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Abstract

This article proposes a coupled thermomechanical finite element model tailored to the
macroscale simulation of metal additive manufacturing processes such as selective
laser melting. A first focus lies on the derivation of a consistent constitutive law on basis
of a Voigt-type spatial homogenization procedure across the relevant phases, powder,
melt and solid. The proposed constitutive law accounts for the irreversibility of phase
change and consistently represents thermally induced residual stresses. In particular,
the incorporation of a reference strain term, formulated in rate form, allows to
consistently enforce a stress-free configuration for newly solidifying material at melt
temperature. Application to elementary test cases demonstrates the validity of the
proposed constitutive law and allows for a comparison with analytical and reference
solutions. Moreover, these elementary solidification scenarios give detailed insights and
foster understanding of basic mechanisms of residual stress generation in melting and
solidification problems with localized, moving heat sources. As a second
methodological aspect, dual mortar mesh tying strategies are proposed for the
coupling of successively applied powder layers. This approach allows for very flexible
mesh generation for complex geometries. As compared to collocation-type coupling
schemes, e.g., based on hanging nodes, these mortar methods enforce the coupling
conditions between non-matching meshes in an L2-optimal manner. The combination
of the proposed constitutive law and mortar mesh tying approach is validated on
realistic three-dimensional examples, representing a first step towards part-scale
predictions.

Keywords: Constitutive model, Thermomechanical coupling, Metal additive
manufacturing, Mortar method, Finite element method

Introduction
Metal additive manufacturing (AM) opens new opportunities in manufacturing technol-
ogy [1,2]. Specifically, the family of powder bed fusion additive manufacturing (PBFAM)
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processes allows for high geometrical flexibility and the potential for a pointwise control
of material properties. However, many of the underlying complex multiphysics phenom-
ena are still insufficiently understood and a suboptimal choice of processing parameters
might lead to poor part quality in terms of pores or high residual stresses, which in turn
might induce cracks in the part [3]. Currently, extensive process tuning (via trial and
error) is required, which severely hinders adoption by industry. This limitation could be
overcome via adequate models that allow for sound and real physics-based simulation of
the whole process in order to predict optimal processing parameters. Large efforts have
been undertaken to establish such approaches, all of which still face a number of obstacles
when it comes to manufacturing of realistic and complex parts.
Existingmodeling approaches for PBFAMare often distinguished by themodeled length

scales (see overview in [3,4]). Macroscale or part-scale models determine residual stresses
or dimensional warping. Residual stresses are of special interest in the community and
a general review and theoretical considerations can be found in [5,6]. Mesoscale models
operate on a length scale from single powder particles up to one powder layer thickness
in order to study mechanisms of defect generation arising from the melt pool [7–13] or
the powder recoating process [14–16]. Microscale models investigate the formation of
(typically anisotropic) metallurgical microstructures during solidification [17–22].
In this work we propose a coupled thermomechanical macroscale model based on the

finite element method (FEM). The focus lies on two important aspects, namely consistent
constitutive modeling in a homogenized macroscale sense and elaborate layer coupling
schemes allowing for layerwise non-matching finite element (FE) meshes. Macroscale
models commonly solve a thermomechanical (or sometimes a pure thermal) problem,
where powder, melt and solid phase are all modeled as homogenized continua with spe-
cific temperature- and phase-dependent thermal andmechanical properties [23–30]. The
heat of the incident laser beam is frequently modeled with the powder bed absorption
model from Gusarov et al. [31–33]. Further approaches that are frequently followed for
an efficient simulationof PBFAMprocesses include spatialmesh adaptivity [34–37], some-
times combined with code parallelization and load balancing techniques [38], reduction
of the computational domain via equivalent thermal boundary conditions representing
the powder phase [39], process layer agglomeration [27,37,40], as well as rather heuristic
approaches such as inherent strain schemes [41–43].
In macroscale models, all three phases are typically modeled in a Lagrangian manner

based on a quasi-solid constitutive law with artificial stiffness values in powder and melt
phase that are orders ofmagnitude lower than the stiffness of the solid phase. This approx-
imation is well-justified since themechanical stresses arising in the powder andmelt phase
at the stress-free surface of each processed layer are typically very small compared to the
stresses in the bulk solid material. The interfaces between these different phases are com-
monly modeled as diffuse interfaces, e.g., defined by the solidus and liquidus temperature
of the alloy.
Critically, such modeling approaches have to ensure that comparatively large strains, as

typically arising in the melt phase (with low stiffness), do not transfer to large stresses in
the newly formed solid phase (with high stiffness), which is assumed to be (approximately)
stress-free right after solidification. Some contributions [26,42] use a plastic constitutive
law, which can achieve the desired effect of an (almost) stress-free configuration at solidifi-
cation start [44]. Other works mention a reset or annealing of (plastic) strains and stresses
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if material (re)melts [25,45,46]. Unfortunately, most existing works do not go into detail
how a material model, that was initially designed for a single solid phase, is applied to a
three-phase mixture of powder, melt and solid, and how the aforementioned condition
of a stress-free solidification start can be incorporated in such models. A notable excep-
tion are the recent contributions [47,48], where a constitutive model for the three-phase
mixture powder-melt-solid has been consistently derived on basis of iso-stress homog-
enization and energy minimization. In this interesting contribution, the phase fractions
for powder, melt and solid are treated as (independent) internal variables with associated
evolution equations and compatibility (inequality) constraints.
The present work builds upon the purely thermal model developed in our previous

contribution [49]. The stress state of the three-phase mixture powder-melt-solid is con-
sistently described on basis of an iso-strain homogenization across these phases. As amain
contributionwemotivate and derive a constitutivemodel which ensures a stress-free state
in newly solidified material by means of a reference strain term, formulated in rate form.
Compared to existing approaches, the proposed scheme allows to consistently account
for this stress-free solidification start while avoiding spatial and temporal discontinuities
(jumps) in the stress-field, as typically resulting from (instantaneous) stress resetting pro-
cedures. Moreover, it results in a simple computational model that does not require any
additional internal variables or constraint equations, and thus, can easily be integrated in
existing material libraries of standard FEM codes.
The second aspect, that is addressed in a novel way in this contribution, is the problem

of growing, complex geometries. In this context, various approaches have been utilized
to model newly added powder layers, e.g. so-called quiet-element methods [36], element-
birthmethods [38] or combinations thereof [50], most of which use layerwise conforming
FEmeshes. Only very few approaches, e.g., based on the immersed boundarymethod [51],
can be found that allow for more flexible FE discretizations that do not need to conform
with the part shape
In this contributionwe propose to apply new powder layers with dualmortarmesh tying

schemes, which enable efficient condensation of constraint equations from the global
system of equations. This procedure offers superior flexibility with regard to spatial dis-
cretization by allowing for non-conforming meshes between subsequent layers. As com-
pared to collocation-type coupling schemes, e.g., based onhanging nodes,mortarmethods
enforce the coupling conditions between non-matching meshes in an L2-optimal man-
ner. Non-conforming interface discretizations between powder layers can significantly
simplify mesh generation for complex part geometries, especially, when the cross section
of the part changes rapidly. We demonstrate this aspect and the general capabilities and
robustness of the mortar approach based on a larger three-dimensional example.
Finally, it should be noted that this work is mainly concerned with the numerical mod-

eling of PBFAM, a family of processes with selective laser melting (SLM) as the most
prominent member. However, the methodology presented herein may also be applied to
the modeling of directed energy deposition or wire-feed AM processes.
The remainder of this article is structured as follows: section “Mathematical prob-

lem statement” presents the underlying mathematical model of thermomechanics. More
specifically, section “Temperature- and phase-dependent parameters” reviews the mod-
eling of temperature- and phase-dependent thermal material parameters and section
“Mechanical constitutive law” presents the newly proposed solid material model. Its
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numerical treatment is detailed in section “Numerical solution procedure” along with
the general numerical solution procedure. The model is verified by elementary test cases
allowing for analytic solutions in section “One- and two-dimensional numerical exam-
ples”. section “Multilayer mesh tying strategy” introduces the mortar mesh tying frame-
work for adding new powder layers. Its capabilities are demonstrated in a variety of three-
dimensional examples in section “Three-dimensional numerical examples”. Finally, sec-
tion “Conclusion” concludes the article with a summary of themost important results and
observations.

Mathematical problem statement
The considered thermomechanical problem consists of the dynamic heat equation cou-
pled with the static balance of linear momentum:

c(T ) Ṫ + ∇ · q = r̂ (1)

∇ · σ = 0 (2)

with the primary variables temperature T and displacement u. The magnitudes of dis-
placements and rotations as arising from typical PBFAM processing conditions can be
assumed as small, hence the problem is commonly modeled within the theory of geo-
metrically linear continuum mechanics where the (engineering) strain tensor is defined
by:

ε = 1
2

(
∇u + (∇u)T

)
(3)

The coupling between the two Eqs. (1) and (2) is for now hidden in the structural material
law σ = σ(ε(u), T ) which will be discussed in detail in section “Mechanical constitutive
law”. The heat flux q is specified by Fourier’s law of heat conduction,

q = −k(T )∇T. (4)

Thematerial parameters appearing in the thermalproblem,namely volumetricheat capac-
ity c and heat conductivity k , will in general depend on the temperature and phase. Their
modeling is discussed in detail in the authors’ publication [49] and is briefly reviewed in
section “Temperature- and phase-dependent parameters”. The source term r̂ is used to
model the incident laser beam power based on [33].

