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Abstract

In this paper a robust and effective 4-node shell element for the structural analysis of
thin structures is described. A Hu–Washizu functional with independent displacements,
stress resultants and shell strains is the variational basis of the theory. Based on a
previous paper an additional interpolation part using quadratic shape functions is
introduced for the independent shell strains. Especially for unstructured meshes this
leads to an improved convergence behavior. The expanded element formulation
proves to be insensitive to mesh distortion. Another well-known feature of the mixed
hybrid element is the robustness in nonlinear applications with large deformations.

Keywords: Reissner–Mindlin shell theory, Hu–Washizu variational principle, Quadratic
strain interpolation functions, High accuracy for coarse meshes, Insensitivity towards
mesh distortion

Introduction
Nonlinear structural analysis of thin structures requires effective and robust element
formulations. Especially the possibility of large solution steps and high accuracy when
using reasonable unstructured meshes are desired properties.
Tobypass thedifficulties causedbyC1-requirements of theKirchhoff–Love theorymany

of the shell models consider transverse shear deformations within a Reissner–Mindlin
theory. Low order elements like quadrilaterals using a standard displacement interpola-
tion are characterized by locking phenomena and lead to unacceptable stiff results when
reasonable finite elementmeshes are employed. In shells two types of locking occur: trans-
verse shear locking in which bending modes are excluded and nearly all energy is stored
in transverse shear terms, and membrane locking in which bending energy is restrained
and energy is stored in membrane terms.
An effective method to avoid transverse shear locking is based on assumed shear strain

fields first proposed in Ref. [1], and subsequently extended among others in [2,3]. The
assumed strain method has also been applied to approximate the membrane strains, e.g.
[4–10]. The papers show that locking is relieved.
The basis for assumed strain methods are multi-field variational principles. Especially

for linear elasticity the Hellinger–Reissner functional is adequate as variational founda-
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tion for mixed interpolated elements, e.g. [11–13]. In case of a nonlinear material law a
local iteration for the determination of the physical strains is necessary. Hence, a Hu–
Washizu functional with independent displacements, stresses and strains seems to be
more appropriate, e.g. [9,10,14–18]. Within the so-called enhanced strain formulation
the independent stresses are eliminated from the set of equations using orthogonality
conditions and a two field formulation remains [19]. This approach has been successfully
applied for shell problems in a multiplicity of publications.
An important issue within the context of developing a finite shell element is the number

and type of rotation parameters on the element. Mostly general shell theories exclude
explicit dependence of a rotational field about the normal to the shell surface which
leads to a five parameter model (three displacements and two local rotations). Use of
five degrees-of-freedom frame requires construction of special coordinate systems for
the rotational parameters. Considering the so-called drilling degree-of-freedom leads to
a finite element discretization with six nodal parameters. This has some advantages since
both displacement and rotation parameters are associated with a global coordinate frame,
e.g. [20].
The essential features and new aspects of present formulation are as follows:

i. Reissner–Mindlin kinematic assumptions considering finite deformations are
applied. The variational formulation is based on a Hu–Washizu functional with
independent displacements, stress resultants and shell strains. We choose a strain
energy density as a quadratic form in terms of the independent shell strains. The
finite element formulation for 4-node elements is specified, where the approxima-
tion of the displacements and stress resultants is unaltered in comparison to our
previous publication [16]. The following amendments are included.

ii. In comparison with Ref. [16] the interpolation functions for the shell strains are
expanded. Additionally, quadratic shape functions are introduced which are orthog-
onal to the constant part of the strains. The orthogonality is important for con-
vergence against the correct solution. Furthermore, a shape factor which considers
the deviation of the element geometry from a square is incorporated. It leads to an
essentially improved convergence behavior especially for unstructured meshes.

iii. The derived mixed hybrid quadrilateral element has 5 or 6 degrees of freedom at the
nodes, possesses the correct rank and fulfills the membrane and bending patch test.
The element formulation is tested by means of several nonlinear shell problems. It
is shown that the expanded interpolation of the shell strains with quadratic shape
functions relieves membrane locking in an effective way.

Hu–Washizu variational formulation
LetB be the three-dimensional Euclidean space occupied by the shell of thickness h in the
reference configuration. With ξ i we denote a convected coordinate system of the body.
The coordinate in thickness direction ξ3 is bounded by h− ≤ ξ3 ≤ h+, where h− and h+

are the coordinates of the outer surfaces. In the following the summation convention is
used for repeated indices, where Latin indices range from 1 to 3 and Greek indices range
from 1 to 2. Commas denote partial differentiation with respect to the coordinates ξα .
The coordinate on the boundary � = �u ∪�σ of the initial reference surface� is denoted
by s.



