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Abstract

This research work deals with the implementation of so-called Dynamic Data-Driven
Application Systems (DDDAS) in structural mechanics activities. It aims at designing a
real-time numerical feedback loop between a physical system of interest and its
numerical simulator, so that (i) the simulation model is dynamically updated from
sequential and in situ observations on the system; (ii) the system is appropriately driven
and controlled in service using predictions given by the simulator. In order to build
such a feedback loop and take various uncertainties into account, a suitable stochastic
framework is considered for both data assimilation and control, with the propagation of
these uncertainties from model updating up to command synthesis by using a specific
and attractive sampling technique. Furthermore, reduced order modeling based on the
Proper Generalized Decomposition (PGD) technique is used all along the process in
order to reach the real-time constraint. This permits fast multi-query evaluations and
predictions, by means of the parametrized physics-based model, in the online phase of
the feedback loop. The control of a fusion welding process under various scenarios is
considered to illustrate the proposed methodology and to assess the performance of
the associated numerical architecture.
Keywords: Data assimilation, Real-time control, Model reduction, Uncertainty
quantification and propagation, Bayesian inference, Proper generalized decomposition

Introduction
The continuous interaction between physical systems and high-fidelity simulation tools
(i.e. virtual twins) has become a key enabler for industry as well as an appealing research
topic along the last decade (see for instance [11]). This is at the heart of the Dynamic
Data Driven Application System (DDDAS) concept [12], in which a simulation model is
used to make decisions and drive an evolving physical system, and is in the same time
fed by data collected on this system in order to update parameters and ensure the con-
tinual consistency between numerical predictions and physical reality. In other words,
the DDDAS concept aims at building a numerical feedback loop between the physical
system and its simulator, with on-the-fly data assimilation and control (Fig. 1). Neverthe-
less, there are two main numerical challenges in the implementation of such a loop for
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Fig. 1 Scheme of the DDDAS feedback control loop

structural mechanics applications. On the one hand, the dialog between numerical mod-
els and physical systems is in practice subject to several sources of uncertainty, including
measurement noise,modeling errors, or variabilities in the systemproperties and environ-
ment. On the other hand, a relevant feedback loop requires effective numerical methods
such that real-time computations and interactions can be performed.
The paper presents a general strategy, addressing the two previous challenges, for the

design of an effective numerical feedback loop between a physical system and its simu-
lator. It considers a stochastic framework for sequential data assimilation and control,
that uses Bayesian inference for model updating from in situ data as well as uncertainty
propagation to make predictions from the model and synthesize control laws. Such a
framework considers parameters to be inferred as random variables, and it naturally takes
all uncertainty sources into account [2,6,17,22,30,31].
The proposed strategy also leans on two ingredients which permit to achieve the real-time
constraint. First, Transport Map sampling [13] is used as an alternative to Markov Chain
Monte-Carlo (MCMC) [14,25] or Sequential Monte-Carlo [1] techniques in order to
perform fast Bayesian inference with convenient sampling of multi-dimensional posterior
densities and associated adaptive strategies. The Transport Map technique consists in
building a deterministic polynomial mapping between the posterior probability measure
of interest and a simple reference measure (e.g. Gaussian distribution) [21,23,29]. It thus
permits an automatic exploration, from the constructedmapping, of themulti-parametric
stochastic space in order to effectively derive useful information such as means, standard
deviations, maxima, or marginals on model parameters. Such pieces of information can
then be propagated to model outputs in order to quantify uncertainty, synthesize the
appropriate command in a stochastic context, and thusmake safe decision on the evolving
system.
Second,model reduction bymeans of the ProperGeneralizedDecomposition (PGD) tech-
nique [9,10] is introduced in order to reduce the computational effort for the evaluation
ofmulti-parametric numerical models, and therefore further speed up the overall process.
The PGD approximation builds a modal representation of the multi-parametric model
solution with separated variables and explicit dependency on model parameters. This
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Fig. 2 Illustration of the considered welding model

representation is computed in an offline phase with controlled accuracy [8] before being
evaluated at low cost in the online phase. It is shown in the paper that the PGD tech-
nique (i) facilitates the computation of the likelihood function involved in the Bayesian
inference framework [3,26]; (ii) can be effectively coupled with Transport Map sampling
for the calculation of the maps, as it directly provides information on solution derivatives
[27,28]; (iii) is a particularly effective tool for performing uncertainty propagation through
the forward model as well as command law synthesis. A particular focus is made here on
the latter point dealing with effective command in a stochastic framework; this has been
investigated in very few works of the literature, even though it is a major aspect of the
DDDAS procedure. The dynamic command synthesis we propose, using advantages of
Transport Map sampling and PGD model reduction, is the main novelty of the paper. It
permits the construction and implementation of the full DDDAS feedback loop.
The constructed feedback loop is here illustrated in the context of a fusion welding

process. It involves a simplified weldingmodel introduced in [16] (and described in Fig. 2),
which is supposed to be an accurate enough representation of the physical phenomena of
interest.
In this two-dimensional model, two metal plates are welded by a heat source whose

center is moving along the geometry. The problem unknown is the dimensionless tem-
perature field T in the space domain � and over the time domain I ; T = 0 when the
temperature is equal to the room temperature, and T = 1 when the temperature is equal
to the melting temperature of the material. On the right-hand side boundary �D (see
Fig. 2), the temperature is supposed to be equal to the room temperature (T = 0). The
other boundaries are supposed to be insulated.
To solve the problem, the system of coordinates is made moving at the same speed as the
heat source. Thus, the model problem is described by the following heat equation with
convective term:

