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Abstract

Parametric entities appear in many contexts, be it in optimisation, control, modelling of
random quantities, or uncertainty quantification. These are all fields where reduced
order models (ROMs) have a place to alleviate the computational burden. Assuming
that the parametric entity takes values in a linear space, we show how is is associated to
a linear map or operator. This provides a general point of view on how to consider and
analyse different representations of such entities. Analysis of the associated linear map
in turn connects such representations with reproducing kernel Hilbert spaces and
affine-/linear-representations in terms of tensor products. A generalised correlation
operator is defined through the associated linear map, and its spectral analysis helps to
shed light on the approximation properties of ROMs. This point of view thus unifies
many such representations under a functional analytic roof, leading to a deeper
understanding and making them available for appropriate analysis.
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Introduction
Many mathematical and computational models depend on parameters. These may be
quantities which have to be optimised during a design, or controlled in a real-time setting,
or these parameters may be uncertain and represent uncertainty present in the model.
Such parameter dependent models are usually specified in such a way that an input to
the model, e.g. a process or a field, depends on these parameters. In an analogous fashion,
the output or the “state” of the model will depend on those parameters. Any of these
entities may be called a parametric model. To make things a bit more specific, we look at
an example: Consider the parametric entities in the following equation:

A(μ;u) = f (μ). (1)

HereA(ζ (μ); ·) : V → V is a possibly nonlinear opertor from theHilbert spaceU into itself,
dependent on ζ (μ) ∈ Z—a vector in another Hilbert spaceZ used to specify the system—
u ∈ V is the state of the system described by A, whereas f (μ) ∈ V is the excitation resp.
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action on the system. The parameters μ ∈ M are elements of some admissible parameter
setM. Here f (μ) and ζ (μ) are two examples of such parametric entities; and as the whole
equation depends on μ, we assume that for each μ ∈ M the system Eq. (1) will be well-
posed and allow for the state u(μ) to also be a unique function of the parameters—another
example of a parametric entity.
When one has to do computations with a system such as Eq. (1), one needs computa-

tional representations of the parametric entities such as the “inputs” f (μ), ζ (μ), and also
the to be determined state u(μ), the “output”. Let us denote any of such generic entities as
r(μ); then one seeks a computational expression to compute r(μ) for any given parameter
μ ∈ M. The first questionwhich has to be addressed is how to choose “good co-ordinates”
on the parameter set M. With this we mean scalar functions ξm : M → R, so that the
collection and specification of all {ξm(μ)}m=1,...,M will on one hand specify the particular
μ ∈ M as regards the system Eq. (1), and on the other hand be a computational handle
for the parametric entities r(μ), which now can be expressed as r(ξ1, . . . , ξM). Often the
parameter set is already given as M ⊆ R

d , so that μ = [η1, . . . , ηd] ∈ R
d are directly

given co-ordinates, and the co-ordinate functions ηk may directly serve as co-ordinates.
But often, and not only, but especially, when d ∈ N is a large number, it may be advisable
to choose other co-ordinates ξm, which should be free of possible constraints and be as
“independent” as possible. This is usually part of finding a good computational repre-
sentation for r(μ), and will be addressed as part of our analysis. One may term this as a
re-parametrisation of the problem.
The second question to be addressed is the actual number of degrees-of-freedomneeded

to describe the behaviour of the system Eq. (1) through some finite-dimensional approxi-
mation or discretisation.Often the initial process of discretisation produces a first approx-
imation with a large number of degrees-of-freedom; this initial computational model is
often referred to as a full-scale or high-fidelity model. For many computational purposes
it is necessary to reduce the number of degrees-of-freedom in the computational model
in order to be able to carry out the computations involved in an optimisation or uncer-
tainty quantification in a acceptable amount of time; such computational models are then
termed reduced order models (ROMs). If the high-fidelity model is a parametric model,
the same is required from the ROM ra(μ) ≈ r(μ).
The question of how to produce ROMs for specific kinds of systems like Eq. (1) is an

important one, and is the subject of extensive current research. For the general subject of
model order reduction there is an excellent collection of recent work in [40] and survey in
[11], as well as an introductory text in [39]; see also [20,34] for important contributions.
Besides these general considerations, in the present case parametrised ROMs are of par-
ticular interest. The general survey [5] covers the literature up to 2015 very well, as well as
the later one [10], which is concerned mainly with uncertainty quantification. Excellent
collections on the topic of parametrised ROMs are contained in [4,6]. A recent system-
atic monograph is [27], and important recent contributions are e.g. [9,45,46]. Machine
learning and so-called data-driven procedures have also been used in this context, see the
recent contributions in [28,41–44], but this is at the very beginning.
Here a particular point of view will be taken for the analysis—not to be found in the

recent literature just surveyed—namely the identification of a parametric entity with a
linear mapping defined on the dual space, which is introduced in the “Parametric models
and linear maps” section. This idea has been around for a long time, and has surfaced
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mostly when the “strong” notion of a concept has to be replaced by a “weaker” one. In this
sense onemay see the present point of view as a generalisation of the view of distributions
or generalised functions as linearmappings [21,23]. Theywere used to defineweaknotions
of random quantities [24], and some of the present ideas are also contained in [33]. In
some sense these ideas are already contained in [30]—see also the English translation
[31]—and may most probably be found even earlier. The reason on why to approach the
subject in this way is that for linear operators there is a host of methods which can be used
for their analysis, and it puts all such parametric entities under one “roof”.
It has to be pointed out though, that through the identification of a parametric object

with a linear map, it is linear methods of analysis which are the main interest here, and
they being used to study and analyse those parametric objects. It is one of the objectives
of this note to show the power of linear methods in this kind of analysis. On the other
hand, beyond the question of “generalising” the concept of a parametric objects, another
interesting subject is their approximation—often termed as parametric reduced order
models (parametric ROMs) as described to above. Although there are nonlinear methods
to construct parametric ROMs such as those alluded to in the previous paragraph, here
the emphasis is on linear methods and their use in constructing ROMs. But even though
such a ROM may be constructed by nonlinear methods, this does not mean that linear
methods have no rôle to play, as they can be used in the analysis of such a ROM and its
approximation properties.
Here we want to explain the basic abstract framework and how it applies to ROMs.

This present work is a continuation of [35–38]. The general theory was shown in [38],
and here the purpose is primarily to give an introduction into this kind of analysis, which
draws strongly on the spectral analysis of self-adjoint operators (e.g. [16,22,24]), and an
overview on how to use it in the analysis of ROMs. This is the topic of “Correlation and
representation” section. Coupled systems and their ROMs are the focus of [37], and [35]
is a short note on how this is used for random fields and processes. In the “Structure
preservation” section some examples of such refinements of the basic concept are given.
Aswill be seen, it is very natural to dealwith tensor products in this topic of parametrised

entities. In the form of the proper generalised decomposition (PGD) this idea has been
explained and used in [2,11–13,17]. The topic of tensor approximations [26] turns out to
be particularly relevant here, and recently new connections between such approximations
and machine learning with deep networks have been exposed [14,32]. In “Conclusion”
section we conclude with a recapitulation of the main ideas.

