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Abstract

We present and analyze a method for thin plates based on cut Bogner-Fox-Schmit
elements, which are C1 elements obtained by taking tensor products of Hermite
splines. The formulation is based on Nitsche’s method for weak enforcement of
essential boundary conditions together with addition of certain stabilization terms that
enable us to establish coercivity and stability of the resulting system of linear equations.
We also take geometric approximation of the boundary into account and we focus our
presentation on the simply supported boundary conditions which is the most sensitive
case for geometric approximation of the boundary.
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Introduction
The Bogner-Fox-Schmit (BFS) element [6] is a classical C1 thin plate element obtained
by taking tensor products of cubic Hermite splines and removing the interior degrees of
freedom that are zero on the boundary. In this paper, we consider a variant where we
retain these degrees of freedom to obtain a C1 version of theQ3 approximation [23]. This
element is only C1 on tensor product (rectangular) elements, which is a serious drawback
since it severely limits the applicability of the resulting finite element method. However,
on geometries allowing for tensor product discretization it is generally considered to be
one of the most efficient elements for plate analysis, cf. [24, p. 153]. It is also a reasonably
low order element for plates which is very simple to implement, in contrast with triangular
elements which either use higher order polynomials, such as the Argyris element [1], or
macro element techniques, such as the Clough–Tocher element [10]. The construction of
curved versions of these elements for boundary fitting can also be cumbersome, see, e.g.,
[5]. It should be noted that the use of straight line segments for discretizing the boundary
is not to be recommended, not only because of accuracy issues but also due to Babuška’s
paradox for simply supported plates, see [3].
An alternative to C1 approximations for Kirchhoff plates is to either use discontinuous

Galerkin methods [8,15,17,22], or to use mixed finite elements for the Reissner–Mindlin
model with small plate thickness [2,4,12]. These C0 methods alleviate the problem of
boundary approximation. In this paper we present an alternative idea whereC1 continuity
is retained: we develop a cut finite element version, allowing for discretizing a smooth
boundarywhichmay cut through the tensor productmesh in an arbitrarymanner. Adding
stabilization terms on the faces associated with elements that intersect the boundary, we
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obtain a stable method with optimal order convergence.We prove a priori error estimates
which also take approximation of the boundary into account. The focus of the analysis is
on simply supported boundary conditions, the computationally most challenging case.
The paper is organized as follows. In “The Kirchhoff plate” section, we recall the thin

plate Kirchhoff model; in “The finite element method” section we formulate the cut finite
element method; in “Error estimates” section we present the analysis of the method start-
ing with a sequence of technical results leading up to a Strang Lemma and an estimate of
the consistency error and finally a priori error estimates in the energy and L2 norms. In
“Numerics” section,wepresent somenumerical illustrations, and in “Concluding remarks”
section some concluding remarks are included.

The Kirchhoff plate
Consider a simply supported thin plate in a domain � ⊂ R

2 with smooth boundary ∂�.
The displacement u : � → R satisfies

∇ · (σ (∇u) · ∇) = f (1)

where σ (∇v) is the stress tensor

σ (∇v) = κ(ε(∇v) + ν(1 − ν)−1(∇ · (∇v))I = κ(∇ ⊗ ∇v + ν(1 − ν)−1(�v)I)) (2)

with ε(∇v) the strain tensor

ε(∇v) = ((∇v) ⊗ ∇ + ∇ ⊗ (∇v))/2 = ∇ ⊗ ∇v (3)

and κ the parameter

κ = Et3

12(1 + ν)
(4)

with E the Young’s modulus, ν the Poisson’s ratio, and t the plate thickness. Since 0 ≤
ν ≤ 0.5 both κ and ν(1 − ν)−1 are uniformly bounded.
We shall focus our presentation on simply supported boundary conditions

u = 0 on ∂�, Mnn(u) = 0 on ∂� (5)

where the moment tensorM is defined by

M(u) = σ (∇u) (6)

andMab = a · M · b for a, b ∈ R
2. Other conditions, such as clamped boundaries, can be

handled using the same techniques as in the following, cf. [15].
The weak form of (1) and (5) takes the form: find u ∈ V = {v ∈ H2(�) : v = 0 on ∂�}

such that

a(u, v) = l(v) ∀v ∈ V (7)

where

a(v, w) = (σ (∇v), ε(∇w))� = κ(∇ ⊗ ∇v,∇ ⊗ ∇w)� + ν(1 − ν)−1(�v,�w)�) (8)

and l(v) = (f, v)�. The form a is symmetric, continuous, and coercive on V equipped with
the H2(�) norm and it follows from the Lax-Milgram theorem that there exists a unique
solution in V to (7). Furthermore, for smooth boundary and f ∈ L2 we have the elliptic
regularity

‖u‖H4(�) � ‖f ‖� (9)
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The finite element method
Themesh and finite element space

We begin by introducing the following notation.

• Let ˜Th, h ∈ (0, h0], be a family of partitions of R2 into squares with side h. Let ˜Vh be
the Bogner-Fox-Schmit space consisting of tensor products of cubic Hermite splines
on ˜Th. Note that ˜Vh|T = Q3(T ), with Q3(T ) the tensor product P3(I1) ⊗ P3(I2) of
cubic polynomials where T = I1 × I2 ⊂ R

2.
• Let ρ be the signed distance function, positive on the outside and negative on the

inside, associated with ∂� and let Uδ(∂�) = {x ∈ R
2 : |ρ(x)| < δ} be the tubular

neighborhood of ∂� of thickness 2δ. Then there is δ0 > 0 such that the closest
point mapping p : Uδ0 (∂�) → ∂� is a well defined function of the form p(x) =
x − ρ(x)n(p(x)), cf. [14, Section 14.6].

