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Abstract

An enriched homogenized model is developed based on a proposed homogenization
strategy, to describe the wave propagation behaviour through periodic layered
composites. The intrinsic parameters characterising the micro-inertia effect and
non-local interactions are defined transparently in terms of the constituent materials’
properties and volume fractions. The framework starts with the introduction of an
additional kinematic field to characterise the displacement of the stiff layer, before
setting up macro kinematic fields to account for the average deformation of the
constituent materials within a segmented unit cell. Relationships between these macro
average strain fields are determined based on suitable micro-mechanical arguments.
The Hill–Mandel condition is next applied to translate the energy statements from
micro to macro. A system of coupled governing equations of motion is finally extracted
naturally at the macro level via Hamilton’s Principle. Through a series of benchmark
examples, it is shown that the proposed model exhibits excellent predictive capabilities
over a broad range of loading frequencies.

Keywords: Homogenization, Wave propagation, Viscoelasticity, Dispersion, Local
resonance

Introduction
Locally resonant metamaterials represent an emerging class of engineered morphologies
which can exhibit unique wave attenuation and filtering characteristics. Periodic layered
composites made up of at least three constituent materials belong to a subset of such
metamaterials, as they can involve band gaps as well due to inner resonance arising from
their specific microstructural arrangements [1–3]. When a wave propagates through a
periodic heterogeneous media, a series of signal reflections and transmissions develop at
the material interfaces. Relative to the minimum characteristic length of the constituent
materials: (i) local resonance develops when the loading wavelength is much larger; (ii)
Bragg scattering ensues when the loading wavelength is of the same order.
There exists a wide range of metamaterial designs in literature, e.g. a simple unit cell

where a stiff inclusion coated by a compliant layer is embedded within a matrix [4–
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8], to complicated forms involving the bending vibration modes of cylindrical rods [9],
thin flexible plates [10] and Timoshenko beams [11]. The focus of this contribution is
on the one-dimensional viscoelastic plane wave propagation through the former, ide-
alised as periodic layered composites representing the stiff inclusion, compliant layer and
matrix material, for both sound and blast wave attenuation. The objective is to adequately
describe the wave propagation process in a continuum formulation, without the explicit
representation of the underlying constituent materials.
Classical continuum theories are non-dispersive, and are therefore ill-suited for such

analyses. Full-scale numerical characterisation [8,12–14] and/or laboratory experiments
[15–18], while predictive, are often computationally/logistically expensive. Generalized
continuum theories are thus developed to facilitate rapid analyses. In literature, the devel-
opment of such theories typically follow either a bottom-up or a top-down approach.
A top-down strategy begins with a priori postulations of energy functions at the macro

scale that incorporate additional higher-order contribution(s), with the associated length
scale parameter(s) characterising the underlying micro-inertia effect and non-local inter-
actions, otherwise not captured in a classical continuum. Such energy functions may not
necessarily be attributed to the primary variable alone, as in the case of relaxed micro-
morphic theory [19,20]. The relaxed model, which consists of an additional kinematic
variable to track microstructural deformation, thus enriching the classical continuum,
was employed to predict the frequency band-gaps as wave propagates through meta-
materials [21]. Calibration of the parameters was later carried out based on numerical
simulations with test data [22].
At the other end of the dichotomy, a bottom-up framework starts at the micro scale

based on an identified unit cell, followed by a continualization or homogenization strategy
towards a generalized continuum. Following the work on effective constitutive relations
with respect to elastodynamics in heterogeneous media [23], the frequency-dependent
effective mass was recast using a mass-in-mass lattice unit cell, into a multi-displacement
model that tracks the movement of both apparent and hidden masses, hence averaging a
negative mass near resonance [24]. A similar concept was extended to a two-dimensional
setting [25]. The multi-displacement model was subsequently improved via non-local
gradient effects, where the importance of ensuring numerical stability through carefully
calibrated intrinsic parameters was emphasized [26]. Moreover, choices have to be made
on the extent of the weighted interactions between the particles [27,28].
Another popular bottom-up strategy is the asymptotic scheme, where both spatial and

temporal scales are expanded into a series of fast and slow varying components, e.g. for
bilaminate composites [29–31]. With regards to the modelling of inner resonance, the
validity of the asymptotic homogenization scheme was demonstrated under the specific
condition that the stiffness contrast between the matrix and compliant layer was of the
order of the squared ratio between the loading wavelength and the size of the unit cell
[3]. A similar strategy was employed to analyse viscoelastic wave propagation through a
tri-material composite with low stiffness contrasts [2]. Since it was stated therewith that
the accuracy of their asymptotic-based model reduces with increasing stiffness contrast,
the approach is not yet directly applicable for locally resonant metamaterials. In order to
achieve numerical stability [32], the model also adopted an approximating assumption
during the derivation of boundary conditions.
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In this contribution, an enriched model is developed, based on a proposed homoge-
nization strategy that is fundamentally different from the approaches described above. A
bottom-up strategy is adopted in our work, where an equivalence of energy is imposed
across the scales. In contrast to an asymptotic homogenization scheme, our approach
is directly applicable for locally resonant metamaterials. The approach presented here
extends that for bilaminate composites [33], with the incorporation of an additional kine-
matic variable to provide a more refined resolution, for capturing the rapidly fluctuating
responses within the unit cell. The practical applicability of the proposed model is exam-
ined by considering two locally resonant metamaterials from literature, applications of
which pertain to sound wave transmission and blast wave propagation respectively. To
broaden the scope of applicability, various degrees of viscoelasticity within compliant
layer are also investigated. This is in line with recent reports on how viscoelasticity within
the compliant layer can lead to overall enhanced wave attenuation properties [2,34,35].
Homogenized dispersion relations recovered using the proposedmodel based on infinitely
long relaxation time, i.e. un-relaxed elastic configurations, are first benchmarked against
analytical solutions. This is then followed by comparing homogenized responses from
strongly viscoelastic configurations against reference solutions from Direct Numerical
Simulations (DNS). It is shown that the proposed model exhibits excellent predictive
capabilities over a broad range of loading frequencies.
This paper is organised as follows. An overview of the bottom-up strategy underlying the

proposed enriched homogenized model is first provided. A macro kinematic variable is
introduced to characterise the displacement of the stiff layer, together with suitablemacro
kinematic variables to account for the average deformation of different segments within
a unit cell. The rapid fluctuating micro kinematic fields are then approximated up to the
linear expansionof the correspondingmacro quantities. The kinetic andpotential energies
of the unit cell are expressed in terms of the macro kinematic fields, before translating
onto the macro scale via the Hill–Mandel condition. A system of homogenized governing
equationsofmotions is next extracted throughHamilton’s Principle. Finally, thepredictive
capability of the proposed model is demonstrated with a series of benchmark examples.

Homogenization strategy
We first define a unit cell that is representative of the microstructural arrangement, with
the objective of propagating the rapidly fluctuating responses within a unit cell onto the
macro scale.To this end,wedistinguishbetween twomechanismsunderlying the transient
behaviour:

• Micro-inertia effect
When a macro point x is subjected to velocity v(x) in a standard homogenization
framework, the transient response of the underlying unit cell is such that its aver-
age velocity corresponds to v(x). However, such an approach is unable to distinguish
between the various possible deformation states, e.g. in Fig. 1i where the entire unit
cell moves with the same velocity, or in Fig. 1ii where the stiff layer, compliant layers
and matrix move at different velocities, though with an average value corresponding
to v(x). The extent of non-uniformity in velocity within the unit cell translates onto
the macro scale as a micro-inertia effect.
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Fig. 1 Possible transient responses within a unit cell when a macro point x is subjected to velocity v(x): i the
entire unit cell moves with the same velocity; ii the stiff layer, compliant layers and matrix material move at
different velocities

D

+ ∆

+ ∆

(i)

(ii)

(iii)

Fig. 2 i Two length scale parameters (λ, D) characterising the problem. iiWhen O(λ) � O(D), a unit cell at
each macro point x deforms locally to satisfy the imposed macro strain. iiiWhen O(λ) → O(D), the
deformation within each unit cell is furthermore influenced by the short range forces from neighbouring cells

• Non-local interactions
Consider the two length scale parameters, i.e. the loading wavelength λ and the size
of a unit cellD, as depicted in Fig. 2i. WhenO(λ) � O(D), the unit cell at each macro
point x deforms locally to satisfy the imposed macro strain ε, as shown in Fig. 2ii.
For such cases with a clear separation of length scales between macro and micro, the
standard homogenization approach can describe the micro-deformation adequately.
However, when O(λ) → O(D), the interactions between neighbouring unit cells
becomemore dominant.When subjected to an identicalmacroscopic strain as above-
mentioned, the deformation within each unit cell is now furthermore influenced by
the short range forces emanating from the neighbouring cells. The resulting response
in Fig. 2iii can thus differ significantly from the reference case in Fig. 2ii. In a quasi-
static setting, these non-local interactions manifest themselves at the macro level as
size effect, which cannot be captured by a standard homogenization framework [36].

