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Abstract

Reduced order methods are powerful tools for the design and analysis of sophisticated
systems, reducing computational costs and speeding up the development process.
Among these reduced order methods, the Proper Generalized Decomposition is a
well-established one, commonly used to deal with multi-dimensional problems that
often suffer from the curse of dimensionality. Although the PGD method has been
around for some time now, it still lacks mechanisms to assess the quality of the
solutions obtained. This paper explores the dual error analysis in the scope of the PGD,
using complementary solutions to compute error bounds and drive an adaptivity
process, applied to a simple 1D problem. The energy of the error obtained from the
dual analysis is used to determine the quality of the PGD approximations. We define a
new adaptivity indicator based on the energy of the error and use it to drive parametric
h- and p- adaptivity processes. The results are positive, with the indicator accurately
capturing the parameter that will lead to lowest errors.

Keywords: Error bounds, Error estimation, Proper generalized decomposition,
Equilibrium formulation

Introduction
Computational methods have become an essential part of most high end engineering
projects. They greatly simplify the design and analysis of highly complex systems and are
a must for companies that aim to become and stay competitive. When modeling most
demanding systems a high computational effort is needed, leading to a low response time
between the identification of the details of the model to be considered and the availability
of the response. Furthermore, themodification of details in themodel leads to re-analyses
of the process, further delaying the determination of the desired response. This is a major
issue in our current quick paced reality, which relies in the premise that the faster you can
come up with a reliable solution, the better. Reduced order methods appear as an answer
for this demand.
The main idea behind reduced order methods is to formulate a model that takes only

the essential parts of a simulation, reducing the computational time needed to perform
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Fig. 1 Linear elastic straight bar on an elastic support, with nb sections. The bar is fixed at the start and has a
concentrated load at the end

a complex analysis while aiming to maintain the accuracy of the results. The Proper
GeneralizedDecomposition (PGD),whichweuse in thiswork, is oneof the several reduced
order methods that exist. The main characteristics of this method is its a priory nature,
which avoids the need to perform the full simulation beforehand in arbitrarily selected
instances [1].
One of the challenges that the application of PGD faces is that the method lacks a

posteriori estimations tools and adaptivity strategies [2–5]. Another issue with PGD is its
complexity when dealing with geometry as one of the parameters [6,7].
This paper has the objective of showing the application of a PGD driven adaptivity

process to a simple 1D problem. The particular aspect of this implementation is that
we simultaneously seek two complementary PGD approximations, one compatible and
one equilibrated, which we will use to bound their error (as in [8]) and also to drive the
adaptivity process (in the physical and in the parameter space).
The governing equations that describe the problem being considered are presented for

the case of a bar divided in two sections, followed by a discussion on error assessment
strategies to evaluate the solutions obtained. We proceed to explain the steps used to
obtain approximated solutions, first for the finite element method and later using the
proper generalized decomposition.We present the parametric form for the approximated
solutions and a form of assessing the PGD solutions error, this time specific for each
parameter. We apply this error measurement strategy to obtain a novel error indicator
which can drive both h- and p- adaptivity processes.

Governing differential equations
We consider a simple problem for which an analytic solution can be obtained: a linear
elastic straight bar divided in nb sections, each section with a length (γ ), an uniform axial
stiffness (EA) and an uniform elastic support (k), connected in sequence, which form a
one dimensional lattice structure. Note that when the stiffness of the support is zero, the
solution of this problem is trivial.
Although arbitrary imposed displacements or applied forces may be considered at the

nodes that connect the different sections, we restrict our study to the problem where the
displacement (�) is fixed at the start of the first bar and a non-zero force (P) is considered
at the free end of the bar, as presented in Fig. 1.
We want to obtain a solution for this problem, expressed in terms of either the displace-

ments (u) or of the axial forces (N ), that is characterized by the values of γ , EA and k for
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each section, plus the value of the imposed displacement and of the applied force. This
results in, at most, (3 × nb) + 2 parameters.
We know that the strain in an arbitrary point at the bar is

ε = du
dx

. (1)

The corresponding axial force is

N = EA ε, (2)

where E is the Young’s modulus at the specified point andA its cross section area. Assum-
ing that the force transmitted by the support is F = ku, with k being the elastic stiffness
of the support, and knowing that this force has to be balanced by the axial force, we have:

dN
dx

− F = 0. (3)

The exact solution of the problem has to satisfy:

EA
d2u
dx2

− F = 0, (4)

subjected to{
u|x=0 = �;
EAdu

dx
∣∣
x=L = P.

(5)

Notice that for a bar divided in multiple sections we will need to impose the continuity
of displacements and of the corresponding axial force in the nb − 1 connections nodes of
the sections.
We can also write the solution for this problem in terms of the axial force, considering

first equilibrium and then compatibility.We know that for a given axial force distribution,
equilibrium will be satisfied if relation (3) is true, implying that:

u = 1
k
dN
dx

. (6)

Compatibility and the constitutive relations require that the strain corresponding to this
displacement has to be equal to the strain associated with the axial force, such that:

d
dx

(
1
k
dN
dx

)
= N

EA
. (7)

If we write the problem in terms of the axial force, which has to be continuous, it becomes

1
k
d2N
dx2

− N
EA

= 0, (8)

subjected to{
1
k
dN
dx

∣∣
x=0 = �;

N
∣∣
x=L = P.