Remark Technically, the heat equation (1), which is derived from energy conservation,
can contain coupledmechanical terms. The present, geometrically linear problem formu-
lation without these coupling terms results in a one-way coupling, i.e., the temperature
field influences the structural field, but not vice versa. This assumption is ubiquitous in
themacroscale PBFAM simulation literature [25–27,45] and seems justified as strain-rate
dependent heating effects are not relevant for a quasi-static solid mechanics problems. A
model that considers the two-way coupled thermomechanical problem can be found in
[48].

The initial boundary value problem is completed by initial conditions for the temperature
field and Dirichlet and Neumann boundary conditions for the thermal and structural
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problem:

T = T0, in � for t = 0, (5)

T = T̂ , on �T , (6)

q · n = q̂, on �q , (7)

u = û, on �u, (8)

σ · n = t̂ , on �σ (9)

where � is the problem domain, �T the Dirichlet and �q the Neumann boundary of the
thermal problem, �u the Dirichlet and �σ the Neumann boundary of the solid problem
and quantities (̂·) are prescribed values on the respective boundaries. No initial conditions
are required for the quasi-static balance of linear momentum (2).
In the present work an apparent capacity method accounts for the effects of latent heat.

Essentially, this method modifies the heat capacity c, details on the derivation can again
be found in [49].

Remark (Static vs. dynamic solid mechanics problem) The balance of linear momentum
can either be treated as a static or dynamic problem. The PBFAMprocess can be assumed
as quasi-static as no high accelerations takes place (in the solid phase) and inertia effects
are thus negligible. Consequently, most of the literature focuses on the static structural
problem [25,36,46,52]. Note that history-dependent, potentially irreversible phenomena,
which play an important role for the considered class of phase change processes, are still
capturedbymeansof history information in the thermomechanical constitutive equations.

Temperature- and phase-dependent parameters

This section briefly summarizes the modeling of the three different phases powder, melt
and solid. For a more detailed motivation and derivation, the reader is referred to [49].
The commonly used liquid fraction g is introduced as

g(T ) =

⎧⎪⎪⎨
⎪⎪⎩

0, T < Ts
T−Ts
Tl−Ts

, Ts ≤ T ≤ Tl

1, T > Tl

(10)

where Ts and Tl represent the solidus and liquidus temperature. The irreversibility of the
powder-to-melt transition is captured via the consolidated fraction

rc(t) =
⎧⎨
⎩
1, if rc(0) = 1 (i.e., initially consolidated)

max
t̃≤t

g(T (t̃)), if rc(0) = 0 (i.e., initially powder)
(11)

The resulting fractions of powder (p), melt (m) and solid (s) are computed as

rp = 1 − rc, (12)

rm = g, (13)

rs = rc − g. (14)
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These phase fractions can be used to interpolate arbitrary material parameters:

finterp = rp(T )fp(T ) + rm(T )fm(T ) + rs(T )fs(T ), (15)

where finterp is the interpolated parameter and fp, fs and fm are the single phase parameters.
This technique is applied to the thermal conductivity k and the heat capacity c. For the
mechanical material properties we refer to the next section.

Mechanical constitutive law

Mathematical formulation

An iso-strain homogenization (also known as Voigt-type homogenization) assumes that
the strain in all phases is identical. Accordingly, the stress of the mixture is given by a
weighted sum of the individual contributions, a procedure that is in fact similar to the
interpolation scheme (15):

σ =
∑
i
riσi with i ∈ {p,m, s}. (16)

Based on the iso-strain assumption, the total kinematic strain (3) is equal for all phases.
For each single phase i ∈ p,m, s, it can be additively split according to

εi = ε = εσ ,i + εp,i + εT,i + εref,i , (17)

although not all terms will be utilized for each phase. The first term on the right-hand
side of (17) is the elastic strain εσ ,i which induces a stress σi in each phase according to a
linear hyper-elastic material

σi = Ci : εσ ,i , (18)

whereCi is the fourth-order constitutive tensor

Ci = λi δabδcd + μi(δacδbd + δadδbc), λi = Eiν
(1 + ν)(1 − 2ν)

, μi = Ei
2(1 + ν)

.

(19)

The artificial Young’s modulus in powder, Ep, and melt, Em, will be chosen orders of
magnitude below the physically consistent value of the solid, Es. The Poisson’s ratio is
assumed to be the same in all phases.
The remaining terms in (17) are inelastic contributions which are considered in more

detail in the following. The plastic strains εp,i, which are only relevant in the solid phase,
could be calculated with standard approaches, e.g., an incremental problem formulation
in combination with a return mapping algorithm. For simplicity, however, plastic strains
will not be considered in the numerical examples in this work (εp = 0). The strains due
to thermal expansion εT are assumed equal in all phases and read

εT,i = εT = I
∫ T

Tref

αT dT = αT (T − Tref)I , (20)

where αT is the (constant) coefficient of thermal expansion and Tref is a reference tem-
perature. Finally, the following reference strain εref,s =: εref, which is only relevant for the
solid phase, i.e., εref,p = εref,m = 0 , is proposed in rate form:
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εref = 1
rs

ε̂ref, with ˙̂εref =

⎧
⎪⎪⎨
⎪⎪⎩

(ε − εp − εT ) ṙs, if ṙs > 0

ε̂ref
ṙs
rs , if ṙs < 0

0, otherwise

, ε̂ref(0) = 0, (21)

where ε̂ref represents an accumulation of reference strain contributions weighted by solid
fractions, which is used as an intermediate variable. The first case in (21) refers to a
solidifying material point (ṙs > 0) and is motivated by physics as discussed in the next
section, while the second case, for a melting material point (ṙs < 0), ensures that the
reference strain εref does not change during melting, i.e., ε̇ref = 1

rs
˙̂εref − 1

r2s
ṙsε̂ref = 0

given ṙs < 0. This case is necessary for a consistent notation but, as we will see later, can
be circumvented in practice. Note, how the rate formulation in (21) causes a continuous
change in the stress over the phase change interval [Ts;Tl], which is beneficial for a
numerical solution, in contrast to existing approaches with an instantaneous reset of
stresses at melting temperature.
For completeness, all introduced strain contributions can be inserted into (16), which

after some rearrangement yields the following total stress of the phase mixture:

σ = (rpCp + rmCm + rsCs) : (ε − αT (T − Tref)I ) − rsCs : εref (22)

The pre-factor of the first term in (22) is equivalent to an average of the single phase
material parameters weighted with the phase fractions ri similar to (15).

Remark (Modeling assumptions) One of the main assumptions underlying the present
and most existing thermo-mechanical PBFAM models is that mechanical stresses in the
(open-surface) powder and melt phase domains are negligible. This behavior is approxi-
mated by applying a simple elastic constitutive law to these phases, with stiffness param-
eters that are considerably lower as compared to the solid phase, i.e., Ep, Em � Es . In
practice, this approximation turns out to result in moderate, i.e., limited, strains, since
the deformation of these powder and melt domains is mostly kinematically controlled by
the motion of the significantly stiffer solid phase domains, thus yielding only small stress
contributions as desired. Moreover, as compared to approaches exactly satisfying the
zero-stress assumption in powder andmelt, no additional means are required for tracking
and discretization of sharp interfaces inside elements. Note, the assumption that thermal
strains exist also in the powder andmelt phase, and are equal to thermal strains in the solid
phase, has been made for simplicity here. This assumption is neither necessary nor has it
a significant influence on the resulting residual stresses due to the low stiffness of these
phases and the definition of reference strains (21), which ensures that newly created solid
material is stress-free. Further, we assume that from the beginning powder already has the
volume and density it would have after consolidation, which has to be accounted for by
defining correspondingly decreased layer thicknesses. Modeling solidification shrinkage,
i.e., a density increase when powder consolidates, is deemed unnecessary due to the free
surface at the top of the currently processed power layer, which allows for (approximately)
stress-free consolidation and shrinkage in thickness direction when the powder melts.
The irreversibility of phase change and the reference strain (21) make the material

behavior non-conservative.While the proposed approach is very general and can be com-
bined with arbitrary (standard) solid material laws, e.g., elasto-plasticity, we purposefully
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restrict ourselves to purely elastic solid material behavior in the studied examples. In this
scenario, the proposed reference strain term is the only non-conservative contribution to
the overall material model, underlining that the creation of a stress-free state at solidifica-
tion start is themost significant non-conservative aspect of the overall thermo-mechanical
problem.
In the simple case of purely elasticmaterial behavior (i.e, stresses do not exceed the yield

stress) a heating to a maximum temperature below melting temperature and subsequent
cooling to the initial temperature would not lead to any residual stress. Only when the
melting temperature is exceeded, the reference strain term will cause an (approximately)
stress-free configuration at solidification start, and thus, a residual stress will remain after
cooling to the initial temperature. Therefore, we identify the reference strain contribution
as the minimal necessary effect for residual stress prediction in such a simplified model.

Physical motivation and discussion

The reference strain (21) and stress (22) form a simple yet consistent solid constitutive
law. In the following, we want to discuss some properties of the material law and their
physical motivation by means of analytically tractable cases. For simplicity, the plastic
strain terms are neglected from now on.
Note, that the reference strains εref in (21) only change when the solid phase fraction

increases according to ṙs > 0, i.e., for temperatures T ∈ [Ts;Tl] in the phase change
interval and negative temperature rates Ṫ < 0. An elastic constitutive law with low
stiffness values (i.e., Ep, Em � Es) as applied to powder andmelt leads to small stresses yet
considerable total strains in these phases. In this context, the reference strains according
to (21) ensure that these strains do not translate into stresses during solidification. For
the special case that kinematic ε and thermal strains εT (as well as plastic strains εp) are
constant during solidification, which approximately holds if the phase change interval
Tl − Ts is sufficiently small, it can easily be verified from (17) and (21) that the elastic
strain, and thus due to (18) the resulting stresses, in the evolving solid phase vanish. This
fact corresponds to the physical intuition that newly formed solid should lose all history
information and exhibit a new stress-free configuration when solidification starts.
From a stress homogenization point of view, the model assumptions underlying the ref-

erence strain formulation state that for each solidifying fraction of material, the reference
strain contribution effectively creates its new, stress-free reference configuration, from
which strains are calculated. This is illustrated in Fig. 1.
Twomore involved examples, which illustrate the evolution of the reference strain over

multiple repeated melt and solidification cycles, can be found in Appendix A.