In a generic loading, themacro behaviour results from the competition and interactions
between the twomechanisms. To this end, we adopt a bottom-up strategy as summarized
in Fig. 3. The general approach here broadly builds upon that for bilaminate compos-
ites [33], whereby the underlying micro-inertia effect and non-local interactions between
constituent materials are captured via a linear variation of the average strain within each
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Fig. 3 Bottom-up homogenization strategy

constituent material, followed by suitable micro-mechanical arguments towards homog-
enization. The micro-mechanisms are therefore allowed to propagate in a thermodynam-
ically consistent manner and manifest themselves as intrinsic parameters naturally at the
macro scale. A key departure (vis-à-vis that for bilaminate composites [33]) is the intro-
duction of an additional kinematic variable to characterise themovement of the stiff layer.
Specifically, the strategy in Fig. 3 encompasses the following:

a. The average deformation within a unit cell is characterised as per standard homog-
enization procedure. To distinguish between the different deformation modes for a
givenmacroscopic loading, we introduce an additional kinematic variable to account
for the displacement of the stiff layer. This is complemented with the characterisa-
tion of the average strains within the different segments of the unit cell. Thesemacro
kinematic fields thus provide critical information on the underlying deformation,
which is not accounted for in a standard homogenization framework.

b. The kinetic and potential energies of each unit cell are written in terms of the macro
kinematic variables and their gradients.

c. The Hill–Mandel condition, which states the equivalence of energy at the two scales,
is adopted to translate the energy functions from micro to macro.

d. A system of homogenized governing equations of motion is next extracted naturally
via Hamilton’s Principle, as per standard procedure.

Characterisation of unit cell and its underlying deformation
A typical periodic layered composite bar is illustrated in Fig. 4i. The corresponding elastic
modulus and density for Material i are Ei and ρi respectively (i = 1, 2, 3). Note that
Material 1, 2 and 3 is attributed to the matrix, the compliant layer and the stiff layer
respectively. A two-scale coordinate system is adopted, whereby x and y denote themacro
and micro scales. To distinguish between quantities at the two scales, those that exist at
the micro scale are denoted with â symbol. We first define a unit cell of size D centred
about a macro point x, with a symmetrical configuration about the origin of the micro
coordinate y. The out-of-plane cross-sectional area is assumed as unity throughout the
domain.
The unit cell is idealised as a series of springs over eight segments, as depicted in Fig. 4ii.

To adequately capture the deformation of each constituent material within the unit cell,
in addition to a (macro) kinematic variable ˜U to account for the displacement of the stiff
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Fig. 4 i Schematics of a periodic layered composite bar with a unit cell of size D. ii The unit cell is idealised as
a series of springs over eight segments. The mass of each constituent material is evenly distributed across the
corresponding segment within the unit cell

layer, we introduce micro kinematic fields ε̂(j) and ̂U(j), to respectively characterise the
strain and displacement underlying Segment j (j = ±1, ±21, ±23, ±3). Note that the
subscript 21 (or 23) refers to the segment containing Material 2 adjoining Material 1 (or
3), while − (or +) distinguishes between the two segments containing same material on
the left (or right) of the unit cell. The volume fractions of Material 1, 2 and 3 are denoted
by f , g and h respectively, such that f + g + h = 1. The mass of each constituent material
is evenly distributed across each segment within the unit cell. While many kinematic
variables are introduced at this stage, they will be later condensed out through suitable
assumptions.

Average deformation of unit cell and its constituents

In the following, the kinematic fields are written with their arguments—(x, t) and (x, y, t)
for macro and micro field respectively—for better clarity of presentation. Referring to
Step (a) in Fig. 3, we characterise the deformation within different segments of the unit
cell, in order to adequately capture the rapidly fluctuating response. As per standard
homogenization approach, themacro strain that describes the average deformation of the
unit cell is given by

ε(x, t) =
̂U
(

x, B(+), t
) − ̂U

(

x, B(−), t
)

D
, (1)
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where ̂U (x, y, t) denotes the displacement at a particular location within the unit cell at
time t, while B(±) refer to the boundaries of the unit cell.
The corresponding average strains between B(±) and themidpoints ofMaterial 2 within

the unit cell I (±)
2m , as well as that between I (±)

2m to the centre of the unit cell, can be written
in terms of the micro displacements

ε[B(±)↔I (±)
2m ](x, t) = ±

̂U
(

x, B(±), t
) − ̂U

(

x, I (±)
2m , t

)

(0.25g + 0.5f )D
, (2a)

ε[I (±)
2m ↔0](x, t) = ±

̂U
(

x, I (±)
2m , t

) − ̂U
(

x, 0, t
)

(0.25g + 0.5h)D
. (2b)

Denoting the average strains within the eight segments of the unit cell as ε(±1), ε(±21),
ε(±23) and ε(±3) respectively, the following kinematic relationship can be obtained, based
on weighted sum of the average strains in the constituent materials

ε[B(±)↔I (±)
2m ](x, t) = 0.25gε(±21)(x, t) + 0.5f ε(±1)(x, t)

0.25g + 0.5f
, (3a)

ε[I (±)
2m ↔0](x, t) = 0.25gε(±23)(x, t) + 0.5hε(±3)(x, t)

0.25g + 0.5h
. (3b)

Combining (2) and (3) results in

0.25gε(±21)(x, t) + 0.5f ε(±1)(x, t) = ±
̂U
(

x, B(±), t
) − ̂U

(

x, I (±)
2m , t

)

D
, (4a)

0.25gε(±23)(x, t) + 0.5hε(±3)(x, t) = ±
̂U
(

x, I (±)
2m , t

) − ̂U
(

x, 0, t
)

D
. (4b)

At this juncture, there remains three micro displacement quantities on the right-hand
side of (4). These quantities are approximated with the primary macro variables via (5a)
and (5b), and with the newly introduced kinematic variable ˜U that characterises the rigid
body motion of the stiff layer via (5c), as

̂U
(

x, B(±), t
) ≈ U (x, t) ± 0.5Dε(x, t), (5a)

̂U
(

x, I (±)
2m , t

) ≈ U (x, t) ±
(

0.25gE1E3 + 0.5hE1E2
fE2E3 + gE1E3 + hE1E2

)

Dε(x, t), (5b)

̂U
(

x, 0, t
) ≈ ˜U (x, t). (5c)

Substituting (5) into (4), we obtain

0.25gε(±21)(x, t) + 0.5f ε(±1)(x, t) =
(

0.25gE1E3 + 0.5fE2E3
fE2E3 + gE1E3 + hE1E2

)

ε(x, t), (6a)

0.25gε(±23)(x, t) + 0.5hε(±3)(x, t)

=
(

0.25gE1E3 + 0.5hE1E2
fE2E3 + gE1E3 + hE1E2

)

ε(x, t) ±
[

U (x, t) − ˜U (x, t)
D

]

. (6b)

Note that the kinematic relationships in (6) hold true throughout the entire deformation
process.
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Decomposition of micro kinematic fields

The transient response of the unit cell is largely governed by the underlying deformation
mode. To distinguish between the different transient modes as illustrated in Fig. 1, the
micro strainwithin each segment of the unit cell is approximatedby the linear expansionof
the corresponding (macro) average strain in (7). This is a deliberate choice, as the gradient
terms in (7) are required to capture the underlying non-local interactions illustrated in
Fig. 2.

