right as they are
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Fig.2 Definition of variables in the mapping between host element natural space and the model global
coordinates
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Box 6.1 Flowchart for explicit time integration

. Initial conditions and initialization:

set v°, ¢°, and initial values of other material state variables;
d’=0. n=0. r=0: compute M

. getforce

Compute accelerations a”=M-'(f* — C=#y™*)
Time update: 1" ="+ A" 1" = %(l" +1")

. First partial update nodal velocities: v***=v"+(r"** = r)a"
. Enforce velocity boundary conditions:

ifnode fon T, :vj™ =T, (x,.r"™)

. Update nodal displacements: d™*'=d"+Ar "y
. getforce

Subroutine getforce

0. Initialization: f*=0, Ar_ =co
1. Compute global external nodal forces f,
2. Loop over clements e
i. GATHER element nodal displacements and velocities
ii. £ =0
iii. Loop over quadrature points éu
1. ifn=0,goto 4
2. compute measures of deformation: D""’(gu). F"(gu). E"@U)
3. compute stress 6" (g‘,) by constitutive equation
4L 0+ BTO W,
END quadrature point loop

9. compute a"" iv. Compute external nodal forces on element, f7*"
10. Second partial update nodal velocities: v**'=v" "+ ("' —r"**)a"*! A

11. Check energy balance at time step n+1: see (6.2.14-18) vi. Compute Arg, . if Arg, <Ar, then Ar, = Arg,
12. Update counter: n<n+1 vii. SCATTER f to global f*

13. Output; if simulation not complete, go to 4. 5. END loop over elements
6. Ar=0Ar

z

it

Fig.3 Explicit time integration flowchart from Nonlinear Finite Elements for Continua and Structures by
Belytschko et al. [27]

in the global finite element model. The natural space of the host element, which includes
the nodes of the embedded element is shown on the left. £, are the coordinates of the
embedded node in the natural space of the host element. Equation (11) adds another
constraint equation to the combined finite element model, which reduces the total degrees

of freedom to only the degrees of freedom associated with the host mesh.

Interaction of forces

The explicit finite element method does not calculate stiffness directly, rather, the element
stresses are calculated based on the deformation, then those stresses are used to find
the internal forces on the element nodes. Figure 3 shows the general algorithm for the
implementation of explicit dynamics [27].

Embedded elements contribute to the stiffness of the host elements via the combined
internal forces of the embedded and host elements on the host nodes. The easiest way
to incorporate this is to calculate the internal forces of the embedded elements exactly
as they would be in a normal finite element program, then distribute the internal forces
that are concentrated at the embedded nodes to the host element. The distribution is
done using the host element shape functions which serve as weighting functions so a host
node will get more force if it is closer to an embedded node and less force if it is further
away. Using the element internal forces concentrated at the nodes also makes the method
more versatile, since the embedded element mesh can be any size and still utilize the same
distribution code. A version of getForce_effective that uses this method is included in
Fig. 4.

Page 5 0of 18
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FLAGSHYP - getForceEffective

1. if computing f3.., replace “n +1” with “0” throughout subroutine
2. Initialize: fu3t

3. Update global external nodal forces f7}!

4. Loop over host elements n

a. GATHER element nodal displacements and velocities
b. Initialize: i3,
c. Loop over quadrature points ng,
i. if computing f3,¢, go to (c)iv.
ii. Compute deformation measures F" (), E™(g,)
iii. Compute stress: 6™ (g,) = f(F" (%))
. finen < Finen + (BT6™Wg)),
d. END quadrature point loop.
e. Loop over all the embedded fibers ng
i. if computing f°,,, go to (e)v.D.
ii. Compute deformation measures of the fiber: F*(n)
ii1. Calculate the stress and internal force of the fiber using the fiber material properties: 65 =

1
FE*(p). pr). finer = o7
iv. Calculate the correction stress and force of the fiber using the host material properties: o5, =

FE"(s).pn), finee = orcas
v. Loop over fiber nodes xz;

