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Abstract

This work proposes an extension of phase change and latent heat models for the
simulation of metal powder bed fusion additive manufacturing processes on the
macroscale and compares different models with respect to accuracy and numerical
efficiency. Specifically, a systematic formulation of phase fraction variables is proposed
relying either on temperature- or enthalpy-based interpolation schemes. Moreover,
two well-known schemes for the numerical treatment of latent heat, namely the
apparent capacity and the so-called heat integration scheme, are critically reviewed
and compared with respect to numerical efficiency and overall accuracy. Eventually, a
novel variant of the heat integration scheme is proposed that allows to directly control
efficiency and accuracy by means of a user-defined tolerance. Depending on the
chosen tolerance, it is shown that this novel approach offers increased numerical
efficiency for a given level of accuracy or improved accuracy for a given level of
numerical efficiency as compared to the apparent capacity and the original heat
integration scheme. The investigation and comparison of all considered schemes is
based on a series of numerical test cases that are representative for application
scenarios in metal powder bed fusion additive manufacturing.

Keywords: Latent heat, Phase change, Heat transfer, Metal additive manufacturing,
Numerical simulation, Finite element method

Introduction
Additive manufacturing (AM) is widely considered to be a key technology for future
advances in engineering. AM offers highest flexibility in part design while still achieving
the mechanical properties required for functional parts [1]. In metal powder bed fusion
additivemanufacturing (PBFAM)multiple layers ofmetal powder are successivelymolten
at selected positions, which eventually form the cross-sections of the final part after solid-
ification. Energy is commonly deposited by a laser or electron beam giving rise to the
respective names selective laser melting (SLM) and electron beam melting (EBM). These
processes come with very challenging thermophysical phenomena on multiple length
and time scales [2]. Accordingly, existing modeling approaches can be classified with
respect to the resolved length scales: Macroscale approaches commonly aim at deter-
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mining spatial distributions of physical fields such as temperature, residual stresses or
dimensional warping on the scale of the design part. Mesoscale approaches resolve the
length scale of individual powder particles on domains smaller than one powder layer
to either study the melt pool thermo-fluid dynamics during the melting process [3–8]
or the cohesive powder flow during the previous powder recoating process [9–11]. Last,
microscale approaches predict the evolution of the metallurgical microstructure during
solidification [12–16]. A broad overview of state-of-the-art modeling approaches on these
different length scales can be found in [17]. The present article focuses on the development
of a thermal macroscale model for metal PBFAM processes.
Macroscale PBFAMmodels typically treat the powder phase as a homogenized contin-

uumdescribedvia spatially averaged thermal andmechanical properties,without resolving
individual powder particles. Also, the complex fluid dynamics within themelt pool is typi-
cally not explicitly resolved. Instead, a pure thermo-(solid-)mechanical problem is solved,
usually based on a Lagrangian description and a spatial finite element discretization, with
specific temperature- and phase-dependent thermal and mechanical constitutive param-
eters for the (homogenized) powder phase, the melt phase and the solidified phase. On
the one hand, from amodeling point of view, such a procedure considerably simplifies the
coupling of the different phase domains. On the other hand, this approach seems to be
well-justified for certain simulations and quantities of interest since themechanical forces
transferred from powder and molten phase onto the solid phase are often negligible in
good approximation.
In their works [18–20], Gusarov et al. proposed a model for powder bed laser absorp-

tion, which has been incorporated inmany existingmacroscale modeling approaches. For
example, by using this absorptionmodel, [21,22] proposed a thermo-mechanical finite ele-
ment (FE)model accounting for temperature- and phase-dependent thermal andmechan-
ical constitutive behavior. Further developments in this field consider e.g. the accuracy of
the physical model by adding additional physical effects such as residual stress relaxation
[23], improved models for temperature and phase-dependent thermal conductivity of the
powder [24,25] andmelt [26] phase, anisotropic conductivity [27], phase-dependent laser
absorptivity [28], thermodynamically consistent constitutive modeling based on phase
energies [29], or by explicitly modeling the melt pool fluid dynamics [30], an approach
inspired by similar schemes in the context of laser and electron beam welding [31–33].
Another important aspect for macroscale PBFAM models is computational efficiency,
which has been addressed, among others, by applying dynamic mesh adaptivity schemes
[34–37], code parallelization and load balancing techniques [38] as well as process layer
agglomeration approaches [22,37,39].
The present work addresses two important aspects of macroscale PBFAM models,

namely the modeling of phase change and latent heat effects. Concerning the first aspect,
we propose phase fraction variables which allow to formulate temperature- and phase-
dependent material parameters in phase transition regions by consistent interpolation
of the single phase parameters. While the definition of phase fraction variables is often
somehow hidden in existing works, the present contribution defines these phase fraction
variables in a transparent and systematic manner. Moreover, as basis of these phase frac-
tion variables, different interpolation strategies, e.g. temperature-based or enthalpy-based
interpolation, are discussed in detail. An alternative formulation of phase fractions based
on energy minimization can e.g. be found in [29].
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Concerning the modeling of latent heat effects, the two schemes that are most widely
used in PBFAMmodels, namely the simple apparent (heat) capacity approach [35,40–42]
and the more involved heat integration method [21,43,44], will be investigated in the
present work. It is known in the context of PBFAM process simulation that the specific
choice of the latent heat model might considerably influence the overall efficiency of the
numerical model [21]. In the present work, the two aforementioned schemes, namely
the apparent capacity approach and the heat integration method, are critically reviewed
and compared with respect to numerical efficiency and overall accuracy. Eventually, a
novel variant of the heat integration scheme is proposed that allows to directly control
efficiency and accuracy by means of a user-defined tolerance. Depending on the chosen
tolerance, it is shown that this novel approach offers increased numerical efficiency for a
given level of accuracy or improved accuracy for a given level of numerical efficiency as
compared to the apparent capacity and the original heat integration scheme.One example
where high accuracy, e.g. in the prediction of melt pool shape and thermal gradients, is
essential is themodeling ofmicrostructure evolution on the basis of temperature solutions
provided bymacroscale PBFAMmodels.While also the prediction of residual stresses can
be considered as one of the major objectives of macroscale PBFAM process simulation,
the present study intentionally focuses on purely thermal problems to isolate the effects of
primary interest, namely the formulation and comparison of different phase change and
latent heat models. For the same reason, local effects in the melt pool such as evaporation
and fluid flow have been purposely neglected.
This article is structured as follows: “General thermalmodel” section presents themath-

ematical problem statement and summarizes the main model constituents in space- and
time-continuous form. Specifically, “Modeling of the laser heat source” section intro-
duces the heat source modeling of a laser beam. Next, in “Modeling of phase change
and latent heat” section the phase change problem is introduced. It is shown how both
mentioned methods for modeling latent heat, namely the apparent capacity and the heat
integration scheme, can be derived from a Lagrange multiplier potential. In “Modeling of
temperature- and phase-dependent parameters” section temperature-history dependent
material parameters are interpolated on the basis of properly defined phase fraction vari-
ables that allow to distinguish powder, solid and melt phase. The spatial and temporal
discretization schemes as well as the general numerical solution procedure are outlined in
“General numerical solution procedure” section. In “Discretization and algorithm of heat
integration scheme” section the fully discretized version as well as algorithmic details
of the heat integration method are discussed and eventually the novel tolerance-based
variant of the heat integration scheme is proposed. Numerical experiments are presented
in “Numerical results” section with a focus on accuracy and efficiency of the considered
methods. Finally, a summary of the present contribution and a brief outlook on future
research work is given in “Conclusion” section.

General thermal model
For the purpose of this study it is sufficient to focus on the following transient purely
thermal problem described by the heat equation for the temperature T and appropriate
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boundary conditions. The problem statement in strong form is:

c(T ) Ṫ + ∇ · q = r̂, in �,

T = T̂ , on �T ,

q · n = q̂, on �q .