Wagner and Gruttmann Adv. Model. and Simul. in Eng. Sci.           (2020) 7:28 Page 3 of 27

The position vectors of the initial and current shell reference surface are denoted as
X(ξ1, ξ2) and x(ξ1, ξ2), respectively. Hence, the displacement vector of the reference sur-
face is definedwithu = x−X. A vector fieldD(ξ1, ξ2) with |D(ξ1, ξ2)| = 1, associatedwith
the initial configuration, is introduced. The unit director d of the current configuration is
obtained by an orthogonal transformation of the initial vector D. With x,α ·d �= 0 shear
deformations are accounted for within the Reissner–Mindlin theory.
The shell is loaded statically by surface loads p̄ on � as well as by boundary loads t̄ and

couple loads m̄ on the boundary �σ . The loads are assumed to be independent of the
displacements. Hence, the variational foundation using the Hu–Washizu functional

�(v, σ, ε) =
∫

�

[W (ε) + σT (εg (v) − ε) − uT p̄] dA

−
∫

�σ

(uT t̄ + ϕT m̄) ds → stat. (1)

with dA = j dξ1 dξ2 and j = |X,1 ×X,2 | is given. Here, v = [u,ϕ]T contains the dis-
placements u and rotational parameters ϕ, as well as ε and σ denote the independent shell
strains and stress resultants, respectively.We assume a strain energy density as a quadratic
form W (ε) = 1

2ε
TC ε using the constant elasticity matrix C. The geometric shell strains

are organized in the vector

εg (v) = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]T , (2)

where the membrane strains εαβ , curvatures καβ and transverse shear strains γα follow
from the Green-Lagrangian strain tensor

εαβ = 1
2
(x,α ·x,β −X,α ·X,β )

καβ = 1
2
(x,α ·d,β +x,β ·d,α −X,α ·D,β −X,β ·D,α )

γα = x,α ·d − X,α ·D .

(3)

The vector of independent stress resultants

σ = [n11, n22, n12, m11, m22, m12, q1, q2]T (4)

is defined with membrane forces nαβ = nβα , bending moments mαβ = mβα and shear
forces qα .
Introducing θ := [v, σ, ε]T and admissible variations δθ := [δv, δσ, δε]T the stationary

condition associated with functional (1) reads

δ� := g(θ, δθ) =
∫

�

[δεT (∂εW − σ) + δσT (εg − ε) + δεTg σ] dA + gext = 0

gext = −
∫

�

δuT p̄ dA −
∫

�σ

(δuT t̄ + δϕT m̄) ds .
(5)

With integration by parts and application of standard arguments of variational calculus
one obtains the associated Euler–Lagrange equations. These are the static field equations,
the geometric field equations and the constitutive equations in �, as well as the static
boundary conditions on �σ , see [15].
Theassociatedfinite element equations are iteratively solvedapplyingNewton’smethod.

For this purpose the linearization of the stationary condition (5) is derivedwithC = ∂2εW
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as

L [g(θ, δθ),�θ] := g(θ, δθ) + Dg · �θ

= gext +
∫

�

�δεTg σ dA

+
∫

�

⎡
⎢⎣

δεg
δσ

δε

⎤
⎥⎦
T ⎧⎪⎨

⎪⎩

⎡
⎢⎣

σ

εg − ε

∂εW − σ

⎤
⎥⎦ +

⎡
⎢⎣
0 1 0
1 0 −1
0 −1 C

⎤
⎥⎦

⎡
⎢⎣

�εg
�σ

�ε

⎤
⎥⎦

⎫⎪⎬
⎪⎭ dA .

(6)

Finally, the geometric boundary conditions v = v̄ on �u have to be fulfilled as constraints.

Finite element equations
We refer to Refs. [15,16] where details of the finite element formulation are specified. The
isoparametric concept for 4-node elements using bilinear functions NI (ξ , η) is applied.
For the coordinates of the unit square holds −1 ≤ {ξ , η} ≤ 1. The constant orthonormal
element coordinate system is denoted by [t1, t2, t3] and is computedwith the nodal vectors
XI , I = 1, 2, 3, 4 as follows

d̄1 = X3 − X1 d̂1 = d̄1/|d̄1|
d̄2 = X2 − X4 d̂2 = d̄2/|d̄2|
t1 = (̂d1 + d̂2)/|̂d1 + d̂2|
t2 = (̂d1 − d̂2)/|̂d1 − d̂2|
t3 = t1 × t2 .

(7)

Hence, the Jacobian matrix J reads

J =
[
J11 J12
J21 J22

]
=

[
Xh,ξ ·t1 Xh,ξ ·t2
Xh,η ·t1 Xh,η ·t2

]

.
(8)

The superscript h refers to the finite element approximation of the particular quantity,
and commas denote the partial derivative with respect to ξ or η. The matrices

T0 =
⎡
⎢⎣

J011 J
0
11 J021 J

0
21 a J011 J

0
21

J012 J
0
12 J022 J

0
22 a J012 J

0
22

b J011 J
0
12 b J021 J

0
22 J011 J

0
22 + J012 J

0
21

⎤
⎥⎦ T̃0 =

[
J011 J021
J012 J022

]
(9)

cause a transformation of contravariant tensor components to the constant element base
system ti. The entries J0αβ are the components of J evaluated at the element center. The
factors a and b are specified below. Detailed investigations on the use of ansatz func-
tions for contravariant stress and strain components in the framework of a Hu–Washizu
functional are contained in Ref. [18].
The finite element approximation of the vector δθh := [δεhg , δσh, δεh]T can be written

as ⎡
⎢⎣

δεhg
δσh

δεh

⎤
⎥⎦ =

⎡
⎢⎣
B 0 0
0 Nσ 0
0 0 Nε

⎤
⎥⎦

⎡
⎢⎣

δv̂
δσ̂

δε̂

⎤
⎥⎦

δθh = Nθ δθ̂ .