Parametric models and linear maps
This is a gentle introduction and short recap of the developments in [35,37,38], where the
interested reader may findmore detail. To start, and to take a simple motivating example,
one could think of a scalar function r(x,μ), defined on some set X , which depends on
some parameters in a setM—in other words a parametric function. In what follows, this
function will be viewed as a mapping

r : M → U , (2)

so that for each value of μ ∈ M the function w := r(·,μ) ∈ U is a scalar function w(x)
defined on the set X .
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To simplify further and make everything finite-dimensional, assume that we are only
interested in four positions inX , namely x1, x2, x3, x4 ∈ X , or, alternatively and even sim-
pler, that X = {x1, x2, x3, x4} has only four elements, and finally for the sake of simplicity,
that the parameter set has only three elements M = {μ1,μ2,μ3}. Then one can arrange
all the possible values of r(x,μ) with the abbreviation ri,j = r(xi,μj), (i = 1, . . . , 3, j =
1, . . . , 4) in the following matrix:

R = [ri,j]i=1,...,3,j=1,...,4 ∈ R
3×4 .

It is obvious that knowing the function r(x,μ) is equivalent with knowing the matrix R.
As a matrix R obviously corresponds to a linear mapping from U = R

4 to R = R
3, and

one has for any u = [u(x1), u(x2), u(x3), u(x4)]T = [u1, u2, u3, u4]T ∈ U that

Ru = [φ(μ1),φ(μ2),φ(μ3)]T = φ ∈ R
3 = F = R

M, (3)

where φ(μi) = ∑4
j=1 rj(μi)uj—a weighted average of r(·,μi)—is a scalar function φ ∈

F = R
M in the linear space F of scalar functions RM on the parameter set M. If we

denote the function of Eq. (2) in this case by r(·), which for every μ ∈ M is an element
w := r(μ) ∈ U = R

4, then the weighted average φ ∈ R = R
3 in Eq. (3) obviously satisfies

φ(μi) = r(μi)Tu, so that

Ru = [r(μ1)Tu, r(μ2)Tu, r(μ3)Tu]T = 〈r(·),u〉U = [φ(μ1),φ(μ2),φ(μ3)]T = φ. (4)

Obviously, knowing R is the same as knowing Ru for every u ∈ U = R
4—actually a basis

in U would suffice—which in turn is the same as knowing 〈r(·),u〉U for every u ∈ U .
The point to take away from this simple example is that the parametric function r(x,μ),

where for each parameter value μ ∈ M one has r(·,μ) ∈ U in some linear space U—of
functions on X in this case—is equivalent to a linear map

R : U → F

into a space F ⊆ R
M of scalar functions on the parameter setM.

It is now easy to see how to generalise this further to cases where the setX orM or both
have infinitely many values, and even further to a case where the vector space of functions
U just has an inner product, say given by some integral, so that for u, v ∈ U one has

〈u, v〉U =
∫

X
u(x)v(x)m(dx)

with some measure m on X . Then for each parameter μ ∈ M one has r(·,μ) ∈ U , a
function onX , or in other words an element of the linear space U . In this case one defines
the linear map

R̃ : U → F ⊆ R
M

as

R̃ : u �→
∫

X
u(x)r(x,μ)m(dx) = 〈r(·,μ, u〉U =: φ(μ) ∈ F ⊆ R

M,

which is a linear map from U onto a linear space of scalar functions φ ∈ F ⊆ R
M on the

parameter setM.
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This then is almost the general situation, where one views r : M → V as a map from
the parameters μ ∈ M, where M may be some arbitrary set, into a topological vector
space V . One then defines a linear map

R̃ : V∗ → F ⊆ R
M

from the dual space V∗ onto a space of scalar functions F onM by

V∗ 
 u �→ R̃u = 〈r(μ) | u〉(V ,V∗) =: φ(μ) ∈ F ⊆ R
M,

where 〈· | ·〉(V ,V∗) is the duality pairing between V and its dual space V∗. For the following
exposition of the main ideas we shall take a slightly less general situation by assuming for
the sake of simplicity that the linear space V is in fact a separable Hilbert space with an
inner product 〈·, ·〉U , and use this in the usual manner to identify it with its dual.

Associated linear map

So with a vector-valued map r : M → V , one defines the corresponding associated linear
map R̃ : V → F as

∀v ∈ V : R̃v = 〈r(μ), v〉U =: φ(μ) ∈ F ⊆ R
M. (5)

Obviously only the Hilbert subspace U = cl(spanr(M)) ⊆ V actually reached by the map
r is interesting, whereas U⊥ = ker R̃ ⊆ V is not. Hence from now on we shall only look
at r : M → U , and additionally assume that U = cl(span r(M)), or in other words, that
the vectors {r(μ) | μ ∈ M} = r(M) form a total set in U . The map R̃ is thus formally
redefined as

R̃ : U → R
M. (6)

Again, in the linear spaceRM of all scalar functionsonM, only thepartF = im R̃ = R̃(U )
is interesting.
Allow here a little digression, to point out similarities and analogies to other connected

concepts. First, on the parameter set M, where up to now no additional mathematical
structure was used, we now have the linear space F . This can be viewed as a first step
to introduce some kind of “co-ordinates” on the set M, and is in line with many other
constructs where potentially complicated sets are characterised by algebraic constructs,
such as groups or vector spaces for e.g. homology or cohomology. Even if from the outset
the parameter setM ⊆ R

m is given as some subset of someRm and therefore has already
coordinates, these may not be good ones, and as we shall see, it may be worthwhile to
contemplate re-parametrisations, i.e. choosing some φk ∈ F as “co-ordinates”. These real
valued functions are in general of course not “real co-ordinates”, as they only distinguish
what is being felt by the parametric object r.