Numerical solution procedure
Spatial discretization of the partial differential equation is based on the FEM. The required
weak form of the thermomechanical problem (1) and (2) is obtained via multiplication
with test functions δu and δT and integration by parts, resulting in

∫

�

δT c(T )Ṫ d� −
∫

�

∇δT · q d� +
∫

�q
δT q̂ d� −

∫

�

δT r̂ d� = 0, (23)
∫

�

δε : σ d� −
∫

�σ

δu · t̂ d� = 0 (24)
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(a) (b) (c) (d)

Fig. 1 Effect of the reference strain contribution during solidification in a one-dimensional setting. Different
phase fractions are distinguished in vertical direction together with their respective reference length,
visualized in horizontal direction. At time t , starting from a fully molten phase (a), a fraction of material
solidifies (b) and due to the calculation of the reference strain effectively takes on a new reference
configuration equal to the current configuration (blue). At time t + 	t , the newly solidified fraction takes on
the (now changed) current configuration (red) as reference configuration (c), such that the effective reference
strain (which in fact is calculated in the proposed model) in the (total) solid phase can be interpreted as
weighted average (purple) of the contributions from individual solid phase fraction increments (d)

where the boundary conditions have already been inserted. Equations (23) and (24) are
equivalent to the strong forms (1) and (2) if the solution functions are chosen from the trial
spaces VT ={T ∈H1(�) : T = T̂ on�T } and Vu ={u∈H1(�) : u= û on�u}, and the test
functions are chosen from the weighting spacesWδT ={δT ∈H1(�) : δT =0 on�T } and
Wδu ={δu∈H1(�) : δu=0 on�u}. Here, H1(�) denotes the Sobolev space of functions
with square-integrable first derivatives. The solution and test functions are discretized
with a Bubnov–Galerkin ansatz in space.

T (x, t) =
∑
j
Nj(x)Tj(t), δT (x, t) =

∑
j
Nj(x)δTj(t) (25)

u(x, t) =
∑
j
Nj(x)dj(t), δu(x, t) =

∑
j
Nj(x)δdj(t) (26)

where x is the spatial position andNj(x) are the time-independent shape functions, which
are the same for all solution and test functions. Tj and δTj are the discrete nodal temper-
atures and their variations, and dj and δdj are the discrete nodal displacements and their
variations, all of which depend on time. Although the static balance of linear momentum
(2) is considered, i.e., inertia forces are neglected, the displacement field u(x, t) is depend-
ing on time via the coupling to the temperature field T (x, t), which is a solution to the
dynamic heat Eq. (1). The thermal subproblem is discretized in time with a generalized
trapezoidal rule. The discrete system of equations is consistently linearized and solved
with Newton’s method.

Discretization of the rate-based reference strain

Time integration of Eq. (21) is based on a backward Euler scheme and results in the
following time-discrete form of the fraction-weighted reference strain ε̂n+1

ref :

ε̂n+1
ref =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε̂nref + 	rn+1
s (εn+1 − εn+1

T ) if 	rn+1
s > 0,

ε̂nref + 	rn+1
s

rn+1
s

ε̂n+1
ref if 	rn+1

s < 0,

ε̂nref otherwise,

(27)
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which leads to the actual reference strains via relation (21) as εn+1
ref = 1

rn+1
s

ε̂n+1
ref . Thus, the

time-discrete total reference strain εn+1
ref may also be obtained directly, viz.

εn+1
ref =

⎧⎨
⎩

1
rn+1
s

(
εnrefr

n
s + 	rn+1

s (εn+1 − εn+1
T )

)
, if 	rn+1

s > 0

εnref, otherwise
(28)

Note, that in (28) the case of melting material (	rn+1
s < 0) no longer needs to be treated

separately due to the construction of ε̂ref as already discussed when it was first introduced.

Linearization of constitutive law

The linearization of the total stress (22) with respect to the primary solution variables is
required for the nonlinear solution procedure. As usual, the derivatives of the constitutive
equation are written with respect to the kinematic strain and temperature,

∂σ

∂εn+1 = (rpCp + rmCm + rsCs) − 	rn+1
s Cs H

(
	rn+1

s
)

(29)

∂σ

∂Tn+1 =
(

∂rp
∂T

Cp + ∂rm
∂T

Cm + ∂rs
∂T

Cs

)
:
(
εn+1 − αT (Tn+1 − T0)I

)

− (rpCp + rmCm + rsCs) : αT I

− Cs :
(

∂rs
∂T

(
εn+1 − εn+1

T

)
− 	rn+1

s αT I
)

H
(
	rn+1

s
)

− ∂rs
∂T

Cs : εnrefH
(−	rn+1

s
)

(30)

where H (x) is the Heaviside step function

H (x) =
⎧⎨
⎩
1, if x > 0

0, otherwise.
(31)

All phase fractions and their derivatives are evaluated at Tn+1. The first two terms in
(30) stem from the phase interpolation in the first term of (22). The third term represents
the contribution from a solidifying increment and is efficiently derived by inserting (28)
into the total stress (22) and thereby canceling out the solid fraction rs. The last term
represents the effect of a melting solid.

One- and two-dimensional numerical examples
This section focuses on the verification of the proposed material law with a series of
elementary test cases. In all of them the temperature is effectively a prescribed time-
dependent function that drives the structural simulation and no heat equation needs to
be solved. The investigation starts out on a one-dimensional domain which is subject
to different boundary conditions and temperature profiles with increasing complexity.
These findings are reported and discussed in sections “One-dimensional domain: homo-
geneous temperature load” and “One-dimensional domain: inhomogeneous temperature
load”. Complexity is increased further by applying different temperature profiles to a
two-dimensional domain in section “Two-dimensional domain: interaction of boundary
condition and temperature load”.



Proell et al. Adv. Model. and Simul. in Eng. Sci.           (2021) 8:24 Page 11 of 37

Fig. 2 Relation of investigated one-dimensional verification examples to their respective three-dimensional
solid mechanics problem

Table 1 Material parameters for one-dimensional simulations

Parameter Description Value Unit

Ts Solidus temperature 1900 ◦C
Tl Liquidus temperature 2100 ◦C
T0 Reference temperature 0 ◦C
Es Young’s modulus in solid 1 GPa

Ep Young’s modulus in powder 10 MPa

Em Young’s modulus in melt 10 MPa

αT Coefficient of thermal expansion 1 × 10−6 K−1

Thermal properties (e.g. thermal conductivity) are not necessary for these simulations

One-dimensional domain: homogeneous temperature load

The first series of examples examines a one-dimensional bar of length l = 1mm, which is
subject to a homogeneous temperature load, i.e., the temperature evolution is only a func-
tion of time but spatially constant, leading to melting and solidification of the material,
possibly multiple times. Figure 2 illustrates the two considered types of boundary con-
ditions and how the respective one-dimensional problem relates to a three-dimensional
solid mechanics problem. The behavior of the bar is equivalent to the behavior of the
depicted cube in x-direction. The bar is either constrained by a Dirichlet-type condi-
tion (Fig. 2 left) prescribing the deformation or a Neumann-type condition (Fig. 2 right)
prescribing the traction. The prescribed values can be zero (homogeneous boundary con-
ditions) or non-zero (inhomogeneous boundary conditions). The initial material phase is
either solid or powder and all relevant material parameters are listed in Table 1.
Three representative examples are investigated: first, a full melt of the material, and

second, a repeated partial melt followed by a full melt. Both scenarios use homogeneous
boundary conditions. For completeness, the partial melt scenario is repeated with inho-
mogeneous boundary conditions as a third example. The numerical results for all exam-
ples are compared to an analytical reference solution, which assumes isothermal melting
(Ts = Tl = Tm) and a zero stiffness in powder and melt phase.
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Fig. 3 Stress and strain over time for the Dirichlet and Neumann scenario with initially powder or solid
material induced by a full melt. Simulation is driven by a homogeneous temperature load with a single peak
Tpeak > Tl . Phase change interval in gray

Full melt

Thematerial is completely molten by heating it to a peak temperature T̂ = 2200 ◦C > Tl .
Figure 3 shows the temporal evolution of the (homogeneous) strain and stress state for
both, Dirichlet and Neumann, scenarios as well as the evolution of the effective Young’s
modulus, E = ∑

riEi, of the phase mixture. While the Neumann scenario is mostly
shown for completeness, theDirichlet scenario ismore interesting regarding thedifference
between an initially powder and solid material: before melting takes place (t � 2) the
stress will stay close to a near-zero value in the case of initial powder (small stiffness) but
take on significant values in the case of initial solid. When the material melts (t ≈ 2), the
stress reduces to the same small value as in the powder case. For a finite but small phase
change interval, as chosen for this problem, this change happens continuously. On the
other hand, the analytical reference solution for the stress, assuming isothermal melting,
exhibits a discontinuity at melting temperature. The proposed model can represent this
discontinuity asymptotically correct when decreasing the phase change interval. After full
melting, the two stress curves for initially powder and solid material are identical since in
both cases all material is now completely (re)molten and has the same reference strain. At
the end of the simulation the same final stress σfinal = 2MPa is obtained. This value can
be calculated analytically, see Appendix B.1.
In the scenario with a homogeneous Neumann boundary condition no stress can occur.