(10)

To avoid transverse shear locking, ansatz functions of the assumed strain method [3] are
incorporated in B, see Ref. [16].
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The matrix Nσ for the interpolation of σh = Nσ σ̂ as well as δσh is chosen as follows

Nσ =
⎡
⎢⎣
13 0 0 Nm

σ 0 0
0 13 0 0 Nb

σ 0
0 0 12 0 0 Ns

σ

⎤
⎥⎦

Nm
σ = Nb

σ = T0
σ

⎡
⎢⎣

η − η̄ 0
0 ξ − ξ̄

0 0

⎤
⎥⎦ Ns

σ = T̃0
σ

[
η − η̄ 0
0 ξ − ξ̄

]

,

(11)

where 1n denotes a unit matrix of order n. The coefficient matrices read T0
σ = T0 with

a = 2 and b = 1 as well as T̃0
σ = T̃0. The constants ξ̄ and η̄ are the coordinates of the

center of gravity of the particular element. For rectangular elements holds ξ̄ = η̄ = 0. The
parameter vectors σ̂ and δσ̂ contain8parameters for the constantpart and6parameters for
the varying part of the stress field. The interpolation of the membrane forces and bending
moments corresponds to the membrane part in Ref. [21]. The original approach for plane
stress problems was published in Ref. [22]. Regarding requirements on the interpolation
functions to fulfill the patch test and to ensure stability of the discrete system of equations
we refer to the discussion in Ref. [15].
The matrix Nε for the interpolation of the independent strains εh = Nε ε̂ as well as

δεh = Nε δε̂ is subdivided in two parts

Nε = [
N1

ε ,N2
ε

]
, (12)

where ε̂ = [ε̂1, ε̂2]T , ε̂1 ∈ R
14 , ε̂2 ∈ R

l . The number of parameters l = n+k of the second
part is specified below. The submatrices N1

ε and N2
ε read

N1
ε =

⎡
⎢⎣
13 0 0 Nm1

ε 0 0
0 13 0 0 Nb1

ε 0
0 0 12 0 0 Ns1

ε

⎤
⎥⎦
8×14

N2
ε =

⎡
⎢⎣

j0
j T

0
ε Mm

n 0
0 j0

j T
0
ε Mb

k
0 0

⎤
⎥⎦
8×l

(13)

with

Nm1
ε = Nb1

ε = T0
ε

⎡
⎢⎣

η − η̄ 0
0 ξ − ξ̄

0 0

⎤
⎥⎦ Ns1

ε = T̃0
ε

[
η − η̄ 0
0 ξ − ξ̄

]

.
(14)

Here, T0
ε = T0 with a = 1, b = 2 and T̃0

ε = T̃0 as well as j0 = j(ξ = 0, η = 0). The matrix
Mm

n reads

Mm
n =

⎡
⎢⎣

ξ 0 0 0 ξη 0 0 (ξ2 − c) η 0 η2 ξ 0
0 η 0 0 0 ξη 0 0 (η2 − c) ξ 0 ξ2 η

0 0 ξ η 0 0 ξη 0 0 0 0

⎤
⎥⎦

,

(15)

where the index n ∈ {0, 2, 4, 6, 7, 9, 11} has the meaning that optionally the first n columns
are taken.Withn = 0 thematrixMm

n is omitted. The shape factor c considers the deviation
of the element geometry from a square. For this purpose the metric coefficients Gαβ of
the initial reference surface are evaluated at the element center

G0 =
[
G11 G12
G21 G22

]
G11 = X0,ξ ·X0,ξ G12 = X0,ξ ·X0,η
G22 = X0,η ·X0,η G21 = G12 .

(16)

Hence, c is obtained with the ratio of the eigenvalues of G0

c = λmax
λmin

λmax,min = 1
2
(G11 + G22) ±

√
1
4
(G11 − G22)2 + G2

12 . (17)
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The factor c has a geometrical meaning. One can show that
√
c is the ratio of the semiaxes

a and b (a ≥ b) of an ellipse which can be inscribed in a distorted element. For a square
element holds c = 1. The matrixMb

k , associated with the curvatures, reads

Mb
k =

⎡
⎢⎣

ξ 0 ξη 0 ξ2 η 0
0 η 0 ξη 0 η2 ξ

0 0 0 0 0 0

⎤
⎥⎦

.

(18)

Again, the index k refers to the number of columns that optionally are taken. The mean-
ingful parameters are k ∈ {0, 2, 4, 6}. In this work we investigate k = 0 (Mb

k and associated
parameters are omitted) and the complete matrix with k = 6.

Remark Due to the factor j0/j, the constant coefficient matrix T0
ε and the functions

(ξ , η, ξ η, ξ2η, η2ξ ) the integral of N2
ε over the element domain �e vanishes. Thus, the

functions are orthogonal to the constant part of the shell strains. The orthogonality is
important for convergence against the correct solution. This is shown by means of a
numerical example in the next section.
The use of transformationmatrixT0

ε inN2
ε is in contrast to Ref. [16], where with (T0

σ )−T

transformations of covariant tensor components are described. The numerical tests show
that both versions lead with mesh refinement to the same converged solution. The appli-
cation of T0

ε yields for coarse meshes a slightly softer behavior.

