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between components and its applicability is demonstrated by comparison with

analytical and finite element models. The reduced model is exploited in a design
optimization identifying the optimal shape of a 1+ 6 strand by means of a genetic
algorithm. A novel geometrical parametrization is applied and different objectives, such
as stress concentration and area minimization, and constraints, corresponding to
operational limitations and requirements, are analyzed. The optimal shape is finally
identified and its performance improvements are compared and discussed against the
reference strand. Operational benefits include lower stress concentration and higher
load at plastification initiation.
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Introduction

Wire ropes are basic structural elements in engineering and construction. Thanks to
their complex hierarchical composition, wire ropes design permits to achieve a response
tailored for specific applications and load cases. They are used as a structural link in bridges
and cranes, for lifting objects or as tracks in cable-ways. They offer high longitudinal
stiffness, while keeping a low transversal bending stiffness. This allows for easy storage,
movement and deployment, thanks to the use of drums, sheaves and pulleys [1].

Even though many different designs have been proposed throughout history [2,3], the
general composition of a rope (see Fig. 1) has not changed. The basic element is the helical
wire, arranged in a bundle to form a strand. The obtained strands can be themselves
helically arranged to obtain the stranded rope. Compared to fibre materials used in fibre
ropes (that have been in use for millennia [2]), the use of structural materials allow for an
increased load carrying capability.
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Fig.2 a Examples of stationary ropes (adapted from [5]). b Chords Bridge, a cable-stayed bridge in Jerusalem
[23]. ¢ Kolbelco CKE1800, a crawler crane with the main boom suspended by ropes [24]

The mining field in the 19th century was a driving industry for the development of wire
ropes: the aim was to replace the employed metal chain—characterized by small damage
tolerance—with an element that would be comparable in structural response. This is
achieved by using rope designs, where multiple load paths architecture provides time for
servicing and replacing the damaged component, avoiding catastrophic failure [4].

Out of the vast number of rope applications, this work focuses on those where loads
are mainly tensile, in which case stationary ropes are employed [5]. They are utilized,
for example, in cable-stayed bridge, in cable-ways and in cranes as guy lines for booms
suspension (see Fig. 2). They can also be found in civil constructions in the form of pre-
stressed concrete strands [6]. Stationary ropes are usually multi-layered strands, having
therefore each component in a single helical configuration, as opposed to stranded ropes
described above.
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Ropes have many geometrical parameters in defining the overall response of the strand
[5]. While at the level of the strand and the rope there are numerous combinations of
parameters (number of wires, layout, lay-factor), the very basic component, the wire,
offers most often only its diameter as degree of freedom, due to the ease and lower costs
in manufacturing circular wires. As a consequence, strands present local stress concen-
trations due to the radial pressure concentration at the wires contact locations. Departing
from the geometrical constraint of round wires, the aforementioned design drawbacks are
mitigated permitting to achieve optimized overall operational characteristics.

For the case of tensile-dominated applications where single strands are used, the focus
will be on providing examples of how the geometry could be optimized for minimum
weight or minimum stress concentration, while satisfying application-dependent require-
ments such as limit load, axial stiffness, axial load at plastification or bending stiffness.
1+ 6 strands are basic, yet among the most used, strands. It has been chosen as refer-
ence strand in this work for its relatively straightforward geometry. Accordingly, a novel
geometrical parametrization for the I + 6 wire strands is proposed.

For the analysis to come, a reduced model [7] is employed. Rope theory literature has
been developed since the 1860s and a plethora of models have been proposed. Complexity
of analytical models for wire strands span from the simple assumption of helical springs
in parallel to a more refined curved beam theory, mainly based on Love’s theory [8] or
on general theory of rods by Green and Laws [9], accounting for bending and torsion.
Besides, finite element (FE) models have also being employed to model more complex
phenomena as residual stress after manufacturing [10], contact and friction [11] and
electromagnetic interactions within power cables [12]. Reduced helical models [7,13-15]
have been introduced in more recent years and utilize the concept of helical symmetry to
reduce the computational domain, have also being successfully used in various fields. The
computational efficiency of reduced models and their ability to model complex geometries
permit to challenge the limitation of purely circular wires and to propose an alternative
approach to the strand design, by means of a shape optimization. In order to permit such
a procedure, part of the considered domain needs to be modified to allow for the contact
definition.

