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Abstract

Formulating appropriate simulation models that capture the microstructure evolution
at the mesoscale in metals undergoing thermomechanical treatments is a formidable
task. In this work, an approach combining higher-order dislocation density based
crystal plasticity with a phase-field model is used to predict microstructure evolution in
deformed polycrystals. This approach allows to model the heterogeneous reorientation
of the crystal lattice due to viscoplastic deformation and the reorientation due to
migrating grain boundaries. The model is used to study the effect of strain localization
in subgrain boundary formation and grain boundary migration due to stored
dislocation densities. It is demonstrated that both these phenomena are inherently
captured by the coupled approach.

Keywords: Cosserat crystal plasticity, Phase-field method, Diffuse interfaces,
Dislocation density, Grain boundary migration

Introduction
A metallic polycrystal exposed to thermomechanical treatment can undergo significant
microstructural evolution due to viscoplastic deformation and subsequent or concur-
rent recrystallization processes. Heterogeneous reorientation of the crystal lattice during
plastic deformation may for instance lead to fragmentation of existing grains. In par-
ticular, material induced strain localization (slip bands) and curvature localization (kink
bands) [1–3] may be associated with the formation of new (sub-)grain boundaries [4].
The associated lattice curvature is accommodated by geometrically necessary disloca-
tions (GNDs). At the same time, statistically stored dislocations (SSDs) accumulate in the
microstructure due to random trapping [5]. The associated stored energy is an important
driving force for grain boundary migration [6–9], and in the recrystallization process it is
observed that dislocation-free nuclei form which expand into and replace grains of high
stored energy content. Detailed continuum descriptions of grain boundaries can also be
based on decomposition into dislocation/disclination distributions [10] or micromechan-
ical concepts allowing for shear-coupled boundary migration [11]. These latter specific
mechanisms are not addressed in the present work.
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Viscoplastic deformation at the mesoscale (defined here as the grain scale of the poly-
crystal) including the heterogeneous reorientation discussed above can be successfully
modeled by crystal plasticity approaches. In order to create extended frameworks which
also take into account grain boundary migration after deformation, and in some cases
nucleation as an intermediate step, several authors have coupled crystal plasticity models
with methods such as cellular automata [12,13], level-sets [14,15] or phase-field methods
[16–20] (these references are by nomeans a complete list but should rather be considered
a sample of works for eachmentioned approach). There are only a fewworks that consider
a strong coupling, formulating and solving the complete set of equations as a monolithic
system [21–23]. One of the major issues to resolve in a fully coupled framework is the
fact that crystal orientation may change through deformation or through grain bound-
ary migration. Often, the models that are combined rely on different descriptors of the
microstructure and it is necessary to translate between those in intermediate processing
steps.
Kobayashi, Warren and Carter (KWC) [24,25] proposed a model that treats the crystal

orientation as aphase-fieldwithdiffuse interfaces.Their formulation couples the evolution
of the orientation phase-field to the evolution of a second, more classical phase-field
variable. In this way, the model provides direct access to the change in crystal orientation
that is due to atomic reshuffling processes in the wake of a migrating grain boundary. The
energy density that KWC introduced only takes the norm of the orientation gradient (i.e.,
the lattice curvature) as a variable, and not the orientation itself, in order to respect the
requirement of frame invariance. In particular, the inclusion of a linear term is necessary
in order to produce a solution with regions of constant orientation (grains) separated by
localized regions of non-zero curvature (grain boundaries). It is worth stressing that [26,
27] have amended thismodel with a contribution due to statistically stored dislocations, so
as to address stored energy driven grain boundary migration that is the dominant growth
phenomenon during recrystallization.
In this paper, a fully coupled, thermodynamically consistent model that combines a

Cosserat single crystal plasticity model with the modified KWC orientation phase-field
model of [26] is used to predict microstructure evolution in deformed polycrystals. The
model was first developed for small deformations [28] and later for large deformations
in [22]. In this work, a linearized version of the large deformation model (c.f., [21]) is
used. The Cosserat continuum is endowed with rotational degrees of freedom that can be
associated with the lattice directors of the crystal. A strong coupling between the crystal
plasticity model and the KWC orientation phase-field model is made possible via the
Cosserat degrees of freedom. The lattice curvature parameter in the free energy density
of the KWC model is replaced in the coupled model by the curvature or wryness tensor
of the Cosserat continuum [29,30].
Because the KWC model represents the lattice orientation as a continuous field rather

than relying on a cellular description of the grains, it can accommodate the heteroge-
neous reorientation associated with plastic slip processes. Moreover, because the KWC
model introduces a phase field variable, it is able to consider reorientation by a moving
front. In the coupled model adopted in this work, the grain boundary migration is not
accommodated by plastic slip processes, unlike the model in [23], where the KWCmodel
is combined with strain gradient plasticity. Indeed, the driving forces for grain boundary
migration are capillary forces or stored energy due to scalar dislocation densities which



Ask et al. Adv. Model. and Simul. in Eng. Sci.            (2020) 7:9 Page 3 of 28

accumulate or recover following a modified Kocks–Mecking–Teodosiu evolution law
[26–28].
This paper is organized as follows. The diffuse interface framework is summarized and

the constitutive model is presented. A subsection is dedicated to the identification of
model parameters. Then follows the numerical examples, with a subsection dedicated to
the formation of (sub-)grain boundaries during deformation and a subsection dedicated to
grain boundary migration. Some first results toward recrystallization are also presented.
The paper is then concluded with a summary of the main results and some points on
future work.