ε̂(±1)(x, y, t) ≈ ε(±1)(x, t) + [

y ∓ (0.5 − 0.25f )D
]∇ε(±1)(x, t),

0.5(h + g)D ≤ |y| ≤ 0.5D, (7a)

ε̂(±21)(x, y, t) ≈ ε(±21)(x, t) + [

y ∓ (0.5h + 0.375g)D
]∇ε(±21)(x, t),

(0.5h + 0.25g)D ≤ |y| ≤ 0.5(h + g)D, (7b)

ε̂(±23)(x, y, t) ≈ ε(±23)(x, t) + [

y ∓ (0.5h + 0.125g)D
]∇ε(±23)(x, t),

0.5hD ≤ |y| ≤ (0.5h + 0.25g)D, (7c)

ε̂(±3)(x, y, t) ≈ ε(±3)(x, t) + [

y ∓ 0.25hD
]∇ε(±3)(x, t),

|y| ≤ 0.5hD. (7d)

The micro strain rate within each segment of the unit cell is next approximated by the
corresponding (macro) average strain rate via (8).

˙̂ε(±1)(x, y, t) ≈ ε̇(±1)(x, t), 0.5(h + g)D ≤ |y| ≤ 0.5D, (8a)
˙̂ε(±21)(x, y, t) ≈ ε̇(±21)(x, t), (0.5h + 0.25g)D ≤ |y| ≤ 0.5(h + g)D, (8b)
˙̂ε(±23)(x, y, t) ≈ ε̇(±23)(x, t), 0.5hD ≤ |y| ≤ (0.5h + 0.25g)D, (8c)
˙̂ε(±3)(x, y, t) ≈ ε̇(±3)(x, t), |y| ≤ 0.5hD. (8d)

The linearisation for the micro strain rate (in a similar manner as the associated micro
strain) is not done, because the present approach is already sufficient in accounting for
the underlying micro-inertia effect and non-local interactions between the constituent
materials. It will be demonstrated later that the current decomposition keeps the system
of governing equations within a (manageable) fourth spatial order.

Energy functions of unit cell
A set of relations between the average strains (ε(±1), ε(±21), ε(±23), ε(±3)) and both primary
and additional kinematic variables (U , ˜U ) have been determined in (6). In this section,
we seek to establish another suitable relation between these macro strain fields, such that
the kinetic and potential energies of a unit cell can be written solely in terms of macro
kinematic fields, following Step (b) in Fig. 3.

Kinetic energy of unit cell

The transient response within a unit cell encompasses a series of reflections and trans-
missions of incident waves at the material interfaces, due to the jump in mechanical
impedances. To capture this phenomenon adequately in the kinetic energy function, we
refer to the energy fluxes of the constituent materials.
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The mechanical impedance for Material i is defined as

Zi = √

Eiρi, i = 1, 2, 3. (9)

For a given compositemedium, the rate of energy transfer associated with a propagating
wave is represented by its intensity within a specific segment of the unit cell

̂J(±j)(x, y, t) =
σ̂ 2
(±j)(x, y, t)

Zi
, i = 1, 2, 3, j = ±1,±21,±23,±3 (10)

where σ̂(±j) denotes the stress within Segment j.
At the interface of the constituent materials, the ratio of reflected and transmitted

intensities is given by

̂J±1(x, I (±)
12 , t)

̂J±21(x, I (±)
12 , t)

= (Z1 − Z2)2

4Z1Z2
, (11a)

̂J±3(x, I (±)
32 , t)

̂J±23(x, I (±)
32 , t)

= (Z3 − Z2)2

4Z3Z2
. (11b)

In general, it is difficult to determine a priori the actual stress states at the various inter-
faces within a unit cell. In order to establish a basic relation that captures the underlying
transient behaviourwithout undue complexity, we approximate the stress rate at each side
of the interface (I (±)

12 , I (±)
32 ) in Fig. 4ii, with the average stress rate within the corresponding

segment,

˙̂σ(±1)(x, I
(±)
12 , t) ≈ σ̇(±1)(x, t), (12a)

˙̂σ(±21)(x, I
(±)
12 , t) ≈ σ̇(±21)(x, t), (12b)

˙̂σ(±23)(x, I
(±)
32 , t) ≈ σ̇(±23)(x, t), (12c)

˙̂σ(±3)(x, I
(±)
32 , t) ≈ σ̇(±3)(x, t). (12d)

Considering (10) to (12) yields

ε̇(±1)(x, t)
ε̇(±21)(x, t)

= E2(Z1 − Z2)
2E1Z2

, (13a)

ε̇(±3)(x, t)
ε̇(±23)(x, t)

= E2(Z3 − Z2)
2E3Z2

(13b)

where σ̇ = Eε̇ has been utilised for each segment.
The micro strain rates describing the dynamic process can thus be approximated with

the macro fields from (6), (8) and (13) as

0.5(h + g)D ≤ |y| ≤ 0.5D :

˙̂ε(±1)(x, y, t) =
[

E2E3(2fE2 + gE1)(Z1 − Z2)
2(fE2E3 + gE1E3 + hE1E2)[(fE2(Z1 − Z2) + gE1Z2)]

]

ε̇(x, t)
(14a)

(0.5h + 0.25g)D ≤ |y| ≤ 0.5(h + g)D :
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˙̂ε(±21)(x, y, t) =
[

E1E3(2fE2 + gE1)Z2
(fE2E3 + gE1E3 + hE1E2)[(fE2(Z1 − Z2) + gE1Z2)]

]

ε̇(x, t)
(14b)

0.5hD ≤ |y| ≤ (0.5h + 0.25g)D :

˙̂ε(±23)(x, y, t) =
[

E1E3Z2(gE3 + 2hE2)
(fE2E3 + gE1E3 + hE1E2)[gE3Z2 + hE2(Z3 − Z2)]

]

ε̇(x, t) ±
[

4E3Z2
D[gE3Z2 + hE2(Z3 − Z2)]

]

[

U̇ (x, t) − ˙̃U (x, t)
]

,
(14c)

|y| ≤ 0.5hD :

˙̂ε(±3)(x, y, t) =
[

E1E2(gE3 + 2hE2)(Z3 − Z2)
2(fE2E3 + gE1E3 + hE1E2)[gE3Z2 + hE2(Z3 − Z2)]

]

ε̇(x, t) ±
[

2E2(Z3 − Z2)
D[gE3Z2 + hE2(Z3 − Z2)]

]

[

U̇ (x, t) − ˙̃U (x, t)
]

.
(14d)

Utilising (14) and referring to Fig. 4ii, the velocity at different locations within the unit
cell is thus

0.5(h + g)D ≤ |y| ≤ 0.5D :

˙̂U(±1)(x, y, t) = ˙̃U (x, t) +
I (±)
32
∫

0

˙̂ε(±3)(x, y, t) dy +
I (±)
2m
∫

I (±)
32

˙̂ε(±23)(x, y, t) dy

+
I (±)
12
∫

I (±)
2m

˙̂ε(±21)(x, y, t) dy +
y

∫

I (±)
12

˙̂ε(±1)(x, y, t) dy,

(15a)

(0.5h + 0.25g)D ≤ |y| ≤ 0.5(h + g)D :

˙̂U(±21)(x, y, t) = ˙̃U (x, t) +
I (±)
32
∫

0

˙̂ε(±3)(x, y, t) dy +
I (±)
2m
∫

I (±)
32

˙̂ε(±23)(x, y, t) dy

+
y

∫

I (±)
2m

˙̂ε(±21)(x, y, t) dy,

(15b)

0.5hD ≤ |y| ≤ (0.5h + 0.25g)D :

˙̂U(±23)(x, y, t) = ˙̃U (x, t) +
I (±)
32
∫

0

˙̂ε(±3)(x, y, t) dy +
y

∫

I (±)
32

˙̂ε(±23)(x, y, t) dy, (15c)

|y| ≤ 0.5hD :

˙̂U(±3)(x, y, t) = ˙̃U (x, t) +
y

∫

0

˙̂ε(±3)(x, y, t) dy. (15d)
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The total kinetic energy of the unit cell, ̂�KE , is next obtained naturally as,

̂�KE(x, t) = 1
2

[ I (−)
12
∫

B(−)

ρ1
(

˙̂U(−1)(x, y, t)
)2
dy +

I (−)
2m
∫

I (−)
12

ρ2
(

˙̂U(−21)(x, y, t)
)2
dy

+
I (−)
32
∫

I (−)
2m

ρ2
(

˙̂U(−23)(x, y, t)
)2
dy +

0
∫

I (−)
32

ρ3
(

˙̂U(−3)(x, y, t)
)2

+
I (+)
32
∫

0

ρ3
(

˙̂U(+3)(x, y, t)
)2
dy +

I (+)
2m
∫

I (+)
32

ρ2
(

˙̂U(+23)(x, y, t)
)2
dy

+
I (+)
12
∫

I (+)
2m

ρ2
(

˙̂U(+21)(x, y, t)
)2
dy +

B(+)
∫

I (+)
12

ρ1
(

˙̂U(+1)(x, y, t)
)2
dy
]

(16)

which can be written in terms of macro kinematic fields (U̇ , ˙̃U , ε̇) by utilising (14) and
(15).