A. Get fiber node coordinate ((x /..') in the iso-parametric coordinate system of the host element

using Newton-Raphson algorithm.
B. Distribute the fiber internal force on node x¢,; to the host nodes x; using the values of the host

element shape functions at x¢; as weight values f :‘,:;lf = N )f ;‘n*tlf
C. Distribute the correction force “on” node xy; to the host nodes x;, using the values of the host
element shape functions at x; as weight values %L = N(3, ™ il

int,c
D. f :lntlh “ f :lnt,ll‘l + f ?ntlf - ?nt,lc
iv. END loop over the quadrature points of the embedded fibers.
f. END loop over the embedded fibers.

¢ GATHER extemal nodal forces on the element, f32,

n+l  _ fn+l +1
h. Compute f727 = foxin — inth

i. SCATTER f1}1, to global f13}

Fig.4 Modified algorithm for the getforce subroutine that includes the interaction between the embedded
element internal forces and the host element

Energy and the embedded element method

The classic embedded element technique superimposes an embedded mesh onto a host
mesh without changing the volume of the host mesh to account for the space that is
now occupied by the embedded mesh. Figure5 shows an illustration of this. The finite
element method is based on energy methods in which the internal energy of each element
is calculated by an approximation of the integral of the strain energy over the element
volume. Similarly, mesh mass is calculated as a volume integral of the material density.
Having extra volume leads to increased mass and strain energy. This causes changes in the
internal energy and the kinetic energy of the system and therefore influences the system
solution [20].

The energy issues can be shown by how the model’s energy terms are calculated. The
total energy terms are the sums of the energies of the host element and of the embedded
element. We will refer to the host elements as the matrix elements and the embedded
elements as fiber elements. The internal energy, W, Eq. (12), is found by integrating the
strain energy over the volumes of the two meshes, the kinetic energy, Wy, Eq. (13), is
an integral of momentum times velocity over the volume, and the external work, Wy,
Eq. (14), is the summation of the body forces on the two meshes plus any applied traction

Page 6 of 18
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Fig.5 ashows how the volume redundancy is created in the embedded element method. b shows how to
correctly model the system

forces.
Wine = f Cijit p Wijtti1 dVm + / Cijkt pthijux1 AVE (12)
M F
Matrix Strain Energy Fiber Strain Energy
dzui dzui
Wiin = —-u;dV, —i—/ —-u;dV] 13
kin /A/IIOM a2 M F)OF a2 F (13)
Matrix Kinetic Energy Fiber Kinetic Energy
Wext:/ /OMbiuidVM+/,0FbiuidVF + / tiu; dA (14)
M F S2

———
Matrix External Load ~ Fiber External Load  Body Force Load

In these equations, u; is the displacement field of the system and Cjy; is the material
stiffness tensor, p is the material density, b; is a vector representing body forces (such
as gravity), and ¢; is the vector of the surface traction (applied force per unit area) on
the surface Sp. The subscript M refers to material properties of the matrix and volume
integrals over the matrix volume. Likewise, F refers to material properties of the fiber
elements and volume integrals over the fiber volume.

To avoid volume redundancy, the integral over the matrix volume should not include
the volume occupied by the fibers. Equations (15)—(17) include an extra term to remove
the effects of the redundancy. However, in many finite element programs (e.g. Abaqus
and LS-Dyna) these integrals are calculated via Gauss Quadrature, so the simplest way to
account for the volume occupied by the embedded fiber is to subtract the volume integral
of the matrix energy density over the fiber volume.

If the fibers and matrix have the same material properties, both integrals over the fiber
volume cancel and what remains are the equations for only the matrix energy, which would
be the same situation as having the matrix elements without any embedded elements.