(1)

Temperatures T are prescribed on the boundary part �T and heat fluxes on �q . The heat
flux q is specified by Fourier’s law for isotropic material,

q = −k(T ) ∇T. (2)

Material properties, namely (volumetric) heat capacity c andconductivity k ,may in general
depend on the temperature T but also on the phase r (see “Modeling of temperature-
and phase-dependent parameters” section for the definition of phase fractions and the
interpolation of material parameters). In this contribution, spatial discretization will be
based on the finite element method (see “General numerical solution procedure” section),
i.e. (1) has to be transferred into its weak form via multiplication with a test function δT
and integration by parts, viz.

∫
�

δT c(T )Ṫ d� −
∫

�

∇δT · q d� +
∫

�q
δT q̂ d� −

∫
�

δT r̂ d� = 0, (3)

where the boundary conditions have already been inserted. By introducing the
trial space V = {T |T ∈ H1, T = T̂ on�T } as well as the weighting space
W = {δT | δT ∈ H1, δT = 0 on�T }, where H1 denotes the Sobolev space of functions
with square-integrable first derivatives, (3) is equivalent to the strong form (1).

Modeling of the laser heat source

The source term r̂ represents the energy deposited by the laser beam as a volumetric heat
source based on the model for radiative and conductive heat transfer in powder beds by
Gusarov et al. [20]. In the following, a summary of the main model constituents is given.
Let a powder layer be distributed in the xy-plane, where the powder material extends in
positive z-direction from the powder layer surface at z = 0 up to the layer thickness L at
z = L. A laser beam of nominal powerW and size R is applied normal to this plane. The
laser beam as well as the local coordinate system move in x-direction with a velocity v.
The source term is then given in this local coordinate system relative to the laser beam
center by

r̂(rh, z) = −βhQ0
∂q
∂ξ ′ , (4)

where rh is the distance in the xy-plane from the laser beam center and βh is the extinction
coefficient. The nominal power density Q0 is radially distributed around the laser beam
center as

Q0 =
⎧⎨
⎩

3We
πR2

(
1 − rh

R
)2 (

1 + rh
R

)2 , 0 < rh < R

0, otherwise
. (5)
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The nominal laser power W has been averaged and reduced to an effective power We to
account for various losses. Thus, (5) describes the spatial distribution in x- and y-direction.
Thenormalizedpowerdensityq is given in termsof thedimensionless coordinate ξ ′ = βhz
as

q = ρha
(4ρh − 3)D{
e−λ(1 − ρ2

h)
[
e−2aξ ′

(1 − a) + e2aξ
′
(a + 1)

]

−
[
e2a(ξ

′−λ)(1 − a − ρh(a + 1))

+ e2a(λ−ξ ′)(a + ρh(a − 1) + 1)
]
(ρhe−2λ + 3)

}

− 3(1 − ρh)(e−ξ ′ − ρheξ
′−2λ)

4ρh − 3
, (6)

with hemispherical reflectivity ρh, constant a = √
1 − ρh, optical thickness λ = βhL and

the constant

D = (1 − a) [1 − a − ρh(1 + a)] e−2aλ

− (1 − a) [1 + a − ρh(1 − a)] e2aλ. (7)

Finally, the derivative of (6) with respect to ξ ′ as required in (4) reads

∂q
∂ξ ′ = (3 − 3ρh)(e−ξ ′ + ρheξ

′−2λ)
4ρh − 3

+ 2a2ρh
D(4ρh − 3)

{
e−λ(1 − ρ2

h)
[
e−2aξ ′

(a − 1) + e2aξ
′
(a + 1)

]

+ (ρhe−2λ + 3)

×
[
e−2a(λ−ξ ′)(a + ρh(a + 1) − 1) + e2a(λ−ξ ′)(a + ρh(a − 1) + 1)

]}
. (8)

Apart from the optical properties, (8) only depends on the z-coordinate z = ξ ′/βh.

Modeling of phase change and latent heat

So far we have not addressed the (crucial) phase change problem (i.e. melting and solidifi-
cation), first from powder to molten and eventually frommolten to solid phase. Consider
a domain containing both solid and liquid phase separated by an interface �m, which is
defined by the isothermT = Tm. Based on an energy balance at the interface, the following
so-called Stefan-Neumann equation has to hold:

nsl ·
(
ks

∂T
∂x

∣∣∣∣
s
− kl

∂T
∂x

∣∣∣∣
l

)

︸ ︷︷ ︸
�qm

= hmnsl · vsl on �m, (9)

where nsl is the interface normal vector, hm the (volume-specific) latent heat of melting
and the subscripts (·)s and (·)l denote quantities evaluated in the solid or liquid phase,
respectively. The absorbed or released heat flux �qm is proportional to the velocity vsl
of the evolving interface, in general leading to discontinuous heat fluxes across the phase
interface. The free boundary condition (9) is especially suitable for sharp interface models
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Fig. 1 Left: enthalpy-temperature diagram for isothermal (solid line) and mushy (dotted line) phase change.
Right: capacity-temperature diagram shows a singularity for isothermal phase change (solid line) at Tm . For
the AC method the modified capacity c∗ includes the effects of latent heat hm within a regularized phase
change interval [Ts, Tl ] similar to the mushy phase change type

in Eulerian description when combined with explicit interface tracking schemes, e.g. via
level set functions [37], whose temporal evolution is defined by vsl . In this work, as typical
for macroscale PBFAMmodels, the thermal problem is described in a Lagrangianmanner
in combination with a diffuse interface model, i.e. it is assumed that phase change takes
place across an extended interface volume of finite thickness. Within this volume, the
temperature is constrained until the melting enthalpy hm has been absorbed or released:

T − Tm = 0 if h0 ≤ h ≤ h0 + hm (10a)

Ṫ = 0 if h0 ≤ h ≤ h0 + hm, (10b)

where h0 represents the enthalpy level at whichmelting starts. The left part of Fig. 1 (solid
line) illustrates this concept. When deriving the weak form (3) in a variational manner,
constraint Eq. (10a) [or alternatively its rate form (10b)] can be enforced via the following
Lagrange mutliplier potential

�m =
∫

�

λ(T − Tm) d�, (11)

where λ represents the Lagrange multiplier enforcing (10a). Its total variation yields

δ�m =
∫

�

δλ(T − Tm) d� +
∫

�

δT λ d�. (12)

The first term in (12) represents the original constraint Eq. (10a), while the second term
yields an additional contribution to the weak form (3):

∫
�

δT
(
c(T )Ṫ + λ

)
d� −

∫
�

∇δT · q d� +
∫

�q
δT q̂ d� −

∫
�

δT r̂ d� = 0. (13)

Since Ṫ = 0 during phase change, the Lagrange multiplier equals the enthalpy rate

ḣ(t) = λ(t) if h0 ≤ h ≤ h0 + hm, (14)
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which leads to the following expression for the enthalpy during phase change

h(t) = h0 +
∫ t

t(h0)
λ(t̃) dt̃ if h0 ≤ h ≤ h0 + hm, (15)

and eventually to an integral limiting condition for the Lagrange multiplier:

0 ≤
∫ t

t(h0)
λ(t̃) dt̃ ≤ hm. (16)

HuandArgyropoulos [45] reviewvariousmethods to account for the latent heat associated
with phase change. In the following two sections, the basics of two methods especially
popular in the field of PBFAM modeling are briefly presented. In particular, we propose
that these two schemes can be interpreted as different realizations of the constrainedweak
form (13).

Remark So far we have considered pure materials, i.e. isothermal phase change at a fixed
melting temperature Tm. For alloys, phase change typically happens gradually, i.e. the
latent heat is absorbed or released within a rather narrow temperature interval between
solidus temperature Ts and liquidus temperature Tl , in the following denoted as mushy
phase change.

Remark Throughout this work, the phase interface is implicitly defined by isotherms, a
common choice in the context of PBFAM process simulation. Depending on the type of
phase change (isothermal or mushy), one might take the isotherm at melting temperature
(supplemented by a proper tolerance) or the isotherms at solidus and liquidus temperature
to represent the interface.