Potential energy of unit cell

The quasi-static response of a composite medium is governed by the non-local interac-
tions between the constituent materials at the micro scale, which propagates onto the
macro scale to influence the overall behaviour. Within a unit cell, the deformation is
such that the equilibrium condition, taking into account the short-range forces induced
by the neighbouring unit cells, has to be satisfied. To adequately capture the non-local
interactions, we consider the stress continuity requirement at an interface, where

E1ε̂(±1)
(

x, I (±)
21 , t

) = E2ε̂(±21)
(

x, I (±)
21 , t

)

, (17a)

E3ε̂(±3)
(

x, I (±)
23 , t

) = E2ε̂(±23)
(

x, I (±)
23 , t

)

. (17b)

For simplicity, we approximate the inter-facial strains in (17) with the average strain of
the corresponding segment,

ε̂(±1)(x, I
(±)
12 , t) ≈ ε(±1)(x, t), (18a)

ε̂(±21)(x, I
(±)
12 , t) ≈ ε(±21)(x, t), (18b)

ε̂(±23)(x, I
(±)
32 , t) ≈ ε(±23)(x, t), (18c)

ε̂(±3)(x, I
(±)
32 , t) ≈ ε(±3)(x, t). (18d)

Substituting (18) into (17), we obtain

ε(±1)(x, t)
ε(±21)(x, t)

= E2
E1

(19a)

ε(±3)(x, t)
ε(±23)(x, t)

= E2
E3

. (19b)
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The micro strain fields describing the quasi-static response can thus be approximated
with the macro fields from (6), (7) and (19) as

0.5(h + g)D ≤ |y| ≤ 0.5D :

ε̂(±1)(x, y, t) =
[

E2E3
fE2E3 + gE1E3 + hE1E2

]

ε(x, t)

+
[

E2E3
[

y ∓ (0.5 − 0.25f )D
]

fE2E3 + gE1E3 + hE1E2

]

∇ε(x, t)
(20a)

(0.5h + 0.25g)D ≤ |y| ≤ 0.5(h + g)D :

ε̂(±21)(x, y, t) =
[

E1E3
fE2E3 + gE1E3 + hE1E2

]

ε(x, t)

+
[

E1E3
[

y ∓ (0.5h + 0.375g)D
]

fE2E3 + gE1E3 + hE1E2

]

∇ε(x, t)
(20b)

0.5hD ≤ |y| ≤ (0.5h + 0.25g)D :

ε̂(±23)(x, y, t) =
[

E1E3
(fE2E3 + gE1E3 + hE1E2)

]

ε(x, t)

±
[

4E3
D(gE3 + 2hE2)

]

[

U (x, t) − ˜U (x, t)
]

+
[

E1E3
[

y ∓ (0.5h + 0.125g)D
]

(fE2E3 + gE1E3 + hE1E2)

]

∇ε(x, t)

±
[

4E3
[

y ∓ (0.5h + 0.125g)D
]

D(gE3 + 2hE2)

]

[

ε(x, t) − ε̃(x, t)
]

(20c)

|y| ≤ 0.5hD :

ε̂(±3)(x, y, t) =
[

E1E2
(fE2E3 + gE1E3 + hE1E2)

]

ε(x, t)

±
[

4E2
D(gE3 + 2hE2)

]

[

U (x, t) − ˜U (x, t)
]

+
[

E1E2
[

y ∓ 0.25hD
]

(fE2E3 + gE1E3 + hE1E2)

]

∇ε(x, t)

±
[

4E2
[

y ∓ 0.25hD
]

D(gE3 + 2hE2)

]

[

ε(x, t) − ε̃(x, t)
]

.

(20d)

where ε̃ denotes the gradient of the additional kinematic variable ˜U .
The total potential energy of the unit cell, ̂�PE , is thus

̂�PE(x, t) = 1
2

[ I (−)
12
∫

B(−)

E1
(

ε̂(−1)(x, y, t)
)2
dy +

I (−)
2m
∫

I (−)
12

E2
(

ε̂(−21)(x, y, t)
)2
dy

+
I (−)
32
∫

I (−)
2m

E2
(

ε̂(−23)(x, y, t)
)2
dy +

0
∫

I (−)
32

E3
(

ε̂(−3)(x, y, t)
)2
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+
I (+)
32
∫

0

E3
(

ε̂(+3)(x, y, t)
)2
dy +

I (+)
2m
∫

I (+)
32

E2
(

ε̂(+23)(x, y, t)
)2
dy

+
I (+)
12
∫

I (+)
2m

E2
(

ε̂(+21)(x, y, t)
)2
dy +

B(+)
∫

I (+)
12

E1
(

ε̂(+1)(x, y, t)
)2
dy
]

(21)

which can be written in terms of macro kinematic fields (U , ˜U , ε, ε̃, ∇ε) by utilising (20).

Macroscopic energy densities
We next proceed to Step (c) in Fig. 3, where energy statements are translated from micro
to macro via the Hill–Mandel condition. In the following, U and ˜U are understood to
be the macro displacements respectively at a given time t, and their argument (x, t) is
dropped. Moreover, the expressions are written in terms of the primary variables U and
˜U for better clarity of presentation. At a macro point, the kinetic and potential energy
densities, ψKE and ψPE in (22), are obtained by smearing ̂�KE and ̂�PE respectively over
the unit cell.

ψKE = ̂�KE
D

= C(1)
(

U̇
)2 + C(2)

(∇U̇
)2 + C(3)

( ˙̃U
)2 + C(4)

(

U̇ ˙̃U
)

(22a)

ψPE = ̂�PE
D

= C(5)
(∇U

)2 + C(6)
(∇2U

)2 + C(7)
(

˜U − U
)2 + C(8)

(∇U − ∇˜U
)2 (22b)

where the coefficients C(1)–C(8) are obtained from (16) and (21), with their definitions
provided in A.
Note that C(1), C(3), C(4) are non-negative for all constituent properties and volume

fractions, since Z3 > Z2. In addition, a numerical minimization done using ‘NMinimize’
in Mathematica, subjected to constraints E1 > 0, E2 > 0, E3 > 0 and ρ1 > 1, ρ2 > 1,
ρ3 > 1 (greater than air density), 0 ≤ f ≤ 1, 0 ≤ g ≤ 1 and 1 < Z1/Z2 <1,000,000,
1 < Z2/Z3 <1,000,000, showed that C(2) ≥ 0. Prima facie, the non-quadratic coupling
term associated with C(4) in (22a) may suggest a destabilizing effect in a dynamic analysis.
To such concern, recall that the terms in (22a) have manifested themselves naturally, via
a consistent propagation of microscopic kinetic energy via (16), onto the macro level.
Accordingly, the formulation is well-posed. It will also be shown later through the bench-
mark examples, that the homogenized model is dynamically stable—results which are
unlikely to be achieved with a non positive definite energy potential.

Enriched homogenizedmodel
We now arrive at the final procedure, Step (d) in Fig. 3, where a system of homogenized
governing equations of motion is extracted via Hamilton’s Principle. Consider a periodic
layered composite bar, which is much longer than a unit cell (x1 ≤ x ≤ x2), in absence
of body forces. The action functional corresponding to the macro domain over a time
interval (t1 ≤ t ≤ t2) is given by
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ϒ =
t2
∫

t1

x2
∫

x1

(ψKE − ψPE) dx dt +
t2
∫

t1

(

T − ∇Q
)

U
∣

∣

∣

∣

x2

x1
+ Q∇U

∣

∣

∣

∣

x2

x1
+ ˜T˜U

∣

∣

∣

∣

x2

x1
dt, (23)

whereT andQ represent the conventional traction and higher-order traction respectively,
whereas ˜T denotes the traction conjugate to the additional kinematic variable.
Hamilton’s Principle states that the variation of the action functional must vanish.