Wint =f Cijit p Wi Uil dVM_f Cijit py WijUici dVF+/ Cijit ptijusi1 AV (15)
M F F

Matrix Strain Energy Fiber Strain Energy

"Extra”
Matrix Strain Energy
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Fig. 6 a Unit cube models used containing 0, 2, and 25 embedded elements. b Applied displacement boundary
conditions for the embedded element models

d 2 Uuj d 2 U d 2 Ui
Wiin = pm—5 widVy — | pm—5uidVr+ | pp— 5 uidVr (16)
M dr Mgy P ar
Matrix Kinetic Energy “Extra” Fiber Kinetic Energy
Matrix Kinetic Energy

Wext:/ pmbiu; dVar — /)OMbiuidVF +/PFbiuidVF + / tu;dA  (17)
M F F 52

Matrix External Load "Extra” Fiber External Load  Body Force Load
Matrix External Load

Volume redundancy is not corrected in most commercial codes. This is acknowledged
[28], leaving it up to the analyst to account for the redundant mass. When the embedded
element method is used in quasi-static models, the redundancy can be addressed by
reducing the density and stiffness of the host or embedded material [4,9,13,17,29]. For
dynamic applications, this is unacceptable, since it will alter the wave speed of the material
and any internal energy calculations that may be used in material damage models. The
negative effects of volume redundancy in embedded elements can be shown by a simple
test. A model of a unit cube with embedded truss elements ought to behave as if it was
a single homogeneous cube if the cube and the embedded truss elements have the same
material properties (i.e., the embedded element should have no effect on the model).
Comparing this model with an identical cube with no embedded truss, any differences
will be due to the volume redundancy. Four versions of a unit cube model were created
with 0, 2, 10 or 25 embedded truss elements to represent bundles of fibers. All of the truss
elements had the same cross-sectional area so increasing the number of trusses would
increase their volume fraction. Twenty-five truss elements result in a fiber volume ratio
of 0.5. Examples of the models are shown in Fig. 6a.

The simulations were run using the dynamic explicit solver in Abaqus with the boundary
conditions shown in Fig.6b. Abaqus was chosen as a representative commercial code
because it is widely used in industry. A displacement boundary condition of 0.05 m was
applied to the four nodes of the positive y face, while the nodes of the negative x, y, and z
faces were pinned in those directions.

Proof of volume redundancy impact

In the initial Abaqus tests, the embedded elements and the host elements are the same
material, according to the rule of mixtures there should be no difference between the
stiffness and behavior of the models even as more embedded elements are added. Figure 7
shows a plot of the strain energy of each Abaqus model as a function of displacement. For
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Fig.7 Energy plots from the 0 fiber, 2 fiber, 10 fiber, and 25 fiber analyses with the applied displacement
boundary condition. Although all of the models should be equivalent systems, adding embedded elements
effects all types of energies

a given displacement, adding more embedded elements increases the amount of stored
internal energy.

Figure 7 also shows a few other types of energy plots. The energy balance shows that in
all cases energy is conserved. The difference between the models is that the total amount
of energy increases with the number of embedded elements. The increase in kinetic energy
with increase in fiber elements shows that the redundancy in the mass matrix calculation
does have an effect. The applied displacement ensures that all three models will have the
same velocity as a function of time. Therefore, the only difference in their kinetic energies
is due to their differences in mass. In a low strain rate analysis such as this, incorrect
kinetic energies have little effect on the final result, but might be a significant problem in
problems with large velocities or high strain rates.