Apparent capacitymethod

One of the simplest approaches to capture the effects of latent heat is the so-called
apparent capacity (AC) method. The basic idea is to regularize the constraint (10) such
that phase change takes place within a finite temperature interval of width 2d given by
T ∈ [T − d;T + d]. Throughout this work, the temperature bounds confining this reg-
ularized phase change interval for isothermal phase change will be represented by the
same variables Ts = T − d and Tl = T + d as the solidus and liquidus temperature for
mushy phase change. This choice seems reasonable as it will turn out that the algorithmic
treatment of both cases is identical. Considering now the weak from (13), the apparent
capacity method results from setting

λ = cm(T )Ṫ , (17)

where the factor cm(T ) ≥ 0 penalizes non-zero temperature rates Ṫ 	= 0, i.e. violation of
constraint (10b). Thus, according to (17) the Lagrange multiplier is not considered as an
independent primary variable and (10b) is not satisfied exactly anymore. Inserting (17)
into (13) allows to identify a modified capacity,

c∗(T ) = cm(T ) + c(T ), (18)
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justifying the name apparent capacity method. The choice of cm(T ) is only restricted by
the limiting condition (16), which after a change of variable eventually reads

∫ t(Tl )

t(Ts)
cm(T )Ṫ dt =

∫ Tl

Ts
cm(T ) dT =̇ hm. (19)

According to (19), small values of cm(T ) require a large regularized phase change interval
typically resulting in a more good-natured numerical algorithm at the cost of lower solu-
tion accuracy and vice versa. The original phase change constraint (10) (solid line) as well
as the regularized phase change constraint based on the apparent capacity (18) (dashed
line) are illustrated in Fig. 1. In this contribution a smoothed triangular distribution is
chosen for cm, as illustrated in the right part of Fig. 1.
As simple as the AC method may be, it suffers from one major drawback: An accurate

representation of the phase change constraint, i.e. the choice of a small phase change
interval 2d yields large values and steep gradients of the function cm(T ), which are not
only challenging for numerical solution schemes (e.g. nonlinear solvers, see “General
numerical solution procedure” section) but also prone to large time integration errors. In
this case, the absorbed or released enthalpy during phase change (19), and thus the overall
energy balance of the phase change problem, is only captured with low accuracy.

Heat integrationmethod

Another popular and more advanced procedure is what Hu and Argyropoulos [45] call
the heat integration (HI) method. It has first been applied to a FE setting by Rolph and
Bathe [43] and is still used inmore recent contributions [21,44]. Here, we present the basic
concept by proposing an alternative interpretation of the heat integration method as an
augmented Lagrange constraint enforcement scheme [46]. The full algorithmic details of
the method in the spatially and temporally discretized problem setting will be presented
in “Discretization and algorithm of heat integration scheme” section.
In a first step, the Lagrange multiplier in the weak form (3) is replaced by an augmented

Lagrange formulation for the constraint (10a) of the form

λ = λ̃ + ε(T − Tm) (20)

where ε > 0 represents a penalty parameter. Comparable to an augmented Lagrange
version based on the so-called Uzawa algorithm [46], the new Lagrange multiplier λ̃ is not
considered as an independent primary variable but rather as a history variable within an
iterative solution procedure of the form λ̃i = λi−1 leading to

λi = λi−1 + ε(Ti − Tm) for i ≥ 1 with λ0 := 0, (21)

where i represents an iteration counter to be defined in “General numerical solution
procedure” section. In the final algorithm, the enthalpy rate λi at iteration i has to fulfill the
constraint Eq. (10a) and the enthalpy inequality (16) up to a user-defined tolerance, which
will eventually define a stopping criterion for the iterative procedure (see “Tolerance-
based heat integration scheme” section).

Remark TheHI scheme, which has originally been proposed in the time-discrete problem
setting [43], can be recovered from (21) by choosing the penalty parameter according to



Proell et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:24 Page 9 of 32

ε = c(T )/�t, where�t represents the time step size to be introduced in “General numer-
ical solution procedure” section. Now, tomotivate this specific choice and to illustrate the
working principle of the HI scheme, consider the (theoretical) case of a material with con-
stant capacity c(T ) = const. and vanishing conductivity k(T ) = 0. Then, the time-discrete
version of heat Eq. (1) without any additional constraint, i.e. i = 0 and λ0 = 0 in (21),
yields the solution c�T 1 = r̂�t with �T 1 = r̂�t/c 	= 0. If the considered material point
is undergoing phase change in the current (and previous) time step, the solution can be
expressed as �T 1 = T 1 − Tm = r̂�t/c 	= 0, which violates constraint (10a). Thus, an
additional iteration i = 1with λ1 = ε(T 1−Tm) has to be conducted. For this example, the
specific choice ε = c/�t allows to find the correct temperature solution that is consistent
with (10a) already in the first iteration i = 1:

�T 2 = r̂�t/c − λ1�t/c = r̂�t/c − (T 1 − Tm)︸ ︷︷ ︸
r̂�t/c

= 0

Even though general scenarios with c(T ) 	= const. and k(T ) 	= 0 will typically require
a higher number of iterations, the choice ε = c/�t still seems reasonable and is well-
established also in this case.

Remark The original definition of the Uzawa algorithm defines an additional fixed-point
iteration wrapped around the iteration loop of the nonlinear solver (e.g. a Newton–
Raphson scheme as discussed in “General numerical solution procedure” section) to per-
form the iterative update (21). In contrast, the HI algorithm presented in “Discretization
and algorithm of heat integration scheme” section will perform these updates directly
during the iterations of the nonlinear solver without any additional “outer” iteration loop.

Modeling of temperature- and phase-dependent parameters

As common inmacroscale PBFAMmodels, all three phases are modeled by varyingmate-
rial parameters of a solid material law. On the one hand, this procedure considerably
simplifies the numerical schemes for coupling the different phases. On the other hand,
this approach seems also to be justified for the thermo-mechanical problem since the
mechanical forces transferred from powder and molten phase (with vanishing stiffness)
onto the solid phase are negligible in good approximation for many questions. It is also
important to note that the change from powder phase to molten phase is irreversible. In
the following, we will consider the different types of phase changes in more detail.
Figure 2 gives an illustration of the possible states of a material point. The current

temperature T is on the ordinate, while the abscissa shows the highest temperature ever
reached, Tmax. The different areas correspond to different mixtures of powder, melt and
solid. By definition there cannot be any possible state for T > Tmax and this area is
blanked out. If Tmax < Ts, all material must still be in powder form (p). If Tmax > Tl ,
there is no more powder, all material is consolidated and thus must be solid (s) or molten
(m). The exact constitution of the two then depends on the current temperature. The same
reasoning applies to the current temperature. IfT > Tl , allmaterialmust bemolten. IfT <

Ts, material is a mixture of powder and solid, where the exact constitution is depending
on Tmax. Perhaps the most interesting scenario is obtained when Ts < T < Tmax < Tl .
In this case some powder is still left and the consolidated phase consists of melt and solid.
The arrows in Fig. 2 indicate the possible evolution of phases. Due to the definition ofTmax
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Fig. 2 Temperature history diagram illustrating the two-dimensional nature of material parameter
interpolation between powder (p), melt (m) and solid (s). Arrows indicate possible movement within the
diagram

the only way to increase its value is an irreversible movement along the black diagonal
line in Fig. 2. For all other locations in the diagram a reversible horizontal movement is
possible. With these considerations a temperature-based interpolation procedure for any
material parameter can be derived.

Temperature-based interpolation

First, the focus is on the transition from (non-powder) solid to melt. The liquid fraction g
is introduced as

g(T ) =

⎧⎪⎪⎨
⎪⎪⎩

0, T < Ts
T−Ts
Tl−Ts

, Ts ≤ T ≤ Tl

1, T > Tl.