Substituting (22) into (23), the variation of the action functional gives the system of
homogenized governing equations of motion as

[

2C(1) C(4)
C(4) 2C(3)

][

Ü
¨̃U

]

+ 2C(7)

[

1 −1
−1 1

][

U
˜U

]

=
[

∇σ

∇σ̃

]

, (24)

where the homogenized stresses and tractions are defined as

σ = T − ∇Q, (25a)

σ̃ = ˜T, (25b)

and

T = 2C(5)∇U + 2C(2)∇Ü + 2C(8)
(∇U − ∇˜U

)

, (26a)

Q = 2C(6)∇2U, (26b)
˜T = −2C(8)

(∇U − ∇˜U
)

. (26c)

Referring to the system of governing equations of motion in (24), it is easily observed
that a micro-inertia effect associated with the acceleration of the stiff layer is captured via
¨̃U while the non-uniformity in response within a unit cell given a deformation mode, is in
turn captured via the difference between the two displacement fields (U −˜U ). Finally, the
non-local interactions between neighbouring unit cells manifest themselves as a higher-
order term in (25a). The systemof equations ofmotion in (24) thus govern the competition
and interactions between the different mechanisms. Note that the intrinsic parameters
C(1)–C(8) are defined transparently in terms of the constituent properties, without any
need for calibrations.

Numerical results and discussions
The practical applicability of the proposed enriched homogenizedmodel is demonstrated
by considering twometamaterials from literature. The first belongs to a class of locally res-
onant units, where stiff lead inclusions coated with silicon rubber are embedded within an
epoxymatrix for sound wave attenuation [4,5], while the second is ametaconcrete variant
that consist of lead inclusions similar to the first, albeit with different metal composition,
coated with natural rubber arranged in mortar mix against blast wave propagation [6–8].
In this study, a generalized Maxwell viscoelastic model is adopted to represent the

compliant layer [37,38]. It accounts for contributions from multiple relaxation strengths
and times via the Prony series as

E2(t) = E∞
2 +

n
∑

i=1
Er
2i e

− t
κi , (27)
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Table1 Summary of adopted parameters and information for the twometamaterials

Meta-mat Da Matrix Compliant layer Stiff inclusion

Eb1 ρ1
c f E02

b
E∞
2

b ρ2
c g E3b ρ3

c h

Epoxy Silicon rubber Leadd

1 21 4.35 1180
6
21

1.175 × 10−4 0.47 × 10−4 1300
5
21

40.8 11600
10
21

Mortar Natural rubber Leade

2 30 30 2500
6
30

0.01 0.004 900
2
30

16 11400
22
30

a Units inmm
b Units in GPa
c Units in kg/m3
d Typical of lead alloys
e Typical of pure lead

Table 2 Coefficients underlyingmacro energy densities (ψKE ,ψPE ) with respect to the two
metamaterials

Meta-mat C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8)

1 272.1 54.9D2 2759.6 53.6 246741 72.9D2 1.97 × 106

D2 582.9

2 612.1 84.0D2 2459.6 1388.3 74414000 7457.6D2 5.92 × 108

D2 103455

where Er
2i and κi represent the relaxation strength i with corresponding relaxation time i,

while n denotes the total number of terms in the series.
For simplicity, a single relaxation strength and time are assumed for Material 2. The

approach is similar to that reported for bi- and tri-material composites [2,39]. The time-
dependent elastic modulus for the compliant layer is therefore

E2(t) = E∞
2 + (E0

2 − E∞
2 )e−

t
κ , (28)

where E∞
2 , E0

2 and κ represent the long-termmodulus, initial modulus and relaxation time
respectively.
The adopted parameters and information with respect to the two metamaterials are

summarised in Table 1. In addition, the eight coefficients underlying the macro energy
densities via (22), when evaluated based on material properties (E1, E0

2 , E3, ρ1, ρ2, ρ3)
and volume fractions (f , g , h), are all positive, as shown in Table 2. It will be shown later
that neither dispersive characteristics obtained from the proposed model nor the pre-
dicted homogenized displacement responses show any indication of ill-posedness. Refer-
ring to the discussions on gradient elasticity theories [32], the responses have not grown
unbounded without any external work done. In essence, the stability of the formulation
will be demonstrated.
For the problem statement described later, we consider two aspects of the model per-

formance. First, the dispersive characteristics recovered using the proposed model based
on infinitely long relaxation time, i.e. un-relaxed elastic cases, are benchmarked against
the reference dispersion relations obtained by the transfer matrix method over the first
Brillouin zone. The latter is a widely used technique in literature for such applications
and elaborated in B. Second, we validate the proposed model’s predictive capability in
capturing the wave propagation process by comparing the homogenized displacement
responses against reference solutions from DNS under various degrees of viscoelasticity
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Fig. 5 i Schematics of a periodic layered composite bar with underlying unit cell of size D, subjected to a
sinusoidal load P at x = 0 . ii Sinusoidal load P with amplitude Eeff over two periods, 2td . iii Normalised
non-dispersive displacement response predicted by a standard elastic effective medium

within compliant layer, i.e. Material 2. The semi-analytical solutions with the proposed
model are obtained numerically via a Laplace Transform operation, as detailed in C.

Problem statement

The problem statement is illustrated in Fig. 5i. We consider a periodic layered composite
bar of length100D, withunderlyingunit cells eachof sizeD given inTable 1.At the external
surface x = 0, a sinusoidal load P, as depicted in Fig. 5ii, is applied. The tractions Q and
˜T are assumed to vanish at the external surfaces. For an unit out-of-plane cross-sectional
area, the Neumann boundary conditions are

(T − ∇Q)
∣

∣

∣

x=0
= P =

{

Eeff sin(ωt) if 0 ≤ t ≤ 2td ,

0 if t > 2td ,
(29a)

Q
∣

∣

∣

x=0
= 0, (29b)

˜T
∣

∣

∣

x=0
= 0, (29c)

where the angular frequency ω = 2π/td .
With a standard effective elasticmedium, load P produces a Gaussian-like displacement

response over two periods, as shown in Fig. 5iii. Note that the amplitude of P is thus set
at Eeff to facilitate the normalisation of displacement response with respect to ζ = 2c/ω,
where homogenized sound speed c = √

Eeff /ρeff .
The governing equation of motion for a standard elastic effective medium is

ρeff Ü = Eeff ∇2U, (30)

with the effective density and modulus defined as

ρeff = f ρ1 + gρ2 + hρ3,

Eeff = E1E2E3
fE2E3 + gE1E3 + hE1E2

.

At this juncture, it is worth noting that the normalised response calculated based on a
standard elastic effective medium in accordance to (30) would always be non-dispersive
as given in Fig. 5iii. It will be demonstrated later that such performance is not adequate to
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Table 3 Loading frequency F, wavelength ratios (λ̄1, λ̄2, λ̄3) and relaxation time κ ([A], [B],
[C]) considered for benchmark examples

Meta-mat Loading frequency, F Relaxation time, κ (s)

λ̄1
a , λ̄

b
2 , λ̄

c
3 λ̄1 , λ̄2 , λ̄3 [A] [B] [C]

50 1000

1 12800, 76, 3751 640, 3.8, 188 ∞ 0.256 0.0255

500 10,000

2 2309, 211, 108 116, 10.5, 5.4 ∞ 0.026 0.0026
a λ̄1 = 2c1/fDF
b λ̄2 = 2c2/gDF
c λ̄3 = c3/hDF

represent the actual dispersive characteristics within metamaterials, and hence the need
for an enriched homogenized model.
Noting that themaximum impedance contrast between the respective constituentmate-

rialswithin the twoconfigurationsdiffer (by oneorder) inTable 1, it is therefore interesting
to understand how they perform against a broad range of loading frequencies. In the fol-
lowing, for the purpose of benchmark examples, a total of two frequencies (F = 1/td),
which represent typical range of excitation pertaining to sound wave transmission and
blast wave propagation respectively, are selected per metamaterial as given in Table 3. For
better clarity of presentation, the wavelength ratios (λ̄1, λ̄2, λ̄3), i.e. the ratio between the
loading wavelength in each constituent material and the width of each constituent layer,
are also summarised. This allows us to examine the predictive capability of the proposed
model in capturing the underlying dispersion from low to no separation of scales, as well
as the resulting attenuation and filtering effect considering various degrees of viscoelas-
ticity within compliant layer. Three stress relaxation times ([A], [B], [C]) with increasing
intensity of strength degradation, are assumed per frequency in Table 3. Note that [A]
pertains to infinitely extended periods to recover un-relaxed (elastic) cases.