∂T
∂t

+ v(Pe) · gradT − κ�T = s(σ ) (1)

where v = [Pe; 0] is the advection velocity, Pe = v ·Lc/κ is the Peclet number (Lc being the
characteristic length of the problem), and κ is the thermal diffusivity of the material. The
volume heat source term s is defined by the following Gaussian repartition in the space
domain:

s(x, y; σ ) = u
2πσ 2 exp

(
− (x − xc)2 + (y − yc)2

2σ 2

)
(2)
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Fig. 3 Illustration of the two model parameters (left and center), and time evolution of the command (right)

where coordinates (xc, yc) represent the location of the heat source center, u is the mag-
nitude, and σ is a scalar parameter that drives the source expansion.
From the integration of (1) over �, the weak formulation in space of the problem is of

the form: find T ∈ T such that

a(T, T ∗) = l(T ∗) ∀T ∗ ∈ T (3)

with:

a(T, T ∗) =
∫

�

{
(
∂T
∂t

+ v · gradT ) · T ∗ + κ · gradT · gradT ∗
}
d�

l(T ∗) =
∫

�

s · T ∗d�

(4)

The functional space T is the Bochner space L2(I ;S) � S⊗I , withS = H1
0|�D

the Sobolev
space ofH1 functions on� satisfying homogeneousDirichlet boundary conditions on�D,
and I = L2(I) the Lebesgue space.
The model parameters to be updated from indirect noisy data are p = {σ , Pe}, which

are respectively related to the spatial spreading and speed of the heat source as illustrated
in Fig. 3. They may be varying over the time domain. Data consist in the measurement
of temperatures T1 and T2 at two points in � (see Fig. 2). From these data assimilated
sequentially in time, the purpose is twofold: (i) to dynamically update the model parame-
ters p; (ii) to control from the updated model the temperature T3 at another point in �,
which is the output of interest assumed to be unreachable by direct measurement, and
perform corrections on the welding process if necessary. The control variable is the mag-
nitude u of the heat source, that is supposed to be piecewise constant in time as illustrated
in Fig. 3.
The paper outline is as follows: in “Reduced order modeling using PGD” section, the

PGDmodel reduction applied to the above referencemodel is detailed. It is then employed
in association with Bayesian inference and Transport Map sampling for fast data assim-
ilation and model updating in “Real-time data assimilation with Bayesian inference and
Transport Map sampling” section. All these tools are beneficially reused for on-the-fly
command synthesis and system control in “Real-time control” section. Several numerical
experiments are reported in “Results and discussion” section, which show the interest
and performance of the proposed feedback loop by considering various welding scenar-
ios. Sequential data assimilation, uncertainty propagation up to the output of interest,
and real-time control of the welding process are illustrated for each of these scenarios.
Eventually, conclusions and prospects are drawn in “Conclusions” section.
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Methods
Reduced order modeling using PGD

Due to the increasing number of high-dimensional approximation problems, which nat-
urally arise in many situations such as optimization or uncertainty quantification, model
reduction techniques have been the object of a growing interest and arenowamature tech-
nology [19,24]. Tensormethods are among themost prominent tools for the construction
of model reduction techniques as in many practical applications, the approximation of
high-dimensional solutions of Partial Differential Equations (PDEs) is made computa-
tionally tractable by using low-rank tensor formats. In particular, an appealing technique
based on a canonical format and referred to as Proper Generalized Decomposition (PGD)
was introduced and successfully used in many applications of computational mechanics
dealing with multiparametric problems [5,7,9,10,15,18,20]. Contrary to POD, the PGD
approximation does not require any knowledge on the solution, and it operates in an iter-
ative strategy in which basis functions (or modes) are computed from scratch by solving
eigenvalue problems.
In the classical PGD framework, the reduced model is built directly from the weak for-
mulation (here (3)) of the considered PDE, integrated over the parametric space. The
approximate reduced solution Tm at order m is then is then searched in a in a sepa-
rated form with respect to space, time, and model parameters p = {p1, p2, . . . , pd} seen as
extra-coordinates [10]:

Tm(x, t,p) =
m∑

k=1
	k (x)λk (t)

d∏
i=1

αi
k (pi) (5)

The computation of the PGD modal representation is performed in an offline phase by
using an iterativemethod [10], before being evaluated in an online phase at any space-time
location and any parameter value from products and sums of one-parameter functions.
For the multi-parametric problem of interest, the construction of the PGD solution is

detailed in [26]. It reads:

Tm(x, t, σ , Pe) =
m∑

k=1
	k (x)λk (t)α1

k (σ )α
2
k (Pe) (6)

Considering a heat source term with u = 1, the first four PGD modes are represented in
Fig. 4 (spatial modes), Fig. 5 (parameter modes), and Fig. 6 (time modes).