(22)

If only solid andmoltenphasewerepresent, anymaterial parameter f couldbe interpolated
from the solid and melt values fs and fm. The history-dependent material behavior is
captured by the fraction of consolidated material rc defined as

rc(t) =
⎧⎨
⎩
1, if rc(0) = 1 (i.e. initially consolidated)

max
t̃≤t

g(T (t̃)), if rc(0) = 0 (i.e. initially powder).
(23)

The time argument is explicitly stated to emphasize the history-dependence of rc(t). The
consolidated fraction is initialized with a proper start value rc(0) (zero/one for locations
initially covered with powder/consolidated material). For example, in a region that has
initially been covered with powder, definition (23) equals the all-time maximum of the
liquid fraction g at this location which, according to (22), carries the same information



Proell et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:24 Page 11 of 32

T
s

T
l

T [K]

f

powder

solid

melt

T
s

T
l

T [K]

f

powder

solid

melt

Fig. 3 Evolution of a material parameter depending on temperature history. Left: material is completely
molten and consolidated. Right: temperature history stays below liquidus temperature and thus a fraction of
material stays powder

as the maximum temperature Tmax. In a region that has initially been covered with solid
material, definition (23) equals one for all times since solid material can never trans-
form back to powder. The monotonously increasing fraction of consolidated material rc
together with the liquid fraction g allow to define volume fractions for powder, melt and
solid phases according to:

rp = 1 − rc, (24)

rm = g, (25)

rs = rc − g. (26)

Their physical motivation is as follows: The powder fraction rp given in (24) is by defi-
nition the complement of the consolidated fraction rc. The molten fraction rm in (25) is
independent of the history and is always determined by (22). The solid fraction rs defined
in (26) is the part of the consolidated fraction which is not molten. Note that definitions
(24), (25) and (26) satisfy partition of unity and are thus suitable for interpolation.
Any material parameter f can now be interpolated from the single phase values fp, fm, fs

weighted by the corresponding fractions

f (T ) = rp(T )fp + rm(T )fm + rs(T )fs. (27)

For the special choice fp = fs, a two phase interpolationwithout history-dependent behav-
ior would be recovered. The dependence on temperature is explicitly stated in (27) since
this requires a consistent linearization to achieve robust convergence of the nonlinear
solver. Figure 3 shows the evolution of an exemplary material parameter f over the tem-
perature history for the chosen liquid fraction definition (22). In the left diagram powder
melts completely and consequently the parameter f takes on the value of a solid after
cooling down below Ts. The right diagram shows partial melting: After cooling down
below Ts the parameter is a weighted average of the powder and solid value based on
the consolidated fraction which is now smaller than 1. Figure 4 shows the same inter-
polation in a three-dimensional representation which makes the history-dependence on
Tmax more explicit and shows that the parameter interpolation is also continuous over the
history. This is important in the modeling of PBFAM processes since it ensures a contin-
uous transition of material parameters between regions of molten or solidified material
and regions that are still covered with unmolten powder. Note that the definition of the
liquid fraction (22) determines the exact shape of the interpolating curve (27). The kinks
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Fig. 4 Three-dimensional visualization of parameter interpolation. Material parameters are continuous in T
and Tmax direction. The blue curve shows the evolution of the parameter when Tmax < Ts

atTs andTl could also be smoothed out if this seems necessary for an improved numerical
behavior (e.g. robust convergence of the nonlinear solver, see “General numerical solution
procedure” section).

Remark The definitions (24), (25) and (26) imply that in a material mixture containing
solid and powder the solid fraction alwaysmelts first, i.e. when increasing the temperature
at a scenario Ts < T < Tmax < Tl the powder fraction does not increase before the
previous maximum temperature Tmax is exceeded. With more history variables, also a
different behavior could be realized (e.g. powder should melt first) but this is not deemed
necessary in the context of macroscale PBFAM.

Enthalpy-based interpolation

In the case of isothermal phase change (if not regularized by an AC scheme), the def-
inition of the liquid fraction based on temperature as in (22) is not directly applicable.
A temperature-based parameter interpolation would still be possible based on a defini-
tion of solidus and liquidus temperature Ts = Tm − d and Tl = Tm + d as numerical
regularization values as done in the AC scheme. However, a more consistent alternative
approach utilizes the accumulated melt enthalpy h(t) in (15) to define

g(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, h = h0
h(t)−h0

hm , h0 < h < h0 + hm
1, h = h0 + hm.

(28)

Essentially, the liquid fraction is defined as the ratio of already absorbed melt enthalpy to
the latent heat required for phase change. All other parts of the interpolation (27) remain
unchanged. This liquid fraction will prove useful in combination with the HI method as
further discussed in “Discretization and algorithm of heat integration scheme” section.
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General numerical solution procedure
The weak form of the heat Eq. (3) is discretized in space by the finite element method
(FEM) following a Bubnov–Galerkin approach:

T (x, t) =
∑
j
Nj(x)Tj(t), δT (x) =

∑
j
Nj(x)δTj, (29)

where x is the spatial position, and Tj(t) as well as δTj are the nodal temperatures and
temperature variations. For time discretization a one-step theta time integration scheme
is employed, which, for the model equation φ̇ = f (φ, t), is defined as

φn+1 = φn + θ�tf (φn+1, tn+1) + (1 − θ )�tf (φn, tn). (30)

Here, �t := tn+1 − tn is the time step size and the subscript (.)n indicates a quantity that
is evaluated at the discrete time step tn. Together, the spatial and temporal discretization
result in a fully discrete, nonlinear system of equations R(Tn+1) = 0, where R is the
global residual vector and Tn+1 the global vector of nodal temperatures at tn+1. The
equations are nonlinear due to the temperature-dependence of the heat capacity and
thermal conductivity and due to the underlying phase change subproblem represented by
(the non-smooth) constraint Eq. (10a). The systemof nonlinear equations is linearized and
solved iteratively with a Newton–Raphson scheme, which yields the following iterative
update procedure

T i+1
n+1 = T i

n+1 + �T i+1
n+1 with

∂R
∂T

∣∣∣∣
T i
n+1

�T i+1
n+1 = −R(T i

n+1). (31)

The following two convergence criteria ||R(Ti+1
n+1)||2 < εR and ||�T i+1

n+1||2 < εT are
considered, i.e., for convergence both the norm of the residual and the iterative solution
vector increment have to fall below given tolerances. All implementations and simulations
presented in the next sections have been performed in the in-house research code BACI
[47], a parallel, multi-physics finite element framework.

Discretization and algorithm of heat integration scheme
Requirements and objective: In “Numerical results” section, it will turn out that the
HI method typically describes the phase change problem more accurately [e.g. in terms
of constraint (10a)] as the AC scheme. Unfortunately, the HI method in its original form
is known to typically result in a slow Newton–Raphson convergence [21,45], which can
be traced back to residual manipulations in subsequent iteration steps i on the basis
of (21), which are not accompanied by an associated consistent linearization contribu-
tion. In order to satisfy the constraint Eq. (10a), the original HI scheme typically leads to
such manipulations, i.e. to changes of the Lagrange multiplier λi in subsequent iterations,
throughout the entire Newton–Raphson loop, which slows down convergence consider-
ably.While the basics of this originalHI scheme are presented in “Original heat integration
scheme” section, we propose a novel realization of the HI scheme in “Tolerance-based
heat integration scheme” section. This variant allows to control the accuracy of constraint
enforcement in (10a) via a user-defined tolerance. For practically relevant choices of this
tolerance, λi in (21) typically takes on a constant value after only a few iterations, thus
allowing for quadratic convergence of the Newton–Raphson scheme afterwards.
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The basic idea of the HI method has been introduced in an abstract manner in “Heat
integration method” section for the case of isothermal phase change. Essentially, the
method performs the update (21) for the Lagrange multiplier λi occurring in the discrete
version of the weak form (13) for each Newton–Raphson iteration i at which constraint
Eq. (10a) is violated. It is important to note that the HI method in the spatially discretized
setting enforces this constraint at element nodes (and not at integration points). For this
purpose, the nodal volume Vk is defined for each node k as

Vk =
∫

�

Nk d�, (32)