The total strain is always equal to the thermal strain, ε = εT , and thus the contributions to
the reference strain in (21)will always be zero. Therefore, the strain is directly proportional
to the change in temperature 	T = T − T0, as shown on the right-hand side in Fig. 3.
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Fig. 4 Stress and strain over time for the Dirichlet and Neumann scenario with initially powder or solid
material induced by repeated partial melting with Ts < T̂1 < Tl and a final full melt with T̂2 > Tl . Phase
change interval in gray

Repeated partial melt followed by full melt

In a second set of examples the material is partially molten with a peak temperature T̂1
inside the phase change interval, viz. Ts < T̂1 = 2000 ◦C < Tl , and then cooled down to
T0. This cycle is repeated four times and, finally, the material is fully molten with a peak
temperature T̂2 = 2200 ◦C > Tl . The resulting strain and stress evolution is shown in
Fig. 4. Once again, attention is drawn to the stress evolution in the Dirichlet case which
is equal to the results from the previous section until the first peak in the temperature
profile is reached. This time, the stress does not reach a near-zero value for the initially
solid case because themelting stops at T̂1 < Tl , i.e., there remains a phase fraction of solid
material at T̂1, which exhibits thermal stresses due to the increased temperature level as
compared to the stress-free configuration at T0. Subsequently, the stress rises to the same
local peak value of 975 kPa for both initially solid and powder material after cooling to
reference temperature. This can be explained as follows: the only relevant contribution
from (22) is the last term containing the reference strain since the temperature is equal
to the initial reference temperature and the strain is identical to zero. Although the solid
fraction differs at this point (0.5 in powder case and 1 in solid case), multiplication with
the reference strain (21) yields the same contribution ε̂ref. Put differently: independent of
the initial phase, the non-molten phase fraction yields a stress of zero, since T = T0; the
(re)molten phase fraction yields the same stress contribution, since the (re)molten fraction
is equal for initially powder and solidmaterial (samemaximum temperature). The specific
value of 975 kPa can be calculated analytically as demonstrated in Appendix B.2.
The same heating and cooling cycle is repeated three times. For an initial powder mate-

rial the stress reaches a near-zero value at T̂1 because the solid phase (from the previous
partial melt) is completely remolten at this point. For an initially solid material, the situ-
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Fig. 5 Stress over time induced by a repeated partial melt and a final full melt. Inhomogeneous Dirichlet
boundary conditions. Phase change interval in gray

ation was already discussed in section “Physical motivation and discussion”: the material
model contains no information about different solid phases but instead averages the ref-
erence contributions according to (28). As already outlined before, a repeated partial
melt with the same peak value will lead to increasing reference strain and, therefore, also
stresses (when cooled to reference temperature), a fact that is well illustrated by the simu-
lation results in Fig. 4. The analytical reference solution for isothermal melting of initially
solid material is also included and again only differs for temperatures in the phase change
interval (although not visible in Fig. 4).
Finally, the material is fully molten with a peak temperature T̂2 = 2200 ◦C > Tl and

cooled to T0. Both an initially solid and powder material yield the same final stress value
of 2MPa, which is the same value as in the previous example, where the material was fully
molten directly in one thermal cycle. Oncemore, this confirms that all history information
related to stresses is erased when all solid is (re)molten.

Inhomogeneous boundary conditions

The scenarios so far were only concerned with zero Dirichlet and Neumann bound-
ary conditions. For completeness the partial melt case in section “Repeated partial melt
followed by full melt” is repeated with an inhomogeneous Dirichlet-type constraint
u(l) = 0.001mm, which leads to a constant strain εx = 0.001 for the given homoge-
neous temperature load.
Figure 5 shows the resulting residual stresses, which, for an initially solid material, dif-

fers from Fig. 4: the fixed strain induces an initial stress that decreases during the repeated
partial melting cycles and, eventually, completely vanishes after the full melting, during
which all pre-existing residual stresses are relaxed. Again, the behavior of the solid after
full melting is identical to the examples in “Full melt” and sections “Repeated partial
melt followed by full melt”. For an initially powder material, the results are almost unaf-
fected by the inhomogeneous Dirichlet value, which is consistent with the basic modeling
assumption that mechanical stresses resulting from a deformation of the powder phase
are negligible.
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Fig. 6 Schematic of temperature peak function, which will move with speed v in x-direction

One-dimensional domain: inhomogeneous temperature load

The next scenario focuses on amore complex, transient and inhomogeneous temperature
profile and a homogeneous Dirichlet boundary condition u(l) = 0 (see left-hand side in
Fig. 2). A moving temperature peak sketched in Fig. 6, that starts outside the initially
powder domain (length l = 1m) andmoves through it to the other side, mimics the effect
of a moving laser beam in PBFAM. For completeness, the mathematical form of such a
temperature profile is stated as

T (x, t) = T0 + Tmax − T0
w

×

⎧⎪⎪⎨
⎪⎪⎩

w − x̂, if 0 ≤ x̂ < w

w + x̂, if − w < x̂ < 0

0, otherwise

, with x̂ = x − vt − x0

(32)

where the parameters for the present example are chosen as T0 = 0, Tmax = 2200 ◦C,
w = 0.1m, x0 = −w and v = 1.0m/ sec. With these parameters every point in the
domain melts and solidifies. Figure 7 shows the temperature profile and the resulting
displacement and strain field at select time steps. The stress, which is constant over the
domain, is plotted over the whole simulation time. In the beginning, the low stiffness
of the remaining powder at the right side of the domain enables an almost free thermal
expansion and the stress is close to zero. It increases to significant values only when the
whole bar has a solid fraction rs > 0, i.e., when the temperature peak reaches the right
end of the bar, where the displacement is fixed to zero.
The current example is also used to judge the influence of the stiffness ratio Es

Ep,m between
the solid and powder/melt Young’smoduli by varying the (artificial) powder/melt stiffness
Ep,m. Figure 8 shows how the final stress in the bar (after cooldown to the reference
temperature) converges with a refined spatial discretization and for different stiffness
ratios. For a high stiffness ratio the limit value lies at around 0.1MPa, which one would
obtain as the analytical value assuming the theoretical value of zero powder and melt
stiffness, i.e. a stiffness ratio of infinity. A proof is sketched in Appendix B.3.
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Two-dimensional domain: interaction of boundary condition and temperature load

The final verification example investigates a two-dimensional setting under the assump-
tion of plane-stress.1 As in the previous section, the geometry consists of a slender, bar-
like structure of powdermaterial which is now constrained with a homogeneous Dirichlet
boundary condition on the bottom edge (z = 0), while the left, right and top edges are free
(homogeneous Neumann boundary condition), see Fig. 9. The motivation for this setup is
to mimic the processing of a powder layer which is applied atop an already solid domain.
For this example we use the realistic material parameters from Table 2.
As a baseline the domain is heated uniformly across the entire domain from initial

temperature T0 = 303K to a maximum temperature Tmax = 2000K > Tl and then
cooled down to the initial temperature. This case is compared to the scenario of a moving
temperature peak profile as in (32) with different peak widths w ∈ {0.4, 0.2, 0.1}K and
Tmax = 2000K. The peak still moves only in x-direction with speed v = 1.0mm s−1, i.e.,

1Aplane-strain setting,whichwas also simulated by the authors,would change the absolute values but not the qualitative
trends presented in this section.
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Fig. 9 Geometry and boundary conditions of two-dimensional domain: bottom edge fixed; left, right and
top edge free. Dimensions in mm (not to scale)

Table 2 Material and simulation parameters for
three-dimensional examples

Quantity Description Value Unit

Es Young’s modulus in solid 200 GPa

Ep, Em (Artificial) Young’s modulus in powder and melt 2 GPa

ν Poisson ratio 0.3 –

αT Coefficient of thermal expansion 15 × 10−6 K−1

cs Volumetric specific heat, solid 4.25 M J m−3 K−1

cp Volumetric specific heat, powder 2.98 M J m−3 K−1

cm Volumetric specific heat, melt 5.95 M J m−3 K−1

ks, km Conductivity in solid and melt 20 W m−1 K−1

kp Conductivity in powder 0.2@200, 0.3@1600 Wm−1 K−1@K

hm Latent heat of fusion 2.18 GJ m−3

T0 Initial/reference temperature 303 K

Ts Solidus temperature 1500 K

Tl Liquidus temperature 1900 K

ρh Hemispherical reflectivity 0.7 –

βh Extinction coefficient 60 mm−1

hp Powder layer thickness 50 µm

We Effective laser power 30 W

R Effective laser radius 0.08 mm

vscan Laser scan speed 100 mm/ sec

the temperature is considered constant in z-direction, which is a rough approximation
to the temperature profile encountered in a PBFAM application. Figure 10 compares the
resulting residual stresses σxx in the different scenarios: a uniform temperature profile
yields the highest tensile stresses and almost no variation of the stress σxx in z-direction
(the “powder layer height”) while a moving temperature peak profile leads to a significant
drop-off of σxx over the height, meaning that stresses are lower at the non-constrained
upper surface. This drop-off becomes more pronounced with a decreased peak width w
and can be more clearly observed in Fig. 11 (left). These observations can be explained
by the size of the domain which has a temperature above T0 and is cooling down: if
this region is small (for a small w), the deformation occuring during cooldown is almost
unconstrained since these solidmaterial regions with elevated temperatures are very close
to the (approximately) stress-free liquid domain, thus resulting in a comparatively small
tensile stress. If the cooling region is wider, large portions of the cooling solid material are
far away from the stress-free solid-liquid boundary and thus are strongly constrained in
their ability to deform, which consequently results in a higher tensile stress.
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Fig. 10 Two-dimensional example: residual stress distribution σxx after subjecting domain to a uniform (first
row) or moving (second to fourth row) peak temperature profile
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Fig. 11 Two-dimensional example: final stress σxx over height z (zero is constrained bottom) at x = 0.5mm
(see dashed line in Fig. 10): induced by a temperature peak moving in x-direction, constant in z-direction
(left); induced by a temperature profile varying in z-direction, constant in x-direction (right). Note the different
ranges of the ordinates