Dispersive characteristics—un-relaxed (elastic) cases [A]

For the periodic layeredmedium in Fig. 5i, its dispersion relation obtained via the transfer
matrix method is given below. This provides the reference solution for the benchmark-
ing of dispersive characteristics of the proposed enriched homogenized model, based on
infinitely long relaxation time, i.e. un-relaxed elastic cases via [A] in Table 3.

cos(kD) = 1
4ξ1ξ22ξ3

{

2ξ2ξ3 cos
(

ωd3
c3

)

[

2ξ1ξ2 cos
(

ωd1
c1

)

cos
(

ωd2
c2

)

− (ξ12 + ξ2
2) sin

(

ωd1
c1

)

sin
(

ωd2
c2

)]

−
{[

(ξ1 − ξ2)(ξ1 + ξ2)

(ξ2 − ξ3)(ξ2 + ξ3) + (ξ12 + ξ2
2)(ξ22 + ξ3

2) cos
(

ωd2
c2

)]

sin
(

ωd1
c1

)

+ 2ξ1ξ2(ξ22 + ξ3
2) cos

(

ωd1
c1

)

sin
(

ωd2
c2

)}

sin
(

ωd3
c3

)}

, (31)

where parameter ξi = Eik , k = ω/ci as per standard definition for wave number (i = 1, 2,
3). Equivalently, d1 = fD, d2 = gD and d3 = hD.
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(i)
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Proposed Enriched Model

(ii)
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Exact (via Transfer Matrix Method)
Proposed Enriched Model

Fig. 6 Dispersion analyses of un-relaxed (elastic) cases pertaining to relaxation time [A] (κ = ∞) in
compliant layer for iMetamaterial 1, iiMetamaterial 2

The proposed enriched homogenized model smears out the underlying discreteness,
and captures the transient response through the system of governing equations of motion
in (24), the solutions of which are given by

U = βei(kx−ωt), (32a)
˜U = γ ei(kx−ωt), (32b)

where β and γ each denotes a complex coefficient.
Substituting (32) into (24), we have

⎡

⎢

⎣

(−C(1) − C(2)k2
)

ω2 + C(7) + (

C(5) + C(8)
)

k2 + C(6)k4 −C(4)
2

ω2 − C(7) − C(8)k2

−C(4)
2

ω2 − C(7) − C(8)k2 −C(3)ω
2 + C(7) + C(8)k2

⎤

⎥

⎦

[

β

γ

]

=
[

0
0

]

(33)

The dispersion relation of the proposed model is then obtained by setting the determi-
nant of the 2 × 2 matrix in (33) to null. For the two metamaterials considered, the dis-
persive characteristics obtained from the proposed model via (33) are compared against
the reference solutions provided by (31) in Fig. 6. It can be observed that all dispersion
relations based on the proposed model match the reference solutions very well across
the acoustical branches with only very slight deviations towards higher normalised wave
number kD, as opposed to the optical branches. This is likely due to the truncation during
decomposition of micro kinematic fields, which has limited the spatial order within the
coupled governing equations in (24). A better match to optical branches may likely be
achieved by having higher temporal order in the governing equation of motion, i.e. sec-
ond time-derivative of acceleration [2,40]. In the literature, many of such formulations
are motivated from a top-down strategy, in which the length scale parameters are either
calibrated by matching the group velocity profile against the first band gap of the exact
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Fig. 7 Metamaterial 1—i Homogenized displacement profile at x = 20D for loading frequency F at 1000 Hz,
with respect to relaxation time [A] (κ = ∞), and ii the respective frequency plot arising from Discrete Fourier
Transform

dispersion relation or approximated (non-physically) in order to preserve numerical sta-
bility. In this manuscript, a higher order temporal expansion is not adopted in order to
limit the order of the homogenized model. Nevertheless, the general shape of both dis-
persion relations correlates well with those reported for periodic layered media [1] and
acoustic metamaterials represented by diatomic crystal lattices [26]. Most importantly,
it will be shown later that the mismatch in optical branches does not overly reduce the
predictive capability of the homogenized model for the problems considered here, which
are dominated by lower frequency wave components.

Homogenized displacement response

As a crucial assessment on the predictive capability of ourmodel, the displacement profiles
obtained by the proposed model are benchmarked against reference DNS solutions. For
Metamaterial 1, the DNS consists of 42,000 linear truss elements (420 elements per unit
cell) whereas that for Metamaterial 2 comprises a total of 60,000 elements (600 elements
per unit cell). Time integration is applied using Newmark’s constant accelerationmethod,
with a fixed time step of 1 × 10−6 s. Due consideration has been done with regards to
the selection of both mesh size and associated time-step to ensure a sufficient spatial
resolution across the compliant layers, where most dynamical reactions are expected to
occur. Convergence studies have been carried out to ensure the overall adequacy of both
spatial and temporal discretization in the DNS. The displacement in the periodic layered
composite bar at macro point x = 20D is extracted for benchmarking purpose.

Un-relaxed (elastic) cases [A]

The predicted homogenized displacement responses for Metamaterial 1 and 2, assuming
infinitely long relaxation time, i.e. un-relaxed elastic cases via [A] in Table 3, are plotted
against results from DNS for the specific examples of F at 1000 and 10,000 Hz, in Figs. 7i
and 8i respectively. The predicted profiles correlate reasonably well with all reference
DNS solutions, in terms of both time of arrival and amplitude of the leading wave front,
as well as the trailing oscillations.
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Fig. 8 Metamaterial 2—i Homogenized displacement profile at x = 20D for loading frequency F at 10,000
Hz, with respect to relaxation time [A] (κ = ∞), and ii the respective frequency plot arising from Discrete
Fourier Transform

Wenext carry out Discrete Fourier Transform on the predicted homogenized responses
in Figs. 7i and 8i. The objective of such analyses is to decompose the time-dependent
solutions into the individual Fourier components over a range of frequencies, as shown in
Figs. 7ii and 8ii respectively.
Noting that the response of the proposed enriched model matches DNS well, Discrete

Fourier Transform is only performed on the former for a meaningful comparison to that
of a standard effective medium. Recall that the normalised response calculated based on
a standard elastic effective medium would always be non-dispersive and hence is not able
to capture the actual propagation accurately, unlike the proposed enriched homogenized
model.
The sampling frequency adopted for Metamaterial 1 is 4000 Hz whereas that for Meta-

material 2, is 40,000 Hz. A total of 512 data points are used per analysis. It can be observed
that eachmetamaterial has a specific cut-off frequency, beyondwhich, nomorewave form
can pass through. This is evidenced when the transformed predictions are set against that
of the standard elastic effective medium. Such filtering limit tallies expectedly around the
end of the 1st pass band (or start of the 1st stop band) of respective dispersion relations
in Fig. 6, i.e. Metamaterial 1 (145 Hz) and Metamaterial 2 (1610 Hz). We also note that
the amplitudes of the transformed predictions decreases as the loading frequency transits
from within the 1st pass band to the 2nd stop band.

Viscoelastic cases [B, C]

Finally, the predicted homogenized displacement responses forMetamaterial 1 and 2,with
respect to viscoelastic cases [B] and [C] in Table 3, are plotted against results fromDNS, in
Figs. 9 and 10 respectively. The predicted profiles againmatch all referenceDNS solutions.
The overall trend is consistent. For a given stress relaxation time κ , the normalised peak
amplitude dips with increasing frequency F , resulting from wave attenuation due to local
resonance effect, typical of such engineered unit cells. On the other hand, at a given
frequency F , the normalised peak amplitude dips with decreasing stress relaxation time
κ , i.e. faster strength degradation, due to dissipative effect of viscoelasticity. In this regard,
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Fig. 9 Metamaterial 1—Homogenized displacement profiles at x = 20D, with respect to relaxation time [B]
(κ = 0.256s) for loading frequency F at i 50 Hz, ii 1000 Hz, and with respect to [C] (κ = 0.0255s) for F at iii 50
Hz, iv 1000 Hz

it is clear that a standard effective elastic medium, as shown in Fig. 5(iii), is no longer
applicable.