This paper is structured as follows: “Modeling techniques comparison” presents the
modeling technique used and how it stands against alternative techniques; in “Optimiza-
tion procedure” section the optimization framework is introduced and the selection of
objectives and constraints is discussed; “Results” section contains the discussion on the
performance benefits of the optimal shape compared to the reference and a sensitivity
analysis carried on the resulting strand; finally, conclusions are drawn in “Conclusions”

section.

Modeling techniques comparison

Reduced helical model

When a helical structure is deformed uniformly along its entire length, the state variables
(strains and stresses) are uniform along helical lines. Its overall response can be exactly
analysed by taking a representative two-dimensional surface. This is a property called
translational invariance [14], and it is exploited to derive a reduced finite element model
[7] whose formulation is similar in idea to the generalized plane strain elements [16].
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Fig.3 Axial response of the wire strand 1 + 6. Geometrical parameters are listed in Table 3 and material
properties in Table 2

Other models have been proposed that use this same property, such as those by Zubov
[17], Treyssede [13], Frikha et al. [14] and Karathanasopoulos and Kress [15]. Differently
from the aforementioned models, the one used in this work has been derived within
the finite strain framework, therefore being able to better describe the wire motions.
Additionally, it was developed for complex geometries and interactions on the transverse
cross section.

The reduced model permits to have a complex geometry, while keeping a low number of
elements. This allows fine meshes and local strains and stresses to be studied, without the
need of a volumetric FE and very computationally expensive simulations. On the other
hand though, it is limited by its derivation assumption: only uniform loadcases can be
studied, such as axial elongation and twist, radial compaction and thermal expansion [15].
Accordingly, any load case—which determines that each transverse cross section of the
structure behaves identically—can be considered.

Requirements on modeling approaches

For our optimization, four requirements are essential to be satisfied by the chosen mod-
eling technique. An analytical model as found in Feyrer [5], and two three-dimensional
FE models (based on either on solid volumetric or beam elements) are compared to the
reduced model.

Awxial response As the axial elongation is the load case to optimize for, our model needs to
be able to fully capture the interaction between wires, including stiffening due to contact
among wires and material plasticity. Figure 3 shows how all models are able to predict the
overall axial behaviour.
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Fig.4 Solid continuum elements (left), beam elements (center) and reduced elements (right), with
corresponding computational times for the simulations shown in Fig. 3

Table 1 Requirements met by each model

Analytical Solid Beam Reduced
Axial response v 4 v v
Computational efficiency v X v v
Complex geometry X v X v
Bending response v v v X*

None of them is capable to fulfil all the requirements. * Bending stiffness approximated analytically (“Approximation of the
bending stiffness section”)

Computational efficiency A main focus when approaching an optimization routine is to
assure that the core simulation—that computes the objective value—is as efficient as
possible, as it is run multiple times. Therefore, in Fig. 4 a comparison between solution
times to quantify the speed of each model is shown. Apart from the analytical model, the
beam and reduced models are comparable in solving the analysis, with the solid FE being
significantly slower.

Complex geometries With the goal of setting up a shape optimization, the chosen model
will need to be able to fully describe the geometry of the strand (and in particular of the
outer wire). Solid and reduced FE models are the only ones that satisfy this requirement,
because both the analytical and the beam FE models rely on a narrow database of cross
sections for contact definition.

Bending response A calculation of the bending response is also required in the optimization
routine, to constrain the strand flexibility. Solid and beam FE models and analytical models
can directly describe such a load case. The reduced model, on the other hand, because the
transversal slices would not behave independently from their axial location, is inherently
not capable of modeling bending.

Table 1 highlights how the reduced model stands out against the alternative modeling
approaches.
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Fig.5 a Cross section of the 1+ 6 strand, with highlighted reduced model domain. b Auxiliary surface for
contact definition. Nodal degrees of freedom are fully constrained to the corresponding node lying on the
original cross section by constraint equations. ¢ Extruded strand, corresponding to the cross section foundin a

Extension of the reduced helical model to account for contact

Because the influence of contact between wires is important to fully characterize the stress
state within the strand, an extension of the model found in [7] was required (Fig. 5b). The
model was originally developed for the analysis of a single constituent, either free helices or
solid regions (e.g. solid cylinder with inclusions). Strands have instead distinct components
that are free to rotate and move relative to each other. Therefore, an interaction law needs
to be introduced. Instead of simply merging the contact points [15], the current work
uses a contact law with exponential pressure-overclosure behaviour.