Method of volume redundancy correction

Garimella [20] suggested a way to correct the volume redundancy in the algorithm for
dynamic explicit finite element analysis. The implementation of Garimella’s method,
shown in Fig. 8, was modified to make the incorporation into the embedded element
method easier. While Garimella used a calculation of the embedded element internal
force in the host element’s natural coordinate system to find the amount of force needed
to correct for the internal energy of the redundant volume, we chose to use a method
similar to the force interaction method described earlier. Here, the internal force of the
redundant volume is calculated as if it were a truss element made of the host element mate-
rial as the embedded element is oriented in the global coordinate system. This results in
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Box 3. Subroutine - getForceEffective
1. if computing f3.;. replace “n +1” with “0” throughout subroutine
2. Initialize: f73}
3. Update global external nodal forces 25}
4. Loop over elements n,
a. GATHER element nodal displacements and velocities
b. Initialize: fitL
c. Loop over quadrature points n;
i. if computing £9,,. go to (c)iv.
ii. Compute deformation measures F™(2). E™(Q)
iii. Compute stress: 6™(7) = f(F(Q))
v, il < fike + (BTo"wg)),
d. END quadrature point loop.
e. Loop over all the embedded fibers ng
i. if computing f3,,. go to (e)iii.E.
ii. Calculate the displacements of the embedded nodes from the host nodal displacements:
Uempbed = [N]Unose- Shape function matrix is calculated at the embedded nodes.
iii. Loop over the quadrature points of the fiber ng ’
A. Calculate the fiber quadrature point coordinates ({s) in the iso-parametric
coordinate system of the host element using Newton-Raphson algorithm.
B. Compute deformation measures at these fiber quadrature points: F™({¢).
C. Calculate the fiber stress measure in the host coordinate system:
using the fiber material model.
D. Calculate the correction stress measure in the host coordinate system: 6™ (Zs) =
f (F " ((f)) using the host element material model.
E. fil « fidl + (BTo™ Wi o) — BT""cm]f)zf where J; = l;faf is the fiber
volume Jacobian.
iv. END loop over the quadrature points of the embedded fibers.
END loop over the embedded fibers.
. GATHER external nodal forces on the element, 22

ext,e
n+1  _ fn+l n+1
h. Compute fr2de = foite — finte

i. SCATTER f}2, to global f17}

net,e net

g

Fig.8 Algorithm suggested by Garimella [20] to address internal energy redundancy

the correction force which is distributed to the host nodes using the host element shape
functions, the same way as the embedded element force. By using the standard calcula-
tion for the internal force of the embedded element in the global coordinate system, we
avoid any confusion in attempting to convert the one-dimensional axial stress of a truss
element to a stress measure that would need to exist in three dimensions. Additionally,
the accuracy of the force transfer is now directly correlated with the embedded element
mesh density. Increasing the mesh density of the embedded nodes will correlate with
approaching the true, non-discretized, constraint condition between the fibers and the
mesh where they are bonded along the entire length of the fiber. The differences between
Garimella’s [20] method and the method used here are shown in the flowchart of Fig. 4 in
step 4.a.e.v.A-D and Fig. 8 steps 4.e.i—iv.

The mass correction was carried out as shown in the flowchart of Fig.9, this is the
same algorithm as used in Garimella [20]. This only requires calculating the mass of the
redundant volume by multiplying the volume of the embedded mesh by the density of the
host mesh. This mass is then subtracted from the total mass of the host element before it
is scattered to the lumped mass matrix.

Toassess the accuracy of this correction, it was incorporated into a dynamic explicit code
implemented in Matlab. This code is a modified version of Bonet et al.’s [30] FLagSHyP
code that was written to go along with their textbook. When this work started only the
static implicit version of FLagSHyP was available, so a dynamic explicit solver modified
to include the volume redundancy correction was added. The algorithm suggested by
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Subroutine - getMassEffective

1. Loop over elements n,
a. For each element, calculate the volume: v,
b. Calculate the mass of each element: m, = p,v,
Loop over all the embedded fibers: n;
1. For each fiber, calculate the volume using length I, and cross-sectional
area a,
ii. Calculate the fiber mass: m, = prlea;
iii. Calculate the correction mass: m, = p,l.a,
d. Calculate the new effective element mass: Mg, = m, +m, — m,
Divide the effective mass equally among all element nodes — form nodal mass
vector
. Use the nodal mass vector to form the element mass matrix M, (diagonal mass
matrix)
g. Scattermass matrix to global mass matrix M
2. END loop over the elements n,

Fig.9 Algorithm suggested by Garimella [20] to address mass redundancy

Garimella was implemented so that the user can choose to use the correction if desired.
The resulting FE code will be referred to as FLagSHyP Modified (FM). When the volume
correction feature is in use, the code will be refereed to as FM Corrected. This code can
be found on GitHub at https://github.com/Valerie96/flagshyp/tree/Flagshyp2_element_

types.