The finite element approximation of the external virtual work of p̄, t̄ and m̄ leads to

ghext = −
numel∑
e=1

δv̂T fa. (19)

Here, numel denotes the total number of finite shell elements to discretize the prob-
lem and fa corresponds to the element load vector of a standard displacement method.
Furthermore, it holds

∫

�

�δεhTg σh dA =
numel∑
e=1

δv̂Tkg�v̂, (20)

where kg is specified in detail in Ref. [15].
We insert δθh = Nθ δθ̂ according to Eq. (10) and the corresponding equation �θh =

Nθ �θ̂ into the linearized variational equation (6), which now reads

L [g(θh, δθh),�θh]=
numel∑
e=1

⎡
⎢⎣

δv̂
δσ̂

δε̂

⎤
⎥⎦
T

e

⎧⎪⎨
⎪⎩

⎡
⎢⎣
fi − fa

fs

fe

⎤
⎥⎦ +

⎡
⎢⎣
kg GT 0
G 0 FT

0 F H

⎤
⎥⎦

⎡
⎢⎣

�v̂
�σ̂

�ε̂

⎤
⎥⎦

⎫⎪⎬
⎪⎭

e

(21)

with

fi =
∫

�e

BTσh dA F = −
∫

�e

NT
ε Nσ dA

fs =
∫

�e

NT
σ εhg dA + FT ε̂ G =

∫

�e

NT
σ B dA

fe =
∫

�e

NT
ε ∂εW dA + F σ̂ H =

∫

�e

NT
ε CNε dA .

(22)

The integrals over an element domain�e of a particular element e are computed numeri-
cally using a 2×2Gauss integration scheme.With incorporation of the quadratic functions
in Eq. (15) a 3 × 3 Gauss integration is necessary.
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Matrix F is expressed with (12)

F = −
∫

�e

[
N1

ε

N2
ε

]T

Nσ dA =
[
F1
F2

]

.
(23)

The last four columnswith quadratic shape functions in (15) are not orthogonal to column
9 and 10 of Nσ according to (11) and thus lead to entries in F2. They are consistently
omitted when setting F2 = 0 in F, fe and fs.
We continuewith L[g(θh, δθh),�θh] = 0 , where δθh �= 0 and obtain for each element

⎡
⎢⎣
kg GT 0
G 0 FT

0 F H

⎤
⎥⎦

⎡
⎢⎣

�v̂
�σ̂

�ε̂

⎤
⎥⎦ +

⎡
⎢⎣
fi − fa

fs

fe

⎤
⎥⎦ =

⎡
⎢⎣
r
0
0

⎤
⎥⎦ (24)

where r denotes the vector of element nodal forces. Since the stress resultants and shell
strains are interpolated discontinuously across the element boundaries the parameters
�σ̂ and �ε̂ can be eliminated from the set of equations. This is done applying a standard
Gaussian elimination procedure to the system of equations (24), see Ref. [23]. One obtains
the tangential element stiffness matrix keT , the element residual vector f̂ and (21) reduces
to

L [g(θh, δθh),�θh] =
numel∑
e=1

δv̂T (keT �v̂ + f̂) . (25)

The shell elements possess 5 or 6 degrees of freedom (dofs) at the nodes. At nodes on
intersections 6 dofs (3 global displacements and 3 global rotations) and at the remaining
nodes 5 dofs (3 global displacements and 2 local rotations) are present. The linear element
stiffness matrix possesses with six zero eigenvalues the correct rank. The derived element
formulation has been implemented in an extended version of the general purpose finite
element program FEAP [24].

Examples
Eigenvalue analysis of the element stiffness matrix

At first, we compute eigenvalues and eigenvectors of the linear element stiffness matrix
considering different parameters. Following Ref. [10] we examine a square element and
a distorted (warped) element with a = 2, h = 0.02, E = 108, ν = 0.3, see Fig. 1. For the
parameter n we choose n = 0, 7, 11, whereas k = 0 is set in Fig. 2. The 4-node element
has 5 degrees of freedom at each node, thus the element stiffness matrix is of order 20.
All versions lead to six zero eigenvalues corresponding to the six rigid body modes. The
remaining 14 nonzero eigenvalues are depicted in Fig. 2. For comparison we add results of
the +HW element (taken from [10]). Lower eigenvalues relate to the bending modes, and
higher eigenvalues relate to the stiffer membrane- and shear modes. Both are divided by a
pronounced jump, see Fig. 2. For n = 0 the values fit with the results of the +HW element
in the square case as well as in the distorted case. The eigenvalues 12–15 are smaller when
choosing n = 7 and especially for n = 11. It can be seen from Table 1 and Fig. 3 that
the modes appear in different sequences. Similar results are found in the distorted case.
For the distorted element the factor c according to Eq. (17) amounts to c = 2.375. The
diagram shows that there are noteworthy differences for the eigenvalues in comparison
with c = 0 or c = 1.
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z y
x

z y
x

Fig. 1 Element shapes for the eigenvalue analysis

Fig. 2 Eigenvalues of the square element (top) and the distorted element (bottom)