In order to use the contact definitions already available in Abaqus, a geometrical expe-
dient is introduced. Since each component is locally planar and there is a relative out-of-
plane rotation, in order to enable a three-dimensional contact, an auxiliary master sur-
face must be defined. This allows the interaction to actually represent a surface-to-surface
contact rather then a line-to-line one, that would eventually create an artificial —localized-
kink. This surface is obtained by extruding the nodes of the inner core perpendicularly to
the reference plane. These nodes are then connected by shell elements and rigidly con-
strained to the corresponding parent nodes to guarantee the helical symmetry. Figure 5b
shows such contact surface, with highlighted the nodes connected to the corresponding

master node lying on the reference cross section.

Approximation of the bending stiffness
As suggested in the work by Foti [18], the bending of a strand exhibits two distinctive

extremes.
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Fig. 6 Results by Foti [18] and stiffness values computed analytically

o Stick phase, where the bending curvature is low enough that the friction between
components prevents them from sliding relatively to each other. All wires form a
cross section with connected elements associated with high bending stiffness.

« Slip phase, curvatures are high enough that friction can be ignored and each com-
ponent is assumed to freely bend about its neutral plane, determining an overall
reduction in bending stiffness.

The two values of stiffnesses, both in stick and in slip phase, are well approximated by
the bending stiffness of the straight rod having the same transverse cross section.

6
Kyiok = Eolo + Y _Eil; (1)
i-1
6
Kiip = Eolo + ZEiIi (2)

i=1
where E is the Young modulus, I is the moment of inertia of the each wire with respect
to its own neutral plane and  is the moment of inertia with respect to the strand neutral
plane. Subscript 0 refers to the core wire, while values of i > 0 refer to the outer wires
i=1---6).

This approximation allows us to consider bending without involving more complex
models. Figure 6 shows how the analytically computed stiffness values match the results
obtained by Foti [18]. However, the ability to characterize the transition between the two
phases (that depends on the friction coefficient 1) is not maintained.

The axial force applied to the strand also influences the bending response [18], due to
the increased friction at the contact between wires when the strand is elongated. Consid-
ering the fact that, for the applications considered in this work, axial forces are high and
curvatures are low, the stick phase stiffness Ky;.x will be considered.
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Fig.7 Stress—strain curve of a linear elastic-ideally plastic material

Table 2 Material properties used for both the reference for limit load analysis

(H = 0.0 GPa)

Young modulus E 210 GPa
Poisson’s ratio v 03
Yield stress oo 1.5 GPa
Hardness H 0.0 GPa

Parameters remain constant throughout the optimization

Material model

Throughout all simulations presented here the material model is an elastic-ideally plastic
constitutive law. Figure 7 shows the stress-strain curve corresponding to the material
parameters as in Table 2. This choice of constitutive law allows to model failure by a
limit load analysis. The material of the analysed structure is replaced by an ideally plastic
material with lower yield stress. This makes the limit load, i.e. the maximum load the
structure can sustain before plastic collapse, representative of the breaking load.

Optimization procedure
Objectives
The aim is to obtain wire shapes which reduce local stress concentration and therefore
reduce plastification, fatigue damages, thereby extending life time. In addition, lightweight
design increases structural efficiency and decreases material costs. As a result, it has been
chosen to consider two objectives.

The first is stress concentration minimization, defined as

Umax
y = max ( ‘;M ) (3)
o

VM

where o4 is the largest Von Mises stress acting in the cross section (located at the wire-

to-wire contact point) and oy}, is the nominal value at the center of the core wire, i.e. the
tensile stress occurring as a result of the applied deformation. Because of the nonlinear
local response, the stress concentration at contact point varies with the applied load
history. In particular, it will reach its maximum value y at the initiation of plastification
(Fig. 10).
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Fig.8 Geometrical parametrization of the strand cross section. b Strand cross section corresponding to the
helical slice depicted in a, where the five parameters required to define the geometry are highlighted and
taken as design variables. ¢ Examples of feasible cross sections of the outer wire

The second objective is area minimization, that, at constant lay-length, directly trans-
lates into weight reduction. It is considered as the effective area covered by the material
in the transverse cross section. Due to the choice of the ideally plastic constitutive law,
when a limit load is given, the minimum value of the area is bounded by the yield stress.