Reproducing kernel Hilbert space

The second concept to touch on comes from the idea to use the function spaceF in place
of span r(M): As is easy to see, themap in Eq. (6) is injective, hence invertible on its image
F = imR̃ = R̃(U ), and this may be used to define an inner product on F as

∀φ,ψ ∈ F 〈φ,ψ〉R := 〈R̃−1φ, R̃−1ψ〉U , (7)
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and to denote the completion of F with this inner product by R = clF ⊆ R
M. One

immediately obtains that R̃−1 is a bijective isometry between spanimr and F , hence
extends to a unitary map R̄−1 between U and R, and the same hold for R̃, the extension
being denoted by R̄.
Given the maps r : M → U and R̄ : U → R, one may define the reproducing kernel

[7,29] given by �(μ1,μ2) := 〈r(μ1), r(μ2)〉U . It is straightforward to verify that �(μ, ·) ∈
F ⊆ R, and span{�(μ, ·) | μ ∈ M} = F , as well as the reproducing property φ(μ) =
〈�(μ, ·),φ〉R for all φ ∈ F . Another way of stating this reproducing property is to say that
the linear mapR 
 φ(μ1) �→ 〈�(μ2, ·),φ〉R = φ(μ2) ∈ R for all φ ∈ R is the identity IR
on R. An abstract way of putting this using the adjoint R̄∗ = R̄−1 of the unitary map R̄
would be to note that that map is in fact R̄R̄∗ = R̄R̄−1 = IR.
With the reproducing kernel Hilbert space (RKHS)R one can build a first representation

and thus obtain a relevant “co-ordinate system” forM. As U is separable, it has a Hilbert
basis or complete orthonormal system (CONS) {yk}k∈N. As R̄ is unitary, the set {ϕk =
R̄yk}k∈N is a CONS inR.
With this, the unitary operator R̄, its adjoint or inverse R̄∗ = R̄−1, and the parametric

element r(μ) become [38]

R̄ =
∑

k
ϕk ⊗ yk ; i.e. R̄(u)(·) =

∑

k
〈yk | u〉Uϕk (·), (8)

R̄∗ = R̄−1 =
∑

k
yk ⊗ ϕk ; r(μ) =

∑

k
ϕk (μ)yk =

∑

k
ϕk (μ) R̄∗ϕk . (9)

Observe that the relations Eqs. (8), (9) exhibit the tensorial nature of the representation
mapping. One sees that model reductions may be achieved by choosing only subspaces
of R, i.e. spanned by a—typically finite—subset of the CONS {ϕk}k . Furthermore, the
representation of r(μ) in Eq. (9) is linear in the new “parameters” ϕk .

Coherent states

The third concept one should mention in this context is the one of coherent states, e.g.
see [1,3]. In this development from quantum theory, these quantum states were initially
introduced as eigenstates of certain operators, and the name refers originally to their high
coherence, minimum uncertainty, and quasi classical behaviour. What is important here
is that the idea has been abstracted, and represents overcomplete sets of vectors or frames
{r(μ) | μ ∈ M} in a Hilbert space U , which depend on a parameter μ ∈ M from a
locally compact measure space. This space often has more structure, e.g. a Lie group,
and the coherent states are connected with group representations in the unitary group
of U , i.e. if μ �→ U (μ) ∈ L (U ) is a unitary representation, the coherent states may be
defined by r(μ) = U (μ)w for some w ∈ U . There are usually further requirements like
weak continuity for the map M 
 μ �→ r(μ) ∈ U , and that these coherent states form a
resolution of the identity, in that one has (weakly)

IU =
∫

M
r(μ) ⊗ r(μ)	 (dμ),

where 	 is a measure on M—naturally defined on some σ -algebra of subsets of M, a
detail which needs no further mention here.We shall leave this topic here, and come back
to similar representations later, but note in passing the tensor product structure under
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the integral. The above requirement of the resolution of the identity may sometimes be
too strong, and one often falls back to the case of RKHS discussed above.

Reducedmodels

As was noted in the introduction, the emphasis is here on linear methods of analysis. The
nonlinear construction of ROMs is outside the scope of this paper. Accordingly, in the
following “Correlation and representation” section, only linear methods of constructing
ROMs ra(μ)whichoffer an approximate versionof the full parametric objects ra(μ) ≈ r(μ)
will be touched upon. One possibility of producing such a ROM was already mentioned
above by letting the sum in Eq. (9) run over fewer terms.
To actually construct a ROM, usually auxiliary information on what is important in

the approximation will be used, see “Correlation and representation” section, where a
second inner product will be introduced on the space RM of scalar functions of M for
this purpose. Then the essentially same associated linear map R of a parametric object
r(μ) is defined formally in Eq. (10). But whatever themethod of construction for the ROM,
assume now that M 
 μ �→ ra(μ) ∈ U is such an approximate or reduced order model
(ROM) of r(μ). The linear methods to be explained later still can be used in the analysis of
the approximation properties of the ROM. As any parametric map (M → U ), the ROM
ra(μ) thus has an associated linear map Ra, defined similarly as in Eq. (5), or rather Eq.
(10).
As the associated linear maps carry all the relevant information, the analysis of both

the original parametric object r(μ), and the comparison and analysis of accuracy of the
approximation ra(μ), can be carried out in terms of the associated linear maps R and Ra.
Thus, to analyse the difference between r(μ) and ra(μ), one may look at the difference
between the the associated linear maps, R and Ra.
A slightly different but related way is to look at the error rδ(μ) = r(μ)−ra(μ). This error

is again a parametric map (M → U ), and thus has an associated linear map Rδ defined
analogously as in Eq. (10). One may then use linear methods such as the ones presented
here to analyse the linear map Rδ. A moments thought shows the close relation between
these two approaches, as obviously Rδ = R − Ra.

Possible generalisations

It is generally assumed here that the parametric object r : M → U is amapping, i.e. there
is only one value r(μ) ∈ U for each μ ∈ M. This assumption is in line with assuming that
in Eq. (1) the problem is well-posed for each μ ∈ M, this makes the state or solution u(μ)
again a function ofμ ∈ M. There are several interesting situations where this assumption
may no longer hold, and some of these are briefly sketched here.
One such situation is the branching of solutions, like e.g. buckling or other instabilities,

or spontaneous symmetry breaking.Oneway to look at such a situation is to realise that the
set of parametersM is not “good” in the vicinity of such occurrences. In the description of
these parameters one then has an unfolding in the sense of catastrophe theory, in that the
solution u(μ) of e.g. Eq. (1) lies in this case actually on a manifold, and the parameter set
is not “good” in the sense that it is not a valid coordinate system here, and one needs a re-
parametrisation. The usual way of attack for such a situation is again through the analysis
of linear maps, like e.g. the derivative Dμu(μ) in the case of differentiable dependence.