Taking advantage of the partition of unity
∑

k Nk = 1, (32) implies that the sum of all the
nodal volumes Vk associated with an element indeed equals the volume occupied by this
element. Considering the Lagrange multiplier term in (13), the integral over � can then
be approximated by a nodal evaluation of the integrand λ times the nodal volume. Thus,
the contribution to the residual entry Rk yields:

Rk =
∫

�

Nkλ d� ≈ λ(xk )
∫

�

Nk d� = λkVk =: Ḣk (33)

Since λk is a volume-specific enthalpy rate, Ḣk can be interpreted as an absolute enthalpy
rate. Similarly, the latent heat of melting associated with node k is

Hm,k = hmVk, (34)

Employing (21) to express the Lagrange multiplier in (33) at tn+1 yields:

Ḣ i
k,n+1 = Vkλ

i
k,n+1 = Vk [λi−1

k,n+1 + ε(Ti
k,n+1 − Tm)] = Ḣ i−1

k,n+1 + �Hi
k,n+1

�t
, (35)

where the penalty parameter was chosen as ε = c/�t (see “Heat integration method”
section) and hence

�Hi
k,n+1 := c(Ti

k,n+1 − Tm)Vk. (36)

The iterative update rule (35) together with (36) is the discrete counter part to (21).
Employing a backward Euler scheme for time integration of Ḣ i

k,n+1 in (35) and assuming
(without loss of generality) h0 = 0 in (15), the nodal enthalpy Hi

k,n+1 is

Hi
k,n+1 = Hk,n + �tḢ i

k,n+1 = Hk,n + �tḢ i−1
k,n+1︸ ︷︷ ︸

Hi−1
k,n+1

+�Hi
k,n+1

= Hi−1
k,n+1 + �Hi

k,n+1,

(37)

where Hk,n represents the nodal enthalpy at the converged configuration of the last time
step tn. Thus, the iterative update rule (37) for the nodal enthalpy Hi

k,n+1 has the same
form as the update rule (35) for the nodal enthalpy rate Ḣ i

k,n+1 but with the different initial
values H0

k,n+1 = Hk,n and Ḣ0
k,n+1 = 0 required in the first iteration i = 1 of a time step.
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Also the enthalpy limiting condition (16) during phase change can be transferred to the
discrete problem setting, which reads (for h0 = 0):

0 ≤ Hi
k,n+1 ≤ Hm,k . (38)

Essentially, theworking principle of the heat integration scheme is to add residuumcontri-
butions in (33) defined by the iterative update scheme (35) as long as the discrete limiting
condition (38) is satisfied. The detailed algorithm of the original HI scheme as well as the
required adaptions for the proposed tolerance-based HI scheme will be presented in the
next two sections.

Remark As noted by the authors of the original work [43] and in accordance with (33),
theHImethod requires the consistent use of the nodal lumped capacity. Thus, when using
this algorithm, the capacity matrix must enter the residual and Jacobian in the Newton–
Raphson algorithm (31) in lumped form to obtain a robust scheme. Note also that no
linearization contribution associated with the residual term in (33) is considered in the
context of the Newton–Raphson method.

Original heat integration scheme

We will first introduce our understanding of the original HI method [43]. The specific
notation was inspired by the formulation in [44]. So far, the considerations have been
restricted to isothermal phase change but they can be extended to the treatment of mushy
phase change. The only difference is the fact that during melting the temperature is not
constrained to the constant value Tm but rather to a gradually evolving intermediate
temperature T ′ between [Ts, Tl]. Thus, in the following, we will present the more general
algorithm formushy phase change and point out the relevant differences to the isothermal
scenario.
Each node k stores the nodal enthalpy Hi−1

k,n+1 as a history-variable. At the beginning of
the simulation, it is initialized to zero for solid material. At the first Newton–Raphson
iteration of a time step it is initialized with the converged value from the last time step,
i.e. H0

k,n+1 = Hk,n. Now, after each Newton–Raphson iteration i in time step n + 1 the
following calculations are performed:

1. Skip node k if

[
Ti
k,n+1 < Ts and Tk,n < Ts

]
or[

Ti
k,n+1 > Tl and Tk,n > Tl

]
(39)

which means it is not undergoing phase change. In this case the increment �Hi
k,n+1

in (35) is set equal to zero. Here, Tk,n denotes the converged temperature value of
node k at the last time step n.

2. Else, for each node k which is undergoing phase change compute the increment

�Hi
k,n+1 = c′

(
Ti
k,n+1 − T ′)Vk. (40)
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Here, T ′ is an intermediate temperature given by

T ′ = Ts +
∣∣∣∣∣
Hi−1
k,n+1
Hm,k

∣∣∣∣∣ (Tl − Ts), (41)

calculated from the amount of latent heat already absorbed (released) duringmelting
(freezing). The modified capacity is computed as

c′ =
(
Tl − Ts
hm

+ 2
cs + cl

)−1
, (42)

where cs and cl are the values of heat capacity at Ts and Tl , respectively. In case
of isothermal phase change, the intermediate temperature simplifies to the melting
temperature, i.e. T ′ = Tm = Ts = Tl , and the modified capacity simplifies to the
averaged capacity at the melting point, i.e. c′ = 1

2 (cs + cl) such that (40) becomes
identical to (36).

3. Limit each increment �Hi
k,n+1 such that the following condition is fulfilled:

0 ≤ Hi−1
k,n+1 + �Hi

k,n+1 ≤ Hm,k . (43)

If condition (43) is violated, the increment�Hi
k,n+1 is limited such that the respective

bound in (43) is exactly met (e.g. �Hi
k,n+1 = Hm,k −Hi−1

k,n+1 if the right bound in (43)
was exceeded). Afterwards update the nodal enthalpy:

Hi
k,n+1 = Hi−1

k,n+1 + �Hi
k,n+1 with H0

k,n+1 = Hk,n. (44)

4. For each node k where |�Hi
k,n+1| > 0 reset the temperature

Ti
k,n+1 = T ′. (45)

5. Calculate the updated enthalpy rate according to (35),

Ḣ i
k,n+1 = Ḣ i−1

k,n+1 + 1
�t

�Hi
k,n+1 with Ḣ0

k,n+1 = 0, (46)

and add the residual contribution (33). The start value Ḣ0
k,n+1 = 0 in the first iteration

i = 1 of each time step is the equivalent of λ0 in (21).

It is emphasized that limiting condition (43) allows to use the same algorithm for both
melting and solidification as discussed in the remark at the end of this section.

Tolerance-based heat integration scheme

As stated at the beginning of “Discretization and algorithm of heat integration scheme”
section, the originalHImethod is known to result in a slowNewton–Raphson convergence
due to the residual manipulations (46), which are not accompanied by an associated con-
sistent linearization contribution and which would typically occur throughout the entire
Newton–Raphson loop if no additional, tolerance-controlled abort criterion is utilized.
To improve the algorithm,we propose to introduce a tolerance εtol to control the accuracy
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of the phase change representation. Hence, we stop adding increments �Hi
k,n+1 in the

algorithm above when these are small compared to the latent heat of melting, i.e.,
∣∣∣∣∣
�Hi

k,n+1
Hm,k

∣∣∣∣∣ < εtol. (47)

where εtol < 1 is a relative tolerance describing the relative amount of latent heat which is
not absorbed (released) after melting (solidification) is complete. Inserting (34) and (40)
into (47) yields an alternative for step 1 in the algorithm above:

1∗ Skip node k if
∣∣∣Ti

k,n+1 − T ′
∣∣∣ < εtol

hm
c′

. (48)

Thenewcriterionprovides away to stop theHI algorithmwhenconstraint (10a) is satisfied
with a certain accuracy. At first glance, the new criterion (48) seems to significantly change
the outcome of the algorithm since (40) will be evaluated for nodes that are far away from
a phase change. However, it can easily be verified that the signed limiting condition (43)
will automatically skip all nodes that are not meant to undergo phase change on the basis
of their current temperature value (see also the discussion in the remark below).