Constraints

Optimization procedures need to have constraints that avoid infeasible solutions to be
accepted. For instance, simplifying a rope structure to a single isotropic rod would prevent
any stress concentration, therefore minimizing the objective. In such a case though, the
rope would lose the favourable bending flexibility and damage tolerance, thereby not
fullfilling fundamental requirements of rope structures. Such characteristics are main
factors in the selection of ropes in an application and need to be maintained. While
the damage tolerance is kept by solely considering a shape optimization (that keeps the
multi-component nature of the strand, contrarily to a topology optimization), the bending
stiffness is taken as inequality constraint, where the upper bound is defined by the bending
stiffness Ky of the reference strand.

Additionally, each application sets a maximum load the rope is required to carry. The
breaking load of the selected rope needs to be higher than such value. Therefore, because
the optimal shape needs to satisfy the same requirements as its respective initial geometry,
the breaking load is considered as a constraint as well.

Geometrical setup

Figure 8 shows the geometrical parametrization used in the considered procedure. The
optimization aims at a wide variability, while keeping the number of design parameters
reasonably low. It presents a straight core wire and 6 helical wires around it. The analysis
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considers constant the number of wires and the lay-length (i.e. the axial length corre-
sponding to a full turn of an outer wire).

Figure 8b shows the degrees of freedom that our shape parametrization has. Besides the
total strand wire radius R and the outer wire diameter d, the shape is parametrized by the
use of two auxiliary circles that can be moved and scaled on the cross section. These fillets
bring in a total of 3 parameters (p1, r1 and r3).

To fully define the geometry, the following geometrical constraints are imposed as well:

+ Minimum interwire distance (gap) is set to be at the mirror plane (highlighted point
1 in Fig. 8b), to allow for the contact initiation;

« Concave outer shape, with a curvature corresponding to the radius of the strand, R
(point 2);

« Flat outer wire surface (point 3) with given angular distance €2, that permits relative
movement between adjacent outer wires without contact.

In the case which reducing the concentration at the contact point is our objective, the
optimal shape would morph into a shape that allows a surface-to-surface contact. Doing so
would provide a larger area for radial force transmission and thus reduce the localization.
We though encode the geometry so to have the contact surface to be concave or convex,
in order not to restrict the design space. Figure 8c shows potential candidates satisfying
the geometrical constraints.

Optimization routine
Because of the complex geometry and the geometrical constraints to be considered, a
genetic algorithm has been chosen to find a global minimum of the considered problem.
A pool of 100 different feasible geometries —based on the parametrization—has been
created as initial population. The optimization is allowed to have up to 100 generations,
with Matlab default values for mutation and crossover [19].

Each optimization has either area minimization or stress concentration minimization
as single objective, as discussed in Section 3.1.

Constraints are enforced by a multiplicative penalty factor [20] as follows:

; x(0, hj — I
P T (1 B ) T (1 =)

j=1 ]

where g; and /; are the current values of the n equality constraint functions and m dise-
quality constraint functions. g; and fzj are the given constraint values and f is the objective
value of the constrained problem.

Results

The reference strand taken as initial design is characterized by a 1 + 6 layout, with a core
diameter of 2.50 mm and an outer wire diameter of 2.25 mm. Additional constant geometry
properties, as the number of wires #, lay-factor LL, gap g and angular distance €2 are listed
in Table 3. Material properties used correspond to an ideally plastic law, as discussed in
“Material Model” section. The strand is extended axially to a nominal axial strain of 1%.
The objective is stress concentration minimization and the selected constraints are the
limit load and bending flexibility of the reference strand.
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Table3 Constant geometrical parameters of the reference strand

Number of wires n 6
Lay-factor LF 8.2
Angular distance Q 0.9°

Gap g 0.0025 mm

Parameters remain constant throughout the optimization

Y =248 Y=1.040

Fig.9 Stress concentration field, computed as local stress over nominal stress at the center of the core wire.
Because of the bending of the outer wire, a gradient is present. y is dimensionless. Blue corresponds to the
minimum value of 0.8 and red to the maximum value of 2.48

The optimization procedure is coordinated by the built-in Matlab R2018a Optimization
Toolbox [19], while each simulation is solved by Abaqus 6.14 [21] with a custom subroutine
(called User Element) developed in a previous work [7].