(9)

Again, we need to impose the continuity of the axial forces and of the corresponding
displacements at the connection nodes of a bar divided in multiple sections.
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Error assessment measurements
In this section we discuss two possible ways to compute the error for approximate solu-
tions. This is made for an arbitrary problemwith domain� and boundary�, which for the
bar that we are considering are is its length and the endpoints, respectively. We will first
talk about the error in energy and later of the energy of the error. After a brief explanation,
these errors indicators will be applied to our problem.
Both the error in energy and the energy of the error can work as global estimators of

the solution’s behavior, providing error bounds.

Error in Energy

Following [9], the potential energy � of a mechanical system can be defined as a function
of a kinematically admissible displacement u, such that:

�(u) = U (u) − V(u) =
∫

�

W(u)d� − V(u), (10)

with U describing the total strain energy,W the strain energy density, and V is the work
done by the applied forces, defined as:

V(u) =
∫

�

b̄T u d� +
∫

�t
t̄T u d�, (11)

where b̄ are the body forces, t̄ the boundary traction and �t the static boundary. The
complementary potential energy�c for a statically admissible stress fieldN can bewritten
in a similar way as

�c(N ) = U c(N ) − Vc(N ) =
∫

�

Wc(N )d� − Vc(N ), (12)

where U c is the complementary strain energy,Wc the complementary strain energy den-
sity, and Vc is the work done by the imposed displacements. We can define Vc as

Vc(N ) =
∫

�u
(N TN )T ũ d�, (13)

with �u representing the kinematic boundary, N the boundary operator, which for the
1D problem is ±1, and ũ the displacement at the boundary. Considering linear elastic
constitutive relations and that the possible influence of initial strains is excluded, we can
write the strain energy density as:

W(u) = 1
2

(
u′TEA u′ + uTk u

)
, (14)

and the complementary strain energy density:

Wc(N ) = 1
2

(
NT 1

EA
N + N ′T 1

k
N ′

)
. (15)

We can use the dual solutions to write the average values for the total potential energies
and the strain energies, such that:

�a = 1
2

(
�(u) − �c(N )

)
; Ua = 1

2

(
U (u) − U c(N )

)
. (16)
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The sum of the potential energy and the complementary potential energy is zero for the
exact solution [9]. For force driven or displacement driven problems, such as the one that
we will consider, the error of each approximate solution is bounded by the sum of their
energies. Compatible solutions for force-driven problems have the total energy equal to
minus the strain energy, which is a negative value.We choose to work with the symmetric
of the total energy,which is positive and converges frombellow, and canbeused as an error
measure. On the other hand, compatible solutions for displacement-driven problems will
present a total energy which is always equal to the strain energy, therefore converging
from above. Equilibrium solutions will have an analogous opposite behavior, where force-
driven problems will converge from above and displacement-driven from bellow (More
about this in [8]).

Energy of the error

We can compute the exact energy of the error of a compatible or of an equilibrium
solution, respectively as:

ε2k =
∫

((Nk − N )(εk − ε) + (Fk − F )(uk − u)) dx; (17)

ε2s =
∫

((Ns − N )(εs − ε) + (Fs − F )(us − u)) dx, (18)

where the subscript k indicates solutions that come from kinematically admissible dis-
placements, s solutions from statically admissible axial forces and the lack of a subscript
indicates the exact solution. An upper bound of both values is [10]:

ε2 =
∫

((Nk − Ns)(εk − εs) + (Fk − Fs)(uk − us)) dx. (19)

Unlike the energies of the solutions, this expression is applicable to any type of problem
(force driven, displacement driven or mixed). Therefore, from now on we always use the
energy of the error instead of the error in an energy.
We call the integrand in (19) an error density, defined as:

ρ = (Nk − Ns)(εk − εs) + (Fk − Fs)(uk − us). (20)

Therefore, we can rewrite Eq. (19) as:

ε2 =
∫

ρ dx. (21)

It can be shown that [9]:

ε2 ≥ ε2k ; and ε2 ≥ ε2s . (22)

Compatible and equilibrated finite elements approximations
For our problem, any general function f (x) ∈ H1 (continuous and differentiable) that
satisfies f (0) = � is a compatible displacement field, with a normal force distributionN =
u′EA. Also, any general function g(x) ∈ H1 is an equilibrated normal force distribution,
provided g(L) = P, with a displacement field u = g ′/k .
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When considering the displacement field, we can write the bilinear form of the strain
energy product as:

ak (uα , uβ ) =
∫ L

0

(
kuαuβ + EAu′

αu
′
β

)
dx, (23)

and the work of the concentrated force is

bk (uβ ) = P uβ (L), (24)

where ak (uα , uβ ) and bk (uβ ) are the bilinear and linear form products, corresponding to
compatible (kinematically admissible) solutions.
For the equilibrated solution (statically admissible), we will have:

as(Nα , Nβ ) =
∫ L

0

(
1
k
N ′

αN
′
β + 1

EA
NαNβ

)
dx, (25)

and the work of the imposed displacement is

bs(Nβ ) = � Nβ (0). (26)

It is also possible to consider a mixed form

am(uα , Nβ ) =
∫ L

0

(
uαN ′

β + u′
αNβ

)
dx. (27)