Table1 Eigenmodes for eigenvalues 11–15 of the square element

EV-no. n = 0 n = 7 n = 11 n = 11 (c = 0)

12 B1 B1 M1 B1

13 B2 B2 M2 M1

14 M2 M2 B1 M2

15 M1 M1 B2 B2
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DOF-1 DOF-2 DOF-3 DOF-4 DOF-5

M1

M2

B1

B2

Fig. 3 Eigenmodes M1, M2, B1, B2 (red = + 1, blue = −1, light green = 0)

The influence of the parameter k , associated with the curvatures, is depicted in Fig. 4.
We present results for n = 11 combined with k = 0 and k = 6. As expected, k = 6 leads
to a reduction of the eigenvalues of the bending modes 7 and 8 and additionally of mode
9 for the distorted case.
Finally, the pure membrane case considering a flat element (z ≡ 0) is investigated. The

distortion in the x − y plane corresponds to Fig. 1. The out-of plane displacements and
the rotations are fixed. The remaining degrees of freedom are 8 in-plane displacements.
As Fig. 5 shows, there are 3 zero eigenvalues associated with the 3 rigid body movements
of a flat sheet. Using the parameter n = 11 and c according to Eq. (17) yields two further
eigenvalues which are almost zero. It leads to an unstable element behavior. This is not
the case for c = 0.
Summarizing, the parameter n = 11 leads in comparison with n = 0 and n = 7 to lower

eigenvalues 12–15. The parameter k = 6 reduces the eigenvalues of some bendingmodes.
This is the reason for the improved convergence behavior in the subsequent depicted test
examples. It holds especially for element geometries which deviate notably from a square.
Pure membrane problems can be computed with n = 11 and c = 0.

Membrane and bending patch test

A rectangular plate subjected to membrane forces and bending moments according to
[25] is considered. Both, membrane and bending patch test are fulfilled for themeaningful
parameters n ∈ {0, 2, 4, 6, 7, 9, 11} and k ∈ {0, 2, 4, 6} by the developed element.

Hemispherical shell

The next problem is the hemispherical shell with an 18◦ cutout subjected to alternating
radial point loads P at its equator, shown in Fig. 6a. This geometrically non-linear example
is often cited as a benchmark problem for shell elements. It is a test for the ability to
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Fig. 4 Eigenvalues of the square element (top) and the distorted element (bottom): investigation of the
influence of k

Fig. 5 Eigenvalues of the distorted flat element

model rigid bodymodes and inextensible bending [25]. Geometrical andmaterial data are
R = 10, ϕ = 18◦, thickness h = 0.04 and E = 6.825 ·107, ν = 0.3. Considering symmetry
one quarter of the structure corresponding to the region ABCD in Fig. 6a is discretized
using 8× 8 and 12× 12 regular meshes. We employ the boundary conditions uy = β = 0
on AD, ux = β = 0 on BC and uz = 0 at a point on AB, e.g. at A. Figure 7 shows the load
displacement curves for the regular meshes. The defined converged solution is computed
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L4

L1

a

b c

L1

BA

CD

L2

L3

L3

L2

L4

Fig. 6 Hemispherical shell: a 12 × 12 regular mesh, b principal mesh distortion for a 4 × 4 mesh, c 12 × 12
distorted mesh

with a 128 × 128 regular mesh. Results are only presented for P − uxA; similar output
can be obtained for P − uyB. In addition, Fig. 8 depicts results for distorted meshes. The
principal mesh distortion is described in Fig. 6b for a 4× 4 mesh. Each edge is discretized
using the aspect ratios L1: L2: L3: ... : LN = 1 : 2 : 3 : ... : N , where N denotes the number
of elements per direction. The 12 × 12 distorted mesh is illustrated in Fig. 6c. As can be
seen in Figs. 7 and 8, significant improvements can be achieved along with the quadratic
terms in Eq. (15) (n = 11), especially for distorted meshes. For comparison we add results
from Ref. [8] using the MITC4+ element. A plot of the factor c according to Eq. (17) is
shown for the distorted 8× 8 mesh in Fig. 9. The factor may take values much larger than
1. The importance of the orthogonality of the used functions in (15) and (18) is visualized
in Fig. 10. The function ξ2 instead of ξ2 η is not orthogonal over the unit square with
respect to a constant. In Fig. 10 non-orthogonal 1 means use of ξ2 and non-orthogonal 2
use of ξ2 − c as well as in an analogues way for η2. One can see that both versions lead
to convergence against a wrong solution. Also with c = 4/3, whereby the integrals of
ξ2 − c and η2 − c over the unit square vanish, one obtains likewise wrong displacements
with mesh refinement. The results are computed with regular meshes, where the defined
converged solution uxA = −8.1546 is obtained with a mesh of 128 × 128 elements. The
final deformed mesh is depicted in Fig. 11.