H. G. Matthies and R. Ohayon Adv. Model. and Simul. in Eng. Sci.           (2020) 7:41 Page 8 of 22

Instead of the simple vector space U one would have to consider a manifold where U or a
subspace could be a tangent space.
Another situation where there is an apparent loss of uniqueness is when phenomena

like irreversible behaviour—a typical simple case of this is plasticity—or hysteresis like
the magnetisation of ferro-magnetic materials occur. To take plasticity as a simple but
typical example, the model described by Eq. (1) would be the equilibrium of a mechanical
system, f (μ) would be the loading, and u(μ) would be the displacement. The parameter
μ ∈ M could be envisaged like a time-like variable describing the loading program. It is
then well known that the displacement u(μ) alone does not describe the complete state
of the system, and that one may need additional so-called phenomenological or internal
variables q(μ) to describe the state of the system, and in addition an evolution law for these
internal variables. Similar remarks apply in the case of hysteresis, like The system state
would then better be described by r(μ) = (u(μ), q(μ)), and this would be the parametric
object to be analysed, and where one would like to produce ROMs for.
One topic which becomes important in these situations, and which is touched on briefly

in the “Structure preservation” section, is structure preservation. This means that the
ROM system should in principle display certain salient features of the full model. In the
case of solution branching and catastrophes described earlier that could mean that the
ROM should be a able to reproduce these kind of behaviours. Similarly, in the case of
irreversibility and hysteresis the ROM would be required to in principle reproduce such
behaviour which involves energy storage and dissipation. The detailed treatment of such
behaviours is beyond the scope of the present work, but the general principles laid out
here are obviously equally applicable.

Correlation and representation
In what was detailed up to now in the previous “Parametric models and linear maps”
section with regard to the RKHS, was that the structure of the Hilbert space was carried
reproduced on the subspace R ⊆ R

M of the full function space. In the remarks about
coherent states one could already see an additional structure, namely a measure	 onM.
This measure structure can be used to define the subspaceA := L0(M,	 ) of measurable
functions, as well as its Hilbert subspace of square-integrable functions Q := L2(M,	 )
with associated inner product

〈φ,ψ〉Q :=
∫

M
φ(μ)ψ(μ) 	 (dμ).

We shall simply assume here that there is a Hilbert space Q ⊆ R
M of functions with

inner product 〈·, ·〉Q, whichmay ormay not come from an underlyingmeasure space. The
associated linear map R̃ : U → R, essentially defined in Eq. (5) with range the RKHS R,
will now be seen as a map R : U → Q into the Hilbert spaceQ, i.e. with a different range
with different inner product 〈·, ·〉Q from the RKHS inner product 〈·, ·〉R on R. One may
view this inner product as away to tell what is important in the parameter setM: functions
φ with largeQ-norm are considered more important than those where this norm is small.
The map R : U → Q is thus generally not unitary any more, but for the sake of simplicity,
we shall assume that it is a densely defined closed operator, see e.g. [16]. As it may be only
densely defined, it is sometimes a good idea to define R through a densely defined bilinear
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form in U ⊗ Q:

∀u ∈ domR,φ ∈ Q : 〈Ru,φ〉Q := 〈〈r(·), u〉U ,φ〉Q. (10)

Following [33,35,37,38], one now obtains a densely defined map C in U through the
densely defined bilinear form, in line with Eq. (10):

∀u, v : 〈Cu, v〉U := 〈Ru, Rv〉Q. (11)

The map C = R∗R—observe that now the adjoint is w.r.t. the Q-inner product—may be
called the “correlation” operator, and is by construction self-adjoint and positive, and if R
is bounded resp. continuous, so is C .
In the above case that the Q-inner product comes from a measure, one has from Eq.

(11)

〈Cu, v〉U =
∫

M
〈r(μ), u〉U 〈r(μ), v〉U 	 (dμ), i.e. C = R∗R =

∫

M
r(μ) ⊗ r(μ) 	 (dμ).

This is reminiscent of what was required for coherent states. But it also shows that if 	

were a probability measure—i.e. 	 (M) = 1—with the usual expectation operator

E (φ) :=
∫

M
φ(μ) 	 (dμ),

then the above would be really the familiar correlation operator [33,35] E (r ⊗ r) of the
U-valued random variable (RV) r, therefore from now on we shall simply refer toC as the
correlation operator, even in the general case not based on a probability measure.
The fact that the correlation operator is self-adjoint and positive implies that its spec-

trum σ (C) ⊆ R
+ is real and non-negative. This will be used when analysing it with any of

the versions of the spectral theorem for self-adjoint operators (e.g. [16]). The easiest and
best known version of this is for finite dimensional maps.

Finite dimensional beginnings

So let us return to the simple example at the beginning of the “Parametric models and
linear maps” section where the associated linear map can be represented by a matrix R.
If we remember the each row rT(μj) is the value for the vector r(μ) for one particular
μ ∈ M, we see that the matrix can be written as

R = [r(μ1), . . . , r(μj), . . . ]T ,

and that the rows are just “snapshots” for different valuesμj .What is commonly done now
is the so-called method of proper orthogonal decomposition (POD) to produce a ROM.
ThematrixR—togeneralise a bit, assume it of sizem×n—canbe decomposed according

to its singular value decomposition (SVD)

R = ΦΣV T =
min(m,n)∑

k=1
ςk φk ⊗ vk , (12)

where the matrices Φ = [φk ] and V = [vk ] are orthogonal with unit length orthogonal
columns—right and left singular vectors—φk resp. vk , and Σ = diag(ςk ) is diagonal
with non-negative diagonal elements ςk , the singular values. For clarity, we arrange the
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singular values in a decreasing sequence, ς1 ≥ ς2 ≥ · · · ≥ 0. It is well known that
this decomposition is connected with the eigenvalue or spectral decomposition of the
correlation

C = RTR = VΣΦTΦΣV T = VΣ2V T =
min(m,n)∑

k=1
ς2
k vk ⊗ vk , (13)

with eigenvalues ς2
k , eigenvectors vk , and its companion

CQ := RRT = ΦΣ2ΦT =
min(m,n)∑

k=1
ς2
k φk ⊗ φk , (14)

with the same eigenvalues, but eigenvectors φk . The representation is based on RT , and
its accompanying POD or Karhunen–Loève decomposition:

RT =
min(m,n)∑

k=1
ςk vk ⊗ φk , r(μj) =

min(m,n)∑

k=1
ςk vk ⊗ φk (μj), (15)

where φk (μj) = φ
j
k , and φk = [φ1

k , . . . ,φ
j
k , . . . ]

T .
The second expression in Eq. (15) is a representation for r(μ), and that is the purpose of

the whole exercise. Similar expressions may be used as approximations. It clearly exhibits
the tensorial nature of the representation, which is also evident in the expressions Eqs.
(12), (13), and (14). One sees here that this is just the j-th column of RT , so that with the
canonical basis in Q = R

m, e(m)
j = [δij]T with the Kronecker-δ, that expression becomes

just

r(μj) = RTe(m)
j ; and r ≈ ra = RTψ (16)

by taking other vectors ψ inQ = R
m to give weighted averages or interpolations.