Next, the temperature profile shall vary in z-direction as well. Given a time and x-
dependent function Tz0(x, t) for the temperature profile at z = 0 the following function

T (x, z, t) = z(s − 1) + h
h

Tz0(x, t), (33)

allows to control the variation of the temperature over the height h = 0.05mm. The
scaling factor s describes the ratio of the temperature at the upper edge z = h compared
to the constrained bottom z = 0. For better comparison, it is calculated from the width w
in (32) as

s = 1 + Tmax − T0
Tm − T0

h
w
, (34)

such that the partial derivative of (33) with respect to z is comparable to the slope of the
moving temperature peak of width w in (32).
First, the temperature only varies in z-direction but is constant in x-direction, which is

achieved by (33) and the purely time-dependent function

Tz0(t) = Tmax ×
⎧⎨
⎩
2t, if t ≤ 0.5 s

2 − 2t, if t > 0.5 s
. (35)
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Fig. 12 Two-dimensional example. Left: final stress σxx over height z (zero is constrained bottom) at
x = 0.5mm depending on width of temperature peak and (possibly) z-variation. Solid lines represent moving
temperature profiles, dashed lines represent moving and z-varying temperature profiles. Right: snapshots of
temperature profiles a–f which induce the associated final stress response on the left. Solidus and liquidus
isotherms indicated in red

The scaling factor s is computed from w according to (34). The results in Fig. 11
(right) indicate that a variation only in z-direction does not lead to significantly different
stresses (compared to the uniform temperature field), even for extreme values such as
w = 0.01mm, i.e., a scaling factor of s > 7 between upper and lower edge temperatures.
All material points with the same z-coordinate solidify at the same time.
The situation becomes more interesting when the moving peak is combined with a

variation in z-direction, which is closest to the real temperature profiles expected in
PBFAM processes. This is easily achieved by inserting (32) as Tz0 into (33) to obtain
another kind of temperature profile, see Fig. 12 (right). The width (in x-direction) of the
peak again varies between w ∈ {0.4, 0.2, 0.1}K. Figure 12 (left) shows how the stress σxx
varies over the height z. Especially for small widths, the additional variation in z-direction
has an influence on the resulting stress compared to the corresponding cases without
z-variation.
We do not claim that the results in this section are directly transferable to a PBFAM

process simulation. Still, they suggest that the actual temperature profilemight play amore
important role than often assumed. In the authors’ opinion, the significant differences in
residual stress from a uniform and a moving temperature field raise the question how
well-suited common simplifications in PBFAM simulation, such as layer-agglomeration,
inherent-strain or flashing complete tracks at once, are for an accurate prediction of
residual stress distributions.

Multilayer mesh tying strategy
From the PBFAM process perspective, it is natural to slice the complex part geometries
into layers, which may either represent a single powder layer or an upscaled process layer,
i.e., an accumulation of several powder layers. It seems that many existing approaches,
even in commercial codes, suffer from the need to generate matching meshes between
layers for real application scenarios and complex geometries. In this work, we want to
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Fig. 13 Mesh tying concept for multilayer PBFAM simulations

propose a flexible, layerwise spatial discretization strategy without the need of matching
meshes across the interface, thus allowing for easy mesh generation without distorted
elements or large size differences between elements. Dualmortarmethods allow to couple
such non-matching FEMmeshes in a manner that results in optimal discretization errors
(measured in the L2-norm) and that leads to an efficient condensation of the constraint
equations from the global system of equations.
This section summarizes themost important aspects of the approach for the application

to PBFAM, while a general overview on mortar methods for contact and mesh tying
problems is found in [53,54]. Figure 13 shows an exemplary part geometry which is sliced
into layers�(�) with thickness equal to the powder thickness hp. Each layer can bemeshed
separately and the finite element nodes may be non-matching at the interface between
two layers. The continuity of the primary solution variables across the interface �mt,� is
enforced in a weak sense by additional (mesh tying) constraint equations. The �-th mesh
tying interface �mt,� consists of the boundaries �

(�−1)
mt,� (top surface of domain �(�−1)) and

�
(�)
mt,� (bottom surface of domain �(�)). In this framework, applying a new powder layer

boils down to activating a new mesh tying constraint.
In order to have a continuous part, degrees of freedom (DOFs) associated with nodes

on the bottom surface of powder domain �(�) and on the top surface of powder domain
�(�−1) need to be constrained. Displacements and temperatures are the primary solution
variables of the thermomechanical problem (1) and (2) and thus the necessary constraint
equations read,

u(�) = u(�−1), on �mt,�, (36)

T (�) = T (�−1), on �mt,�. (37)

These conditions are enforced by introducing a Lagrange multiplier potential for each
constraint:

�u,mt =
∫

�

λu ·
(
u(�) − u(�−1)

)
d�mt,�, (38)

�T,mt =
∫

�

λT ·
(
T (�) − T (�−1)

)
d�mt,�. (39)

The total variation of the two potentials is found as

δ�u,mt =
∫

�

δλu ·
(
u(�) − u(�−1)

)
d�mt,� +

∫

�

λu ·
(
δu(�) − δu(�−1)

)
d�mt,� (40)
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δ�T,mt =
∫

�

δλT ·
(
T (�) − T (�−1))

)
d�mt,� +

∫

�

λT ·
(
δT (�) − δT (�−1)

)
d�mt,� (41)

The space and time dependency of u, T , their variations δu and δT , and the Lagrange
multipliers λu and λT is not written out in Eqs. (36)–(41) for brevity. The Lagrange
multipliers λ� and their variations δλ� are chosen fromM�, the dual space of the trace
space of V�, i.e., M� = H−1/2(�mt), where � ∈ {u, T }. The first term in (40) and
(41) represents the original mesh tying constraint and the second term contributes to
the weak forms (23) and (24). From dimensional analysis it becomes apparent that the
unknown structural Lagrange multiplier can be interpreted as a force vector acting on
the interface, λu = t (�)mt = −t (�−1)

mt , and the thermal Lagrange multiplier as a heat flux
across the interface, λT = q(�)mt = −q(�−1)

mt . The Lagrange multiplier fields are discretized
with special dual shape functions that allow for an efficient condensation of the Lagrange
multiplier DOFs from the global system of equations [54]. After spatial discretization of
all primary variable fields, the consistent link between discrete nodal DOFs on both sides
of the interface is established via constant mortar matrices D� and M� [53], which can
be combined into constant projector matrices P� = D−1

� M�. The projector matrices
map discrete solution increments (from the nonlinear solution procedure),

	d(�) = Pu	d(�−1), on �mt,� (42)

	T (�) = PT	T (�−1), on �mt,�, (43)

where 	d and 	T are increments of the discrete solution vectors of discrete displace-
ments d and discrete temperatures T . Given that the mesh tying constraints (36) and
(37) hold initially, these incremental mappings will enforce the constraints also in later
configurations. Typically this is easy to ensure in problem settings which utilize a tied
interface from the beginning. However, in PBFAM applications, new powder layers are
added over time, thus introducing new mesh tying constraints. In general, a new powder
layer’s initial temperature and displacement will not conform to the, already processed,
last layer. A simple approach to initialize temperature and displacements on side �

(�)
mt,� of

a newly added layer is to apply mappings (42) and (43) to the solution vectors on �
(�−1)
mt,� ,

viz.

d(�) ← Pud(�−1), T (�) ← PTT (�−1) on �mt,�. (44)

In essence, the nodal solution at the bottom surface of a newly added layer is set to
the (consistently mapped) nodal solution at the top surface of the last processed layer.
After this initialization the meshes are correctly tied and the primary solution variables
are continuous across the interface. The remaining DOFs in the newly added domain
�(�)\�(�)

mt,� are set as follows: temperature DOFs are set to the initial temperature T0,
while displacement DOFs are initialized to zero. The first time step after a newmesh tying
interface is activated will solve the (static) mechanical equilibrium Eq. (2) for a consistent
displacement state.

Remark Technically, the directmapping (44) violates conservation of energywhen adding
a new powder layer: temperature and displacement on �

(�)
mt,� are modified without an

associated external force. An alternative initialization of the temperature field for element-
birth methods is discussed in [50] and could be transferred to the proposed mesh tying
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approach. However, if the cooldown phase after processing of one layer is long enough
for the top surface to reach the initial temperature, the energy error from the temperature
modification vanishes. The error introduced by modification of the displacements of a
newly added layer is generally small due to the low stiffness of the newly added powder, i.e.,
possible artificial strains in the new layer only cause a small stress response. Furthermore,
the material formulation from section “Mechanical constitutive law” ensures that these
artificial stresses vanish after melting.