Cylindrical shell segment

In this subsection we examine a cylindrical shell segment, e.g. [26], subjected to a uniform
bending moment M = M0 · h3 along BC. The shell segment is fully clamped at DE,
see Fig. 12. Geometrical and material data are: R = 20, L = 10, ϕ = 30◦, thickness
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Fig. 7 Hemispherical shell: P − uxA for the regular 8 × 8 (left) and 12 × 12 (right) meshes

Fig. 8 Hemispherical shell: P − uxA for the distorted 8 × 8 (left) and 12 × 12 (right) meshes

1.602 min
2.159
2.716
3.273
3.830
4.387
4.945
5.502
6.059
6.616
7.173
7.730
8.287
8.844
9.401 max

Fig. 9 Hemispherical shell: distribution of factor c for the distorted 8 × 8 mesh
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Fig. 10 Hemispherical shell: convergence against a wrong solution when using non-orthogonal functions

Fig. 11 Hemispherical shell: deformed distorted 8 × 8 mesh for P = 400

h = R/10, 000 and E = 2.1 · 106, ν = 0. Figure 13 depicts load displacement curves
for point A and regular meshes. A 128 × 128 regular mesh is utilized for the defined
converged solution. In addition, Fig. 14 shows results for distorted meshes. The principal
mesh distortion is described in Fig. 12b for a 4×4 mesh. The curved edges are discretized
using the aspect ratios L1: L2: L3: ... : LN = 1 : 2 : 3 : ... : N , where again N denotes
the number of elements per direction. A 12 × 12 distorted mesh is presented in Fig. 12c
in a perspective view. Again, improvements can be achieved for distorted meshes when
using the quadratic terms in Eq. (15) (n = 11). For comparison we add results of the
element formulation [10] denoted as +HW. The performance of theMITC4+ element [8]
is similar. The final deformed mesh is depicted in Fig. 15.

Twisted beam

We consider the twisted beam problem shown in Fig. 16, originally introduced in [25].
Geometrical and material data are L = 12, b = 1.1, thickness h = 0.0032 and E =
29 · 106, ν = 0.22, respectively. The cantilever beam is clamped at one end and is loaded
by an out-of-plane acting load P at point A. A regular 4 × 24 mesh is chosen for the
solution. Figure 17 depicts the convergence behavior of the displacements of point A
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Fig. 12 Cylindrical shell segment: a problem and 12 × 12 regular mesh, b principal mesh distortion for a
4 × 4 mesh, c 12 × 12 distorted mesh

Fig. 13 Cylindrical shell segment:M0 − uxA andM0 − uzA for the regular 12 × 12 mesh

Fig. 14 Cylindrical shell segment:M0 − uxA andM0 − uzA for the distorted 12 × 12 mesh
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Fig. 15 Cylindrical shell segment: deformed distorted mesh forM0 = 4 · 104

L

P

Z

XY

bA

Fig. 16 Twisted beam: system and 4 × 24 regular mesh

for different parameters n and results using the MITC4+ element [8]. The converged
solution is obtained employing a 32 × 192 regular mesh. Furthermore mesh distortion is
investigated. The first distortedmesh is shown in Fig. 18a together with a flat projection in
Fig. 18b, both in a perspective view. A ratio Lmax/Lmin = 2 is chosen, where Lmax and Lmin
denote the longest and shortest element length in theflat projection, respectively. Figure 19
depicts the resulting load displacement curves of point A. Very good results can be seen,
even for n = 0. In addition, we investigate a second distortedmesh, where the distortion is
introduced in the opposite direction, see Fig. 20. The associated load displacement curves
of point A for a different choice of n are contained in Fig. 21. Again, the quadratic terms
in Eq. (15) (n = 11) are necessary to produce accurate results. The convergence behavior
of displacement uyA for the second distorted mesh versus the number of elements N in
width direction is presented in Fig. 22. Again, n = 11 leads to a significant improvement
of the element behavior. This is only achieved with the shape factor c according to (17),
as the comparison with the curve n = 11 (c = 0) shows. The deformed beam using the
distorted mesh 2 for P = 4 · 10−2 is depicted in Fig. 23.

Hook problem

Next, we consider the hook problem shown in Fig. 24, referred to in linear analysis as the
Raasch challenge [27]. For the FE-discretization we use N × 2N × 3N elements with N
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Fig. 17 Twisted beam: P − uzA and P − uyA for the regular 4 × 24 mesh

ba

Fig. 18 Twisted beam: distorted 4 × 24 mesh 1, a perspective view, b perspective view of the flat projection

Fig. 19 Twisted beam: P − uzA and P − uyA for the distorted 4 × 24 mesh 1
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ba

Fig. 20 Twisted beam: distorted 4 × 24 mesh 2, a perspective view, b perspective view of the flat projection