We use a Galerkin approach to determine the approximate solutions. Assuming a poly-
nomial degree of approximation p, we have:

uh(x) =
p∑

d=0
φd(x) ûd = φ(x) û; Nh(x) =

p∑
d=0

φd(x)N̂d = φ(x) N̂, (28)

where vectors û and N̂ represent the coefficients of the approximations for the displace-
ments and axial forces, respectively, and φ(x) are the polynomial basis.
Substituting (28) into (23) and (25)will lead to thedefinitionof the stiffness andflexibility

matrices,K andF , respectively,

K =
∫ L

0

(
k φ(x)φT(x) + EA φ′(x)φ′T(x)

)
dx; (29)

F =
∫ L

0

(
1
k
φ′(x)φ′T(x) + 1

EA
φ(x)φT(x)

)
dx. (30)

We can define a matrix that projects the equilibrated solutions onto the compatible
ones, as in (27), such that:

S =
∫ L

0
(φ(x)φ′T(x) + φ′(x)φT(x)) dx. (31)

The vectors of applied forces and imposed displacements are obtained substituting (28)
into (24) and (26), so that:

Q = φT(L)P; e = φT(0)�. (32)
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The resulting finite element compatible and equilibrated systems are, respectively

Kû = Q; FN̂ = e. (33)

We can obtain the finite element approximation for the displacements u and axial forces
N by solving the equations in (33) and using the results at Eqs. (28).

Compatible and equilibrated PGD approximations
A PGD formulation is going to be used to obtain the approximations of the solutions
of each complementary problem, as in [8]. We define μ, a vector of D parameters
μ1,μ2, . . . ,μD , each defined in its own domain �μi ⊂ R, with i = 1, 2, . . . ,D. Then,
the vector of parameters μ is defined so that μ ⊂ �μ = �μ1 ⊗ �μ2 ⊗ · · · ⊗ �μD ⊂ R

D .
Each solution will depend on the D parameters and will be approximated as a sum of
N modes of D independent functions of each variable. We can write a general PGD
approximated solution as:

fpgd(x,μ) =
p∑

d=0
φd(x)f̂dpgd (μ) = φ(x)f̂pgd(μ), (34)

where,

f̂pgd(μ) =
N∑

m=1
f̄m

D∏
j=1

Fm
j (μj), (35)

with f̄ representing the coefficients of the approximation in the physical space. A linear
combination of polynomials of degree pj is used to represent the function:

Fm
j (μj) =

pj∑
dj=0


dj (μj)F̂m
j,dj , (36)

which is a generalization of (28) where F̂ represents the coefficients of the approximation
in the parameters.
A fixed point iteration is used to determine the terms in each product, or more pre-

cisely, the coefficients F̂ and f̄ . This iteration procedure will try to minimize the extended
Galerkin residual of (23) or (25). For a generic term n > 1, f̃ , is written as

f̃ =
n−1∑
m=1

f̄m
D∏
j=1

Fm
i (μj) + f̄n

D∏
j=1

Fn
j (μj). (37)

Defining

f̃n−1 =
n−1∑
m=1

f̄m
D∏
j=1

Fm
j (μj) and �f̃n = f̄n

D∏
j=1

Fn
j (μj), (38)

we can further simply f̃ as:

f̃ = f̃n−1 + �f̃n. (39)
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The extended residual is obtained by considering the integration domain of (23) or (25)
including all elements and all parameters. We want to impose that

a(f̃ , g) − b(g) = 0 ∀g, (40)

or

a(�f̃n, g) − (b(g) − a(f̃ n−1, g)) = 0 ∀g. (41)

In order to compute a specific function, a fixed point iteration scheme is assumed with all
other functions being constants.
In the fixed point scheme only the physical space or one variable are considered at a

time, e.g.μα , so that the test space (the g’s) are restricted to the basis used for that variable.
To determine the values of f̂n for all elements, which define the solution in the physical

space, we solve:

f̃ = f̃n−1 + f̄n
D∏
j=1

Fn
j (μj). (42)

For a specific function Fn
α (μα) the iteration procedure determines the coefficients F̂ n

α

that satisfy:

f̃ = f̃n−1 + f̄n Fn
α (μα)

D∏
j=1;j �=α

Fn
j (μj). (43)

Finally, the parametric PGD approximation in terms of the displacements is:

ûpgd(μ) =
N∑

m=1
ūm

D∏
j=1

Um
j (μj), (44)

and in terms of axial forces:

N̂pgd(μ) =
N∑

m=1
N̄m

D∏
j=1

Ñm
j (μj). (45)

As is typical for the PGD method, the greater the number of terms in the sum, the best
shouldbe the approximation achieved.The converge criteria adoptedhere is thedifference
between the strain energy of the current pair of solutions (compatible and equilibrium).
The process is stopped when either the error is lower than a required tolerance, or when
the process stagnates.
When non homogeneous boundary conditions are considered (u(0) �= 0 and N (L) �= 0,

respectively for the compatible and for the equilibriummodels) their effect are taken into
account in the first term of the sum in (36), so that for the other terms the boundary
conditions are homogeneous.
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Parametric problem and approximated error measurements
We defined μ as a vector of D parameters μ1,μ2, . . . ,μD . Since for our specific example
the integrals in the physical space are already considered in the systemmatrices presented
in section 2, we can write the parametric finite element approximations of the potential
energies directly in terms of the stiffness and flexibility matrices and of the vectors of the
applied force and imposed displacement, such that:

�fem(û(μ)) = 1
2
ûT(μ)K(μ) û(μ) − ûT(μ)Q, (46)

and

�c
fem(N̂(μ)) = 1

2
N̂T(μ)F (μ) N̂(μ) − N̂T(μ)e. (47)

We apply the same concept to obtain the bound of the energy of the error, so that:

ε2fem(μ) = ûT(μ)K(μ) û(μ) + N̂T(μ)F (μ) N̂(μ) − 2 N̂T(μ)S û(μ), (48)

or we can simply define it in terms of the energy density as:

ε2fem(μ) =
∫

ρfem(μ) dx. (49)

When considering the error measurements in the parametric form, we will obviously
have adifferent result for each combinationof parametersweuse.Therefore, it is necessary
to have an additional way to determine the quality of the solutions obtained, that also
considers the effects of the parametric domain. One simple solution is to integrate the
error measurements obtained in the parametric domain, resulting in a single value that
accounts for the quality of all possible solutions. For the energy of the error in particular,
it is worth noting that if the integral in space is extended to the parameters, the bounding
properties still hold, so that:

∫
�μ

ε2fem(μ) d�μ ≥
∫

�μ

ε2kfem (μ) d�μ; or∫
�μ

ε2fem(μ) d�μ ≥
∫

�μ

ε2sfem (μ) d�μ.
(50)

We can obtain similar approximated error measures using the PGD approximations.
We need only to substitute the finite element approximated displacements û and axial
forces N̂ for their PGD counterparts ûpgd and N̂pgd.

Practical aspects of the discretization of the physical domain
A global coordinate system (x ∈ [0, L]) is used, where the coordinates of the initial and
final nodes of section b are γb−1 and γb, with γ0 = 0 and γnb = L. Therefore, the geometric
parameters correspond to the γi, with i = 1, . . . , (nb − 1).
Each section, which is divided in ne[b] elements, uses an intermediate coordinate system

(x̄[b] ∈ [0, 1]). The coordinates of the initial and final nodes of element e are γ̄[b]e−1 and
γ̄[b]e, with γ̄[b]0 = 0 and γ̄[b]ne = 1. In the following, we replace γ̄[b]e with γ̄e, x̄[b]e with x̄e
and x̄[b] with x̄, unless the reference to the section of the element is necessary.
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x̄
Section b

e

x
Domain

b

0 1γ̄e−1 γ̄e

0 Lγb−1 γb

-1 0 1
ξ

Element e

Fig. 2 Geometric mappings: from bar domain to section and from section domain to element

In the elements domain, a local coordinate system is used (ξ ∈ [−1, 1]), which is linearly
mapped to x̄, which is then linearly mapped to x.
Using φ0 and φ1 to represent the linear interpolation functions associated with the end

nodes of an interval we have:

x̄(ξ ) = φ0(ξ ) γ̄e−1 + φ1(ξ ) γ̄e and x(x̄) = φ0(x̄) γb−1 + φ1(x̄) γb. (51)

These transformations are illustrated in Fig. 2.
Each section may be divided in several finite elements. Normally, for problems with

fixed geometry, only one mapping is used, from the frame of element (ξ ) to the global
coordinates (x).
Since both mappings are linear the Jacobian of each transformation is constant, and the

Jacobian of the double mapping, J , is equal to their product. The derivative of an arbitrary
function, f , is obtained as

df
dx

= df
dξ

dξ

dx̄
dx̄
dx

= 2
(γ̄e − γ̄e−1)

1
(γb − γb−1)

df
dξ

= 1
Je
df
dξ

, (52)

and its integral is∫
f dx =

∫
fJe dξ . (53)

Our basis, in local coordinates, are obtained by combining the linear interpolation
functions with the Legendre polynomials Li(ξ ):⎧⎪⎪⎨

⎪⎪⎩
φ0(ξ ) = 1−ξ

2 ,

φ1(ξ ) = 1+ξ
2 ,

φi(ξ ) = φ0(ξ ) φ1(ξ ) Li−2(ξ ), for i > 1

(54)

We can re-write, for example, the stiffness and flexibility matrices in the local frame of
the elements, by applying (52) and (53):

Kei,j =
∫ 1

−1

(
k φiφj Je + EA φ′

iφ
′
j
1
Je

)
dξ ; (55)
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-1 0 1

0

φ0(ξ)

-1 0 1

0

φ1(ξ)

-1 0 1

0

φ2(ξ)

-1 0 1

0

φ3(ξ)

-1 0 1

0

φ4(ξ)

Fig. 3 Basis for one dimensional approximations

Fei,j =
∫ 1

−1

(
1
k
φ′
iφ

′
j
1
Je

+ 1
EA

φiφj Je
)

dξ . (56)

The complete systemof equations for eachproblemcombines the assembled stiffness (or
flexibility) matrices of each element of each section, together with additional constraints
that impose displacement continuity (5) or equilibrium of normal forces (9) between
sections. This corresponds to impose:

• Continuity of displacements and (weak) equilibrium of nodal forces, or
• Equilibrium of normal forces and (weak) continuity of the displacements.