• Let {�h, h ∈ (0, h0]} be a family of approximations of � such that ∂�h ⊂ Uδ0 (∂�) is
piecewise smooth and

‖ρ‖L∞(∂�h) � h4 (10)

‖n(p) − nh‖L∞(∂�h) � h3 (11)

Furthermore, we assume that for each elementT such that ∂�h intersects the interior
of T , i.e. int(T ) ∩ ∂�h �= ∅, the curve segment ∂�h ∩ T is smooth and intersect the
boundary ∂T of T in precisely two different points. Let Xh be the set of all points
where ∂�h is not smooth and note that the number of elements |Xh| in Xh satisfies
|Xh| � h−1.

• Let Th = {T ∈ ˜Th : T ∩ �h �= ∅} be the active mesh and Fh the set of interior faces
in |Th. Let Th,I be the set of elements such that T ⊂ � ∩ �h and let Fh,I be the set
of interior faces in Th,I . Let Th,B = Th \ Th,I and Fh,B = Fh \ Fh,I . For simplicity we
assume that

� ⊂ Oh := ∪T∈ThT (12)

We can always satisfy this assumption by enlarging the active mesh Th if necessary.
• Let Vh be the restriction of ˜Vh to Th. Let Kh = Th ∩ �h be the intersection of the

active elements T with �h.

We illustrate some of these quantities in Fig. 1. Here, ∂�h is indicated by the dotted line;
Th is the union of all elements shown; Th,I consists of the white elements and Th,B the
grey elements.Kh consists of the elements and cut parts of elements inside ∂�h and Fh,B
consists of all element sides on the grey elements excluding those without neighbouring
elements.

The finite element method

The method reads: find uh ∈ Vh such that

Ah(uh, v) = lh(v) ∀v ∈ Vh (13)

The forms are defined by

Ah(v, w) = ah(v, w) + βsh(v, w) (14)

ah(v, w) = (σ (∇v), ε(∇w))�h + (T (v), w)∂�h + (v, T (w))∂�h
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Fig. 1 Illustration of mesh definitions

+ γ h−3(v, w)∂�h (15)

sh(v, w) = h([∇2
nF v], [∇2

nF w])Fh,B + h3([∇3
nF v], [∇3

nF w])Fh,B (16)

lh(v) = (f, v)�h (17)

where

T = (M · ∇)n + ∇tMnt (18)

with sub-indices n and t indicating scalar product with the normal and tangent of ∂�h,
and β , γ are positive parameters which are proportional to κ . Here sh is a stabilization
form involving jumps of the second and third normal derivatives in the direction nF , the
normal to the element face, with

[v] := lim
ε↓0 (v(x + εnF ) − v(x − εnF ))) (19)

which provides necessary stability at the cut elements, see (23). The bilinear form, apart
from the stabilization terms, stems from Nitsche’s method [20], first analyzed for plates
in a discontinuous Galerkin setting in [15].

Error estimates
Basic properties ofAh
The energy norm

Define the following energy norm on V + Vh, with V = H4(Oh),

|||v|||2h = |||v|||2�h
+ β‖v‖2sh + h3‖T (v)‖2∂�h

+ h−3‖v‖2∂�h
(20)

where

|||v|||2�h
= (σ (∇v), ε(∇v))�h (21)

and we employ the standard notation ‖v‖2sh = sh(v, v). In view of (8) we have κ‖∇2v‖2�h
�

|||v|||2�h
, where ∇ jv is the tensor of all j:th order derivatives.
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Stabilization

The stabilization term provides us with the following bound

‖∇ jv‖2Th � ‖∇ jv‖Th,I + h2(2−j)‖v‖2sh , j = 0, 1, 2, 3 (22)

which follows from the standard estimate

‖∇ jv‖2T2 � ‖∇ jv‖2T1 +
p

∑

k=j
h2(k−j)‖[∇kv]‖2F (23)

where T1 and T2 are elements that share the face F , and v|Ti ∈ Pp(Ti), the space of
polynomials of order p. See for instance [16,19] for further details.

Continuity and coercivity

The form Ah is continuous

Ah(v, w) � |||v|||h|||w|||h v, w ∈ V + Vh (24)

which follows directly from the Cauchy-Schwarz inequality, and for γ large enough coer-
cive

|||v|||2h � Ah(v, v) v ∈ Vh (25)

Verification of (25)

We first recall the cut trace inequality

‖v‖2∂�h∩T � h−1‖v‖2T + h‖∇v‖2T v ∈ H1(T ) (26)

see [25] for a derivation. For v ∈ Vh|T = Vh(T ) we have the standard inverse inequality

‖∇kv‖T � hl−k‖∇ lv‖T v ∈ Vh(T ), k ≥ l (27)

which combined with (26) give the cut inverse trace inequality

‖v‖2∂�h∩T � h−1‖v‖2T Vh(T ) (28)

Now, using the inverse trace inequality (28), the inverse inequality (27), followed by the
stabilization estimate (22) we obtain