Real-time data assimilation with Bayesian inference and Transport Map sampling

Basics on Bayesian inference

The purpose of Bayesian inference is to characterize the posterior probability density
function (pdf) π (p|dobs) of some model parameters p given some indirect and noisy
observations dobs. In this context, the Bayesian formulation of the inverse problem reads
[17]:

π (p|dobs) = 1
C

π (dobs|p).π0(p) (7)

where π0(p) is the prior pdf, related to the a priori knowledge on the parameters before
the consideration of data dobs, π (dobs|p) is the likelihood function that corresponds to the
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Fig. 4 First four spatial modes of the PGD solution

0.3 0.35 0.4 0.45 0.5

−4

−2

0

2

4

σ

α
1

Mode 1
Mode 2
Mode 3
Mode 4

(a) Modes in σ

−70 −65 −60 −55 −50
0.16

0.18

0.2

0.22

0.24

0.26

0.28

Pe

α
2

Mode 1
Mode 2
Mode 3
Mode 4

(b) Modes in Pe

Fig. 5 First four parametric modes of the PGD solution

probability for the model M to predict observations dobs given values of the parameters
p, and C = ∫ π (dobs|p) · π (p)dp is a normalization constant. No assumption is made on
the probability densities (prior, measurement noise) or on the linearity of the model.
We consider here the classical case of an additive measurement noise with density πmeas.
We also consider that there is no modeling error, even though such an error source could
be easily taken into account in the Bayesian inference framework (provided quantitative
information on this error source is available). The likelihood function thus reads:

π (dobs|p) = πmeas(dobs − M(p)) (8)

Furthermore, when considering sequential assimilation of measurements dobsi at time
steps ti, i ∈ {1, . . . , Nt}, the Bayesian formulation is such that the prior at time ti corre-
sponds to the posterior at time ti−1:
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Fig. 6 First four time modes of the PGD solution

π (p|dobs1 , . . . ,dobsi ) ∝
⎛
⎝ i∏

j=1
πtj (dobsj |p)

⎞
⎠ · π0(p); πtj (dobsj |p) = πmeas

(
dobsj − M (p, tj))

(9)

Once the PGD approximation Tm(x, t,p) is built (see “Reduced order modeling
using PGD” section), an explicit formulation of the non-normalized posterior density
can be derived. Indeed, owing to the observation operator O, the output dm(p, t) =
O (Tm(x, t,p)) can be easily computed for any value of the parameter set p. The non-
normalized posterior density π thus reads:

π
(
p|dobs1 , . . . ,dobsi

)
=

i∏
j=1

πmeas
(
dobsj − dm (p, tj)) .π (p) (10)

From the expression of π (p|dobs) (or π (p|dobs1 , . . . ,dobsi )), stochastic features such as
means, variances, or first-order marginals on parameters may be computed. These quan-
tities are based on large dimension integrals, and classical Monte-Carlo integration-based
techniques such as Markov Chain Monte-Carlo (MCMC) require in practice to sample
the posterior density a large number of times. This multiquery procedure is much time
consuming and incompatible with fast computations; we thus deal with an alternative
approach in the following section.

Transport Map sampling

Theprinciple of theTransportMap strategy is tobuild adeterministicmappingM between
a reference probability measure νρ and a target measure νπ . The purpose is to find the
change of variables such that:

∫
gdνπ =

∫
g ◦ Mdνρ (11)
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Fig. 7 Illustration of the Transport Map principle for sampling a target density

In this framework, samples drawn according to the reference density are transported
to become samples drawn according to the target density (Fig. 7). For the considered
inference methodology, the target density corresponds to the posterior density π (p|dobs)
derived from the Bayesian formulation, while a standard normal Gaussian density may be
chosen as the reference density; for more details, we refer to [29] with effective computa-
tion tools (see http://transportmaps.mit.edu).
From the reference density ρ, the purpose is thus to build the mapM : Rd → R

d such
that:

νπ ≈ M�νρ = ρ ◦ M−1|det∇M−1| (12)

where � denotes the push forward operator. Once the mapM is found, it can be used for
sampling purposes by transporting samples drawn from ρ to samples drawn fromπ . Simi-
larly, Gaussian quadrature (ωi,pi)Ni=1 for ρ can be transported to quadrature (ωi,M(pi))Ni=1
for π . Such a (deterministic) numerical integration with quadrature rule from the refer-
ence Gaussian density is therefore a technique of choice used in the present work for the
calculation of statistics, marginals, or any other information from the posterior pdf.
Maps M are searched among Knothe–Rosenblatt rearrangements (i.e lower triangular

and monotonic maps). This particular choice of structure is motivated by the following
properties (see [4,21,29] for all details):

• Uniqueness and existence under mild conditions on νπ and νρ ;
• Easily invertible map and Jacobian ∇M simple to evaluate;
• Optimality regarding the weighted quadratic cost;
• Monotonicity essentially one-dimensional (∂pkMk > 0).