The general picture which emerges is that the matrix R is a kind of “square root”—or
more precisely factorisation—of the correlation C = RTR, and that the left part of this
factorisation is used for reconstruction resp. representation. In any other factorisation
like

C = BTB, with B : U → H, (17)

where B maps into some other space H; the map B will necessarily have essentially the
same singular values ςk and right singular vectors vk as R, and can now be used to have a
representation or reconstruction of r onH via

r ≈ BTh for some h ∈ H. (18)

A popular choice is to use the Choleski-factorisation C = LLT of the correlation into two
triangular matrices, and then take BT = L for the reconstruction.
As we have introduced the correlation’s spectral factorisation in Eq. (13), some other

factorisations come to mind, although they may be mostly of theoretical value:

C = BTB = (VΣ)(VΣ)T = (VΣV T)(VΣV T)T , (19)
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where then the reconstruction map is BT = (VΣ) or BT = (VΣV T). Obviously, in the
second case the reconstruction map is symmetric BT = B = C1/2, and is actually the true
square root of the correlation C .
Other factorisation can come from looking at the companion CQ in Eq. (14). Any

factorisation F : Z → Q or approximate factorisation Fa of

CQ = FF T ≈ FaF T
a (20)

is naturally a factorisation or approximate factorisation of the correlation

C = W TW ≈ W T
aW a, with W = F TΦV T andW a = F T

aΦV T , (21)

whereV andΦ are the left and right singular vectors—see Eq. (12)—of the associatedmap
R resp. the eigenvectors of the correlationC in Eq. (13) and its companionCQ in Eq. (14).
A new ROM representation can now be found for z ∈ Z via

r ≈ ra = W T
az = VΦTFaz. (22)

One last observation here is important: the expressions for r resp. one of its ROMs ra
are linear in the newly introduced parameters or “co-ordinates” φk in Eq. (15), resp. ψ in
Eq. (16), resp. h in Eq. (18) and Eq. (25), as well as z in Eq. (22); which is an important
requirement in many numerical methods.

Reduced order models—ROMs

As has become clear now, and was mentioned before, that approximations or ROMs
ra(μ) to the full model r(μ) ≈ ra(μ) produce associated maps Ra, which are approximate
factorisations of the correlation:

C ≈ RT
aRa.

This introduces different ways of judging how good an approximation is. If one looks at
the difference between the full model r(μ) and ist approximation ra(μ) as a residual, and
computes weighted versions of it

〈r(·) − ra(·), u〉U = (R − Ra)u = Ru − Rau, (23)

then this is just the difference linear map R−Ra applied to the weighting vector u. In Eq.
(15) is was shown that r(·) = ∑min(m,n)

k=1 ςk vk ⊗ φk (·) is a representation. As usual, one
may now approximate such an expressions by leaving out terms with small or vanishing
singular values, say using only ς1, . . . , ς�, getting an approximation of rank �—this also
means that the associated linear map Ra in Eq. (15) has rank �. As is well known [26],
this is the best �-term approximation in the norms of U and Q. But from Eq. (23) one
may gather that the error can also be described through the difference R − Ra. As error
measure one may take the norm of that difference, and, depending on which norm one
chooses, the error is then in—this example approximation —ς�+1 in the operator norm,
or

∑min(m,n)
k=�+1 ςk in the trace- resp. nuclear norm, or

√∑min(m,n)
k=�+1 ς2

k in the Frobenius- resp.
Hilbert–Schmidt norm.
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On the other hand, different approximations or ROMs can now be obtained by starting
with an approximate factorisation

C ≈ BT
aBa, (24)

and introducing a ROM via

r ≈ ra = BT
ah. (25)

Such a representing linear map B, may, e.g. via its SVD, be written as a sum of tensor
products, and approximations Ba are often lower rank expressions, directly reflected in
a reduced sum for the tensor products. As will become clearer at the end of this section,
the bilinear forms Eq. (10) resp. Eq. (11) can sometimes split into multi-linear forms, thus
enabling the further approximation of Ba through hierarchical tensor products [26].

Infinite dimensional continuation—discrete spectrum

For the cases where both U and Q are infinite dimensional, the operators R and C live
on infinite dimensional spaces, and the spectral theory gets a bit more complicated. We
shall distinguish some simple cases. After finite dimensional resp. finite rank operators
just treated inmatrix form, the next simplest case is certainly the case when the associated
linear map R and the correlation operator C = R∗R has a discrete spectrum, e.g. if C is
compact, or a function of a compact operator, like for example its inverse. In this case the
spectrum is discrete (e.g. [16]), and in the case of a compact operator the non-negative
eigenvalues λk of C may be arranged as a decreasing sequence ∞ > λ1 ≥ λ2 ≥ · · · ≥ 0
with only possible accumulation point the origin. It is not uncommon when dealing with
random fields that C is a nuclear or trace-class operator, i.e. an operator which satisfies
the stronger requirement

∑
k λk < ∞. The spectral theorem for an operator with purely

discrete spectrum takes the form

C = R∗R =
∞∑

k=1
λk (vk ⊗ vk ), (26)

where the eigenvectors {vk}k ⊂ U form a CONS in U . Defining a new corresponding
CONS {sk}k in Q via λ

1/2
k sk := Rvk , one obtains the singular value decomposition of R

and R∗ with singular values ςk = λ
1/2
k :

R =
∞∑

k=1
ςk (sk ⊗ vk ) ; i.e. R(u)(·) =

∞∑

k=1
ςk〈vk , u〉U sk (·), R∗ =

∞∑

k=1
ςk (vk ⊗ sk ) ;

r(μ) =
∞∑

k=1
ςk sk (μ)vk =

∞∑

k=1
sk (μ)R∗sk , as R∗sk = ςk vk . (27)

It is not necessary to repeat in this setting of compact maps all the different factorisations
considered in the preceding paragraphs, and especially their approximations, which will
be usually finite dimensional as they are made to be used for actual computations, e.g.
the approximations will usually involve only finite portions of the infinite series in Eqs.
(26) and (27), which means that the induced linear maps have finite rank and essentially
become finite dimensional, so that the preceding paragraphs apply practically verbatim.
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But one consideration is worth to follow up further. In infinite dimensional Hilbert
spaces, self-adjoint operators may have a continuous spectrum, e.g. [16]; this is what is
usually the case when homogeneous randomfields or stationary stochastic processes have
to be represented, This means that the expressions developed for purely discrete spectra
in Eqs. (26) and (27) are not general enough. These expressions are really generalisa-
tions of the last equalities in Eqs. (13) and (12); but is is possible to give meaning to the
matrix equalities in those equations, which simultaneously cover the case of a continuous
spectrum.