Three-dimensional numerical examples
This section presents larger three-dimensional numerical examples that are simulated
with the research code BACI [55], jointly developed at the Institute for Computational
Mechanics.

Single tracks per layer

The first three-dimensional example investigates ten processed powder layers with a
single track per layer each on top of a solid base plate. A schematic of the geometry
and the boundary conditions is shown in Fig. 14. The computational domain consists
of a 0.1 mm high base plate that has a prescribed temperature T0 = 303K and zero
displacements u = 0 at the bottom (indicated in blue in Fig. 14). This temperature T0
is also used as the initial temperature throughout the domain and in all newly activated
powder layers. The powder layers of height hp are connected via themesh tying algorithm
introduced in the last section as soon as they are activated. The tracks are scanned atop
each other with a unidirectional or serpentine pattern, i.e., the laser tracks are either
oriented in the same direction in all layers (unidirectional) or the orientation alternates
between successive layers (serpentine). To save computational resources, a symmetry
plane along the laser track center line is used to half the size of the computational domain.
All lateral faces (indicated in red) are assumed to be thermally insulating (q = 0) and
subject to homogeneous Dirichlet boundary conditions. The built part will not attach to
these boundaries for the chosen laser beam path and diameter and, since the remaining
powder close to the boundary is modeled with low stiffness and conductivity, the zero
displacement boundary conditions will not influence the results in the final part geometry
significantly.
Every scanned track (pure scanning time of 0.005 s) is followed by a cooldown time

of 1.0 s (which is long enough to reach a homogeneous temperature state close to the
initial value T0 in good approximation) during which significant residual stresses form.
After all ten layers have been scanned, the process of cutting the part from the base plate
can be simulated as follows: The boundary conditions on the red surfaces are removed
everywhere except on the leftmost surfaces (with normal vector (−1, 0, 0)T ) to avoid rigid
body modes. The mesh tying constraint between the base plate and the first layer is
removed. A structural analysis is run to obtain a static equilibrium solution for the stress
and deformation state after detaching the part from the base plate.
Material parameters for the thermal andmechanical problem aswell as other processing

parameters are listed in Table 2. A time step of 	t = 5 × 10−6 s is used for the scanning
phase and the initial cooling phase of 0.002 s, while the remaining 0.998 s of cooling use
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Fig. 14 Geometry, boundary conditions and simulation setup of ten layer example. Dimensions in mm

a time step of 	t = 1 × 10−3 s. The whole domain is discretized with 61 440 linear,
hexahedral 8-node finite elements with edge size hele = hp

4 = 12.5µm.
Figure 15 shows an overview of the six components of the stress tensor at selected

points in time: the first and third column show stresses during scanning of layer 6 and 10
with a comparable relative laser position. The second and fourth column show stresses
after these layers have been cooled down. The fifth column shows the residual stress after
the part is detached from the base plate. The laser paths of the individual tracks remain
clearly visible in the plots of theσxx component (first row). In agreementwith the literature
this stress in scanning direction is a large tensile stress [45,56]. The highest stresses can
be observed in the heavily constrained base plate. Specifically, it can be observed how
geometrical compatibility during cool down lead to high tensile normal stresses σxx in
the first track (and remolten portion of the base plate) and high compressive normal
stresses σxx in the (non-molten) lower part of the build plate. In the last row of Fig. 15 the
shear stresses σxz can be observed, which are—according to the mechanical equilibrium
Eq. (2)— necessary to balance gradients of the normal stress σxx at the beginning and
end of a track, especially close to the base plate. These σxz shear stresses, in turn, also
induce σzz normal stresses. Note, that the different stress components at many locations
exceed the yield stress of typical materials used in PBFAM, hence the inclusion of an
elasto-plastic material model, as already sketched in section “Mathematical formulation”,
is desirable for future work. The inclusion of such material models, or even of more
elaborate microstructure-informed constitutive laws, will allow for a detailed quantitative
validation based on experimental results.
All stresses decrease in their magnitude when the part is cut from the base plate. Fig-

ure 16 shows the resulting stress distribution for an alternating, serpentine scanning pat-
tern. The absolute values are comparable to Fig. 15. To better highlight the influence of the
different scanning patterns, Fig. 17 visualizes the normal stresses σxx for the unidirectional
and serpentine scanning pattern with a rescaled color map.
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Fig. 15 Unidirectional scanning pattern: distribution of different stress components in symmetry plane at
selected time steps. Blue color represents tension, red color represents compression. Liquidus isotherm (solid
black line) approximates melt pool shape

Fig. 16 Serpentine scanning pattern: distribution of different stress components in symmetry plane at
selected time steps. Blue color represents tension, red color represents compression. Liquidus isotherm (solid
black line) approximates melt pool shape
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Fig. 17 Stress distribution of σxx in symmetry plane at selected time steps for unidirectional (first row) and
serpentine (second row) scanning pattern. Blue color represents tension, red color represents compression.
Liquidus isotherm (solid black line) approximates melt pool shape. For improved visibility of the relevant
stresses the color bar is rescaled

Selected time steps are plotted in Fig. 18 for amoredetailed viewof the stress evolutionof
σxx during scanning of track 7 with a unidirectional pattern. The following considerations
start from a fully cooled layer 6, which exhibits a tensile stress throughout the consolidated
material. The subsequent snapshots (from left to right) in thefirst and second rowof Fig. 18
show the processing of track 7. To visualize the melt pool size, the temperature isoline
corresponding to the liquidus temperature Tl is depicted in these snapshots (solid black
line). While no stresses occur in the powder material of layer 7 in front of the laser, the
thermally induced volume expansion during heating leads to negative (compressive; red
color) stresses in the solidmaterial of the previously processed track 6,mostly pronounced
in the direct vicinity of the Tl-isoline. As desired, these stresses rapidly drop to zero in
the narrow temperature interval T ∈ [Ts;Tl] such that no visible stresses remain in the
melt pool domain. This strong gradient between vanishing stresses in the melt pool and
high compressive stresses in the solid material beneath remains after solidification and
is superimposed by additional tensile stress contributions due to the thermally induced
volume shrinkage during cooling. After cooling down (see snapshot at bottom right of
Fig. 18), this process results in high tensile stresses in the upper, re-molten part of track
6, and stresses close to zero in its lower part. The same characteristics are observed in
the previously processed tracks below. Even though the base plate has the same stiffness
as the solidified tracks above, this characteristic band structure of the normal stresses is
much more pronounced for the first track, i.e., the highest overall tensile stresses occur
in the first track, accompanied by compressive stresses of comparable magnitude in the
base plate below. This observation can be explained by the fact that the base plate is
initially stress-free, while solidified melt tracks are subject to tensile stresses after cooling
down (e.g., snapshot at bottom right of Fig. 18), which partly compensate the compressive
stresses arising from thermal expansion when processing the subsequent track above. The
tensile stresses in layer 1 are transferred to the base plate as concentrated tensile stresses
in the vicinity of the part edges, which may lead to notch effects in practice. It should be
mentioned once more that the displacement Dirichlet boundary conditions on the lateral
faces of the base plate are not responsible for the high stresses and results are almost
identical if these conditions are replaced with zero Neumann boundary conditions.
Finally, we investigate a slightly modified scenario, where the base plate is scanned first

with the same heat source as the powder layers. Figure 19 shows the evolution of stress σxx.
Large tensile stresses are visible in the scanned regions of the base plate after cooldown
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Fig. 18 Unidirectional scanning pattern: detailed view of the evolution of the longitudinal stress σxx in the
symmetry plane during scanning of layer 7. Blue color represents tension, red color represents compression.
Liquidus isotherm (solid black line) approximates melt pool shape. Time progresses from left to right and top
to bottom. For improved visibility of the relevant stresses the color bar is rescaled

Fig. 19 Modified scenario: scanning base plate and layer 1. Detailed view of the evolution of the longitudinal
stress σxx in the symmetry plane. Blue color represents tension, red color represents compression. Liquidus
isotherm (solid black line) approximates melt pool shape. Time progresses from left to right and top to
bottom. For improved visibility of the relevant stresses the color bar is rescaled

Fig. 20 Uniform scanning pattern: detailed view of the evolution of the longitudinal stress σxx in the
symmetry plane during scanning of layer 1. Blue color represents tension, red color represents compression.
Liquidus isotherm (solid black line) approximates melt pool shape. Time progresses from left to right. For
improved visibility of the relevant stresses the color bar is rescaled

(top right in Fig. 19). The subsequent processing of layer 1, using a unidirectional pattern,
leads to remelting in the uppermost region of the base plate, which causes a reduction of
the tensile stress after the next cooldown phase. The strong gradient between tensile and
compressive stresses, which was observed close to the interface between base plate and
layer 1 in Fig. 18, shifts down in Fig. 19 while the magnitude stays roughly the same. For
comparison, Fig. 20 shows a detailed view of the evolution of stress σxx when the first layer
is scanned atop a stress-free (not scanned) base plate, i.e., the scenario that was initially
investigated in this section. The stress distribution in layer 1 after cooldown for this case
(right-most plot in Fig. 20) is equal to the stress distribution in layer 1 after cooldownwith
a pre-processed base plate (bottom right in Fig. 19), which demonstrates that the chosen
pre-processing of the base plate does not influence the stress in layer 1.
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Fig. 21 Geometry, boundary conditions and simulation setup for two layer example with multiple tracks per
layer (indicated in green for layer 1 and blue for layer 2). Dimensions in mm

Multiple tracks per layer

In the second three-dimensional example, a closer look is taken at the classic in-plane
serpentine scanningpattern.The setup is shown inFig. 21: twopowder layers aredeposited
on top of a base plate and five tracks following a serpentine pattern are scanned in each
layer. Afterwards the domain is allowed to cool down for 1.0 s. The boundary conditions
are essentially the same as in the last example and the material parameters from Table 2
are reused. As before, a time step of 	t = 5 × 10−6 s is used for the scanning phase and
the initial cooling phase of 0.002 s, while the remaining 0.998 s of cooling use a time step
of 	t = 1 × 10−3 s. The domain is discretized with 15 3600 linear, hexahedral 8-node
finite elements with edge size hele = hp

4 = 12.5µm.
In this example, we look at the stress distribution after each layer was processed. Fig-

ure 22 visualizes the stresses σxx and σyy in the consolidated material, which represents
the built part. One quarter of the consolidated volume is cut out for visualization of the
stress distribution in z-direction. In the first layer, the laser travels in x-direction, which
is clearly reflected in the stress distributions shown in the first column of Fig. 22. When
the second layer is applied and scanned in y-direction, the melt pool penetrates into the
first layer. Therefore, after the second layer was scanned, the stress distribution in the first
layer reflects the laser beam movement in y-direction, see the second column in Fig. 22).
At the same time, stresses in the second layer also align with the y direction, see the third
column in Fig. 22. Overall, only tensile stresses remain after the final cool down.