http://transportmaps.mit.edu
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The mapsM are therefore parametrized as:

M(p) =

⎡
⎢⎢⎢⎢⎣
M1(a1c , a1e , p1)
M2(a2c , a2e , p1, p2)
...
Md(adc , ade , p1, p2, . . . , pd)

⎤
⎥⎥⎥⎥⎦ (13)

with Mk (akc , ake ,p) = �c(p)akc + ∫ pk0 (�e(p1, ..., pk−1, θ )ake )2dθ . Functions �c and �e
are chosen as Hermite polynomials with coefficients ac et ae. This integrated squared
parametrization is a classical choice that automatically ensures the monotonicity of the
map, and using Hermite polynomials leads to an integration that can be performed ana-
lytically.
With this parametrization, the optimal map M is found by minimizing the following
Kullback–Leibler (K–L) divergence:

DKL(M�νρ ||νπ ) = Eρ

[
log

νρ

M−1
� νπ

]

=
∫
P

[
log(ρ(p)) − log([π ◦ M](p)) − log(| det∇M(p)|)] ρ(p)dp

(14)

that quantifies the difference between the two distributions νπ and M�νρ . Still using a
Gaussian quadrature rule (ωi,pi)Ni=1 over the reference probability space associated with
ρ, the minimization problem reads:

min
a1,...,dc ,a1,...,de

N∑
i=1

ωi
[
− log(π̃ ◦ M(a1,...,dc , a1,...,de ,pi) − log(

∣∣∣det∇M(a1,...,dc , a1,...,de ,pi))
∣∣∣)]
(15)

where π is the non-normalized version of the target density. This minimization problem
is fully deterministic and may be solved using classical algorithms (such as BFGS) using
gradient or Hessian information on the density π (p).
It is important to notice that the reduced PGD representation (6) of the solution is highly
beneficial to solve (15). Partial derivatives of the model with respect to parameters p can
indeed be easily computed as:

∂nTm

∂pnj
(x, t,p) =

m∑
k=1

	k (x)λk (t)
∂nα

j
k

∂pnj
(pj)

d∏
i=1
i �=j

αi
k (pi) (16)

and stored in the offline phase. Thanks to the separated representation of the PGD, cross-
derivatives are computed by combination of univariate modes derivatives. As a result, the
use of PGD also speeds up the computation of transport maps.
The quality of the approximation M�νρ of the measure νπ can be estimated by the

convergence criterion εσ (variance diagnostic) defined in [29] as:

εσ = 1
2
Varρ

[
log

νρ

M−1
� νπ

]
(17)
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The numerical cost for computing this criterion is very low as the integration is performed
using the reference density and with the same quadrature rule as the one used in the
computation of the K–L divergence. Therefore, an adaptive strategy regarding the order
of the map can be used to derive an automatic algorithm that guarantees the quality of
the approximationM�νρ .
In the case of sequential inference, the Transport Map method exploits the Markov

structure of the posterior density (9). Indeed, instead of being fully computed, the map
between the reference density ρ and the posterior density at time ti is obtained by com-
position of low-order maps (see Fig. 8):

(M1 ◦ . . . ◦ Mi)� ρ(p) = (Mi)� ρ(p) ≈ π (p|dobs1 , . . . ,dobsi ) (18)

Therefore, at each assimilation step ti, only the last map component Mi is computed
between ρ and the density π∗

i defined as:

π∗
i (p) = πti (dobsi |Mi−1(p)) · ρ(p) (19)

which leads to a process with almost constant CPU effort.

Real-time control

In addition to the mean, maximum a posteriori (MAP), or other estimates on model
parameters, another major post-processing in the DDDAS feedback loop is the prediction
of some quantities of interest from the model, such as the temperature T3 at remote point
x3 in the present context (see Fig. 2). Once parameters p (σ and Pe here) are inferred in
a probabilistic way at each assimilation time point ti (1 ≤ i ≤ Nt ), it is indeed valuable
to propagate uncertainties a posteriori in order to know their impact on the output of
interest T3 during the process, and consequently to assess the welding quality.
As the PGD model gives an explicit prediction of the temperature field over the whole
space-time-parametric domain, the output T3 can be easily computed for all values of
the parameter samples and at each physical time point τj , j ∈ {1, . . . , Nτ }. For a given
physical time point τj , the pdf π (T3|τj |p, ti) of the value of the temperature T3 knowing
uncertainties on the parameter set p from data assimilation up to time point ti can thus be
computed in real-time and used to determine if the plates are correctly welded and with
which confidence. In practice, this computation may be performed for all physical time
points τj ≥ ti, and the density π (T3|τj |p, ti) is characterized by a (Gaussian) quadrature
rule using the Transport Map method. With this knowledge, a stochastic computation
of the predicted temperature evolution can be obtained, and the control of the welding
process from the numerical model can be performed.
Wedetail below theprocedure todynamically determine the value of the control variable