Results

Verification of FLagSHyP Modified

To verify FLagSHyP Modified, a single continuum element in tension was compared
with an identical element but with an embedded truss. The truss had the same material
properties as the host element, and so should have no effect on the total energy or stiffness.
This test case was also run in Abaqus. Since the truss element and the host element have
the same material properties, they should produce exactly the same response. As shown
previously, this is not the case for the Abaqus models. However, the results in Fig. 10
show that with the volume redundancy correction algorithm turned on, FM was able to
reproduce the results for a single solid element when the truss and the host materials were
identical.

Specific effects of redundancy

To explore the amount of difference the volume redundancy makes in different cases,
several more applied displacement models were run to create plots of energy vs. fiber
volume fraction and energy vs. strain rate. The redundant volume should affect the internal
and kinetic energies. With extra volume the model can store more internal energy for a
given displacement. The extra volume also comes with extra mass, which will show up as
increased kinetic energy. As the fiber volume fraction increases, the amount of redundant
volume increases and should make these energy differences larger. Increasing the strain
rate will increase the nodal velocities. In this case, the strain energy should not be changing
but the kinetic energy, which depends on velocity, will increase.
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Fig. 10 Raw energy data comparison from FLagSHyP Modified verification tests. A solid element is compared
with an identical model with the addition of an embedded element. The embedded element was assigned the
same material properties as the host element so that the system equivalent behavior should be the same as the
solid element model. The volume redundancy in the embedded element method causes increases in internal
energy, stiffness, and kinetic energy. The correction method shown is able to remove this extra energy and
returns the same results as a solid cube

Fiber volume fraction effects

The tests on fiber volume fraction involved running the displacement simulation in both
FM and Abaqus with zero, two, ten, and twenty-five embedded truss elements, where
the host and embedded elements had the same material type. The truss elements all had
the same cross-sectional area so adding more trusses increased their volume fraction.
Additionally, the embedded element simulations were rerun in FM, but this time with
the volume redundancy correction turned on. Figure 12 shows a schematic of the set up
and Table 1 has the masses and details about the applied displacement and strain rate for
each of the test cases. To compare the effect of the embedded elements, the internal and
kinetic energy of each model was compared with the solid element model to get a percent
difference in energy. Abaqus embedded element models were compared to the Abaqus
solid element model and FM embedded element models were compared to the FM solid
element model. With the embedded elements having the same material as the host, they
should all be equivalent to a solid element, which is why the zero truss case is used as
the reference. These comparisons resulted in a relative difference, or error introduced
by added the embedded elements which is shown in the plots in Fig. 11. As expected, as
the fiber volume fraction increased, both the total internal kinetic and internal energies
increased as well as their relative error. The exception to this was the models using FM
Corrected. As shown in Fig. 11, the correction nearly eliminated the error in internal
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Table 1 Fiber volume fraction dependency tests

Truss Volume Total Applied displace- Time Strain rate
elements fraction mass (kg) ment (m) increment (s)  (1/s)
Abaqus 0 0 7800 0.05 0.01 5
2 0.04 8112 0.05 0.01 5
10 0.2 9360 0.05 0.01 5
25 0.5 11,700 0.05 0.01 5
FM 0 0 7800 0.05 0.01 5
2 0.04 8112 0.05 0.01 5
10 0.2 9360 0.05 0.01 5
25 0.5 11,700 0.05 0.01 5
FM Corrected 2 0.04 7800 0.05 0.01 5
10 0.2 7800 0.05 0.01 5
25 0.5 7800 0.05 0.01 5
(a) (b)

0.05m

0 Fibers 2 Fibers 10 Fibers 25 Fibers

g

(C) Matrix Fibers
Neo-Hookean
Material
k k,
# 7800-2 | 7800-%
m m
I3 76.92 GPa | 76.92 GPa
1 1154 GPa | 1154 GPa
Truss Diameter - 0.2m?