For the compatible formulation, to have a continuous displacement at the node between
sections b and b + 1, we must impose that:

u[b]ne (1) = u[b+1]1(−1) =⇒
pe∑
i=0

φi(1)û[b]ne,i =
pe∑
i=0

φi(−1)û[b+1]1,i =⇒

û[b]ne,1 = û[b+1]1,0. (57)

This condition can be expressed in matrix form as

Lend ûb − Lstart ûb+1 = 0. (58)

The transpose of these matrices reflects the effect of the force at the node (transmitted
between sections b and b+1) in the equations ofweak equilibriumof the adjacent sections.
For the equilibrated formulation, the process is complementary: we impose continuity

of the nodal forces and the displacement of the interface is accounted for in the weak
compatibility conditions of each adjacent bar. The matrices involved are the same.
Note that, in case we wanted to consider a concentrated force applied at a node, or a

relative imposed displacement, the equations need to be modified accordingly.
In the practical implementation of the problem, we apply these mapping considerations

for all the equations described so far, but we will omit them from now on to reduce
repetition of the text.

Characterization of the test case
To apply the concepts presented here, we consider the problem shown in Fig. 4, with the
following characteristics:

• The bar is composed of two sections, with a total summed length L of one;
• Each section has its own support stiffness kb;
• The axial stiffness EA for the first section has a unit value;
• The axial stiffness of the second section is equal to β ;
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P
(k2 ≡ μ2, EA ≡ μ3)

L

γ ≡ μ4 L − γ

(k1 ≡ μ1, EA ≡ 1)

x̄1 x̄2

Fig. 4 A problem with two sections, connected at an intermediate point, defined by γ

• The length of the first section is equal to γ .

The parameters for the PGD with their respective limits are:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ1 ≡ k1, with k1 ∈ [0.1, 10];

μ2 ≡ k2, with k2 ∈ [0.1, 10];

μ3 ≡ β , with β ∈ [0.1, 10];

μ4 ≡ γ , with γ ∈ [0.4, 0.6].

(59)

The calculations are performed considering an applied force at the free end (Px=L = 1,
�x=0 = 0).
Unless otherwise stated, the polynomial approximations are linear for all parameters.

Notice that these degrees can lead to solutions which are not accurate, but they serve the
purpose of this paper, which is to identify regions where the simulations can be improved.
The tolerances τ adopted for the fixed point iteration scheme and the PGD enrichment

process are τfix = 1× 10−3 and τpgd = 1× 10−6, respectively, with the maximum amount
of iterations being 3 for the fixed point and 3001 for the PGD. Setting such low number
of iterations for the fixed point scheme may lead to more terms for the convergence of
the PGD, but drastically decreases the computational time, which is a phenomenon also
observed in [11,12], but should not be generalized for all problems, as this behavior is case
dependent.
To further improve the convergence of the solutions, the limits for the parameters k1,

k2 and β were mapped to a logarithmic scale k1 = 10k̂1 , k2 = 10k̂2 and β = 10β̂ , with
ranges k̂1 ∈ [−1, 1], k̂2 ∈ [−1, 1] and β̂ ∈ [−1, 1]. This mapping does not affect the
PGD approximations, serving only to diminish the influence of the edges in the solutions.
Additional simulations must be performed with different limits to assess the effect of this
modification.
We now present solutions in terms of the error in energy and the energy of the error.

The simulations were performed using quadratic approximations in space, in order to
better visualize the bounds of the solutions. The bounding characteristics discussed in
the previous section are observed in Fig. 5, which presents selected results for our prob-
lem. The left part of the Figure shows the integral of the energies of the PGD and FEM
approximations, while the right part shows the integral of the energy of the error. The
energies for the FEM solutions are very close to the exact solutions and are represented



J. Reis et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:42 Page 13 of 22

Fig. 5 Integral of the energies for both PGD and FEM approximations

as details in the figure. Notice that the exact energy of the error is zero and therefore it
is not shown in the figure while the exact integral of the error in energy is greater than
zero and is presented in the left figure with a black line. The energies of the compatible
and equilibrated solutions will have a convergence from above and bellow, respectively,
when the problem is force-driven, which is the behavior observed. On the other hand,
for the bound of the energy of the error we have an upper bound, meaning that it should
be always greater than the values found for the exact solutions. From the figure it is also
possible to see that, as the number of PGDmodes increases, the two complementary PGD
solutions converge to the approximation of the FEM, always preserving their bounding
characteristics.
Figure 6 shows the relative difference between the approximations obtained from the

PGD and FEM models. The integral of the energies of the PGD model will converge to
the FEM energy as the number of modes in the solution increases. The results obtained
for the integral of the energy of the solutions and the energy of the error are virtually the
same. This sort of behavior is expected for force or displacement driven problem, due to
the orthogonality of the FEM solutions, but is not the case for mixed problems.
Figure 7 shows the behavior of the relative difference between the integral of the energies

of the PGD and FEM approximations and the average potential or strain energies as the
degree or the number of elements per section used to obtain the solutions increase. The
solutions behave as expected, with better results being achieved as the degree or the
number of elements increases.
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Fig. 6 Relative difference between the PGD and FEM integral of the solutions energies and the average total
absolute energy of the FEM solution (left). Relative difference between the PGD and FEM integral of the error
energies and the average strain energy of the FEM error (right)