Two pyramids example

The final numerical example investigates a more complex geometry. Yet, the geometry is
defined simple enough so that it can easily be adopted by other researchers. The powder
material that is not supposed to contribute to the final part is not included, an assumption
which is justified by the low thermal conductivity and stiffness of the powder. The final
part’s cross section changes drastically over the layers which demonstrates the flexibility
of the mortar mesh tying approach. The geometry, see Fig. 23, consists of two pyramid
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Fig. 22 Multiple tracks per layer: stress distribution on consolidated part geometry after scanning layer 1 (first
column) and layer 2 (second and third column). A quarter of the geometry is cut out for visualization purposes

bodies on a build plate: the first pyramid has curved surfaces2 and consists of bulkmaterial,
while the second pyramid is hollow. These geometries are chosen to illustrate different
behavior in bulk geometries versus slender geometries. In each layer, first the bulk pyramid
is scanned with a serpentine pattern with a maximal hatching space (space between two
neighboring tracks’ center lines) of 0.12 mm. Then, the hollow pyramid is scanned with
a closed quadrilateral track, starting from the corner with minimal y- and z-coordinate
and first moving into y-direction. After each processed layer, the domain is allowed to
cool down for 1.0 s. In the next layer, the serpentine scanning pattern in the bulk pyramid
is rotated by 90◦, in analogy to the tracks depicted in Fig. 21. However, the quadrilateral
track along the hollow pyramid wall always follows the same qualitative shape and only
increases in size.
In terms of boundary conditions, the displacements on the bottom of the base plate

are constrained to zero and the temperature is fixed to the initial temperature T0. All
other faces are unconstrained, i.e.,thermally insulating and not loaded by external forces.
Therefore, the only cooling mechanism is heat transfer over the base plate and all energy
supplied through the heat source must eventually be dissipated this way. The example
geometry is still small enough that this approach is feasible and no significant convective
surface heat transfer would occur in the relevant time scales of this problem.
Again, a time step of	t = 5×10−6 s is used for the scanning phase and the initial cooling

phase of 0.002 s, while the remaining 0.998 s of cooling use a time step of	t = 1×10−3 s.
Figure 23 gives a qualitative view of the spatial discretization. Elements are relatively
undistorted and roughly equally sized. The use of a non-matching discretization between
layers and between base plate and the bulk pyramid is clearly visible, and is enabled by the
mortar mesh tying approach presented in section “Multilayer mesh tying strategy”.
Figure 24 depicts the normal stress components as well as the von Mises equivalent

stress3 after the full part was processed. Again, the highest stresses appear close to the
strongly constrained base plate. With increasing distance to the base plate the stresses
relax: this happens faster in the less stiff hollow pyramid compared to the bulk pyramid.

2The curvature follows a circular arc with radius R = 33
√
2/80mm, which is tangent to the z-axis at the pyramid top.

3The von Mises equivalent stress is calculated as
σvM =

√
σ 2
xx + σ 2

yy + σ 2
zz − σxxσyy − σxxσzz − σyyσzz + 3(σ 2

xy + σ 2
xz + σ 2

yz).
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Fig. 23 Geometry of pyramids example. Dimensions in mm

The stress distribution σzz in vertical direction exposes a zone of compressive stresses
inside the bulk pyramid and tensile stresses in the outer region, which is in agreement with
the results in section “Single tracks per layer” and results in literature [27,42]. Note, that
parts of the material close to the edges in the first layers were only partially molten, hence
the artifacts in the stress distributions. The observations for stresses are complemented
by Fig. 25: here, the displacement magnitude is visualized on a deformed mesh (with
deformation scaled by a factor of 5 for improved visibility). In the stiffer bulk pyramid the
overall deformation is small, while the hollow pyramid can deform much easier and an
undesired indentation of the side walls occurs as consequence of residual stresses.
Of course, this example could also be scaled up to more realistic part dimensions when

using a layer-agglomeration approach [27] or effective heat track- or layerwise heat sources
[37].

Conclusion
A thermomechanically coupled computational model for the macroscale simulation of
PBFAM processes was presented. A first emphasis of the present work was the consis-
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(a) (b)

(c) (d)

Fig. 24 Two pyramids example: stress distribution in pyramids after final cooldown. Normal stresses a σxx , b
σyy , c σzz , and d von Mises equivalent stress σvM . Part of the geometry is cut out above first powder layer and
at y = 0.6mm for visualization of stress inside the pyramid

Fig. 25 Two pyramids example: displacement magnitude after final cooldown displayed on warped
geometry. The distortion is scaled up by a factor of 5

tent modeling of material behavior in a macroscale sense. To this end, a thermo-elastic
material model with an additional inelastic reference strain contribution was derived and
verified with academic test cases. Crucially, this inelastic reference strain contribution,
formulated in rate form, was introduced to allow for a stress-free state when solidification
of molten material starts. Compared to existing (instantaneous) stress-reset procedures,
whichmight result in jumps in the stress-field, the formulation of the reference strain term
in rate formguarantees a smooth stress field. Compared tomore involvedmaterialmodels,
e.g. [45,48], this simple approach can easily be integrated in standard material libraries
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and FEM codes while still consistently capturing the most essential aspects of residual
stress generation in PBFAM. This capability has been verified in a series of elementary
test cases and via reference solutions stated for the sharp-interface limit. The material
model did not consider plasticity, although its inclusion is possible in a straight-forward
manner as already demonstrated in the stated model equations.
For the coupling of successively processed powder layers we suggested a dual mortar

mesh tying approach.Compared tootherpopularmethods, suchas element-birthorquiet-
elementmethods, it provides additional flexibilitywith respect to the spatial discretization,
as it allows for layerwisenon-matchingmeshes.The applicability of bothnovelties to larger
three-dimensional problemswas demonstrated. Especially the rapid cross section changes
of a rather complex geometry, involving a hollow pyramid as well as a solid pyramid with
curved surfaces, illustrated the effectiveness of the proposed mortar mesh tying strategy.
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Appendix A: Behavior of the rate-based reference strain formulation
For further insight into the behavior of the reference strain term, the proposed rate-based
reference strain formulation (21) is integrated over the phase change interval to obtain

εref(rs) = 1
rs

(
rrems εremref +

∫ rs

rrems

(ε − εT )H (ṙs) dr
)
, (45)

with a remaining solid fraction rrems at solidification start, which has a reference strain
εremref from a previous solidification process, as initial value for the integration. Here,H (x)
is the Heaviside step function (31).

A.1 Example scenario 1

Table 3 lists a temperature history and the corresponding reference strain evolution com-
puted with the integral form (45) under the assumption that the integrand ε − εT stays
constant during solidification, which is a good approximation for sufficiently small phase
change intervals Tl −Ts. At t0 the material consists solely of powder phase and the refer-
ence strain is zero. After heating to 0.5(Tl+Ts) (50% ofmaterial molten) at t1, thematerial
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Table 3 Exemplary evolution of reference strain for repeated cooling and heating assuming
constant strains during solidification