The optimal shape is shown in Fig. 9 on the right, where the contour of the Von Mises
stress concentration, i.e. the stress normalized with the nominal value measured at the
center of the core wire, is displayed. The increment plotted refers to the nominal strain
at which the plastification starts, that corresponds (as shown in Fig. 10) to the highest
stress concentration within the loading history. The pressure distribution associated with
the surface-to-surface contact results in the reduction of stress concentration into a more
homogeneous field in the new geometry. The reference strand has a maximum local Von
Mises stress of 148% higher than the nominal stress (corresponding to a concentration
y = 2.48), while the optimal presents only a 4% higher Von Mises stress (y = 1.04). The
initiation of plastification happens therefore at significantly larger strains, as shown in
Fig. 11, where the accumulated equivalent plastic strain at the location of plastic initiation
is plotted against the loading history. Delayed plastification means as well that the axial
load that the structure can bear without having any local defects is increased, as it is
highlighted in Fig. 12 by the value F,” * (34.8kN) being 3.74 times higher than F;ef (9.3kN).

Contrarily to Fig. 11, the curves in Fig. 12 do not show any effect of the early local
plastification. This is due to the considerably small area affected by this phenomenon,
making its contribution to the axial force is negligible. Figure 12 shows the force-strain
curves and it can be seen that the limit load is kept as required by the constraint, with
the optimal strand being more compliant than the reference strand by less than 2.5%. As
for the bending flexibility, it showed the same value as the reference, with less than 0.1%
variation.

Figure 13 presents another optimal shape, obtained with an alternative choice of objec-
tives and constraints. When axial force at plastic initiation F, is considered as the only
constraint, the required transverse surface is allowed to decrease, because it is not bounded
by the limit load requirement. If area minimization is therefore considered, the resulting
shape shown in Fig. 13b is obtained, with the area value of 10.8 mm?, corresponding to
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Fig. 10 Plot showing the evolution of the stress concentration at the contact point (corresponding to point 1
in Fig. 8) with the applied macro-elongation. As plastification starts, y decreases due to the local plastification
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Fig. 11 Accumulated plastic strain. A lower Von Mises stress determines a delayed plastic initiation and a
lower overall accumulated strain
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Fig. 12 Global axial response of the reference and the optimal strand. The optimal shape delivers a 2.5%
lower limit load
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Fig. 13 Optimal cross sections obtained with different objectives and constraints. a Shape obtained by
minimizing the stress concentration and constraining the limit load and bending stiffness. b Shape resulting
from area minimization with unconstrained limit load, but given axial load at plastification F,,

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Fig. 14 Influence of a perturbation of the geometrical parameter p;. Below the plot, the corresponding
resulting cross sections are shown. The change of A py has been scaled for visualization purposes, on the left
for negative A py, on the right for positive variations

the 37% of the reference strand area (A = 28.9 mm?). A delayed plastification’ start can

provide margin for reducing the safety factor and consequently the required weight.

Sensitivity analysis
Any production process is subjected to tolerances, and thus it could be expected that the
manufactured optimal wire would not match perfectly the computed one. To study this
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sensitivity, it has been chosen to slightly vary a parameter p;, that determines the inner
surface curvature of the outer wire. Figure 14 shows the maximum stress concentration
measured when adding a small perturbation Ap; to the optimal p;. In both directions
(whose corresponding geometries are illustrated in Fig. 14) there is a detrimental effect,
due to the reintroduction of local concentration, losing partially the benefit of the optimal
shape. Values are though significantly lower than the reference strand value (y = 2.48).
In particular, the results show that a larger p; (Ap; > 0, corresponding to a smaller

curvature of the inner contact surface) is safer, as y increases less for such values.

Conclusions

The reduced helical model capability to resolve local stresses has been proven essential
to allow for the proposed optimization. It computes stress concentrations without recur-
ring to a solid FE model, that would have rendered the entire routine computationally
very expensive. Within the limitations set by the reduced helical model assumptions, the
applicability and potential of the chosen approach was demonstrated by showing that a
optimized design of the strand, and in particular of the outer wires, was found.

Such optimization framework complements the state-of-the-art design of strands, since
an optimal cross section—providing beneficial characteristics—could be tailored to each
application. The strand manufacturer would need to have ways to produce the resulting
geometry by successive drawing through custom made dies. While this surely increases
the complexity and cost of the strand manufaCturing processes, it is feasible, as non-
circular wires have already been used in full-locked spiral rope [5]. Compared to the
compaction of strands—the process of radially compressing a strand that originally had
round wires—the approach proposed in this work reduce dirt infiltration and determines
a better contact pressure distribution, without introducing unwanted pre-stresses. This
analysis can directly be extended to more complex geometries such as multi-layer strands
and it could also be coupled with other models to analyse the next hierarchical level, the
wire rope. For instance, the reduced model could compute the homogenized properties
of the wire strand to be used in a beam model, that would effectively simulate a stranded
wire rope.
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