κ−1h3‖T (v)‖2∂�h
� κh2‖∇3v‖2Th(∂�h) � κ‖∇2v‖2Th(∂�h) (29)

� κ(‖∇2v‖2�h
+ ‖v‖2sh ) � |||v|||2�h

+ κ‖v‖2sh (30)

and thus there is a constant C∗ such that

κ−1h3‖T (v)‖2∂�h
≤ C∗(|||v|||2�h

+ κ‖v‖2sh ) (31)

As a consequence, |||v|||h and |||v|||h,∗, where

|||v|||2h,∗ = |||v|||2�h
+ β‖v‖2sh + h−3‖v‖2∂�h

(32)

are equivalent norms on Vh. We then have

Ah(v, v) = |||v|||2�h
+ β‖v‖2sh+2(T (v), v)∂�h + γ h−3‖v‖2∂�h

(33)
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≥ |||v|||2�h
+ β‖v‖2sh − δκ−1h3‖T (v)‖2∂�h

+ (γ − δ−1κ)h−3‖v‖2∂�h
(34)

≥ (1 − C∗δ)|||v|||2�h
+ (β − κC∗δ)‖v‖2sh + (γ − δ−1κ)h−3‖v‖2∂�h

(35)

and we find that taking δ small enough to guarantee that 1−C∗δ ≥ m > 0, β large enough
to guarantee that β − κC∗δ ≥ m, and γ large enough to guarantee that γ − δ−1κ ≥ m
leads to Ah(v, v) � |||v|||2h,∗ � |||v|||2h.

Poincaré inequality

We have the following Poincaré inequality

‖v‖H2(Th) � |||v|||h v ∈ Vh (36)

Verification of (36)

Using the stabilization estimate (22) and the fact that Th,I is covered by �h we have

‖∇2v‖2Oh
� ‖∇2v‖2�h

+ ‖v‖2sh � |||v|||2h (37)

Next to estimate ‖v‖2Oh
we again use the stabilization estimate (22) and the fact that Th,I

is covered by �,

‖v‖2H1(Oh)
� ‖v‖2H1(�) + ‖v‖2sh (38)

Let P1,� : L2(�) → P1(�) be the L2 projection onto the space of linear functions on �.
Then for v ∈ H2(�), and in particular for v ∈ Vh ⊂ H2(�), we have the Poincaré estimate

‖v − P1,�v‖H1(�) � ‖∇2v‖� (39)

and using the trace inequality ‖w‖∂� � ‖w‖H1(�) with w = v − P1,�v, we obtain

‖v − P1,�v‖∂� � ‖v − P1,�v‖H1(�) � ‖∇2v‖� (40)

Note that the constants are independent of the mesh parameter since � is fixed. We then
have

‖v‖2H1(�) � ‖(I − P1,�)v‖2H1(�) + ‖P1,�v‖2H1(�) (41)

� ‖∇2v‖2� + ‖P1,�v‖2∂�h
(42)

� ‖∇2v‖2�h
+ ‖v‖2sh + ‖v‖2∂�h

︸ ︷︷ ︸

i�|||v|||2h

+‖(I − P1,�)v‖2∂�h
︸ ︷︷ ︸

ii�|||v|||h2

(43)

which together with (37) proves (36). Here we estimated term i using the stabilization
(22),

‖∇2v‖2� � ‖∇2v‖2Oh
� ‖∇2v‖2�h

+ ‖v‖2sh � |||v|||2h (44)

Finally, to estimate ii we recall the following technical estimate, which we prove in the
“Appendix” of this paper see also the appendix of [9],

‖w‖2∂�h
� ‖w‖2∂� + δ1/2‖∇w‖2Uδ (∂�)∩Oh

w ∈ H1(Oh) (45)
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where δ ∼ h4, bounds the distance between ∂� and ∂�h, see (10). Note that the finite
element functions are defined on Oh, that contains both � and �h, and Vh ⊂ H1(Oh).
Setting w = (I − P1,h)v, using (40), the stabilization estimate (22), we obtain

‖(I − P1,h)v‖2∂�h
� ‖(I − P1,h)v‖2∂� + δ1/2‖∇(I − P1,h)v‖2Uδ (∂�)∩Oh

(46)

� ‖∇2v‖2� + h2‖∇(I − P1,h)v‖2Oh
(47)

� ‖∇2v‖2� + h2(‖∇(I − P1,h)v‖2� + ‖(I − P1,h)v‖2sh ) (48)

� ‖∇2v‖2� + h2(‖∇2v‖2� + ‖v‖2sh ) (49)

� ‖∇2v‖2�h
+ h2‖v‖2sh (50)

� |||v|||2h (51)

where we finally used (44) to estimate ‖∇2v‖� and the fact that ‖(I − P1,�)v‖sh = ‖v‖sh .
This completes the verification. ��

Interpolation

Let Ih : C1(R2) → Vh be the standard element wise interpolant associated with the
degrees of freedom in Vh. Then we have the estimate

‖v − Ihv‖Hm(T ) � h4−m‖v‖H4(T ) m = 0, 1, 2, 3 (52)

To construct an interpolation operator for cut elements we recall that given v ∈ Hs(�)
there is an extension operator E : Hs(�) → Hs(R2) such that

‖Ev‖Hs(R2) � ‖v‖Hs(�) (53)

for all s > 0, cf. [21]. For simplicity wewill often use the notationw = Ew for the extension
of w ∈ Hs(�) to R