Remark Consider a node that is heated up and the material is undergoing a melting pro-
cess. Initially, the node is in solid state, i.e. Hi−1

k,n+1 = 0, with a temperature below the
solidus temperature, i.e. Ti

k,n+1 < Ts. The calculated increment (40) would be negative.
Since there is no phase change yet, no increment should be added. Indeed, limiting accord-
ing to (43) will not allow a negative increment with a zero history and the increment is
set to zero. When the temperature rises above the solidus temperature Ts, however, the
increments become positive and will be considered according to (43). Positive increments
are added to the the nodal latent heat Hk until it reaches the allowed maximum Hm,k .
Then the material is fully molten.
Next, consider the inverse process, i.e. cooling of a node with material initially in the

molten state. If material is molten, then Hi−1
k,n+1 = Hm,k . Looking at the limiting condi-

tion (43) shows that only negative increments are allowed, when material is molten. As
expected, negative increments (40) are obtained, and the solidification process is initiated,
as soon as temperature drops below the liquidus temperatureTl . The negative increments
are added toHk until it reaches a value of zero. Then thematerial has returned to the solid
state. The phase change as it was just described is fully reversible.

Remark Now that the details of the HI scheme have been introduced, the enthalpy-based
liquid fraction (28) used for parameter interpolation in “Modeling of temperature- and
phase-dependent parameters” section can be further specified. For node k it reads

gk = Hi
k,n+1
Hm,k

. (49)

In the numerical examples of the following section, this liquid fraction based on latent
heat will be employed in combination with the isothermal HI scheme. All latent heat
schemes employing a finite phase change interval [Ts;Tl], will use the temperature-based
parameter interpolation with liquid fraction (22).
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Fig. 5 Geometry, thermal loads, boundary and initial conditions for solidification front example (left) and
melting volume example (right)

Table 1 Material parameters of water [40] for “Solidification front in a 1D slab” and
“Melting volume in a 1D slab” sections

Parameter Description Value Unit

Tm Phase change temperature 273 K

hm Volumetric latent heat 338 MJ/m3

cs Volumetric specific heat, solid 1.762 MJ/m3K

cl Volumetric specific heat, liquid 4.226 MJ/m3K

ks Thermal conductivity, solid 2.22 W/mK

kl Thermal conductivity, liquid 0.556 W/mK

Numerical results
Solidification front in a 1D slab

To validate the implementation, first a series of numerical experiments are conducted on
a one dimensional domain for which an analytic solution is available [45]. This example
has already been used to show the validity of methods for capturing latent heat [40]. A
pseudo one-dimensional slab (material properties of ice/water) with length L = 1m is
subject to a fixed temperature T̂ = 253K on its left edge at x = 0. The initial temperature
in the whole slab is T0 = 283K. The left part of Fig. 5 illustrates this scenario. The
interface separating frozen and liquid water will slowly travel from left to right. Material
parameters for water are given in Table 1, they are taken directly from [40]. The problem
is discretized with 25, 50 or 100 linear finite elements in space and three different fixed
step sizes �t ∈ {200 s, 400 s, 800 s} in time. Total simulation time is tf = 72 · 103 s. At this
point in time the temperature on the right edge is still at the initial level and the analytic
solution (which is calculated on a semi-infinite domain) remains valid.
The introduced HI method will be used in four variants by distinguishing (a) isothermal

and mushy phase change as well as (b) the original criterion (39) and the novel tolerance-
based criterion (48). In this example, phase change of water is isothermal and thus the
isothermal HI methods with either original or tolerance-based criterion can be applied
directly. For the AC method an artificial phase change interval is chosen with Ts = 270K
andTl = 276K, i.e., d = 3K. The same interval is used to apply the original and tolerance-
based mushy HI methods. Additionally, for tolerance-based HI the tolerance is chosen as
εtol = 0.001, i.e., up to 0.1% of latent heat will be neglected.
All approaches yield results that agree very well with the analytic solution. Figure 6

shows the solutions obtained with AC and original isothermal HI method on the finest
mesh as an example. The maximum errors in the numerical solutions provided by the
different methods are shown for the three investigated meshes and time step sizes in
Fig. 7. The maximum errors lie below 4% for the coarsest mesh and around 2% for the
finer meshes, which is deemed accurate enough for the intended use case. Within the
considered scope, the time step size seems to have only minor effect on the accuracy. All
versions of HI schemes produce errors that are slightly higher compared to the error from
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Fig. 6 Melting front example: temperature profiles at tf of analytic solution compared to numerical results
with AC and HI method. 100 elements, �t = 200s
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Fig. 7 Melting front example: maximum error in temperature
∥∥∥ T−Tref

T0−T̂

∥∥∥∞ of different methods for latent heat

depending on spatial and temporal discretization. Missing data points for the AC scheme indicate that no
convergence was achieved for these parameter choices

the AC scheme. However, for the large time step sizes �t = 400 s and �t = 800 s the AC
method does not always converge.
The real difference between the methods comes to light when numerical efficiency is

investigated in terms of Newton iterations needed per time step. We choose to analyze
Newton iterations as a measure for the efficiency of the proposed methods instead of
computational time, which typically leads to a stronger dependency on the specific code
implementation. Still, the resulting computation time,which is usually of practical interest,
scales directly with the number of Newton iterations. Figure 8 shows a strong dependence
of theoriginalHImethod [43] on the spatial discretizationwithheavily increased iterations
per time step in case of finer spatial resolution. On top of that a larger time step leads
to a further increase in iterations. Both isothermal and mushy version of the original
method suffer from this effect. Hodge et al. [21] mention that small time steps had to be
used because of the original HI method. However, our proposed tolerance-based method
does not only require significantly less iterations per step in every scenario but is also less
sensitive to spatial and temporal discretization. This seems beneficial when moving to
simulation of PBFAM processes on a part-scale.
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Fig. 8 Melting front example: average number of iterations of different methods for latent heat depending
on spatial and temporal discretization. Missing data points for the AC scheme indicate that no convergence
was achieved for these parameter choices
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Fig. 9 Melting volume example: temperature profiles at tf obtained with five different methods for latent
heat. 100 elements, �t = 200s

Melting volume in a 1D slab

We investigate the same variants on a slightly modified second example (Fig. 5, right).
The Dirichlet condition on the left boundary is dropped and all faces are assumed to be
insulating. Instead a spatially varying source term r̂ = 20, 000(1 − x)W/m3 is applied to
the whole slab of water which is initially frozen at T0 = 263K. Material parameters for
solid and liquid water are again given in Table 1. In contrast to the previous example,
melting will not take place at a single node representing the phase interface. Instead a
whole volume can be in phase transition (i.e. melting). The same spatial and temporal
discretizations from before are used, total simulation time is tf = 20 · 103 s.
Again, the AC method and the four variants of HI are applied with the settings from

above. No analytic solution is available for this scenario. Figure 9 shows the obtained
temperature profiles along the one dimensional slab for the fine discretization with 100
elements and a step size of 200 s. Obviously, AC and mushy HI methods will not keep
temperatures fixed at the melting temperature of 273K during phase change. When one
is concerned about exact representation of isothermal phase change, only the original and
tolerance-based version of isothermal HI are accurate enough, although some oscillation
around the melting temperature is observed. Looking at the final temperatures on the
left edge, when melting is already finished, reveals that the latent heat of melting still
is captured with good accuracy by all methods, and the predicted temperatures agree
well. Given the large temperature range prevalent in the targeted application (PBFAM
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Fig. 10 Melting volume example: temperature profiles at 0.5 tf obtained from the original and the proposed
tolerance-based HI scheme (100 elements, time step varying)

simulation on part-scale), a highly accurate representation of temperature profiles around
the melting point is not of highest practical importance.
A short look on the accuracy of isothermal HI schemes is taken in this paragraph.