Fig. 21 Twisted beam: P − uzA and P − uyA for the distorted 4 × 24 mesh 2

Fig. 22 Twisted beam: uyA − N for distorted mesh 2

elements in width direction, 2N elements for the first arch (R1) and 3N elements for the
second arch (R2), see Fig. 24. Geometrical and material data are R1 = 14, ϕ1 = 60◦, R2 =
46, ϕ2 = 150◦, b = 20, thickness h = 0.02 and E = 3.3 · 103, ν = 0.3, respectively.
The structure is fully clamped at one end and is loaded by a shear load P applied as a
uniformly distributed traction at the free end. For the solution, we use a regular 4×8×12
mesh. Figure 25 shows the resulting load–displacement curves of point A, where curves
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Fig. 23 Twisted beam: deformed beam using the distorted mesh 2 for P = 4 · 10−2
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Fig. 24 Hook problem: geometry and a 4 × 8 × 12 regular mesh

for the MITC4+ element [8] are included. Similar results can be found for the +HW
element (see Figs. 12b, 13b of Ref. [10]). The defined converged solutions are obtained
with a 32 × 64 × 96 regular mesh. The principal distorted mesh is shown in Fig. 26
with respect to a flat projection together with a perspective view of the structure. Here,
Lmax/Lmin = 1.5 is chosen for the first arch and Lmax/Lmin = 2.0 for the second arch
according to [10]. Figure 27 shows the convergence behavior of displacement uzA of point
A versus the number of elements N in width direction. Results for MITC4, MITC4+ and
+HW are taken from Figs. 12a and 13a in Ref. [10]. The superior behavior of the MITC4+
and +HW elements as well as of present element formulation with n = 11 is shown. The
deformed regular mesh is depicted in Fig. 28.

Cook’s problem

Here, we discuss the influence on the nonlinear analysis of the well-known Cook’s mem-
brane, first introduced in [28] for the nonlinear case. It is a tapered panel clamped on one
end and uniformly loadedwith a resultant P = 1 on the other end, see Fig. 29. Geometrical
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Fig. 25 Hook problem: P − uxA and P − uzA for the regular 4 × 8 × 12 mesh

Fig. 26 Hook problem: distorted mesh and flat projection for a 4 × 8 × 12 mesh

Fig. 27 Hook problem: convergence behavior uzA − N for regular (left) and distorted (right) meshes
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Fig. 28 Hook problem: deformed mesh for P = 1

A P

44

48

16

x
y

Fig. 29 Cook’s problem with a 4 × 4 mesh

Table 2 Cook’s problem: convergence behavior uyA − N

FE mesh 2 4 8 16 32 48

MITC4 5.572 7.868 8.960 9.313 9.414 9.435

MITC4+ 5.649 7.944 8.996 9.329 9.421 9.440

+HW 9.035 9.316 9.418 9.448 9.457 9.459

n = 0 8.660 9.172 9.367 9.427 9.446 9.451

n = 7 9.554 9.379 9.424 9.442 9.450 9.453

n = 11 (c = 0) 10.152 9.522 9.464 9.455 9.455 9.456

and material data are h = 1 and E = 2, ν = 1/3. The problem provides a pure membrane
test including element distortions and is a test for handling the in-plane bending domi-
nated by shear. The discretization is performedwith aN×N mesh. Using present element
the total load P = 1 can be applied in one step with six iterations. For the displacement
uyA we depict the performance in dependence of N in Table 2 and Fig. 30. Results for
MITC4, MITC4+ and +HW are taken from Table 3 in Ref. [10]. The output for HW in
[10] is identical with our results using n = 0.
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Fig. 30 Cook’s problem: convergence behavior uyA − N

Fig. 31 Cook’s problem: deformed mesh for P = 1

The convergence behavior of the MITC4 and MITC4+ elements is relative slow. Solu-
tions for +HW [10] and n = 7, 11 exhibit a fast convergence. As shown by means of
above computed element eigenvalues the parameter n = 11 can only be used with c = 0.
Otherwise the element formulation leads in a pure membrane case to hourglassing. The
deformed mesh for P = 1 is depicted in Fig. 31.

Annular plate

This example, which is shown in Fig. 32, has been introduced in [29]. We have presented
results for this problem in [16] using also the element formulation [30]. The annular plate
is loaded at its free edge with a constant load p = 1; the other edge is clamped. The layered
plate has the stacking sequence [45◦,−45◦, 45◦]. Further stacking sequences [0◦, 90◦, 0◦]
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Fig. 33 annular plate: a regular 4 × 20 mesh, b intermediate nodes for mesh distortion c distorted 4 × 20
mesh

and [90◦, 0◦, 90◦] are considered in [16]. Here, 0◦ and 90◦ refers to the circumferential
direction and the radial direction, respectively.
For thematerial behavior transversal isotropy is assumed. Thematerial and geometrical

data are:

E1 = 40 · 106
E2 = 1 · 106

G12 = G23 = 0.6 · 106
ν12 = 0.25

R1 = 6
R2 = 10
h = 0.04
h1 = h2 = h3 = h/3

The analysis is based on a N × 5N mesh, where N denotes the number of elements
in radial direction. Furthermore mesh distortion is investigated. Meshes are generated in
polar coordinates using four corner nodes. For the distorted meshes in circumferential
direction two intermediate nodes are added. With the nodes C-r and D-r, see Fig. 33, a
regular mesh and with nodes C-d and D-d a distorted mesh is generated. The position of
C-d and D-d is described in the following. We introduce a rotation angle ϕ in the x − y

plane, which is defined via ϕ(ξ ) =
3∑

I=1
NIϕI with −1 ≤ ξ ≤ 1. Quadratic shape functions

NI are employed with N1 = − 1
2ξ (1− ξ ), N2 = 1− ξ2 and N3 = 1

2ξ (1+ ξ ). For the nodal
values ϕI we define ϕ1 = ϕ(−1) = 0◦, ϕ2 = ϕ(0) = 180◦ ± ϕd and ϕ3 = ϕ(1) = 360◦.
Then it holds for the intermediate nodes of the distorted mesh ϕ2 = ϕC−d = 180◦ − ϕd
and ϕ2 = ϕD−d = 180◦ + ϕd , respectively. Here, we choose a distortion angle ϕd = 20◦.
Intermediate nodal positions are calculated based on increments �ξ = 2