u (magnitude of the heat source) in the case where the welding objective is to satisfy
a sufficient welding depth. The quantity of interest is then the maximal value of the
temperature T3 obtained at final time τ ∗, which is an indicator of the welding quality.
When T3|τ∗ ≥ 1, the welding depth is supposed to be sufficient. Other welding objectives
will be considered in “Results and discussion” section, associated with similar strategies
for command synthesis.
Due to the stochastic framework which is employed, the quantity of interest is actually a
random variable with pdf π (T3|τ∗ |p, ti) evolving at each data assimilation time ti.
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The proposed quantity q to monitor is:

q = mean(T3|τ∗ ) − 3 · std(T3|τ∗ ) = Q(T3|τ∗ ) (20)

where Q is an operator defined in the stochastic space. This way, setting the objective
qobj = 1 ensures that the temperature T3|τ∗ is larger than the melting temperature with a
confidence of 99%, and using the minimal energy (no overheating).
Using the PGD solution computed in “Reduced order modeling using PGD” section for
a unit magnitude of the heat source (u = 1) and zero initial conditions, the predicted
(stochastic) maximal value T3 for a given constant magnitude u and for fixed pdfs of p
reads:

T3|τ∗ ≈ u · Tm(x3, τ ∗,p) = u ·
m∑

k=1
	k (x3)λk (τ ∗)

d∏
i=1

αi
k (pi) (21)

so that q = u · Q (Tm(x3, τ ∗,p)) can be obtained in a straightforward manner. This way,
setting the source magnitude u to u0 = qobj/Q (Tm(x3, τ ∗,p)) would enable to reach the
welding objective.
Nevertheless, in practice the pdfs on parameters p are updated at each assimilation time

point ti, based on additional experimental information, so that the value of u needs to be
tuned with time accordingly. In order to do so, the control variable u(t) is made piecewise
constant in time, under the form:

u(t) = u0 · H (t) +
Nt∑
i=1

δui · H (t − ti) (22)

where H is the Heaviside function, u0 is the initial command on the source magnitude
(defined from the prior pdfs on p), and δui is the correction to the current command at
each assimilation time ti. Using the linearity of the problem with respect to the loading, a
PGD solution associatedwith the command ismade of a series of PGD solutions translated
in time; it reads:

u0 · Tm(x, t,p) +
Nt∑
n=1

δui · Tm(x, t − ti,p) (23)

Therefore, after each assimilation time point ti, the new prediction of the quantity of
interest T3|τ∗ can be easily obtained from PGD:

T3|τ∗ ≈ u0 · Tm(x3, τ ∗,p) +
i∑

n=1
δun · Tm(x3, τ ∗ − tn,p)

= Tpred,[0,i−1]
3|τ∗ (p) + δui · Tm(x3, τ ∗ − ti,p)

(24)

where Tpred,[0,i−1]
3|τ∗ (p) = u0 ·Tm(x3, τ ∗,p)+∑i−1

n=1 δun ·Tm(x3, τ ∗ − tn,p) is the prediction
onT3|τ∗ considering the history of the control variable u(t) until time ti. Consequently, the
correction δui is defined such thatQ(T3|τ∗ ) = qobj, using (24) and considering the current
pdfs of the parameter set p (i.e. those obtained after the last Bayesian data assimilation at
time ti).
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Fig. 9 Measurements simulated with the numerical model, when the control is not activated - Case 1

Results and discussion
We now implement the DDDAS procedure proposed in “Methods” section on the model
problem defined in “Introduction” section. We investigate three test cases involving dif-
ferent welding scenarios, in order to illustrate the flexibility of the approach and show
its performance. For all scenarios, two temperature data T obs

1 and T obs
2 are assimilated

at each assimilation time point ti in order to refine the knowledge on parameters σ and
Pe, and further predict the value of the quantity of interest for control purpose. Without
any limitation, we assume that assimilation time points ti, i ∈ {1, . . . , Nt}, coincide with
discretization time points τj .

Case 1: control of the welding depth with constant physical process parameters

In this first test case, the control objective is the one mentioned in “Real-time control”
section, that is Q(T3|τ∗ ) = 1, with Q the operator defined in (20) and τ ∗ = 45. This
ensures that the temperature T3 at final time τ ∗ is larger than the melting temperature
with a confidence of 99%, while using the minimal source energy.
We use synthetic data, measurements being simulated using the PGD model with refer-
ence parameter values (σref = 0.4, Peref = −60) that are supposed to be constant in time
in this section. An independent random normal noise is added with zero mean and stan-
dard deviations σmeas

1 = 0.01925 and σmeas
2 = 0.01245. Figure 9 shows the model outputs

T1 and T2 at each time step as well as the perturbed outputs which provide the measure-
ments used for the considered example, in the case where the control on the system is not
activated (i.e. u = 1). When this control is implemented (see “On-the-fly control of the
welding process” section), synthetic data are generated by taking into account the applied
control law.
The goal of the test case is to perform a detailed analysis of the proposed DDDAS

approach, in terms of dynamicalmodel updating, uncertainty propagation on the quantity
of interest, and on-the-fly command synthesis.