Conclusion
This paper presents a bottom-up homogenization strategy, leading to an enriched model
that captures the dispersive effect during viscoelastic plane wave propagation through
periodic layered composites. The proposed framework naturally incorporates the under-
lying micro-inertia effect and non-local interactions between constituent materials. The
micro-mechanisms propagate in a thermodynamically consistent manner, and manifest
themselves as intrinsic parameters at the macro scale, as opposed to the conventional
top-down approach, where energy functions are postulated a priori, and requiring the
calibration of many length scale parameters. The proposed framework also departs from
the commonly adopted approach of having a frequency-dependent effective mass or an
equivalent mass-in-mass lattice sub-model, to represent band gap phenomena within
locally resonantly metamaterials.
In our framework, the constituent materials within a unit cell are idealised as a series

of springs with uniformly distributed mass. An additional kinematic field is introduced
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Fig. 10 Metamaterial 2—Homogenized displacement profiles at x = 20D, with respect to relaxation time [B]
(κ = 0.026s) for loading frequency F at i 500 Hz, ii 10,000 Hz, and with respect to [C] (κ = 0.0026s) for F at iii
500 Hz, iv 10,000 Hz

to characterise the displacement of the stiff layer, complemented by the characterisation
of the average strains within the different segments of the unit cell. These (macro) kine-
matic fields thus provide critical information of the underlying deformation, which are not
accounted for in a standard homogenization approach. The ensuing kinetic and potential
energies of a unit cell are next translated frommicro to macro following the Hill–Mandel
condition. Finally, a system of homogenized governing equations of motions is extracted
via Hamilton’s Principle, where a fourth-order enrichedmodel withmicro-inertia effect is
recovered. The intrinsic parameters are defined transparently in terms of the microstruc-
tural properties and volume fractions, without the need for any calibrations.
In situations with at least a weak separation of scales, predictions with the proposed

model match the reference solutions very well for benchmark examples involving two
locally resonant metamaterials from literature, applications of which pertain to sound
wave transmission and blast wave propagation respectively. Having a viscoelastic com-
pliant layer has certainly helped to dissipate more energy during wave transmission. It is
consistently shown that, the shorter the time interval over which strength degradation
takes place, the greater the amount of wave attenuation occurs.
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Appendix A: Summary of coefficients underlyingmacroscopic energy densities
The kinetic and potential energy densities,ψKE andψPE in (22), are obtained by smearing
̂�KE and̂�PE from (16) and (21) respectively, over the unit cell. The underlying coefficients
C(1)–C(8) can be obtained as

C(1) = 1
12(E3gZ2 − E2hz23)2

{

E2(2E32g2ρ2(3f ρ1 + 2gρ2) + 3E3ghZ2

(4f ρ1 + 3gρ2)(Z3 − Z2) + 2E2h2(3f ρ1 + 3gρ2 + hρ3)z232)
}

, (34a)

C(2) = D2

192(E2E3f + E1E3g + E1E2h)2(E2f z12 + E1gZ2)2(E2hz23 − E3gZ2)2
{

8E26E32f 5h2ρ1z232z122 + 24E1E26E3f 4h3ρ1z232z122 + 8E12E26f 2h4

(3f ρ1 + 3gρ2 + ρ3 − f ρ3 − gρ3)z232z122 + 16E13E25fgh4(3f ρ1 + 3gρ2
+ ρ3 − f ρ3 − gρ3)z232z12Z2 − 16E25E33f 5ghρ1z23z122Z2

+ 8E14E24g2h4(3f ρ1 + 3gρ2 + ρ3 − f ρ3 − gρ3)z232Z2
2

+ 8E24E34f 5g2ρ1z122Z2
2 + 8E14E34g6(3f ρ1 + gρ2)Z2

4

+ 4E1E23E34f 4g3ρ1z12Z2
2(5Z1 + Z2) − E13E2E34fg5Z2

3

(gρ2(−11Z1 + Z2) − 12f ρ1(3Z1 + Z2)) + 2E12E22E34f 2g4Z2
2

(f ρ1(7Z1
2 + 16Z1Z2 − 11Z2

2) + gρ2(2Z1
2 − Z1Z2 + Z2

2))

− 8E1E24E33f 4g2hρ1z12Z2(2Z1Z2 + 4Z2
2 − 5Z1Z3 − Z2Z3)

− 4E1E25E32f 4gh2ρ1z23z12(Z2(−13Z2 + Z3) + Z1(7Z2 + 5Z3))

+ E14E2E33g5hZ2
3(48f ρ1Z3 + gρ2(5Z2 + 17Z3))

+ 2E14E22E32g4h2Z2
2(hρ3z232 + 12f ρ1(−2Z2

2 + 2Z2Z3 + Z3
2)

+ gρ2(−11Z2
2 + 14Z2Z3 + 5Z3

2)) − 2E14E23E3g3h3z23Z2
2

(−4hρ3z23 + 3(8f ρ1Z3 + gρ2(Z2 + 5Z3))) + 2E13E22E33fg4hZ2
2

(gρ2(7Z1Z2 − 11Z2
2 + 12Z1Z3 − 2Z2Z3) + 6f ρ1(Z2(−5Z2 + 2Z3)

+ Z1(Z2 + 6Z3))) − E12E23E33f 2g3hZ2(−4f ρ1(−16z23Z1Z2

+ Z2
2(2Z2 − 11Z3) + Z1

2(2Z2 + 7Z3)) + gρ2(Z2
2(Z2 − 5Z3)

+ 2Z1Z2(7Z2 + 3Z3) − Z1
2(7Z2 + 9Z3))) + 2E13E24E3fg2h3z23Z2

(8hρ3z23z12 − 3(gρ2(3Z1Z2 − 5Z2
2 + 9Z1Z3 − 7Z2Z3) + 2f ρ1
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(Z1Z2 − 5Z2
2 + 7Z1Z3 − 3Z2Z3))) − E13E23E32fg3h2Z2

(−4hρ3z232z12 + 12f ρ1(Z1(7Z2
2 − 8Z2Z3 − 3Z3

2)

− Z2(3Z2
2 − 8Z2Z3 + Z3

2)) + gρ2(Z1(37Z2
2 − 54Z2Z3 − 15Z3

2)

+ Z2(−23Z2
2 + 50Z2Z3 + 5Z3

2))) − 2E12E24E32f 2g2h2(−hρ3z232z122

+ gρ2(Z1
2(7Z2

2 − 12Z2Z3 − 3Z3
2) − 2Z2

2(2Z2
2 + Z2Z3 + Z3

2)

+ Z1Z2(−5Z2
2 + 18Z2Z3 + 3Z3

2))

+ f ρ1(Z1
2(17Z2

2 − 22Z2Z3 − 7Z3
2) + 8Z1Z2(Z2

2 + 4Z2Z3 − 2Z3
2)

+ Z2
2(−37Z2

2 + 14Z2Z3 + 11Z3
2))) − 4E12E25E3f 2gh3z23z12

(−2hρ3z23z12 + 3(gρ2(−Z2(2Z2 + Z3) + Z1(Z2 + 2Z3))

+ f ρ1(Z2(−7Z2 + 3Z3) + Z1(Z2 + 3Z3))))
}

, (34b)

C(3) = 1
12(E3gZ2 − E2hz23)2

{

E32g2(gρ2 + 6hρ3)Z2
2 + 6E2E3gh2ρ3Z2(Z3 − Z2)

+ 2E22h3ρ3z232
}

, (34c)

C(4) = 1
12(E3gZ2 − E2hz23)2

{

E2(E32g3ρ22 + 3E3ghZ2(gρ2 + 2hρ3)(Z3 − Z2)

+ 2E2h3ρ3z232)
}

, (34d)

C(5) = Eeff
2

, (34e)

C(6) = D2Eeff (E1E3g3 + 4E2(E3f 3 + E1h3))
384(E2E3f + E1E3g + E1E2h)

, (34f)

C(7) = 4E2E3
D2(E3g + 2E2h)

, (34g)

C(8) = E2E3(E3g3 + 8E2h3)
48(E3g + 2E2h)2

, (34h)

in which acoustic impedance mismatch z12 = Z1 − Z2 and z23 = Z2 − Z3, while the
modulus of a standard elastic effective medium Eeff = E1E2E3

fE2E3 + gE1E3 + hE1E2
.