Fig. 7 Relative difference for the integral of the solutions energy and the integral of the error energy for the
PGD approximation with different number of degrees and elements

Notice that for higher degree approximations, the solution starts to lose its convergence
rate and also the initial solutions are worse than the ones obtained with smaller degrees.
The decrease of the convergence rate is caused by a limit in the number of PGDmodes due
to the tolerance of the simulations. An indication that the solution is being constrained
by the tolerance is that the number of PGD modes for a higher degree or number of
elements may decrease. This can be seen for the solution with p = 5 and h = 4 and h = 5.
Decreasing the tolerance can recover the rate of convergence, although this will not fix the
poor results for the initial modes. We believe these poor results are a consequence of the
complexity of the higher degree solutions. This is suggested by the fact that this behavior
is not observed when increasing the number of elements of the solution. The results in
terms of the error in energy and energy of the error are again the same and were omitted
from Fig. 7.
The error in energy is simpler to visualize, as it is based in the energy of the solutions

which has a physical meaning. Also, each compatible and equilibrated solution has its own
energy, allowing for individual analyses of the error. In the other hand, the bounds that are
seen in the error in energy are limited to situations when we have force or displacement
driven problems, which is not the case for the energy of the error. That being said, from
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this point on we will base or solutions solely in the energy of the error, as it provides error
bounds for general problems.

Solution adaptivity
Adaptivitymesh techniques are designed to improve approximated solutions bymodifying
either the element mesh configuration or their degrees of freedom [9]. One of the key
points in the mesh adaptivity process is the proper definition of the relation between the
solution convergence and the element size and/or degree of the approximation functions.
This convergence dependency is expected to be precise when a smooth solution is being
studied and the mesh that represents the solution domain has a large enough number of
elements.
We can usually divide the adaptivity process in three categories: the modification of the

size of the elements in amesh (h-adaptivity); themodification of the approximation degree
for the functions (p-adaptivity); and a combination of both these process (hp-adaptivity).
This paper explores the aspects of the h- and p- adaptivities, but not the combination of
both.
We want to obtain an adaptivity indicator that is capable of capturing the best regions

to refine, without differentiating between the physical or the parametric space. To achieve
this, we collect in variable χ both the parameters and the physical space. This means that,
from this point on, a reference to the parameters χ of the problem may be referring to a
material parameter μ or to the parameter x of the physical space.
The solutions presented will be shown in terms of the number of elements nh or the

degrees of the polynomial approximations p. Our specific problem has a total number of
parameters nχ equal to five: four μ’s and the physical space, which we divide in the two
sections, b1 and b2.

Adaptivity indicator

A question that arises is how do we use the complementary solutions to decide where to
refine the model. We know that the integral of the energy of the error covers the whole
parameters and physical space domain and therefore it is always the same, no matter in
which order we performs the integrals. The idea was, then, to look at the effects of each
parameter independently byperforming the integral of the errordensityρ in all parameters
but one. If this function is constant, it means that the parameter is not affecting the error
bound, indicating that we need to look at the derivatives of the functions. This lead to the
idea of working with the derivative of ρ with respect to all parameters. After numerical
tests to assess how to relate the derivative of the augmented set of parameters χ with the
effect of that parameter on the error, the following expression for an error indicator ι was
selected:

ι(χ ) =
∫ ∫

(χ − C(χ ))
∂ρ(ξ ,μ)

∂χ
d� d�μ, (60)

where:

C(χ ) =
∫ ∫

χ ρ(ξ ,μ) d� d�μ∫ ∫
ρ(ξ ,μ) d� d�μ

. (61)
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This expression was selected after testing several dimensionally consistent alternatives,
including combinations of the derivatives of ρ with respect to the parameters. From this
study, we concluded that (60) is the alternative that best captures the regions where
refinement is required. Note that this expression is not used to control if the process has
converged, only where to refine next. We have not yet found a theoretical background
that supports its application.
Considering ρ, which is non negative, as a pseudo mass density, we can interpret ι(χ ) as

the first order moment of the derivative of the error with respect to the center of mass of
thedomain.Recalling that the subscript k indicates solutions that come fromkinematically
admissible displacements and s that the solutions come from statically admissible axial
forces, we can write ρ for an element, considering the domain decomposition particular-
ities, as:

ρ(ξ ,μ) =J ((Nk (ξ ,μ) − Ns(ξ ,μ))(εk (ξ ,μ) − εs(ξ ,μ))

+ (Fk (ξ ,μ) − Fs(ξ ,μ))(uk (ξ ,μ) − us(ξ ,μ))).
(62)

where the components in (62) can we approximated in a similar manner as in (28), so that:

uk (ξ ,μ) = φ(ξ )ûk (μ); Ns(ξ ,μ) = φ(ξ )N̂s(μ);

Fk (ξ ,μ) = k uk (ξ ,μ); εs(ξ ,μ) = 1
β
Ns(ξ ,μ);

εk (ξ ,μ) = dφ(ξ )
dξ

dξ

dx
ûk (μ); Fs(ξ ,μ); = dφ(ξ )

dξ

dξ

dx
N̂s(μ);

Nk (ξ ,μ) = β εk (ξ ,μ); us(ξ ,μ) = 1
k
Fs(ξ ,μ).