Dynamical updating ofmodel parameters

The prior density on the parameters (σ , Pe) is chosen as the product of two independent
Gaussian densities with means (μσ = 0.4,μPe = −60) and variances (σ 2

σ = 0.003, σ 2
Pe =

7). The Transport Map strategy detailed in “Real-time data assimilation with Bayesian
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Table 1 Computation costs of the transport maps depending on the derivatives order
information given to theminimization algorithm

Derivatives order information 0 1 2

Number of iterations for step 1 107 33 10

Computation time for step 1 33.85 s 6.18 s 4.60 s

Average number of iterations for steps {2, . . . , 45} 4.2 4.16 4.13

Average computation time for steps {2, . . . , 45} 1.24 s 0.92 s 0.90 s

inference and Transport Map sampling” section and coupled with PGD is then applied
for sequential data assimilation, assuming for the moment a constant magnitude u = 1 of
the heat source. The solution of the heat equation (1) is used in its PGD form and deriva-
tives of the approximate solution Tm with respect to the parameters to be inferred are
computed in order to derive the transport maps (i.e. successive mapsM1, . . . ,MNt ) effec-
tively. In Table 1 we represent the computation time required to compute the transport
maps at each assimilation step. We compare computation times when different infor-
mation on derivative orders is provided to the minimization algorithm. With order 0,
the minimization problem (15) is solved using a BFGS algorithm where the gradient is
computed numerically. With order 1, the minimization is also performed using a BFGS
algorithm but with the gradient given explicitly with respect to the PGD modes deriva-
tives. With order 2, a conjugate gradient algorithm is used with an explicit formulation of
both gradient and Hessian. The stopping criterion is a tolerance of 10−3 on the variance
diagnostic (17), and the complexity of the maps (order of the Hermite polynomials) is
increased until this tolerance is fulfilled.
It appears that the first assimilation step is the most expensive as the complexity of the
transformation between the reference and the first posterior density is large (a 4th order
map is required to fulfill the variance diagnostic criterion). The other transformations
computed at other assimilation time steps are much less expensive (time less than 1 s) as
they are built between intermediate posteriors which slightly differ at each step and can
thus be easily represented by a linear (i.e. first order) transformation. The speed-up for the
first iteration is about 5.5 between zeroth-order information and first-order information.
Between the first-order information and the second-order information, the speed-up is
about 1.34. For the other time steps, the speed-up is very small as the computedmap is very
simple.Weobserve that using gradient andHessian information to solve theminimization
problem related to the computation of the transportmaps leads to low computation times.

In Fig. 10, information on the computation cost over the time steps and using both
gradient and Hessian information (order 2 information) is provided: Fig. 10a shows the
computation time to build each mapMi, i ∈ {1, . . . , Nt}, while the cost in terms of model
evaluations to compute each map is displayed in Fig. 10b. A level 10 Gauss–Hermite
quadrature is used. From the second step to the final step,we observe that the computation
time slowly increases (Fig. 10a) while the evaluation cost slowly decreases (Fig. 10b). This
is due to the fact that the evaluation of the composition of maps grows with the number
of steps. One way to circumvent this issue would consist in performing regression on the
map composition.
Figures 11 and 12 represent the marginals at each time step and for both parameters σ

and Pe, respectively. The color map informs on the probability density function values.
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(b) Number of iterations of the minimiza-
tion algorithm for each time step

Fig. 10 Cost of the transport maps computations using Hessian information for each assimilation activated -
case 1

Fig. 11 Marginals on σ computed with 20,000 samples and kernel density estimation for each assimilation
time step - Case 1

During the iterations over the time steps, we observe that marginals become thinner
with larger maximal pdf values giving more confidence on the parameters estimation.We
also observe that the parameter σ is less sensitive than the parameter Pe regarding the
inference process.
After 45 assimilation time steps, the algorithmgives amaximumestimator [0.394,−60.193]
and amean estimator [0.392,−59.949]. These values are very close to the reference values
[0.40,−60] used to simulate the measurements.

Uncertainty propagation on the quantity of interest

Still assuming a constant magnitude u = 1 of the heat source, uncertainty propagation is
performed in real-time in order to predict the evolution of the temperature T3 (in terms
of pdf) in the region of interest. Knowing the uncertainties on the parameters, the goal is
to predict at each assimilation time point the evolution of the temperature T3 during the
next physical time steps. This is easily done owing to the PGD model, as the temperature
field is then globally and explicitly known over the time domain and with respect to the
values of σ and Pe. The computation is performed after each assimilation time point ti
and for all the physical time points τj ≥ ti.
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Fig. 12 Marginals on Pe computed with 20,000 samples and kernel density estimation for each assimilation
time step - Case 1

Fig. 13 Prediction of the output T3 for all time steps after the considered assimilation step - Case 1

Figure 13a shows the prediction result with uncertainty propagation after the first assim-
ilation time point t1 for all the physical steps τj , j > 1. To that end, samples are drawn
according to the first posterior π (σ , Pe|T obs,1