Appendix B: Dispersion relation using transfer matrix method
The standard equation ofmotion that describes elastic wave propagation through a homo-
geneous constituent layer, Material n, reads

ρnÜ = En∇2U, (35)

where the displacement field within the individual layer is denoted by un, while the elastic
modulus and density are En and ρn respectively.
The solution to (35) when expressed in the complex exponential form is

un(x, t) = αei(kx−ωt), (36)

where α denotes a complex coefficient, k the wave number and ω the angular frequency.
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By substituting (36) into (35), the equation of motion that accounts for elastodynamics
at fixed frequency (hence dropping the argument t) can be obtained as

−
(

ω

cn

)2
un(x) = ∇2un(x), (37)

where cn = √
En/ρn is the sound speed ofMaterial n. Note that suchmanipulation is often

employed in the study ofwaves through composites as it facilitates the correlation between
solutions at fixed frequencies to the individual Fourier components of the time-dependent
solution [41].
The solutions to (37) can be written as

un(x) = α1eikx + α2e−ikx, (38a)

En∇un(x) = Enik
[

α1eikx − α2e−ikx]. (38b)

We next relate the quantities between both ends of an individual layer, where mn
pq

represents the transfer sub-matrix applied over a finite distance of dn, after utilising (38)
and Euler’s formula e±ikdn = cos(kdn) ± i sin(kdn),

[

un(x + dn)
En∇un(x + dn)

]

=
[

mn
11 mn

12
mn

21 mn
22

][

un(x)
En∇un(x)

]

(39)

where

mn
11 = mn

22 = cos(kdn),

mn
12 = sin(kdn)

ξn
,

mn
21 = −ξn sin(kdn),

in which parameter ξn = Enk and k = ω/cn as per standard definition for wave number.
Derivations of the transfer sub-matrix are provided below.

un(x + dn) = α1eik(x+dn) + α2e−ik(x+dn)

= α1eikx
[

cos(kdn) + i sin(kdn)
] + α2e−ikx[ cos(kdn) − i sin(kdn)

]

= [

cos(kdn)
]

un(x) +
[

sin(kdn)
ξn

]

En∇un(x)

= mn
11un(x) + mn

12En∇un(x), (40a)

En∇un(x + dn) = Enik
[

α1eik(x+dn) − α2e−ik(x+dn)]

= Enik
{

α1eikx
[

cos(kdn) + i sin(kdn)
] − α2e−ikx[ cos(kdn)

− i sin(kdn)
]}

= [ − ξn sin(kdn)
]

un(x) + [

cos(kdn)
]

En∇un(x)

= mn
21un(x) + mn

22En∇un(x). (40b)
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At this juncture, it is pertinent to recognise that the two eigenvalues of the uni-modular
mn

pq in (39) correspond to e±ikdn and are indeed related to cos(kdn) via trigonometrical
identity

cos(kdn) = eikdn + e−ikdn

2
. (41)

Wenext derive a complete transfermatrix that relates displacement and stress quantities
between both ends of the unit cell given in Fig. 4ii. As the unit cell consists of three mate-
rials distributed into five constituent layers, with finite thickness of di attributed to each
Material i with the corresponding elastic modulus and density as Ei and ρi respectively
(i = 1, 2, 3), we can therefore multiply five transfer sub-matrices from (39) sequentially
with the necessary arguments to obtain the complete transfer matrix as

Myz =
5
∏

n=1
mn

pq(dj, Ej, ρj)

= m1
pq

(

d1
2
, E1, ρ1

)

· m2
pq

(

d2
2
, E2, ρ2

)

· m3
pq(d3, E3, ρ3)

· m4
pq

(

d2
2
, E2, ρ2

)

· m5
pq

(

d1
2
, E1, ρ1

)

. (42)

This is followed by solving for the eigenvalues � of Myz . The resulting determinant of
the 2 × 2 matrix in (42) is set to null as

∣

∣

∣

∣

∣

M11 − � M12
M21 M22 − �

∣

∣

∣

∣

∣

= 0. (43)

Similar to (41), we impose that the unit cell behaves as if it is a homogenized entity
[1,42], in order to recover the exact Bloch-Floquet dispersion relation (31) for a periodic
infinite medium made up of such unit cells by considering

cos(kD) = �1 + �2
2

, (44)

where size of the unit cell D = d1 + d2 + d3, while �1 and �2 denote the first and second
eigenvalue ofMyz via (43) respectively.

Appendix C: Solution of homogenized response
The system of homogenized governing equations of motion is solved semi-analytically
with the Laplace Transform. In general, the procedure consists of three main steps. First,
the partial differential equations of motion (PDE) in (24) are converted into two ordinary
differential equations (ODE) using Laplace Transform. This is followed by solving the
system of ODE in the complex angular frequency (s) domain. The final step reverts this
solution to the time (t) domain via a numerical Inverse Laplace Transform procedure.
The primary variable U and the additional kinematic variable ˜U are functions of both

space and time. Performing the Laplace Transform, we obtain

Us(x, s) =
∞
∫

0

U (x, t) e−st dt, (45a)
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˜Us(x, s) =
∞
∫

0

˜U (x, t) e−st dt. (45b)

Hereafter, Us and ˜Us are understood to be the macro displacement and additional
kinematic fields in the s domain respectively, and the argument (x, s) is dropped. In view
of (45), (24) can be converted into ODE as

[

2s2CL
(1) + 2CL

(7) s2CL
(4) − 2CL

(7)
s2CL

(4) − 2CL
(7) 2s2CL

(3) + 2CL
(7)

][

Us
˜Us

]

=
[

2s2CL
(2) + 2CL

(5) + 2CL
(8) −2CL

(8)
−2CL

(8) 2CL
(8)

][

∇2Us
∇2

˜Us

]

+
[

−2CL
(6) 0

0 0

][

∇4Us
∇4

˜Us

]

, (46)

where the added superscript represents Laplace transform operator L on the various
coefficients underlying the macro energy densities.
Recall that these coefficients involve E2(t), the linear viscoelastic modulus in the com-

pliant layer which is a function of time. It is therefore necessary to transform them accord-
ingly with respect to the s domain [37].
With reference to (28), the operational modulus EL

2 (s) for the present model is thus

EL
2 (s) = E∞

2 + (E0
2 − E∞

2 )
(

sκ
sκ + 1

)

. (47)

The solutions to (46) are given by the harmonic waves

Us = Aeikx, (48a)
˜Us = Beikx, (48b)

where A and B each denotes a complex coefficient.
Substituting (48) into (46) respectively, the system of ODE is given by

⎡

⎢

⎢

⎣

CL
(1)s

2 +
(

CL
(2)s

2 + CL
(5) + CL

(8)

)

k2 + CL
(7) + CL

(6)k
4
CL
(4)
2

s2 − CL
(7) − CL

(8)k
2

CL
(4)
2

s2 − CL
(7) − CL

(8)k
2 CL

(3)s
2 + CL

(7) + CL
(8)k

2

⎤

⎥

⎥

⎦

[

A
B

]

=
[

0
0

]

(49)

In order to solve the expression, the determinant of the 2 × 2 matrix in (49) must be
set to null. The resulting characteristic definition is a polynomial of order 6 in k , and that
only three (out of six) roots have strictly positive imaginary parts. Denoting these three
roots as k1, k2 and k3 with the corresponding complex coefficients as A1, A2 and A3 for
the primary variable U , as well as B1, B2 and B3 for the additional kinematic variable ˜U ,
the solutions to (46) are obtained as

Us = A1eik1x + A2eik2x + A3eik3x, (50a)
˜Us = B1eik1x + B2eik2x + B3eik3x. (50b)
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Given that k1 
 k2 and k1 
 k3 (50), can be further condensed to only capture the
dominant harmonic wave component as

Us ≈ A1eik1x, (51a)
˜Us ≈ B1eik1x. (51b)

Note that the approximation (51) does not affect the accuracy of predictions at all, as
evident from the benchmark examples in this study.
At this juncture, there remain two unknowns (A1 and B1) to be determined. To proceed,

the Laplace Transform is performed on the boundary conditions in (29) to give

L
(

T − ∇Q
) = L

(

P
)

, (52a)

L
(

˜T
) = 0, (52b)

where

L
(

T
) = (

2s2CL
(2) + 2CL

(5) + 2CL
(8)
)∇Us − 2CL

(8)∇˜Us,

L
(

Q
) = 2CL

(6)∇2Us = 0,

L
(

P
) = ω

(

1 − e−s2td
)

s2 + ω2 ,

L
(

˜T
) = −2CL

(8)
(∇Us − ∇˜Us

)

.

This is followed by substituting (51) into (52) to solve for A1 and B1 at x = 0, which
completes the definition of (51). The final step is to revert Us to the time domain using a
numerical Inverse Laplace Transform procedure. Here, we adopt the sequence of Gaver
functionals in tandem with Wynn’s Rho acceleration scheme [43].
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