2.
We define the interpolation operator

C1(�) � v �→ Ih(Ev) = πhv ∈ Vh (54)

Combining (52) with (53) we obtain the interpolation error estimate

‖v − πhv‖Hm(Th) � h4−m‖v‖H4(�) m = 0, 1, 2, 3 (55)

For the energy norm we have the estimate

|||v − πhv|||h � h2‖v‖H4(�) (56)

Verification of (56)

Let η = v − πhv and recall that

|||η|||2h = |||η|||2�h
+ ‖η‖2sh + h3‖T (η)‖2∂�h

+ h−3‖η‖2∂�h
(57)

The first term is directly estimated using the interpolation error estimate (55),

‖η‖2�h
� h4‖v‖2H4(�) (58)

For the second term we employ the trace inequality

‖w‖2∂T � h−1‖w‖2T + h‖∇w‖2T (59)
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to conclude that

‖η‖2sh =
3

∑

j=2
h2j−3‖[∇ j

nF η]‖2Fh,B

�
3

∑

j=2
h2j−3(h−1‖∇ j

nF η‖2Th(Fh,B) + h‖∇ j+1
nF η‖2Th(Fh,B) (60)

�
3

∑

j=2
h2j−4(‖∇ jη‖2Th + h2‖∇ j+1η‖2Th )

�
3

∑

j=2
h2j−4h2(4−j)‖v‖2H4(�) � h4‖v‖2H4(�) (61)

For the third term we use the cut trace inequality (26) and the interpolation estimate (55),

h3‖T (η)‖2∂�h
� h3(h−1‖∇3η‖2Th(∂�h) + h‖∇4η‖2Th(∂�h)) (62)

� h2‖∇3η‖2Th + h4‖∇4η‖2Th � h4‖v‖2H4(�) (63)

where Th(Fh,B) ⊂ Th is the set of elements with a face in Fh,B. Finally, the fourth term is
estimated in the same way as the third,

h−3‖η‖2∂�h
� h−3(h−1‖η‖2Th(∂�h) + h‖∇η‖2Th(∂�h)) (64)

� h−4‖η‖2Th + h−2‖∇η‖2Th � h4‖v‖2H4(�) (65)

which completes the verification of (56). ��

Consistency error estimate

Lemma 1 Let u be the exact solution to (1) with boundary conditions (5), and uh the finite
element approximation defined by (13), then

|||u − uh|||h � |||u − πhu|||h + sup
v∈Vh\{0}

Ah(πhu, v) − lh(v)
|||v|||h (66)

Proof Adding and subtracting an interpolant we obtain

|||u − uh|||h ≤ |||u − πhu|||h + |||πhu − uh|||h (67)

Using coercivity we can estimate the second term on the right hand side as follows

|||πhu − uh|||h ≤ sup
v∈Vh\{0}

Ah(πhu − uh, v)
|||v|||h (68)

≤ sup
v∈Vh\{0}

Ah(πhu − u, v)
|||v|||h + sup

v∈Vh\{0}
Ah(πhu − uh, v)

|||v|||h (69)

≤ |||πhu − u|||h + sup
v∈Vh\{0}

Ah(πhu, v) − lh(v)
|||v|||h (70)

where we added and subtracted u in the numerator and for the first term used the estimate
Ah(πhu−u, v) � |||πhu−u|||h|||v|||h and for the second used (13) to eliminate uh. Combining
the estimates the desired result follows directly. ��
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Lemma 2 Let ϕ ∈ H4(R2) and v ∈ V + Vh, then

(∇ · (M(ϕ) · ∇), v)�h = (M(ϕ), ε(∇v))�h − (Mnn(ϕ),∇nv)∂�h (71)

+ (T (ϕ), v)∂�h + ([Mnt ], v)Xh (72)

where, for x ∈ Xh (the set of points where ∂�h is not smooth), [Mnt ]x is defined by

[Mnt ]|x = M(x)n+
h t

+
h

− M(x)n−
h t

−
h

(73)

with n±
h and t±h the left and right limits to tangent and normal to the discrete boundary

∂�h at x ∈ Xh. In the case of C1 boundary (v, [Mnt ])Xh = 0.

Proof Using the simplified notation M = M(ϕ) and T = T (ϕ) for brevity we obtain by
integrating by parts

(∇ · (M · ∇), v)�h = ((M · ∇)n, v)∂�h − (M · ∇ ,∇v)�h (74)

= ((M · ∇)n, v)∂�h − (Mn,∇v)∂�h + (M, ε(∇v))�h (75)

Splitting ∇v in tangent and normal contributions on ∂�h, we have the identity

(∇v,Mn)∂�h∩T = (∇nv,Mnn)∂�h∩T + (∇tv,Mnt )∂�h∩T (76)

= (∇nv,Mnn)∂�h∩T − (v,∇tMnt )∂�h∩T + (v,Mntt · ν)∂(∂�h∩T ) (77)

where we integrated by parts along the curve segments ∂�h ∩T , and ν is the exterior unit
tangent vector to ∂�h ∩ T . Summing over all elements that intersect ∂�h, we obtain the
identity

(∇v,Mn)∂�h = (∇nv,Mnn)∂�h − (v,∇tMnt )∂�h + (v, [Mnt ])Xh (78)

Combining (75) and (78), we obtain

(v,∇ · (M · ∇))�h = (ε(∇v),M)�h − (∇nv,Mnn)∂�h (79)