1 , T obs,1
2 ) = πt1 (T

obs,1
1 , T obs,1

2 |σ , Pe).π (σ , Pe).
The slice [τ0, τ1] represents the guess on the temperature T3 from the prior uncertainty
knowledge on the parameters (σ , Pe), before the first assimilation step t1. For τj > τ1 the
graph represents the prediction of the outputT3 considering the current knowledge on the
parameters uncertainty (i.e. with the assimilation of the first set of measurements T obs,1

1
and T obs,1

2 alone). The discontinuous line represents the evolution of the temperature T3
with the true value of parameters (σ = 0.4, Pe = −60).
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Fig. 14 Prediction of temperature T3 at physical time step τ ∗ = 45 after each assimilation time step ti , i ∈
{1, . . . , 45} - Case 1

Other graphs (Fig. 13b–d) show the refinement of the prediction with the improvement
on the parameters uncertainty knowledge. The current measurement assimilation step is
indicated by the vertical cursor. On the right of the cursor τ = ti, the graphs represent the
prediction of the temperature T3 from the model after the assimilation of the measure-
ments T obs,1:i

1 and T obs,1:i
2 . On the left of the cursor, each slice [tj−1, tj] (j ≤ i) represents

the prediction made at the assimilation time tj (the predictions of the temperature T3 for
physical time steps anterior to the assimilation time step ti are not updated).
Figure 14 shows the convergence of the prediction on the quantity of interest T3|τ∗ at

the steady state regime (τ ∗ = 45) with respect to the assimilation steps. We observe that,
as foreseen, more confidence is given to this output along the real-time data assimilation
process.

On-the-fly control of the welding process

The previously described assimilation procedure, performed in situ and in real-time, can
be used in the context of welding control. If the stochastic prediction on the quantity
of interest T3|τ∗ is not satisfying with regards to the criterion Q(T3|τ∗ ) = 1, a change in
the command u(t) can be implemented as described in “Real-time control” section. This
implementation is performed here.
In Fig. 15, we show the time evolution of the pdf associated with the prediction on T3|t ,
with or without control. In the case without control, the sharp time evolution is due to
changes in the pdfs of σ and Pe along the data assimilation steps. We observe that the
quantityQ(T3|τ∗ ) is much larger than 1, indicating overheating andwasted energy. On the
contrary, implementing the control by varying themagnitude u of the heat source enables
to reach the criterionQ(T3|τ∗ ) = 1 perfectly, and it also speeds up the convergence of the
pdf on T3|t to the target.
In Fig. 16, we indicate the evolution of the command variable along the welding process
(in terms of corrections δui at each assimilation time point ti). We again observe that
the feedback loop is effective and quickly (i.e. much before the final time τ ∗) leads to an
asymptotic regime in which the command remains almost constant (i.e. δui ≈ 0).We also
show in Fig. 16 the map orders which are used along the data assimilation process when
the control is performed. This indicates that an order 1 map is still usually sufficient, but
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Fig. 15 Evolution in time of T3|t without control (left) and with control (right) - Case 1
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Fig. 16 Evolution of the command variable in terms of incremental corrections (left), and map order
required at each assimilation time step in the case of system control (right) - Case 1

that a fewmoremaps with higher order are required compared to the case with no control
(where only the first map was order 4). Eventually, we display in Fig. 17 the evolution in
time of the overall CPUcost required to implement the feedback loop,which includes both
data assimilation and command synthesis steps. As foreseen, this cost is higher during the
first assimilation times when the pdfs on parameters σ and Pe significantly evolve (i.e.
when much is learnt from measurement data). Once the asymptotic regime is reached
in the model updating procedure, the CPU cost is low (< 1 s) which is compatible with
real-time contraints for the considered welding application.

Case 2: control of the welding depth with evolving physical process parameters

This second test case has many similarities with the previous one, the control objective
still being Q(T3|τ∗ ) = 1. Nevertheless, we now take τ ∗ = 100 and we assume that the
welding process experiences an unexpected change in the Peclet number value during
service (e.g. due to change in the source velocity ormaterial thermal properties), at t = 40.
Consequently, the reference parameters valueswhich are nowused to get synthetic (noisy)
data are:

σref = 0.4; Peref =
⎧⎨
⎩−60 for t < 40

−55 for t ≥ 40
(25)
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Fig. 17 Computation time including the computation of the transport maps and the command synthesis -
Case 1

Fig. 18 Marginals on σ (left) and Pe (right) at each assimilation time time step - Case 2

Starting from the same prior distribution of parameters as in the test case 1, sequen-
tial data assimilation using Transport Map sampling and PGD is again performed. The
minimization problem associated with the computation of the maps is solved with order
1 information on the derivatives, that is a BFGS algorithm with explicit computation of
the gradient from the PGD representation. The complexity of the maps (that is the degree
of employed Hermite polynomials) is increased until reaching a tolerance of 10−3 on the
variance diagnostic.We represent in Fig. 18 the evolution in time of themarginals on both
parameters σ and Pe. Again, we observe that they become thinner with larger maximal
pdf values when the number of data assimilation times increases. We also observe that
after the change of the reference value for Pe, the data assimilation algorithm is able to
detect this change and infers a mean value that slowly tends to the new reference value
(even though right after t = 40, the reference parameter value Peref = −55 appears in
the tail of the pdf). Meanwhile, during this transient regime, it seems that no additional
knowledge is brought for the inference of σ as the associatedmarginals are stagnating.We
also show in Fig. 19 the map orders which are used along the data assimilation process.
This particularly indicates that an order 1 map remains sufficient to follow the sudden
change in the reference value for Pe.
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Fig. 19 Map order required at each assimilation time step - Case 2