In infinite dimensions—non-discrete spectrum

To this end we introduce the so called multiplication operator: Let L2(T ) be the usual
Hilbert space on some locally compact measure space T , and let γ ∈ L∞(T ) be an
essentially bounded function. Then the map

Mγ : L2(T ) → L2(T ); Mγ : ξ (t) → γ (t)ξ (t)

for ξ ∈ L2(T ) is a bounded operatorMγ ∈ L (X ) on L2(T ). Such amultiplication operator
is the direct analogue of a diagonal matrix in finite dimensions.
Using such a multiplication operator, one may introduce a formulation of the spectral

decomposition different from Eq. (26) which does not require C to be compact [16], C
resp. R do not even have to be continuous resp. bounded:

C = R∗R = VMγV ∗, (28)

where V : L2(T ) → U is unitary between some L2(T ) on a measure space T and U . In
case C is continuous resp. bounded, one has γ ∈ L∞(T ). As C is positive, the function
γ is non-negative (γ (t) ≥ 0 a.e. for t ∈ T ). This covers the previous case of operators
with purely discrete spectrum if the function γ is a step function and takes only a discrete
(countable) set of values—the eigenvalues. This theorem is actually quite well known in
the special case that C is the correlation operator of a stationary stochastic process—an
integral operator where the kernel is the correlation function; in this case V is the Fourier
transform, and γ is known as the power spectrum.

General factorisations

To investigate the analogues of further factorisations of R, C = R∗R, and its companion
CQ = RR∗, we need the SVD of R and R∗. They derive generally in the same manner
as for the finite dimensional case from the spectral factorisations of C in Eq. (28) and a
corresponding one for its companion

CQ = RR∗ = ΦMγ Φ∗ (29)

with a unitary Φ : L2(T∗) → Q between some L2(T∗) on a measure space T∗ andQ. Here
in Eq. (29), and in Eq. (28), the multiplication operator Mγ plays the role of the diagonal
matrix Σ2 in Eqs. (13) and (14). For the SVD of R one needs its square root, and as γ is
non-negative, this is simply given by M1/2

γ = M√
γ , i.e. multiplication by √

γ . Hence the
SVD of R and R∗ is given by

R = ΦM√
γV ∗, R∗ = VM√

γ Φ∗. (30)
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These are all examples of a general factorisation C = B∗B, where B : U → H is a
map to a Hilbert space H with all the properties demanded from R—see the beginning
of this section. It can be shown [38] that any two such factorisations B1 : U → H1 and
B2 : U → H2 with C = B∗

1B1 = B∗
2B2 are unitarily equivalent in that there is a unitary

map X21 : H1 → H2 such that B2 = X21B1. Equivalently, each such factorisation is
unitarily equivalent to R, i.e. there is a unitary X : H → Q such that R = XB.
Analogues of the factorisations considered in Eq. (19) are

C = B∗B = (VM√
γ )(VM√

γ )∗ = (VM√
γV ∗)(VM∗√

γV )
∗, (31)

where again C1/2 = VM√
γV ∗ is the square root of C .

And just as in the case of the factorisations ofCQ considered in Eq. (20) and the resulting
factorisation of C in Eq. (21), it is also here possible to consider factorisations of CQ in
Eq. (29), such as

CQ = FF∗ ≈ FaF∗
a , with F, Fa : E → U (32)

with some Hilbert space E , which lead again to factorisations of

C = W ∗W ≈ W ∗
aWa, with W = F∗ΦV ∗ andWa = F∗

aΦV ∗, (33)

and representation on the space E ; with the representing linear maps given by W ∗ =
VΦ∗F resp.W ∗

a = VΦ∗Fa.
Coming back to the situation where C has a purely discrete spectrum and a CONS

of eigenvectors {vm}m in U , the map B from the decomposition C = B∗B can be used
to define a CONS {hm}m in H: hm := BC−1/2vm, which is an eigenvector CONS of the
operator CH := BB∗ : H → H, with CHhm := λmhm, see [38]. From this follows a SVD
of B and B∗ in a manner analogous to Eq. (27). The main result is [38] that in the case
of a nuclear C with necessarily purely discrete spectrum every factorisation leads to a
separated representation in terms of a series, and vice versa. In case C is not nuclear, the
representation of a “parametric object” via a linear map is actually more general [35,38]
and allows to the rigorous and uniform treatment of also “idealised” objects, like for
example Gaussian white noise on a Hilbert space.
In this instance of a discrete spectrum and a nuclear C and hence nuclear CQ, the

abstract equation CQ = ∑
k λk sk ⊗ sk can be written in a more familiar form in the case

when the inner product onQ is given by a measure 	 onM. It becomes for all ϕ,ψ ∈ Q:

〈CQϕ,ψ〉Q =
∑

k
λk〈ϕ, sk〉Q〈sk ,ψ〉Q = 〈R∗ϕ, R∗ψ〉U

=
∫∫

M×M
ϕ(μ1)〈r(μ1), r(μ2)〉Uψ(μ2) 	 (dμ1)	 (dμ2)

=
∫∫

M×M
ϕ(μ1)�(μ1,μ2)ψ(μ2) 	 (dμ1)	 (dμ2)

=
∫∫

M×M
ϕ(μ1)

(
∑

k
λk sk (μ1)sk (μ2)

)

ψ(μ2) 	 (dμ1)	 (dμ2).
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This shows that CQ is really a Fredholm integral operator, and its spectral decomposition
is nothing but the familiar theorem of Mercer [15] for the kernel

�(μ1,μ2) =
∑

k
λk sk (μ1)sk (μ2). (34)

Factorisations of CQ are then usually expressed as factorisations of the kernel �(μ1,μ2),
which may involve integral transforms already envisioned in [30]—see also the English
translation [31]:

�(μ1,μ2) =
∫

Y
ρ(μ1, y)ρ(μ2, y)n(dy),

where the “factors” ρ(μ, y) are measurable functions on the measure space (Y ,n). This is
the classical analogue of the general “kernel theorem” [24].

Connections to tensor products

Although not as obvious as for the case of a discrete spectrum in Eqs. (12), (13), and
(14); and Eqs. (26), (27), such a connection is also possible in the general case of a non-
discrete spectrum. But as the spectral values in the continuous part have no corresponding
eigenvectors, one has to use the concept of generalised eigenvectors [16,22,24,38]. Then
it is possible to formulate the spectral theorem in the following way:

〈Cu, w〉U =
∫

R+
λ 〈u, vλ〉〈w, vλ〉 ν(dλ), or in a weak sense (35)

C =
∫

R+
λ (vλ ⊗ vλ) ν(dλ), (36)

with the spectral measure ν on R
+. Observe the analogy, especially of Eq. (36), with Eq.