+ (v, (M · ∇)n + ∇tMnt )∂�h − (v, [Mnt ])Xh (80)

and setting T = (M · ∇)n + ∇tMnt we obtain the desired result. ��

Lemma 3 Let u be the exact solution to (1) with boundary conditions (5), then there is a
constant such that for all v ∈ Vh,

Ah(u, v) − lh(v) � h4‖u‖H4(�)|||v|||h,� � h5/2‖u‖H4(�)|||v|||h (81)

where |||v|||h,� is the norm

|||v|||2h,� = |||v|||2h + ‖T (v)‖2∂�h
+ h−6‖v‖2∂�h

≤ (1 + h−3)|||v|||2h (82)
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Proof Using the definition (14), the fact that sh(u, v) = 0 for u ∈ H4(�), and the partial
integration identity (71) we obtain

Ah(u, v) − lh(v) = (M(u), ε(∇v))�h + (T (u), v)∂�h + (u, T (v))∂�h (83)

+ γ h−3(u, v)∂�h − (∇ · (M(u) · ∇), v)�h (84)

= (Mnn(u),∇nv)∂�h + ([Mnt ], v)Xh (85)

+ (u, T (v))∂�h + γ h−3(u, v)∂�h (86)

= I + II + III + IV (87)

Before turning to the estimates of I−IV wefirst note that forw ∈ H1
0 (�), with extension

to R
2 also denoted by w, we may apply (45) and the stability (53) of the extension that

‖w‖2∂�h
� δ‖w‖2H1(Uδ (∂�)) � δ‖w‖2H1(Uδ0 (∂�)∪�) � δ‖w‖2H1(�) (88)

with δ ∼ h4. Note that here we do not need to restrict the norms to Oh as in (45)
since the extended function is defined on R

2. See [9, Appendix] for detailed derivations.
Furthermore, for more regular functions such that w ∈ H2(�) with w = 0 on ∂�, we may
strengthen the estimate as follows

‖w‖2∂�h
� δ‖∇w‖2L2(Uδ (∂�)) � δ2 sup

t∈(−δ,δ)
‖∇w‖2∂�t � δ2‖w‖H2(�) (89)

where ∂�t = {x ∈ R
2|ρ(x) = t} for t ∈ (−δ0, δ0), are level sets of ρ, and again δ ∼ h4. In

the last step we used a version of (45) to conclude that

‖∇w‖2∂�t � ‖∇w‖2∂� + t‖∇2w‖2Ut (∂�)

� ‖w‖2H2(�) + δ0‖∇2w‖2Uδ0 (∂�) � ‖w‖2H2(�) (90)

where we used a trace inequality on � and the stability (53) of the extension operator.

I. Using Cauchy-Schwarz followed by (89) with w = Mnn(u), we get

(Mnn(u),∇nv)∂�h � ‖Mnn(u)‖∂�h‖∇nv‖∂�h � δ‖u‖H4(�)|||v|||h (91)

Here we used the estimate

‖∇nv‖∂�h � |||v|||h (92)

which we derive by applying (45) with w = ∇v,

‖∇nv‖2∂�h
� ‖∇v‖2∂�h

� ‖∇v‖2∂� + δ‖∇2v‖2Uδ (∂�)∩Oh
(93)

� ‖v‖2H2(�) + δ‖∇2v‖2Uδ (∂�)∩Oh
� ‖v‖2Oh

� |||v|||2h (94)

where we used the trace inequality ‖∇v‖∂� � ‖∇v‖H1(�) � ‖v‖H2(�), and at last the
Poincaré inequality (36).
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II. Using the assumption on the accuracy of the discrete normal (11) we have for each
x ∈ Xh,

|[Mnt ]| = M+
nhth − M−

nhth = M+
nhth − Mnt + Mnt − M−

nhth (95)

where the first term on the right hand side can be estimated as follows

|M+
nhth − Mnt | ≤ |(nh − n) · M · th| + |n · M · (th − t)| � h3|M| (96)

We then have

([Mnt ], v)Xh ≤ ‖[Mnt ]‖Xh‖v‖Xh � h3‖M‖Xh‖v‖Xh

� h2h1/2‖M‖Xhh
1/2‖v‖Xh (97)

� h2‖M‖L∞(Xh)h
2|||v|||h � h4‖u‖H4(�)|||v|||h (98)

where we used the fact that the number of elements, denoted by |Xh|, in Xh satisfies
|Xh| ∼ h−1, and the Sobolev inequality [13] followed by the stability (53) of the
extension operator to obtain

h‖M‖2L∞(Xh) � ‖u‖2W 2∞(R2) � ‖u‖2H3+ε (R2) � ‖u‖2H4(R2) � ‖u‖2H4(�) (99)

and the estimate

h‖v‖2Xh
� h3|||v|||2h v ∈ Vh (100)

To verify (100) we shall employ an inverse inequality locally using a linear approxi-
mation of the boundary. To that end consider x ∈ Xh and let Br(x) be a ball of radius
r ∼ h centred at x. Let Tx ∈ Th be one of the elements such that x ∈ ∂Tx ∩ ∂�h
and given v ∈ Vh let vx ∈ Q3(R2) be the extension to R