Fig. 11 Comparison of internal and kinetic energy from Abaqus and FM embedded element models with
different fiber volume fractions with reference to the energy of solid element cases with no embedded elements.
Increasing the fiber volume fraction increases the amount of volume redundancy and increases the error in the
system. FM Corrected drastically reduces the errors in energy

energy and drastically reduced the kinetic energy error. Considering that the uncorrected
FM models almost exactly match the data from Abaqus, this shows that the volume
redundancy is causing error, we know where it is, and we know how to correct it.

Strain rate (velocity effects)
A second set of tests was run to check the dependency of energy on strain rate. These
consisted of an applied displacement boundary condition. The total displacement in each
case was the same, but the speed at which it was applied was changed to approximate strain
rates of 5, 10, 50, and 200 1/s. A reference set of models at each of these strain rates was
run in both Abaqus and FM using a solid hex element. Each test was then repeated with
25 embedded truss elements of the same material type as the host element. Finally, the 25
truss element models were repeated again in FM Corrected. Figure 13 shows a schematic
of the set up and Table 2 has the masses and details about the applied displacement and
strain rate for each of the test cases.

Internal energy was expected to remain constant since the total displacement was
unchanged. Kinetic energy was expected to increase due to the increase in applied veloc-
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Fig. 12 Set up of the fiber volume fraction dependency tests, a images of 0, 2, 10, and 25 fiber meshes, b test
boundary conditions, ¢ matrix and fiber material properties

Table 2 Strain rate dependency tests

Truss Volume Total mass Applied displace- Time Strain rate
elements fraction (kg) ment (m) increment (s) (1/s)
Abaqus 0 0 7800 0.05 0.01 5
0 7800 0.05 0.002 25
0 7800 0.05 0.001 50
0 7800 0.05 0.00025 200
25 0.5 11,700 0.05 0.01 5
0.5 11,700 0.05 0.002 25
0.5 11,700 0.05 0.001 50
0.5 11,700 0.05 0.00025 200
FM 0 0 7800 0.05 0.01 5
0 7800 0.05 0.002 25
0 7800 0.05 0.001 50
0 7800 0.05 0.00025 200
25 0.5 11,700 0.05 0.01 5
0.5 11,700 0.05 0.002 25
0.5 11,700 0.05 0.001 50
0.5 11,700 0.05 0.00025 200
FM Corrected 25 0.5 7800 0.05 0.01 5
0.5 7800 0.05 0.002 25
05 7800 0.05 0.001 50
0.5 7800 0.05 0.00025 200

(a) (b) (c)

0.05m
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Fig. 13 Set up of the strain rate dependency tests, a images of 0 and 25 fiber meshes, b test boundary
conditions, ¢ matrix and fiber material properties
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Fig. 14 Comparison of internal and kinetic energy from Abaqus and FM models with twenty-five embedded
elements with reference to the energy of a solid element with no embedded elements. The additional strain
energy from the volume redundancy is constant with changes in strain rate as expected and is easily corrected
for using FM Corrected. The volume redundancy also adds extra mass which ought to increase the error as the
nodal velocities increase with the increasing applied strain rate. This effect occurs at very high strain rates. FM
Corrected is able to bring the error in energy down to less than 10% for all velocities

ity. Similar to the volume fraction cases, each embedded element model was compared
with its’ equivalent solid element at the same strain rate. These comparisons resulted in a
relative difference, or error introduced by added the embedded elements which is shown
in the plots in Fig. 14. Again, FM Corrected was able to completely correct for the error
in the internal energy. The relative error in kinetic energy was expected to increase as the
strain rate and nodal velocity increased, yet the error remained constant.

Discussion

Energy implications

The volume redundancy is a well-known short coming and is addressed by many authors
by modifying the material properties of the host material. Using this volume correction
algorithm is a much more robust method because it does not require the estimation of an
“effective medium.” When the stiffness of the host material is modified it complicates the
stress calculation. This becomes critical where stress wave propagation is important. With
our method the true material properties are used and stress calculations are not affected.
Correcting the energy terms in the code itself provides a model that more accurately
represents the physics of the problem instead smearing the different materials together
into a representative material. The modification also ensures the correct calculation of
both internal and kinetic energies which become more important as strain rate and fiber
volume fraction increase.