Notation

Vectors will be denoted by underline as a and second order tensors by an underscore tilde
symbol as A∼ , with the transpose A∼T . Third order tensors will in the same vein be denoted
by a

∼
and fourth order tensors by C≈ . Double contraction is written as A∼ : B∼ and simple

contraction as b = A∼ · a. The scalar product of two vectors can be written as a · b = aT b,
whereas the dyadic product is written as A∼ = a∼ ⊗ b∼. The gradient and divergence are
written by products using the nabla symbol as a ⊗ ∇ and ∇ · a or A∼ · ∇ , respectively,
with differentiation of a tensor assumed to act on the second index. The curl operator is
denoted ∇ × A∼ .
The second order identity tensor will be denoted I∼. The transformations between skew-

symmetric tensors and pseudo-vectors can be written bymeans of the Levi-Civita permu-
tation tensor ε

∼
as

×
A = −1

2
ε
∼
: skew(A∼ ) = −1

2
ε
∼
: A∼ , (1)

and

skew(A∼ ) = −ε
∼

· ×
A , (2)

respectively.

The diffuse interface Cosserat framework
The small deformation theory presented in this section recalls the formulation proposed
in [21], and represents the linearized version of the large deformation theory developed
in [22].

Governing equations

ACosserat medium is endowed with three additional degrees of freedom at each material
point, allowing for a microrotation which is, a priori, independent of the displacement
degrees of freedom. The additional degrees of freedom necessary to describe the micro-
rotation can be collected in the pseudo-vector Θ . In the small deformation setting the
Cosserat rotation tensor is then given by

R∼ = I∼ − ε
∼

· Θ . (3)
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The linearized, objective deformation measures are given by [29,30]

e∼ = u ⊗ ∇ + ε
∼

· Θ , κ∼ = Θ ⊗ ∇ . (4)

where u is the displacement vector. The curvature or wryness tensor κ∼ = Θ ⊗ ∇ can be
directly related to the tensor of geometrically necessary dislocation densities α∼ through a
famous result by Nye [31]

α∼ = κ∼
T − tr(κ∼) I∼ , κ∼ = α∼

T − 1
2
tr(α∼) I∼ . (5)

The derivation of the above expression is detailed in [30].
In the framework of small deformations theCosserat deformation tensor is decomposed

into elastic and plastic parts as

e∼ = e∼e + e∼p . (6)

So far, a similar decomposition of the curvature tensor has not been considered in the
coupled theory although this would be possible to introduce as outlined in [32].
In order to allow for microstructure evolution due to grain boundary migration, [22,28]

coupled the Cosserat model to the orientation phase-field model proposed by [24,25]. To
this end, a phase-field φ ∈ [0, 1] is introduced as an additional degree of freedom. The
phase-field variable is interpreted in the coupled model as a coarse-grained measure of
crystalline order. In the bulk of an undeformed grain the order parameter takes the value
φ = 1 whereas φ < 1 in grain boundaries. In deformed grains the build-up of so-called
statistically stored dislocations may also result in the phase-field variable taking values
φ < 1. This will be discussed in more detail when the constitutive model is presented.
Note that the crystal orientation, which was included as a scalar phase-field in the model
proposed by [24,25], is associated with the Cosserat degrees of freedom in the model
presented here.
The derivation of the governing balance equations and boundary conditions relies on

the principle of virtual power and is detailed in [22,28]. The phase-field contribution is
accounted for in the principle of virtual power by the microstress formalism introduced
by [33,34]. There are therefore in total four work-conjugate pairs {φ : πφ,∇φ : ξφ, e∼ :
σ∼, κ∼ : m∼ } and the principle of virtual power, after some manipulations, takes the form

∫
D

φ̇
[
∇ · ξ

φ
+ πφ + πext

φ

]
dV +

∫
∂D

φ̇
[
π c

φ − ξ
φ

· n
]
dS

+
∫
D
u̇ ·
[
σ∼ · ∇ + f ext

]
dV +

∫
∂D

u̇ ·
[
f c − σ∼ · n

]
dS

+
∫
D

Θ̇ ·
[
m∼ · ∇ + 2 ×

σ + cext
]
dV +

∫
∂D

Θ̇ · [cc − m∼ · n] dS = 0 ,

(7)

over any regionD of the body 	 with outward unit normal n on the boundary ∂D. Super-
scripts 〈•〉ext and 〈•〉c denote external body and contact forces and couples, respectively. It
follows that the balance equations and corresponding boundary conditions for the coupled
formulation are given by [28]

∇ · ξ
φ

+ πφ + πext
φ = 0 in 	 , (8)
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σ∼ · ∇ + f ext = 0 in 	 , (9)

m∼ · ∇ + 2 ×
σ + cext = 0 in 	 , (10)