Solutions with the HI scheme can become quite inaccurate around the melting temper-
ature especially when larger time steps are used. Figure 10 shows such solutions of the
original scheme at t = 0.5tf for different step sizes and compares it to our proposed
tolerance-based method. Both methods cannot exactly enforce isothermal phase change
which would be characterized by a horizontal plateau region at Tm. The original method’s
criterion (39) for determining nodes undergoing phase change proves to be ill-suited for
this scenario. Larger time steps lead to larger undershoots in temperature. The fluctua-
tions aroundmelting temperature obtainedwith the proposed tolerance-basedHI scheme
on the contrary are independent of step size and only controlled by the tolerance εtol. The
temperature profiles resulting from three different tolerances (0.01, 0.001 and 0.0001) can
be seen in Fig. 11.
Nextwe turn to the efficiency of allmethods and examine the average number ofNewton

iterations per time step shown in Fig. 12. Again, the original variants of the HI scheme
need the most Newton iterations and are especially sensitive to temporal and spatial
discretization. They are no longer considered in the remaining examinations. Figure 13
only compares iterations of the AC and tolerance-based HI methods. The iteration count
increases with increasing time step size for all three methods but stays more or less
constant over all spatial discretizations. In the rightmost graph showing the largest time
step, the AC for the first time requires more iterations than the proposed tolerance-based
HI methods.
This melting volume example reveals an already mentioned problem of AC meth-

ods, namely the possibility to neglect much of latent heat by stepping over or passing
through the phase change interval too fast. The AC method is used with three widths
d ∈ {1K, 2K, 3K} to compute artificial solidus and liquidus temperatures Ts = Tm −d and
Tl = Tm+d. The final temperature profiles are graphed in Fig. 14 for three time step sizes
and the finest mesh with 100 finite elements. Obviously, the profiles differ in the respec-
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Fig. 11 Melting volume example: temperature profiles at 0.5 tf obtained from the proposed
tolerance-based HI scheme for different tolerances (100 elements, �t = 200s)
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Fig. 12 Melting volume example: average number of iterations of all investigated methods for latent heat
depending on spatial and temporal discretization
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Fig. 13 Melting volume example: average number of iterations of best performing methods for latent heat
depending on spatial and temporal discretization

tive phase change intervals which would not be the main concern in PBFAM. Instead
focus lies on the maximum temperature predicted on the left edge. For the smallest time
step �t = 200 s all widths reach almost the same maximum temperature. Increasing the
step size leads to larger discrepancies in the maximum temperature. A smaller width d
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Fig. 15 Geometry and moving laser heat source for single track scan example (all dimensions given in mm)
[21]

correlates with higher maximum temperatures which in turn implies that not all latent
heat has been absorbed.

Summary of preliminary simulations: Taking into account all experience gathered
from the two numerical examples, the authors recommend the use of the proposed
tolerance-based HI method or an AC method. We found that the new criterion (48)
to determine nodes that undergo phase change is superior to the one originally intro-
duced by [43]. This is due to two reasons. First, the accuracy is user-controllable by
setting a respective tolerance. Second, the new stopping criterion (48) typically leads to a
significant reduction of nonlinear Newton iterations except for scenarios with very strict
tolerances, which are, however, not expected to be necessary in the targeted application
PBFAM.
Naturally, it is hard to predict a-priori which method will lead to less Newton iterations

since this depends on the specific problem, tolerances and the (artificial) phase change
interval width. Therefore, in the following, an actual example in the context of PBFAM
will be investigated.

Single track scan

The following example simulates the scanning of a single track in a PBFAM process and
was introduced in [20] and has also been simulated elsewhere, see [21]. A schematic sketch
of the setup is shown in Fig. 15. A volumetric heat source described by Eq. (4) with effective
powerW = 30W and size R = 0.06mm is applied to the powder domain.
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Table 2 Material parameters for single track scan
example [21]

Parameter Description Value Unit

ρh Hemispherical reflectivity 0.7 −
βh Extinction coefficient 60 mm−1

cp Heat capacity, powder 2.98 MJ/m3K

cs Heat capacity, solid 4.25 MJ/m3K

cm Heat capacity, melt 5.95 MJ/m3K

kp(T ) Conductivity, powder 0.2@200, 0.3@1600 W/mK@K

kc Conductivity, solid/melt 20 W/mK

Tm Melting temperature 1700 K

hm Latent heat of fusion 2.18 GJ/m3

The geometry consists of a cuboid of 0.6 × 0.2 × 0.2mm3. The top layer of 0.05mm in
z-direction is in powder form and rests on top of a solid substrate domain. The material is
a 316L type steel with parameters summarized in Table 2. The whole domain is initialized
at a fixed temperature T0 = 303K. All surfaces are insulating, only x = 0.6mm is subject
to an essential boundary condition T̂ = T0 = 303K.
The laser beam center moves from an initial position at x = −0.06mm (one laser beam

radius outside the domain) with a scanning speed of v = 1/20mms in x-direction along
the symmetry plane y = 0. The powder layer is discretized by a regular hexahedral mesh
with element size h0 = 0.0025mm, i.e. nzele = 20 elements across the powder layer height.
In the substrate domain, a mesh with double element height in z-direction is applied.
Moreover, an adaptive time stepping scheme is applied that halves the time step size if no
convergence is achieved by the employed Newton–Raphson scheme (within a prescribed
maximal number of iterations), and that doubles the step size again after four convergent
time steps on the smaller step size level. As initial step size a value of �t(0) = 1µ s has
been chosen, which has been verified to yield a sufficiently small time discretization error.
In prior simulations of this example, latent heat effects have been taken into account

via an enthalpy method [20] and an isothermal HI method [21]. Here, we will use an AC
method and subsequently the newly proposed tolerance-based isothermal HI scheme to
simulate the process. An artificial melting interval is introduced for the AC method. As a
baseline we chose Ts = 1600K and Tl = 1800K, i.e., d = 100K. Isothermal HI is applied
with a tolerance of εtol = 0.001. The isothermal HI scheme is used in combination with
enthalpy-based parameter interpolation, while the AC method is used with temperature-
based interpolation. In a first step, qualitative characteristics of the solution shall be
discussed. After a short period of time the melt pool shape reaches a steady-state. Its
geometry can be visualized by the isotherm T = Tm. Figure 16 compares the results
obtained with the AC and tolerance-based HI method to the results reported in [20],
[21]. Both the AC and HI solution show good agreement with the reference. The melt
pool dimensions and peak temperatures are compared quantitatively to the reference
solutions in Table 3. All compared quantities show good agreement.
Since no more quantitative data is provided by the reference papers, we compare AC

and HI method with each other. In the preliminary examples in “Solidification front in
a 1D slab” and “Melting volume in a 1D slab” sections a strong dependency on spatial
discretization was recognized. Three additional, coarser spatial discretizations with ele-
ments of size 2h0, 4h0 and 20

3 h0 (which results in n
z
ele ∈ {10, 5, 3} elements over the powder
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Fig. 16 Surface temperature profile and melt pool shape in steady-state. Current results from HI scheme
(top, left) and AC scheme (top, right) as well as reference results from Gusarov et al. [20] (bottom, left) and
Hodge et al. [21] (bottom,right)

Table 3 Comparison of maximum temperature andmelt pool dimensions resulting from
the different latent heat models