(26), where the sum now has been generalised to an integral to account for the continuous
spectrum. Equation (35) is for the case of a simple spectrum; in the more general case of
spectral multiplicity large than one, the Hilbert space U = ⊕

m Um can be written as an
orthogonal sum [16,22,24] of Hilbert subspaces Um, each invariant under the operator C ,
on which an expression like Eq. (35) holds, and on which the spectrum is simple. For the
sake of brevity we shall only consider the case of a simple spectrum now, and avoid writing
the sums over m. The difficulty in going from Eqs. (26) to (36) is that the values λ in the
truly continuous spectrum have no corresponding eigenvector, i.e. vλ /∈ U , but it has to be
found in a generally larger space. The possibility of writing an expression like Eq. (35) rests
on the concept of a “rigged” resp. “equipped” Hilbert space or Gel’fand triple. This means
that one can find [24] a nuclear space K ↪→ U densely embedded in the Hilbert space U ,
such that Eq. (35) holds for all u, v ∈ K. This also means that the generalised eigenvectors
should be seen as linear functionals onK. As the subspaceK is densely embedded in U , it
also holds that U ↪→ K∗ is densely embedded in the topological dualK∗ ofK, i.e. one has
the Gel’fand triple

K ↪→ U ↪→ K∗. (37)

The generalised eigenvectors can now be seen as elements of the dual, vλ ∈ K∗, where the
generalised eigenvalue equation Cvλ = λvλ holds after an appropriate extension of C .
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If an expressions such as Eqs. (35) or (36) have to be approximated numerically, it
becomes necessary to evaluate the integral in an approximate way. The integral is really
only over the spectrum of σ (C) of C , as outside of σ (C) the spectral measure ν vanishes.
Obviously, one would first split the spectrum σ (C) = σd(C)∪ σc(C) into a discrete σd(C)
and a continuous part σc(C). On the discrete part, the integral is just a sum as shown
before. On the continuous part, the integral has to be evaluated by a quadrature formula.
Choosing quadrature points λz ∈ σc(C) and appropriate integration weights wz ∈ R, the
integral can be approximated by

∫

σc(C)
λ 〈u, vλ〉〈w, vλ〉 ν(dλ) ≈

∑

z
wzλz〈u, vλz 〉〈w, vλz 〉,

an expression very similar to the ones used in case of discrete spectra.

Further tensor products

Essentially, the constructions we have been investigating could be seen as elements of the
tensor product U ⊗ Q, or extensions thereof as in the preceding paragraph. Often one,
or both of the spaces U or Q, can be further so factored in tensor products, say without
loss of generality that Q = QI ⊗ QII . This is for example the case for the white-noise
modelling of random fields [29,33,35,36], where one has Q = ⊗∞

m=1 Sm. We just want
to indicate how this structure can be used for further approximation.
It essentially means that the whole foregoing is applied, instead on U ⊗Q, on the tensor

product QI ⊗ QII . Combined with the upper level decomposition on U ⊗ Q, one sees
that this becomes one on U ⊗ (QI ⊗ QII ). The bilinear forms Eqs. (10) and (11) can thus
be written as tri-linear forms, making a direct connection to tensor products and multi-
linear forms [26]. Like in the just cited example of random fields [35,36], often this can
be extended to higher order tensor products in a tree-like manner—by splitting U , orQI
resp. QII . This leads to a hierarchical structure encoded in this binary tree, with the top
product U ⊗ Q the root of the tree, and the individual factors as leaves of the tree. The
higher the order of the tensor product, the better it is possible to exploit dependencies in
low-rank formats [25,26]. This has been recently also pointed out in the tight connections
between deep neural networks [14,32] and such tensor decompositions, which come in
different formats or representations [26]. The indicated binary tree leads to what is known
as a hierarchical Tucker- or HT-format; but obviously themulti-factor tensor product can
be split also in a non-binary fashion, leading to more general tree-based tensor formats
[19]. A completely flat tree structure with only root and leaves corresponds to the well
known canonic polyadic- or CP-decomposition or format, the original proper generalised
decomposition (PGD) falls into this category [2,11–13,17].

Structure preservation
The foregoing development for a parametric model r : M → U did not assume anything
more than that U is a Hilbert space. In “Parametric models and linear maps” section it
was already indicated on how to proceed if U is not a Hilbert space, but a more general
topological vector space. The treatment so far preserves the linear structure of the space
U , and the approximations are using this linear structure as well. The tensor based repre-
sentations using tensors of certain rank already have a more difficult geometric structure
[18], indeed a manifold structure [8].
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But here the concern is about the structure of the image set of the parametric object r(μ)
and its preservation under the approximations or ROMs ra(μ). In case the image set—
hereU—is not a vector space, but say a differential manifold, things are bound to get more
complicated; one possible route of attack seems to use the previous linear methods like
the ones described here to map into the tangent spaces. One instance of this, which seems
to be more accessible, is the case when the image set is a Lie group G. Then everything
can be done in the tangent space at the group identity, the Lie algebra g of the Lie group
G. The Lie algebra is a linear space, and onemay take U := g. One then has to map further
from g to G, but this can be achieved by the canonical exponential map exp : g → G. A
representation or ROM then would have the form

M r,ra−−→ U = g
exp−−→ G.

This has the added advantage that interpolations along straight lines in g, which like in
any Euclidean or unitary space are also geodetics, is mapped into interpolations along
geodetics on the Riemannianmanifold structure on G. We shall come back to a somewhat
similar situation later in this section.

Vector fields

One of the probably simplest situations is when the image set has the structure of V =
U ⊗ E , where E is a finite-dimensional inner-product (Hilbert) space [33]:

r : M → V = U ⊗ E ; r(μ) =
∑

k
rk (μ)rk , (38)

and the rk are maps rk (μ)M → U as before in the “Parametric models and linear maps”
and “Correlation and representation” section, whereas the rk are typically linearly inde-
pendent vectors in E . Often one wants to preserve the structure V = U ⊗ E ; one can
think of this in the following way: U is a space of scalar functions, on some domain in
Euclidean space, and E are vectors from the associated vector space. Hence one could call
this a vector field in some sense. The associated linearmap is then defined a bit differently,
namely as

RE : U → Q ⊗ E ; RE : u �→
∑

k
(Rk (μ)u)rk ,

where the maps Rk : U → Q are defined as before in Eq. (10).
The “correlation” can now be given by a bilinear form; namely the densely defined map

CE in V = U ⊗ E is defined on elementary tensors u = u⊗ u, v = v ⊗ v ∈ V = U ⊗ E as

〈CEu, v〉� :=
∑

k,j
〈Rk (u), Rj(v)〉Q (uTrk ) (rTj v) (39)

and extended by linearity, where each Rk : U → Q is themap associated to rk (μ) as before
for just a single map r(μ). It may be called the “vector correlation”. By construction it is
self-adjoint and positive. The corresponding kernel is not scalar, but has values in E ⊗ E :

�E (μ1,μ2) =
∑

k,j
〈rk (μ1), rj(μ2)〉U rk ⊗ r j . (40)

The eigenvalue problem on for an integral operator with such a kernel—representing the
companion map—is onW = Q ⊗ E .