(63)

These approximations can be expressed both in terms of FEMor PGD, only needing to set
ûk and N̂s accordingly. In order to compute (60) we also need to compute the derivative
∂ρ(ξ ,μ)

∂χ
and, therefore, we need the derivatives of (62). We will have different expressions

for derivatives depending on what type of parameter χ is representing.
When χ represents the physical domain parameter x, and assuming that the material

parameters k and β are defined such that k = μ1 and β = 1 if x ≤ μ4, and k = μ2 and
β = μ3 if x > μ4 we have:

∂uk (ξ ,μ)
∂x

= 1
J
dφ(ξ )
dξ

ûk (ξ);
∂Ns(ξ ,μ)

∂x
= 1

J
dφ(ξ )
dξ

N̂s(μ);

∂Fk (ξ ,μ)
∂x

= k
1
J

∂uk (ξ ,μ)
∂ξ

;
∂εs(ξ ,μ)

∂x
= 1

β

1
J

∂Ns(ξ ,μ)
∂ξ

;

∂εk (ξ ,μ)
∂x

= 1
J

(
d2φ(ξ )
dξ2

)
∂ξ

∂x
ûk (μ);

∂Fs(ξ ,μ)
∂x

= 1
J

(
d2φ(ξ )
dξ2

)
∂ξ

∂x
N̂s(μ);

∂Nk (ξ ,μ)
∂x

= β
1
J

∂εk (ξ ,μ)
∂ξ

;
∂us(ξ ,μ)

∂x
= 1

k
1
J

∂Fs(ξ ,μ)
∂x

.

(64)
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And when χ represents one of the parameters μi, with i = 1, 2, . . . ,D, we have:

∂uk (ξ ,μ)
∂μi

= φ(ξ )
∂ûk (μ)

∂μi
;

∂Ns(ξ ,μ)
∂μi

= φ(ξ )
∂N̂s(μ)

∂μi
;

∂Fk (ξ ,μ)
∂μi

= dk
dμi

uk (ξ ,μ) + k
∂uk (ξ ,μ)

∂μi
;

∂εs(ξ ,μ)
∂μi

= dβ−1

dμi
Ns(ξ ,μ) + 1

β

∂Ns(ξ ,μ)
∂μi

;

∂εk (ξ ,μ)
∂μi

=
(

d
dμi

dξ

dx

)
dφ(ξ )
dξ

ûk (μ) + dφ(ξ )
dξ

dξ

dx
∂ûk (μ)

∂μi
;

∂Fs(ξ ,μ)
∂μi

=
(

d
dμi

dξ

dx

)
dφ(ξ )
dξ

N̂s(μ) + dφ(ξ )
dξ

dξ

dx
∂N̂s(μ)

∂μi
;

∂Nk (ξ ,μ)
∂μi

= dβ

dμi
εk (ξ ,μ) + β

∂εk (ξ ,μ)
∂μi

;

∂us(ξ ,μ)
∂μi

= dk−1

dμi
Fs(ξ ,μ) + 1

k
∂Fs(ξ ,μ)

∂μi
.

(65)

Notice that
(

d
dμi

dξ
dx

)
= 0 unless μi is the geometric parameter μ4 = γ . For the deriva-

tives of the PGD approximations, we have:

∂ûk (μ)
∂μi

=
N∑

m=1
ūm dUm

i (μi)
dμi

D∏
j=1;j �=i

Um
j (μj)

∂N̂s(μ)
∂μi

=
N∑

m=1
N̄m d Ñm

i (μi)
dμi

D∏
j=1;j �=i

Ñm
j (μj)

(66)

We can now apply Eqs. (63) and (65) into Eq. (60) to obtain the error indicator ι. Notice
that by multiplying the derivative by the variable, we are able to keep ι with units that are
consistent with the energy of the error ε2.

p- Adaptivity

This section studies the results for p- refinement when using the proposed adaptivity
indicator. It works with a simple verification, by identifying the parameter that has the
highest value for ι among all the parameters studied and increasing the polynomial degree
of that parameter by one, as this parameter is expected to influence the solution error the
most.
The adaptivity process using the indicator proposed is compared with the uniform

mesh adaptivity and is shown in Fig. 8. Using the adaptivity indicator leads to better
results than simply uniformly increasing the degrees of approximation functions, as it
chooses the parameter that has the major influence in the solution to improve its degree.
The drawback of this process is the need to repeat the simulation for every new degree
improved.
Oneway to determine if themethod to drive the adaptivity process is reliable is to deter-

mine all the possible solutions for a given set of degrees for the polynomial approximation
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Fig. 8 Comparison between the uniform mesh refinement and the adaptivity method for the integral of the
energy of the error as a function of the combination of polynomial degrees. The detail numbers are the the
degrees of the approximation in each parameter, respectively k1, k2, β1, γ1, b1, b2

and verify if the method is capable to accurately define which parameter should have its
degree improved.
The following computation process was done:

1 Start with linear functions for the parameters and quadratic for the physical space;
2 Increase the polynomial degree of the parameter by one and compute the error;
3 Return the parameter to the original degree and repeat the previous step for the next

parameter, until all the variables are studied;
4 Pick the parameter that leads to the smallest error and permanently increase the

polynomial degree of that parameter by one;
5 Go back to step two until the sum of the degrees of the parameter reaches a prede-

termined value.