Time Temperature Reference strain rp rs rm

t0 T < Ts ε0ref = 0 1.0 0.0 0.0

t1 T = 0.5(Tl + Ts) ε1ref = 0 0.5 0.0 0.5

t2 T < Ts ε2ref = 1
0.5 0.5(ε

1 − ε1T ) 0.5 0.5 0.0

t3 T = 0.25Tl + 0.75Ts ε3ref = 1
0.25 0.25ε

2
ref = ε2ref 0.5 0.25 0.25

t4 T < Ts ε4ref = 1
0.5 (0.25ε

3
ref + 0.25(ε3 − ε3T )) = 1

2ε3ref + 1
2 (ε

3 − ε3T ) 0.5 0.5 0.0

t5 T = 0.75Tl + 0.25Ts ε5ref = limrs→0
rs
rs
ε4ref = ε4ref 0.25 0.0 0.75

t6 T < Ts ε6ref = 1
0.75 (0 · ε5ref + 0.75(ε5 − ε5T )) = ε5 − ε5T 0.25 0.75 0.0

Table 4 Exemplary evolution of reference strain for a cyclic, partial remelting of solid phase
assuming ε − εT is constant in all phase change intervals

time temperature reference strain rs rm

t0 T < Ts ε0ref = 0 1.0 0.0

t1 T = 0.5(Tl + Ts) ε1ref = 0 0.5 0.5

t2 T < Ts ε2ref = 1
1 (0.5ε

1
ref + 0.5(ε − εT )) = 1

2 (ε − εT ) 1.0 0.0

t3 T = 0.5(Tl + Ts) ε3ref = 1
0.5 0.5ε

2
ref = ε2ref 0.5 0.5

t4 T < Ts ε4ref = 1
1 (0.5ε

3
ref + 0.5(ε − εT )) = 3

4 (ε − εT ) 1.0 0.0

t5 T = 0.5(Tl + Ts) ε5ref = 1
0.5 0.5ε

4
ref = ε4ref 0.5 0.5

t6 T < Ts ε6ref = 1
1 (0.5ε

5
ref + 0.5(ε − εT )) = 7

8 (ε − εT ) 1.0 0.0

cools to a temperature below Ts at t2. A reference strain ε2ref evolves during this solidifica-
tion process based on the strains ε1 − ε1T . Another heating up to 0.25Tl + 0.75Ts (25% of
material molten) does not change the reference strain. However, note that the last term
in the stress (22) changes continuously during melting due to the multiplication with the
decreasing solid fraction (whichmelts before powder canmelt). Not all previously created
solid melts and all three phases are present at t3. The next cooldown to a temperature
below solidus temperature at t4 leads to ε4ref, computed as a weighted average of the old
reference strain ε3ref in the remaining solid and the current strains ε3 − ε3T in the melt. As
expected, the powder material does not contribute to the reference strain. A final heating
to 0.75Tl + 0.25Ts (75% of material molten) at t5 melts all of the previously created solid
phase and, additionally, some more of the powder phase. Thus, the subsequent cooling at
t6 leads to a reference strain ε6ref, which only depends on the current strains ε5 − ε5T , as
no solid fraction (with a reference strain contribution) remained at t5.

A.2 Example scenario 2

The final special case looks at cyclic, partial remelting of an initially solid material point
as outlined in Table 4. This case is also investigated as a numerical example in section
“Repeated partial melt followed by full melt”. The material is repeatedly heated up to a
maximum temperatureTm = Ts+Tl

2 (i.e., 50% of thematerial melts) and afterwards cooled
to a temperature below Ts. In the first cycle, half of the initial solid will melt (at t1) and
obtain a new reference strain after cooldown (at t2), where the strain ε − εT is assumed
(approximately) constant during the complete solidification process. The reference strain
of the non-molten solid remains at its initial value, i.e., zero. The total reference strain after
cooldown is thus ε2ref = 0.5(ε − εT ). In the next cycle, again 50% of the solid phase melts
(at t3). After cooldown below Ts (at t4) the new reference strain is computed according to
(45) as a weighted average of the reference strain of the non-molten solid (at t3) and the
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new strain contribution ε − εT for the remolten fraction, ε4ref = 0.5ε3ref + 0.5(ε − εT ) =
0.75(ε − εT ). The same logic applies to the next heating at t5 and cooling t6 and further
heating-cooling cycles. Apparently, the evolution of the pre-factor in the reference strain
over these cycles follows a geometric series that converges to ε − εT . If this process is
repeated many times, this has the (at first glance) paradoxical result that, although never
fully molten, the complete initial solid will asymptotically convert to newly solidified
solid. From amicroscale perspective this observation can be interpreted as follows: within
a representative volume, the choice of the solid material fractions (i.e., ensembles of
molecules) that will actually melt is random and will change during the repeated partial
melting cycles. Thus, after sufficient partial melting cycles each solid material fraction has
molten at least once such that the total solid phase effectively exhibits a new stress-free
reference state.

Appendix B: Analytical reference solutions for one-dimensional problem
This section presents analytical solutions for verification of the one-dimensional scenario
described in section “One- and two-dimensional numerical examples”.

B.1 Final stress after full melt and solidification

The homogeneous Dirichlet boundary condition and homogeneous temperature load
used in sections “Full melt” and “Repeated partial melt followed by full melt” imply ε ≡ 0.
Thus, the final stress after a full melt and cooldown to initial temperature is found from
(22) by integrating (21) after a change of variables from solid fraction to temperature:

σfinal = −Esεref = Es
∫ 1

0
αT (T − T0) drs = −EsαT

∫ Ts

Tl

T − T0
Tl − Ts

dT

= EsαT

(
Ts + Tl

2
− T0

)
(46)

where the average of solidus and liquidus temperature can be interpreted as the melting
temperatureTm := Ts+Tl

2 . Result (46) is equivalent to the expected solution for isothermal
phase change at melting temperature Tm and the exact value of the (artificial) powder and
melt stiffness is irrelevant for the final stress value in this specific case.

B.2 Stress after partial melt and solidification

The computation in (46) can be generalized to find the final stress after a partial melt
with a peak temperature T̂ , lying in the phase change interval [Ts;Tl], and subsequent
cooldown:

σfinal = −Esεref = −EsαT

∫ Ts

T̂

T − T0
Tl − Ts

dT = T̂ − Ts
Tl − Ts︸ ︷︷ ︸

=g(T̂ )

(
T̂ + Ts

2
− T0

)
. (47)

B.3 Final stress for moving temperature peak

The following derivations consider the example in section “One-dimensional domain:
inhomogeneous temperature load”, where the space and time-dependent, peak-shaped
temperature profile T (x, t) given in (32) is prescribed on the whole domain. We assume
zero stiffness for powder and melt phase and a finite value for the solid phase. Let t̂ be the
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instant of time, when, for the first time, there is a solid fraction rs > 0 everywhere in the
bar. No stress occurs before and at this time (due to zero stiffness in powder and melt)
and consequently σ (t̂) = 0. With these simplifications we find from (22)

σ (t) = rs(x, t)Es (ε(x, t) − αT (T (x, t) − T0) − εref(x, t)) , ∀t ≥ t̂ (48)

where the spatial dependency on x is left out for the stress. Due to geometric compatibility
the displacement on both ends of the domain must vanish, and therefore

0 =
∫ l

0
ε(x, t) dx

= σ (t)
∫ l

0

dx
rs(x, t)Es

+
∫ l

0
αT (T (x, t) − T0) dx +

∫ l

0
εref(x, t) dx. (49)

Since σ (t̂) = 0 as stated above, evaluating (49) at t̂ yields

0 =
∫ l

0
αT

(
T (x, t̂) − T0

)
dx +

∫ l

0
εref(x, t̂) dx, (50)

and subtracting (50) from (49) gives

0 = σ (t)
∫ l

0

dx
rs(x, t)Es

+
∫ l

0
αT

(
T (x, t) − T (x, t̂)

)
dx

+
∫ l

0
εref(x, t) − εref(x, t̂) dx. (51)

Let tf be the final time, where all material is solid, rs(x, tf ) = 1, and the temperature is
equal to the initial temperature, T (x, tf ) = T0. Then the first term in (51) is trivial to
integrate and, after some rearrangement, one finds for the final stress:

σfinal = σ
(
tf

) = Es
l

∫ l

0
αT

(
T (x, t̂) − T0

)
dx

︸ ︷︷ ︸
I1

+Es
l

∫ l

0
εref(x, t̂) − εref(x, tf ) dx

︸ ︷︷ ︸
I2

. (52)

The first term depends on the integrated difference in temperature when solidification
starts (at time t̂) compared to the final temperature profile (at time tf ). For the temperature
profile (32), it can be computed in analogy to (46) and (47) as:

I1 = αT
2
w
(Tl − T0)2

Tmax − T0
. (53)

Result (53) demonstrates that the stress after cooldown depends on the shape of the
temperature profile (here describedbyw andTmax) andnot just the temperature difference
between liquidus temperature Tl and final temperature Tf .
To compute the second term in (52), the definition of the reference strain (21) is inserted:

I2 =
∫ l

0
εref(x, t̂)︸ ︷︷ ︸

=0, since for t≤t̂: ε=αT	T

−εref(x, tf ) dx

= −
∫ l

0

1
rs(x, tf )

∫ tf

t̂
H (ṙs)

(
ε(x, t̃) − αT	T (x, t̃)

)
ṙs(t̃) dt̃ dx (54)
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Assume that the strain stays constant during solidification, i.e., ε(x, t̃) = ε(x, t̂) =
αT	T (x, t̂), which is a good approximation for a small phase change interval [Ts;Tl].
The final solid fraction is again given as rs(x, tf ) = 1 and its rate during solidification as
ṙs = Ṫ/(Ts − Tl). Thus, (54) simplifies to:

I2 = −
∫ l

0

∫ tf

t̂
H (ṙs)αT (T (x, t̂) − T (x, t̃))

Ṫ
Ts − Tl

dt̃ dx (55)

After a change of variables, H (ṙs)Ṫ dt̃ → H
(
T (x, t̂) − Ts

)
dT̃ , the inner integral can be

computed as:

I2 = −αT

∫ l

0
H

(
T (x, t̂) − Ts

) ∫ Ts

T (x,t̂)

T̃ − T (x, t̂)
Tl − Ts

dT̃ dx

= −αT
2

∫ l

0
H

(
T (x, t̂) − Ts

) (Ts − T (x, t̂))2

Tl − Ts
dx (56)

Finally, the specific temperature profile (32) is inserted into (56) which allows to compute
the final integral, yielding

I2 = −αT
6
w
(Tl − Ts)2

Tmax − T0
, (57)

which is a significantly smaller value compared to I1 for typical values encountered in
PBFAM application, e.g. for the parameters used in section “One-dimensional domain:
inhomogeneous temperature load” a ratio of |I2/I1| ≈ 0.3% is obtained.
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