2 of v|Tx ∈ Q3(Tx) such that
vx|Tx = v|Tx . Let �x be a line through x such that ‖ρ‖L∞(�x∩Br (x)) � h2. Such a line
exists since ∂� is smooth and linear approximation is of second order locally. We
then have

h‖v‖2Xh
�

∑

x∈Xh

h|v(x)|2 �
∑

x∈Xh

‖vx‖2�x∩Br (x) (101)

where we used the fact that |�x ∩ Br(x)| ∼ h. In order to employ a local version of
(45) we define the cylindrical tubular neighborhood

Uδ,x = Uδ1 (p(�x ∩ Br(x))) δ ∈ (0, δ0] (102)

over p(�x ∩ Br(x)) ⊂ ∂�, where p : Uδ0 (∂�) → ∂� is the closest point mapping.
Then there is δ1 ∼ h2 such that �x ∩ Br(x) ⊂ Uδ1 ,x and ∂�h ∩ Uδ0 ,x ⊂ Uδ1 ,x, since
�x is O(h2) accurate locally and ∂�h is O(h4) accurate. We obtain

‖vx‖2�x∩Br (x) � ‖vx‖2∂�h∩Uδ1 ,x
+ δ1‖∇vx‖2Uδ1 ,x

(103)

� ‖vx‖2∂�h∩Uδ1 ,x
+ δ1‖∇vx‖2Tx (104)

� ‖v‖2∂�h∩Uδ1 ,x
+ ‖vx − v‖2∂�h∩Br (x) + δ1‖∇v‖2Tx (105)
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then we added and subtracted v in the first term, used the triangle inequality, the
inverse estimate ‖∇vx‖2Uδ1 ,x

� ‖∇vx‖Tx which holds since vx is a polynomial, and
Uδ1 ,x ⊂ Br′ (x) for some ball of radius r′ ∼ h, and finally we noted that vx = v on Tx.
Inequality (103) is an application of (154). Inserting (105) in (101) we get

h‖v‖2Xh
�

∑

x∈Xh

‖v‖2∂�h∩Uδ1 ,x
+ ‖vx − v‖2∂�h∩Uδ1 ,x

+ δ1‖∇v‖2Tx (106)

� ‖v‖2∂�h
+

∑

x∈Xh

‖vx − v‖2∂�h∩Br (x)
︸ ︷︷ ︸

i�h4‖v‖2sh

+
∑

x∈Xh

δ1‖∇v‖2Tx

︸ ︷︷ ︸

ii�h3‖v‖2
H2(�)

+h4‖v‖2sh

(107)

� ‖v‖2∂�h
+ h3‖v‖2H2(�) + h4‖v‖2sh (108)

� h3|||v|||2h (109)

which establishes (100). Here we used the fact that the number of cylindersUδ1 ,y, y ∈
Xh, that intersectUδ1 ,x is uniformly bounded independent of x ∈ Xh and h ∈ (0, h0].
We also used certain estimates of terms i and ii, which we verify next.

i. Let Th,x = Th(∂�h ∩Br(x)),Fh,x be the interior faces in Th,x, and sh,x be defined
by (16) with Fh,B replaced by Fh,x. Using the estimate

‖vx − v‖2Th,x � h4‖v‖2sh,x (110)

which is a local version of (22) on the patch Th,x, we get

i �
∑

x∈Xh

‖vx − v‖2Th,x �
∑

x∈Xh

h4‖v‖2sh,x � h4‖v‖2sh (111)

.
ii. We first note that

ii =
∑

x∈Xh

δ1‖∇v‖2Tx � δ1‖∇v‖2Th(∂�h)

� δ1(‖∇v‖2Nh(Th(∂�h))\Th(∂�h) + h2‖v‖2sh ) (112)

whereNh(Th(∂�h)) is the set of elements that share a node with an element in
Th(∂�h), and we used the stabilization. We can then choose δ2 ∼ h such that

Nh(Th(∂�h)) \ Th(∂�h) ⊂ Uδ2 (∂�) ∩ � (113)

We now proceed in a similar way as in (89),

‖∇v‖2Nh(Th(∂�h))\Th(∂�h) � ‖∇v‖2Uδ2 (∂�)∩�

� sup
t∈(0,−δ2)

δ2‖∇v‖2∂�t � δ2‖v‖2H2(�) (114)

where we used the estimate (90) in the last step. Inserting (114) in (112) and
using that δ1 ∼ h2 and δ2 ∼ h, we obtain

ii � δ1(δ2‖v‖2H2(�) + h2‖v‖2sh ) � h3‖v‖2H2(�) + h4‖v‖2sh (115)
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III. Using (89) with w = u and recalling δ ∼ h4,

(u, T (v))∂�h ≤ ‖u‖∂�h‖T (v)‖∂�h � δ‖u‖H4(�)‖T (v)‖∂�h (116)

� δh−3/2‖u‖H4(�)h3/2‖T (v)‖∂�h � h5/2‖u‖H4(�)|||v|||h (117)

IV. Proceeding in the same way as for Term III ,

h−3(u, v)∂�h � h−3‖u‖∂�h‖v‖∂�h � δh−3‖u‖H4(�)‖v‖∂�h (118)

� δh−3/2‖u‖H4(�)|||v|||h � h5/2‖u‖H4(�)|||v|||h (119)

Combining the estimates we find that

Ah(u, v) − lh(v) � h4‖u‖H4(�)|||v|||h + h5/2‖u‖H4(�)|||v|||h (120)