Volume fraction effects

The volume fraction of truss element to host element volume has a large impact on the
energy terms, since it adds both extra mass and the potential to store more internal energy.
Our code is able to eliminate almost all of the error in the internal energy due to the volume
redundancy without modification to the material properties themselves. In these tests,
internal energy accounts for most of the energy in the system and is important to have
accurate in applications involving stress wave propagation. The redundancy correction
also reduced the error in kinetic energy to under 10 percent for fiber volume fractions up
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to 0.5. Based on the trends shown here, the error in the corrected version will continue
to increase with volume fraction. This might only be because, as shown in Figs. 7 and 14,
the kinetic energy in these small models oscillates a lot which is a result of small over
corrections by the explicit time stepping method, which damps out over time. The kinetic
energies used in comparisons here are just the kinetic energy reported at the end of the
last time increment so the oscillation in each model adds to the error. This needs to be
tested on models with larger numbers of host elements, which will be done in the future.

Strain rate effects

For the strain rate tests, since the amount of volume redundancy was kept constant, the
strain rate was expected to impact the kinetic energy by increasing the nodal velocities
while having no effect on total internal energy stored since the total displacement remained
constant. The effect of strain rate on the error in kinetic energy was small although it did
increase slightly with increasing strain rate as expected. Only four different strain rates
were tested with the maximum as only 200 1/s. Much larger strain rates were not possible
for the small tests (due to errors caused by the coarse model discretization) but could
result in increasing error. In the tested cases the corrected code was able to reduce the
error in the kinetic energy to below 10%. In these cases the kinetic energy is several
orders of magnitude smaller than the internal energy, so having it exactly corrected is less
important. Future work will include tests on larger models with more nodes and higher
velocities to determine if, or when, the kinetic energy becomes significant.

Limitations of the embedded element method

The volume redundancy code is still in early stages and it has not yet been compared
to experimental results with real fiber reinforced material to prove it has better exper-
imental predictions than the standard embedded element method. Another obstacle is
that researchers cannot implement this code as a user defined element type or subroutine
in commercial codes since it is a modification to the solution process, not the material
behavior. The idea is to modify mass and internal energy calculations directly to create
a model that more closely matches the physics. We plan to add the volume redundancy
calculation to a C based finite element code that will be more efficient than the current
Matlab code. It has been brought to our attention before that there may be an issue with
the “no slip” condition we propose between the embedded truss elements and the matrix,
due to the displacement ties only being located at the embedded node locations. This issue
will likely become more apparent as larger strains and plastic deformations are introduced.
We expect that as the mesh density of the embedded elements increases, increasing the
number of embedded nodes, the relative slipping between the embedded truss elements

and matrix elements will decrease. This will be examined in future work.

Conclusion

It has been shown how incorrect volume and mass effect the energy calculations in the
embedded element method, which in turn effects the analysis solution. Leaving this uncor-
rected in commercial codes can cause erroneous results especially in cases with wave
propagation. A simple test of a single host element with embedded elements using the
same material properties was created and compared to the solution for the same contin-
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uum element with no embedded elements. Since the embedded elements were the same
material as the continuum element the effective system is equivalent to having no embed-
ded elements at all. Due to the volume redundancies in the calculation, the model with
embedded elements could store more internal energy. The volume redundancy also added
mass and increases the kinetic energy of the system. The differences in internal energy
between the embedded element model and the control continuum element were shown
to be accounted for by the additional matrix volume in the calculation. A modified explicit
finite element code was shown to be able to correct the effects of the volume redundancy
for small models. This technique could be extended to model larger objects with embed-
ded elements, particularly fiber reinforced composites. Next steps for this research should
include larger models with different loading types and comparisons against experimental
data to determine if this corrected version of the embedded element method will preform
better than the standard version in predicting the response of dynamic events in fiber
reinforced composites.
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