Fig. 20 Evolution in time of T3|t when the control is implemented - Case 2

From the dynamical updating ofmodel parameters andwith respect to the objective, the
control of the process with on-the-fly command synthesis is implemented. We show in
Fig. 20 the time evolution of the pdf of T3|t in the case of a controlled welding process.We
observe that the control objective is reached even though pdfs of model parameters have
not converged yet around the reference parameter values. This illustrates the interest of
the control in a stochastic framework, in which uncertainty on the inferred parameters is
taken into account in the synthesis of the command in order to make safe decision. We
also plot in Fig. 21 the evolution of the command variable u(t) along the process as well
as its incremental corrections δui at each time point ti; we clearly observe the change in
the command when the physical value of the Peclet number drops at t = 40.

Case 3: control of the welding temperature evolution with prescribed time path

In this last test case, the control objective is to make the temperature T3|t follow a prede-
fined time path, which comes down to imposing thewelding history along the process.We
set the final time τ ∗ = 100 and we assume that reference parameter values are σref = 0.4
andPeref = −60 (constant in time). Syntheticmeasurement data are simulated from these
values, with additive measurement noise.
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Fig. 21 Evolution of the command variable (left) and its incremental corrections (right) along the controlled
welding process - Case 2

Fig. 22 Target (dashed red line) and free system (solid black line) evolution curves for T3|t - Case 3

The prescribed evolution curve for T3|t is shown in Fig. 22 (dashed red line). It is a ramp
increase up to t = 20, then a plateau evolution. In our stochastic framework, the command
law is designed so that the predicted mean value of T3|t follows this target evolution. In
practice, at each assimilation timepoint ti, and from the inferredpdfs onmodel parameters
at this time, a command correction δui is computed so that the prediction onmean(T3|ti+1 )
coincides with the target value at the next assimilation time point ti+1. The evolution of
T3|t predicted from the model with reference parameter values, and without any control,
is also shown in Fig. 22 (solid black line).
Starting from the same prior distribution of parameters as in the previous test cases,

sequential data assimilation using Transport Map sampling and PGD is performed. The
minimization problem associated with the computation of themaps is solved with order 1
information on the derivatives, and the complexity of the maps is increased until reaching
a tolerance of 10−3 on the variance diagnostic.We represent in Fig. 23 the evolution in time
of the marginals on both parameters σ and Pe. As expected, we observe that they become
thinner with larger maximal pdf values tending to reference parameter values along the
data assimilation process. The map orders which are used along this process are shown in
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Fig. 23 Marginals on σ (left) and Pe (right) at each assimilation time step - Case 3

Fig. 24 Map order required at each assimilation time step - Case 3

Fig. 24; they again indicate that an order 1 is sufficient, except for first assimilation steps
where the complexity of the transformation between the reference density and the first
posterior densities is higher.
From the dynamical updating of model parameters and with respect to the objective,

the control of the process with on-the-fly command synthesis is implemented. We show
in Fig. 25 the resulting time evolution of the pdf of T3|t . We observe that mean(T3|t )
quite perfectly matches the target evolution. We also plot in Fig. 26 the evolution of the
command variable u(t) along the process as well as its incremental corrections δui at
each time point ti. We observe that during the transient phase (ramp evolution of the
target), fast modifications in the command are required while command increments tend
to zero once the steady-state target regime is reached. Anyhow, this test case shows that
the proposed DDDAS strategy is capable of generating complex and effective command
laws.

Conclusions
In this work we presented a procedure to build a numerical feedback loop for the control
of a fusion welding process frommodeling and simulation, while taking uncertainties into
account. In order to perform fast computations and permit real-time exchanges between
the physical system and its virtual twin, PGD model reduction and Transport Map sam-
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Fig. 25 Evolution in time of T3|t when the control is implemented- Case 3

Fig. 26 Evolution of the command variable (left) and its incremental corrections (right) along the controlled
welding process- Case 3

pling were used in several numerical tasks along the feedback loop. In particular, the
explicit dependency on the model parameters inside the PGD model as well as the suit-
able sampling and integration framework offered by transport maps enabled to effectively
perform data assimilation, uncertainty quantification, and predictive control. The imple-
mentation of the feedback loop for various control scenarios illustrated the interest and
performance of the proposed approach. This approach thus appears to be a relevant tool
for real-time feedback control in the DDDAS framework. Future works should focus on
the extension of the approach to more complex (e.g. nonlinear) models, associated with
modeling errors that may be a priori considered in the Bayesian framework but also a pos-
teriori corrected from data-based learning and enrichment. Dealing with a larger number
of model parameters and control variables in the DDDAS context is also a research topic
of interest that will be investigated in forthcoming works.
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