� h5/2‖u‖H4(�)|||v|||h (121)

which completes the proof. ��

Error estimates

Theorem 1 The finite element solution defined by (13) satisfies

|||u − uh|||h � h2‖u‖H4(�) (122)

Proof Using the second bound of (81) in (66) followed by the interpolation error bound
(56) we directly get the desired estimate. ��

Theorem 2 The finite element solution defined by (13) satisfies

‖u − uh‖�h � h4‖u‖H4(�) (123)

Proof Adding and subtracting an interpolant and using the interpolation error estimate
(55) we have the estimate

‖u − uh‖�h ≤ ‖u − πhu‖�h + ‖πhu − uh‖�h (124)

� h4‖u‖H4(�) + ‖πhu − uh‖�h (125)

In order to estimate ‖πhu − uh‖�h we let φh ∈ Vh be the solution to the discrete dual
problem

(v,ψ)�h = Ah(v,φh) ∀v ∈ Vh (126)

Setting v = πhu − uh we obtain the error representation

(πhu − uh,ψ)�h = Ah(πhu − uh,φh) (127)

= Ah(πhu − u,φh) + Ah(u − uh,φh) (128)

= Ah(πhu − u,φh − φ)
︸ ︷︷ ︸

I

+Ah(πhu − u,φ)
︸ ︷︷ ︸

II

+ Ah(u,φh) − lh(φh)
︸ ︷︷ ︸

III

(129)
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Here φ is the solution to the continuous dual problem

∇ · (σ (∇φ) · ∇) = ψ in �, φ = Mnn(φ) = 0 on ∂� (130)

extended to R
2 using the stable extension operator, see (53).

I. Since φh is the finite element approximation of φ we have the error estimate

|||φ − φh|||h � h2‖φ‖H4(�) � h2‖ψ‖� (131)

where we used elliptic regularity (9), which directly gives

Ah(πhu − u,φh − φ) ≤ |||πhu − u|||h|||φh − φ|||h � h4‖u‖H4(�)‖ψ‖� (132)

II. Using the fact that sh(πhu − u,φ) = 0 since φ ∈ H4(�), the partial integration
formula (71), the Cauchy-Schwarz inequality, and the interpolation error estimates
we obtain

Ah(πhu − u,φ) = (πhu − u,ψ)�h − (∇n(πhu − u),Mnn(φ))∂�h (133)

+ (T (πhu − u),φ)∂�h + γ h−3(πhu − u,φ)∂�h (134)

≤ ‖πhu − u‖�h‖ψ‖�h + ‖∇n(πhu − u)‖∂�h‖Mnn(φ)‖∂�h (135)

+ ‖T (πhu − u)‖∂�h‖φ‖∂�h + γ h−3‖πhu − u‖∂�h‖φ‖∂�h

(136)

� h4‖u‖H4(�h)‖ψ‖�h + h5/2‖u‖H4(�h)‖Mnn(φ)‖∂�h

(137)

+ h1/2‖u‖H4(�h)‖φ‖∂�h + γ h−3h7/2‖u‖H4(�h)‖φ‖∂�h (138)

� (h4 + h5/2h2 + h1/2h4)
︸ ︷︷ ︸

�h4

‖u‖H4(�h)‖ψ‖�h (139)

Here we used (88) with δ ∼ h4 followed by the elliptic regularity (9) to conclude that

‖Mnn(φ)‖∂�h � δ1/2‖φ‖H3(Uδ (∂�)) � h2‖φ‖H4(�) � h2‖ψ‖� (140)

and using (89) we obtain

‖φ‖∂�h � δ‖φ‖H4(�) � h4‖ψ‖�h (141)

III. Using (81) we obtain

|Ah(u,φh) − (f,φh)�h | � h4‖u‖H4(�)|||φh|||h,� � h4‖u‖H4(�)‖ψ‖�h (142)

We used the estimate

|||φh|||2h,� � |||φh − φ|||2h,� + |||φ|||2h,� (143)

� (1 + h−3)|||φh − φ|||2h + |||φ|||2h + ‖T (φ)‖2∂�h
+ h−6‖φ‖2∂�h

(144)

� (1 + h−3)h4‖φ‖2H4(�) + |||φ|||2h + (1 + h−6δ2)‖φ‖2H4(�) (145)

� ‖ψ‖2�h
(146)

wherewe used (89) to conclude that ‖T (φ)‖2∂�h
+h−6‖φ‖2∂�h

� (1+h−6δ2)‖φ‖2H4(�).
Collecting the estimates of Terms I–III completes the proof. ��
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Fig. 2 Element intersected by the boundary (dashed)

Fig. 3 Straight line approximation of the boundary (dotted) and triangulation for integration purposes

Numerics
Implementation

We consider two higher order approximations of the boundary: a piecewise cubic C0

approximation or a piecewise cubic C1 approximation. The steps to create the approxi-
mate boundary are as follows.

1. The elements cut by the boundary are located, Fig. 2.
2. Straight segments connecting the intersection points between the boundary and the

elements are established, and the geometrical object inside the domain is triangulated
for ease if integration, Fig. 3.

3. The end points of the boundary segments and the inclinations at the endpoints (com-
puted by use of tangent vectors) is used to obtain a C1 interpolant of the boundary,
Fig. 4. (This step is skipped in the case of a C0 approximation of the boundary.)

4. The geometry is approximated by a cubic triangle, interpolating the exact boundary
(C0 case) or the spline boundary (C1 case), Fig 5.