H. G. Matthies and R. Ohayon Adv. Model. and Simul. in Eng. Sci.           (2020) 7:41 Page 18 of 22

Coupled systems

A in some way similar situation is when the state space U = U1 × U2 comes from a
combined or coupled system [37], and onewants to conserve this information or structure.
The state is represented as u = (u1, u2), and the natural inner product on such a normal
product space is

〈u, v〉U = 〈(u1, u2), (v1, v2)〉U = 〈u1, v1〉U1 + 〈u2, v2〉U2

for u = (u1, u2), v = (v1, v2) ∈ U . This is for two coupled systems, labelled as ‘1’ and ‘2’.
The parametric map is

r : M → U = U1 × U2; r(μ) = (r1(μ), r2(μ)). (41)

The associated linear map is

Rc : U → Q2 = Q × Q; (Rc(u))(μ) = (〈u1, r1(μ)〉U1 , 〈u2, r2(μ)〉U2 ). (42)

As before, these R
2 valued functions on M are like two problem-adapted co-ordinate

systems on the joint parameter set, one for each sub-system. From this one obtains the
“coupling correlation” Cc, again defined through a bilinear form

〈Ccu, v〉U :=
2∑

j=1
〈Rj(uj), Rj(vj)〉Q. (43)

The kernel is then a 2× 2 matrix valued function in an integral operator onW = Q×Q:

�c(μ1,μ2) = diag(〈rk (μ1), rk (μ2)〉Uk ). (44)

Other variations regarding coupled systems are possible, see [37], like when the param-
eter setM = M1 × M2 is a product. The parametric map can then defined as

r : M = M1 × M2 → U = U1 × U2; r((μ1,μ2)) = (r1(μ1), r2(μ2)), (45)

with the associated linear map

R : U → Q = Q1 × Q2; (R(u))(μ) = (〈u1, r1(μ1)〉U1 , 〈u2, r2(μ2)〉U2 ). (46)

The correlation may be defined as before in Eq. (43), and also the kernel onQ = Q1 ×Q2
is as in Eq. (44), but now the first diagonal entry is a function on M1 × M1 only, and
analogous for the second diagonal entry.

Tensor fields

This is similar to the case of vector fields in that the state space is W = U ⊗ A, where
U is a space of scalar valued functions on some set; and A ⊂ B = E ⊗ E , where E is
a finite-dimensional vector space [38], and A is a manifold of tensors in the full tensor
product B of tensors of even degree. IfA were the full tensor product B, which is a linear
finite-dimensional space, there would be no difference to the case of vector fields. But
in case of tensors of even degree are often used in more special situations. Obviously,
such tensors may be identified with linear maps [38]L (E) ∼= B, which will be done here.
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Therefore one may speak of e.g. the manifold of special orthogonal tensors, say SO(E),
and of the manifold of symmetric positive definite tensors Sym+(E).
We shall consider only these two mentioned examples. The special orthogonal tensors

are a Lie groupA := SO(E) with Lie algebra a := so(E), the skew-symmetric tensors, a free
linear space. For S ∈ so(E), the exponential map carries it onto exp(S) ∈ SO(E). Therefore
a parametric element inW = U ⊗ A can first be represented as a parametric element in
the linear space Z = U ⊗ a, where all the preceding statements on vector fields apply. It
is on this intermediary representation that one can define ROMs. Such a representation
is then further mapped through exponentiation:

exp1 : Z = U ⊗ a 
 u ⊗ S �→ u ⊗ exp(S) ∈ U ⊗ A = W .

The associated linear map goes from Z = U ⊗ a to the linear space Y = Q ⊗ a; and
again from here one would use an analogue of the above exponential to map onQ ⊗ A.
The positive definite tensors A := Sym+(E) are not a classical Lie algebra under mul-

tiplication, i.e. concatenation of linear maps, but rather only a Riemannian manifold,
geometrically a convex cone. But there still is an exponential map, carrying the free linear
space of symmetric tensors a := sym(E) onto A := Sym+(E). In fact, for a H ∈ sym(E),
the exponential maps it onto exp(H) ∈ Sym+(E). Thus we have recovered formally the
same situation as for orthogonal tensors just described, and the same procedures may be
followed.

Conclusion
Parametric mappings r : M → U have been analysed with in a variety of settings via the
associated linear map R : U → Q ⊆ R

M. It was shown that the associated linear map
contains the full information present in the parametric entity. It is actually a mathemati-
cally more general concept which allows one to define extreme or idealised such entities;
this is particularly relevant in the field of uncertainty quantification when one has to deal
with stochastic processes and random fields [35].
So instead of analysing a parametric entity r(μ) and ist approximations or ROMs ra(μ)

directly, one may take the cues on how to do this from considering the associated linear
maps R and Ra. One has to say that in practical situations the associated linear maps are
typically not simply available explicitly, but they provide a conceptual framework on how
to deal with the situation. And even though they are not directly available, the desired
quantities needed in such analyses are all in principle computable.
Very closely related to such an associated linear map R is the so-called “correlation

operator” C = R∗R and its companion CQ = RR∗, both self-adjoint and positive definite.
Their spectral analysis turns out to be very helpful in understanding the nature of such
parametric entities, as well as possible ROMs. The very general nature and mathemat-
ical embedding of parametric entities, which also incorporates random fields, is shown
in the different spectral properties of the correlation operator. Such generalised para-
metric entities may yield correlation operators with continuous spectra—as it typically
occurs for homogeneous random fields—and thus this needs the full generality of the
spectral analysis in rigged Hilbert spaces for understanding the spectral analysis in terms
of generalised tensor products. Other factorisations of the correlation, such as C = B∗B,
induce other representations for the parametric entities, and any other representation or
re-parametrisation may be understood in these terms.



H. G. Matthies and R. Ohayon Adv. Model. and Simul. in Eng. Sci.           (2020) 7:41 Page 20 of 22

Preservation of certain structural properties is often very desirable. Examples are given
to show how the general idea can be refined to reflect some linear structures in the repre-
sentation. This even extends to non-linear manifolds if they can be easily parametrised by
linear spaces. Lie groups with their associated Lie algebras are one such example which
is mentioned in a bit more detail. This last point is especially relevant to the representa-
tion of spatially varying or even random material properties, which are typically fields of
symmetric positive tensors. A similar comment applies to “orientation fields”, which are
spatially varying and possibly random fields of orthogonal tensors.
Additionally it is explained how representations in tensor product spaces arise naturally

in such situations, and how this process can be cascaded to produce a tree like structure
for the analysis. Low-rank tensor approximations can thus be used as ROMs, and this
certainly offers fresh new impulses. The same applies tomachine learning and data-driven
approaches, which obviously can also be analysed with the proposed framework. These
deep learning methods have recently been shown to be closely connected with low-rank
tensor approximations, offering some insights and avenues for their analysis. With the
proposed framework of analysing such parametric entities via linear maps, we hope to
introduce a fresh point of view which may lead to new ideas on how to construct and
analyse ROMs.
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