The results for different tolerances (τpgd) were compared with a reference solution (τref )
which was obtained by testing all possible solutions and choosing the optimal result, using
a tolerance of 1×10−12. The results can be seen in Fig. 9, where the error tends to stagnate
after a certain tolerance is achieved.
The adaptivity process is capable of precisely identify the parameter that causes themost

impact in the solution, achieving better results for the error sooner than increasing all the
degrees at once. We consider that the adaptivity method works if it is capable of selecting
the parameter that required its polynomial degree increased to achieve the smallest error.
Therefore, as long as the tolerance is small enough, the adaptivity method proposed is
capable of choosing the optimal parameter to be refined.

h- Adaptivity

Wenowstudy the simulations results for h-refinementwhenusing theproposed adaptivity
indicator. Again, just like for the p-refinement, we use the parameter that gives the highest
value ι as the indicator mechanism for the adaptivity process.
One key difference for the h- refinement is that it is also necessary to know where the

element should be divided. Themost natural place to choose is the middle of the element,
but we can instead use the center of gravity of the energy error for that parameter, which is
already being computed for the adaptivity indicator. To confirm that the center of gravity
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Fig. 9 Comparison between the reference simulation τref and the results with different tolerances for the
integral of the energy of the error as a function of the combination of polynomial degrees

Fig. 10 Energy of the error for variable β considering different element break positions. Details for the
optimal break point and the computed using the gravity center of the energy of the error curve for β

of the parameter is the best place to break the element, a simulation with 50 different
break points in the interval ] − 1, 1 [ of the variable β was performed and is presented
in Fig. 10. It is possible to observe that the point that leads to the real minimum value is
really close to the center of gravity of the parameter. This behavior is seen in all others
parameters, for different numbers of elements or degrees, leading us to believe that the
center of gravity provides a good indication on where to divide the element.
The adaptivity process using the proposed indicator is comparedwith the uniformmesh

adaptivity and is shown in Fig. 11. Using the adaptivity indicator leads to better results
than uniformly increasing the number of elements, as it chooses the variable that has the
major influence in the solution to divides its elements. Just like for the p- refinement,
the drawback of this process is the need to repeat the simulation for every new element
division.
We repeat the verification process performed for the p- refinement, determining all

possible solutions to the problem for a given sets of elements and verifying if the method
is able to accurately define which parameter should have its element divided.
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Fig. 11 Comparison between the uniform mesh refinement and the adaptivity method for the integral of
the energy of the error as a function of the element partitions. The detail numbers are the number of
elements in each parameter, respectively k1, k2, β1, γ1, b1, b2

The following computation process was performed:

1. Start with all parameter with single element;
2. Divide the element of the parameter and compute the total error;
3. Return the parameter to the original number of elements and repeat the previous

step for the next parameter, until all the variables were studied;
4. Pick the parameter that results in the smallest error and permanent split the element

of that parameter;
5. Go back to step two until the simulation reaches a predetermined value.

The results for different tolerances (τpgd) were compared with a reference solution (τref )
which was obtained by testing all possible solutions and choosing the optimal result,
using a tolerance of 1 × 10−9. These results are presented in Fig. 12, with the total error
stagnating after a certain tolerance is achieved.
The adaptivity process is capable of precisely identify the parameter that causes themost

impact in the solution, achieving better results for the total error sooner than increasing all
the elements at once. We consider the adaptivity method good if it is capable of selecting
the parameter that needed its element split to achieve the smallest error. Therefore, just
like for the p- refinement, as long as the tolerance is small enough, the adaptivity method
proposed is capable of choosing the optimal parameter to be refined.

Conclusion
This paper defines new strategies to assess the error of a PGD parametric problem. We
give a brief explanation on how the dual analysis of error works, defining errors measures
in terms of the energy of the error and the error in energy. We proceed by introducing
finite element and PGD approximations, focused for the solution of a 1D linear elastic
problem, considering the details for the implementation of a geometric parameter, specific
the length of the sections of the bar we are studying.
We present several examples to evaluate the behavior the PGD approximations. We

compute the integrals of the energyof the error and thepotential energies in theparametric
domain for both PGD and FEM and compare the results with the exact solutions. The
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Fig. 12 Comparison between the reference simulation τref and the results with different tolerances for the
integral of the energy of the error as a function of the element partitions

integral of the energy of the error presented itself as a good error measure, as it bounds
the solutions without any additional conditions, while the error of the energies requires
force or displacement driven problems to obtain bounds of the solutions.
We were able to develop an adaptivity indicator, based on empiric data obtained from

several simulations performed. This adaptivity indicator is capable of capturing the opti-
mal parameter (or space region) to be refined, both in terms of p- and h- refinements,
leading to lower error values than those obtain with a simple uniform refinement.
Additional work is being done to extend the results obtained to a 2D and 3D framework

[13]. We can also extend the results to obtain quantities of interest and bounds of their
errors from for the PGD approximations [14], giving a direct physical meaning to the
solutions obtained.
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