Note that the approximation of the boundary may partly land outside the element. In
such cases, the basis functions of the element containing the straight segment is used also
outside of the element.
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Fig. 4 Cubic spline approximation of the boundary (solid line)

Fig. 5 Isoparametric cubic triangle approximation of the geometry

Example

We consider a circular simply supported plate under uniform load p. The plate is of
radius R = 1/2 and has its center at x = 1/2, y = 1/2. Defining r as the distance from the
midpoint we then have the exact solution

u = pR4

64κ

(

1 −
( r
R

)2
) (

5 + ν

1 + ν
−

( r
R

)2
)

see, e.g., [18]. The constitutive parameters were chosen as E = 102, ν = 0.3, t = 10−1,
and the stabilization parameters as β = 10−2, γ = 102(2κ + 2κν(1 − ν)−1).
We compare the convergence in normalized (||u − uh||/||u||) L2, H1 and piecewise

H2 norms in Fig. 6. These norms are computed on the discrete geometry, for simplicity
the straight segment geometry. The solid lines indicate second, third, and fourth order
convergence, respectively fromtop tobottom, andwenote thatweobserve a slightly higher
thanoptimal rate of convercence of aboutO(h1/2) in all norms.Wenote that the continuity
of the approximation of the boundary seems not to be crucial as the convergence curves
are very close. In Fig. 7 we show an elevation of the solution on one of the meshes in the
sequence.
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Fig. 6 Convergence in normalized L2, H1, and piecewise H2 norms

Fig. 7 Elevation of the discrete solution on one of the meshes in the sequence

We also show the influence of the parameter β on a fixed mesh (coarse, 386 active
nodes). In Fig. 8 we show the condition number as β increases from its critical number,
the number forwhich the systemmatrix is singular. For lower values ofβ there are negative
eigenvalues in the system matrix. We note that as β increases, the condition number will
eventually increase again after an initial drop. In Fig. 9 we show the H1 error which is
more sensitive to the increase in β . We remark that this effect, however, does not affect
the convergence rate.

Concluding remarks
We have proposed and analyzed a cut finite element method for a rectangular plate ele-
ment, allowing for curved boundaries. The analysis shows that the method is optimally
order convergent and stable. Two different approximations of the boundary have been
tested, a standard cubic interpolation of the exact boundary and a cubic spline approxima-
tion leading to a continuously differentiable approximation of the boundary. Numerical
results and theory indicate that the continuity of the boundary approximation is not



Burman et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:27 Page 18 of 20

10-3 10-2 10-1
2

4

6

8

10

12

14

16

C
on

di
tio

n 
nu

m
be

r

1010

Fig. 8 Variation of the condition number as a function of β
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Fig. 9 Variation of the H1 error as a function of β

crucial. With our method, the simple rectangular C1 element has greatly increased its
practical applicability.
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Appendix: Some inequalities
Let ω ⊂ ∂� and define the cylindrical tubular neighborhood

Uδ(ω) = {x ∈ Uδ(∂�) : p(x) ∈ ω} δ ∈ (0, δ0] (147)

Let�1 and�2 be two surface segments inUδ(ω) with unit normals ni, such that the closest
point mapping p : �i → ω is a bijection with inverse p−1

i : ω → �i and there is constant
such that

1 � min
x∈�i

|ni(x) · n(x)| (148)

where n(x) = n ◦ p(x). We can then define a bijection q : �1 → �2 by q = p−1
2 p. For each

x ∈ �1 let Ix be the line segment with endpoints x ∈ �1 and q(x) ∈ �2. We then have

v(x) = v(q(x)) +
∫

Ix
∇nvds (149)

where we integrate along I from q(x) to x. Using the Cauchy Schwarz inequality we get

v2(x) � v2(q(x)) +
(∫

Ix
∇nv

)2
� v2(q(x)) +

∫

Ix
1

∫

Ix
|∇nv|2

� v2(q(x)) + δ

∫

Ix
|∇nv|2 (150)

Integrating over �1,

∫

�1
v2(x) �

∫

�1
v2(q(x)) + δ

∫

�1

∫

Ix
|∇nv|2 (151)

�
∫

�2
v2(y2) +

∫

S
|∇nv|2 (152)

Here S = ∪x∈�1 Ix is the domain between the surfaces �1 and �2, and we changed coordi-
nates to integration over �2 and S equipped with Euclidian measure. We conclude that

‖v‖2�1 � ‖v‖2�2 + δ‖∇v‖2S (153)

In applications, it is of convenient to simply replace S by the larger domain Uδ(ω).
Typical applications include taking �2 = ω = ∂� and �1 = ∂�h, which gives

‖v‖2∂�h
� ‖v‖2∂� + δ‖∇v‖2S (154)

For v ∈ Vh we have S ⊂ Oh = ∪T∈ThT since we assume the�∪�h ⊂ Oh and in particular
S ⊂ Uδ(∂�) ∩ Oh and thus we get

‖v‖2∂�h
� ‖v‖2∂� + δ‖∇v‖2Uδ (∂�)∩Oh

(155)

For v ∈ H1(�), with extension to R
2 also denoted by v, we have S ⊂ Uδ(∂�) and we get

‖v‖2∂�h
� ‖v‖2∂� + δ‖∇v‖2Uδ (∂�)∩Oh

(156)

In this paper we have recall that ∂�h ⊂ Uδ(∂�), with δ ∼ h4, see (10).
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