5N .
Resulting load displacement curves of point B are depicted in Fig. 34. In both cases we

define a converged solution using a 24 × 120 regular mesh.
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Fig. 34 Annular plate: p − uzB for a regular 4 × 20 mesh (left) and a distorted 4 × 20 mesh (right)

Fig. 35 Annular plate: uzB − N for regular mesh (left) and distorted mesh (right) and p = 1

-0.476 min
0.377
1.231
2.085
2.938
3.792
4.646
5.499
6.353
7.207
8.060
8.914
9.768
10.622
11.475 max

Fig. 36 Annular plate: vertical displacement and deformed plate using a distorted 4 × 20 mesh for p = 1

The convergence behavior of displacement uzB versus the number of elements N in
width direction is presented in Fig. 35 for p = 1. One can see that the matrix Mb

k with
k = 6, see Eq. (18), leads to minor improvements of the element behavior. The deformed
plate using the regular mesh is depicted in Fig. 36 for p = 1.
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Fig. 37 Stiffened cylindrical shell and regular finite element mesh (12 × 8 × 2)

Stiffened cylindrical shell

With standard degrees of freedom at the nodes also shell intersection problems can be
computed. As an example the stiffened cylindrical shell according to Fig. 37 is considered.
The figure shows a cross-section of the shell and a finite elementmesh of half the structure
accounting for symmetry conditions. Radius and length of the cylinder are R = 1000mm,
L = 2000mm and the shell thickness is h = 10mm. The shell is free at y = z = 0 and
clamped at y = L. A concentrated load F acts at the coordinates (x, y, z) = (0, 0, R). The
skin of the structure consists of a [0◦/90◦/0◦] lay-up, where 0◦ refers to the circumferential
direction and 90◦ to the y-direction. The stiffeners with measurements d = 50mm and
h = 10mm are arranged in radial direction. In the symmetry axis a thickness 2 h is
present. The stiffeners are homogeneous and the fibre direction coincides with the length
direction. The material parameters assuming transversal isotropy are chosen as follows

E1 = 125000N/mm2 G12 = 4800N/mm2

E2 = 7400N/mm2 G23 = 2700N/mm2

ν12 = 0.34 .
(26)

The mesh density is denoted by N × M × K , where in Fig. 37 N = 12 is the number of
elements in circumferential direction, M = 8 the number in length direction and K = 2
the number of elements for a stiffener in radial direction. Thus, the relationsM = 2

3N and
K = 1

12N ≥ 1 are used. A distorted mesh is depicted in Fig. 38. Here, we apply the same
distortion technique for the skin as described before for the annular plate. Now, boundary
values y1 = y(−1) = 0 , y2 = y(0) = L/2(1 ± dL) and y3 = y(1) = L with dL = 0.3 are
chosen at each stiffener intersection.
The geometrical nonlinear computations are performed with displacement control and

a step size �w = 20mm. The load F is computed as reaction on the prescribed displace-
ment. The load step size �w can be enlarged up to �w = 100mm in the first increments.
In Fig. 39 load F is plotted versus the prescribed displacement w for the chosen param-
eters. The convergence behavior for the external load for the prescribed displacement
w = 400mm with respect to the number of elements N is depicted in Fig. 40. Again, the
matrix Mb

k with k = 6 leads to minor improvements of the element behavior. Figure 41
shows that the final configuration is characterized by finite deformation.



Wagner and Gruttmann Adv. Model. and Simul. in Eng. Sci.           (2020) 7:28 Page 25 of 27

x
y

z

x

y

z

Fig. 38 Distorted finite element mesh (12× 8× 1), perspective view (left), view in direction (−1, 0,−1) (right)

Fig. 39 Load deflection curves for different N and n as well as regular meshes (left) and distorted meshes
(right)

Fig. 40 Convergence behavior of the external load for a prescribed displacement w = 400 mm versus N and
parameters n, k for the regular mesh (left) and the distorted mesh (right)

Conclusions
Based on a previous paper on a mixed hybrid quadrilateral shell element the interpolation
matrix for the shell strains is expanded by quadratic shape functions. Thereby mem-
brane locking can be significantly relieved. The new developments lead to a considerable
improvement of the approximation behavior especially when the element form deviates
from a square. Based on the performed numerical tests we recommend n = 11 for the
membrane part with shape functionmatrix (15) and k = 0 formatrix (18) as the additional
terms for the curvatures lead to minor improvements. For pure membrane problems the
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Fig. 41 Final deformed configuration computed with a 24 × 16 × 2 mesh

shape factor has to be used with c = 0. A well-known feature of present element formula-
tion is the remarkable robustness in nonlinear applications. It allows very large load steps
in comparison to element formulations based on the displacement method or enhanced
strain elements.
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