Quantity [20] [21] AC HI

Max. temp. (K) 4900 5000 4990 4980

Length (mm) 0.30 0.27 0.28 0.29

Width (mm) 0.20 0.21 0.20 0.21

Depth (mm) 0.07 0.07 0.07 0.07

layer height) are introduced to investigate this phenomenon for the single track scan. The
accuracy of both methods can be judged by looking at characteristic temperature profiles
in the steady-state. All results presented in the following are shown for (approximately)
t = 4.6µ s, which is the same point in time for which the melt pool shape has been illus-
trated in Fig. 16. First, Fig. 17 shows the surface temperature profiles for all discretizations
plotted along the laser path (i.e. y = 0) in the vicinity of the melting front. This front
is characterized by high temperature gradients and rates. With increasing element size,
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Fig. 17 Surface temperature profiles for AC and HI along laser path (i.e. y = 0.0mm) for different spatial
discretizations. Zoomed in to melting front of melt pool
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Fig. 18 Surface temperature profiles for AC and HI along laser path (i.e. y = 0.0mm) for different spatial
discretizations. Zoomed in to solidification region in melt pool tail

larger nonphysical oscillations in the temperature profile are observed for the AC scheme.
These oscillations can be traced back to the limitation of the employed first-order finite
elements in representing strong gradients andmaterial nonlinearities, here mainly caused
by the extreme gradients of the thermal conductivity across the phase interface. Employ-
ing finite elements based on higher order shape functions can remedy this numerical issue
[48,49].
No such oscillations occur with the HI scheme, which enforces the temperature in

the phase transition region to lie within a temperature interval (implicitly) prescribed
through the tolerance εtol. Although the shape functions used with the HI scheme are
still first-order, the reset of temperature to a consistent melt temperature as described in
(45) seems to prohibit temperature oscillations in the phase interface region as observed
for AC, even though the HI scheme performs phase change and parameter interpolation
within a considerably smaller temperature interval. It is important to note that so far
the oscillations have not been observed to cause stability issues (e.g. a significant energy
increase in thediscrete system) and they remain small compared to theoverall temperature
range.
A second phase change happens along the laser path (i.e. y = 0.0mm) when material

cools down again at the tail of the melt pool. Figure 18 gives a detailed view of the tem-
perature profile in this region. The HI method produces a kink in the temperature profile
at Tm, which is to be expected for a phase interface. The AC method produces a mushy
phase change region and no kink is observed. However, further away both temperature
profiles are in good agreement again.
Another aspect to investigate is the resulting temperature profile transverse to the laser

scanning direction. Change from melt to powder can be investigated with a cut in y-
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Fig. 19 Surface temperature profiles for AC and HI transverse to laser path at x = 0.4mm showing transition
from melt pool to powder
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Fig. 20 Surface temperature profiles for AC and HI transverse to laser path at x = 0.2mm showing transition
from solid to powder

direction at x = 0.4mm as shown in Fig. 19. Again oscillations appear in the AC solution
for coarser meshes but not in the HI solution. A similar picture emerges for a cut in y-
direction through solid and powder, e.g. at x = 0.2mm as illustrated in Fig. 20. In both
transverse cuts temperature profiles differ for AC and HI method in proximity to Tm and
agree well in some distance to the phase interface.
As suspected, in PBFAM applications the chosen method for latent heat only has a

very local influence on the resulting temperature field, but does not significantly affect
the global temperature characteristics from a rather macroscopic point of view. Another
aspect of importance for PBFAMprocess simulations is numerical efficiency, here assessed
in terms of nonlinear solver performance. Figure 21 depicts the total number of Newton
iterations accumulated over the whole simulation time for the different spatial discretiza-
tions. The results of the preliminary numerical examples in the previous sections seem
to transfer to a larger example: The HI method shows a strong dependency on the spa-
tial resolution. The difference in the number of Newton iterations between AC and HI
method is less pronounced in the practically relevant range of discretizations (e.g. three
elements across the powder layer thickness).
In a next step, it shall be investigated how the accuracy and numerical efficiency of

the two considered phase change schemes can be influenced by the respective numerical
parameters d (phase change interval of the AC scheme) and εtol (tolerance of the HI
scheme). In a first step, the phase change interval for the AC method is varied for the
two coarsest spatial discretizations to see how it affects the temperature oscillation. It
has to be noted that this also changes the temperature interval for temperature-based
parameter interpolation. The intervals are given by Ts = Tm −d and Tl = Tm +d, where
d ∈ {100, 250, 500}[K ].Moreover, two additional versions of HI with relaxed tolerances of
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Fig. 22 Surface temperature profiles for AC with different phase change intervals along laser path (i.e.
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Fig. 23 Surface temperature profiles for AC with different phase change intervals transverse to laser path at
x = 0.4mm showing transition from melt pool to powder

εtol = 0.01 and εtol = 0.1 are simulated. The resulting surface temperatures are plotted in
Figs. 22, 23 and 24 in the regions that showed oscillations in the previous plots. While the
increased phase change interval for the AC decreases the amplitude of these oscillations
by a certain amount, the overall accuracy of the temperature profiles decreases as well.
Thus, it has to be concluded that for a given spatial discretization the width d of the phase
change interval is not a suitable parameter to control the accuracy of AC schemes. The
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Fig. 24 Surface temperature profiles for AC with different phase change intervals transverse to laser path at
x = 0.2mm showing transition from solid to powder
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Fig. 25 Total number of Newton iterations required for different initial time step sizes �t0 in the time step
halving scheme

solutions obtained with different tolerances for the HI method show no oscillation. The
solution fromHI with tolerance εtol = 0.01 is indistinguishable from the one with stricter
tolerance εtol = 0.001. The solution from HI with tolerance εtol = 0.1 deviates slightly
from the ones with stricter tolerances in the solid-powder transition region, see Fig. 24.
However, it still seems to be considerably more accurate than the solution from AC with
d = 500K.
Finally, the initial time step size �t0 for the three considered HI and AC variants is

increased up to 64 times of the original value. The total number of Newton iterations that
is now required is depicted in Fig. 25. It is emphasized that the time step halving scheme
is still employed. It was optimized individually for each method to yield low iteration
counts. Moreover, it has been checked that the time discretization error is still sufficiently
small, i.e. there is no visible difference in the results for base time step sizes up to 16
times �t0 for all variants. Higher step sizes lead to visible albeit small deviations in the
temperature profiles, which are smaller, however, than the deviations resulting from the
different HI and AC variants. According to Fig. 25, an increased phase change interval d
in AC allows for larger step sizes and thus less iterations. Especially on the coarsest mesh,
HI with a high tolerance (εtol = 0.1) yields a comparable number of accumulated Newton
iterations, but at a considerably increased accuracy, as compared to the AC method with
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the (unphysically) large phase change interval d = 500K. All in all, for a given spatial
discretization, the proposedHI scheme allows to directly control numerical efficiency and
accuracy by means of a user-defined tolerance. Within the considered scope of numerical
examples and practically relevant spatial and temporal discretizations, this propertymade
the novel tolerance-based HI scheme preferable as compared to the original HI scheme
and the investigated AC method.

Conclusion
In this work, an extension of phase change and latent heat models for the simulation of
metal powder bed fusion additive manufacturing processes on the macroscale has been
proposed and different models have been compared with respect to accuracy and numeri-
cal efficiency. In this context, a systematic formulation of phase fraction variables has been
proposed relying either on temperature- or enthalpy-based interpolation schemes. More-
over, latent heat has been considered either bymeans of an apparent capacity (AC) or heat
integration (HI) method. For the latter, a novel phase change criterion has been proposed,
which combines superior accuracy and numerical efficiency (in terms of an improved
nonlinear solver performance allowing for larger time step sizes and fewer iterations per
time step) as compared to the original HI scheme. Compared to the AC approach, the
numerical efficiency of the proposed tolerance-based HI scheme is comparable while
offering an increased level of accuracy. Numerical results from the literature have been
reproduced, which shows the validity of the proposed scheme. In summary, both the AC
and the proposed tolerance-basedHI scheme performwell when considering the accuracy
requirements as well as practically relevant spatial and temporal discretization resolutions
for PBFAM process simulation. Specifically, global temperature characteristics, such as
the peak temperature, can be accurately captured with both methods. Still, the authors
believe that the new tolerance-based HI method is advantageous over AC schemes due to
the user-controllable tolerance, which allows to directly control numerical efficiency and
accuracy of the scheme, and which can directly be interpreted as the error in latent heat
made during a phase change process.
For part-scale PBFAM models thermo-mechanical interaction is one of the primary

interests. Structural parameters such as Young’s modulus or the thermal expansion coef-
ficient may depend upon the temperature history in a similar fashion as proposed in the
current work for the thermal parameters. Future research work will focus on the question
of how the proposed methods for latent heat and parameter interpolation will behave in
the thermo-mechanically coupled scenario.
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