ξ
φ

· n = π c
φ on ∂	 , (11)

σ∼ · n = f c on ∂	 , (12)

m∼ · n = cc on ∂	, (13)

wheren is the outward normal to the boundary ∂	 of the body	. The first line (8) gives the
balance law for themicrostresses related to the phase field φ and its gradient∇φ. It should
be noted that the stress σ∼ associated with the Cosserat deformation e∼ is not symmetric,
and must therefore not be interpreted as the usual Cauchy stress. Its skew-symmetric
contribution appears also in the balance equation for the couple-stress m∼ , which in turn
is associated with the wryness tensor κ∼. In this paper, the body forces πext

φ , f ext and cext

are assumed to vanish.
Applying the standard thermodynamical principles on a free energydensity of the format

ρ � = ψ(φ,∇φ, e∼e, κ∼, rα), where rα are internal variables related to the inelastic behavior,
results in the following expression of the Clausius–Duhem inequality [21]:

− ρ �̇ − πφ φ̇ + ξ
φ
∇φ̇ + σ∼ : ė∼ + m∼ : κ̇∼

= −
[
πφ + ∂ψ

∂φ

]
φ̇ +

[
ξ

φ
− ∂ψ

∂∇φ

]
· ∇φ̇ +

[
σ∼ − ∂ψ

∂e∼e

]
: ė∼e +

[
m∼ − ∂ψ

∂κ∼

]
: κ̇∼

+ σ∼ : ė∼p −
∑
α

∂ψ

∂rα
ṙα ≥ 0 ,

(14)

assuming isothermal conditions.The constitutive relations are deduced fromthe energetic
contribution to inequality (14):

π
eq
φ = −∂ψ

∂φ
, (15)

ξ
φ

= ∂ψ

∂∇φ
, (16)

σ∼ = ∂ψ

∂e∼e
, (17)

m∼ = ∂ψ

∂κ∼
. (18)

Furthermore, a thermodynamic force associated with the internal variables rα can be
introduced as

Rα = ∂ψ

∂rα
. (19)

In order to recover the phase-field dynamics for the variable φ, it is assumed in line with
[34,35] that the stress πφ contains stored and dissipative contributions so that

πφ = π
eq
φ + π

neq
φ , (20)

with only the stored part given by (15).
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Evolution equations governing the dissipative processes are assumed to be derivable
from a potential (with the appropriate convexity properties to ensure non-negative dissi-
pation)

Ω = Ωp(σ∼) + Ωα(Rα) + Ωφ(πneq
φ ) , (21)

so that

ė∼p = ∂Ωp

∂σ∼
, ṙα = −∂Ωα

∂Rα
, φ̇ = − ∂Ωφ

∂π
neq
φ

. (22)

Link between the lattice rotation and the Cosserat microrotation

The rate of the Cosserat deformation can be written as

ė∼ = ε̇∼ + ω∼ + ε
∼

· Θ̇ , (23)

where the symmetric contribution is the rate of the usual small strain tensor ε∼ =
1
2 [u ⊗ ∇ + ∇ ⊗ u ], andω∼ = 1

2 [ u̇ ⊗ ∇ − ∇ ⊗ u̇ ] is the spin tensor. The skew-symmetric
part of the above expression can be collected in the pseudo-vector

×̇e = ×
ω − Θ̇ . (24)

Equation (24) gives the relation between the relative rotation of the material and the
Cosserat microrotation of a triad of microstructural directors attached to the material
point.

By defining the elastic and plastic spin pseudo-vectors ×
ω p := ×̇e p and ×

ω e := ×
ω − ×

ω p,
respectively, the rate of the skew-symmetric deformation (24) can now be expressed as

×
ω e − Θ̇ = ×̇e e . (25)

The above equation provides the necessary link between the rotation of the crystal lattice
vectors and the Cosserat directors that is an essential part of the modeling framework.
They can be made to remain parallel by enforcing the internal constraint

×e e ≡ 0 . (26)

The Cosserat crystal plasticity framework thereby allows for a direct access to the het-
erogeneous evolution of the crystal orientation in the polycrystal during deformation.

Constitutivemodel and identification of parameters
In this section the specific constitutive choices are presented and the identification of
model parameters is described. Pure copper is used as a model material. The resulting
model is a non-local Cosserat crystal plasticitymodelwith diffuse andmobile grain bound-
aries. Grain boundarymigration is either driven by the interface curvature or by the energy
stored during plastic deformation.
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Constitutive model

The free energy density for the coupled problem is chosen as [28]

ψ(φ,∇φ, e∼e, κ∼, rα) = f0
[
f (φ) + a2

2
|∇φ|2 + s g(φ)||κ∼|| + ε2

2
h(φ)||κ∼||2

]

+ 1
2
ε∼
e : E≈

s : ε∼
e + 2μc

×e e · ×e e + ψρ(φ, rα) ,
(27)

with

ψρ(φ, rα) = φ

N∑
α=1

1
2

μ rα2 , (28)

where N is the number of crystal slip systems and rα are internal variables. This contri-
bution is taken to represent stored energy due to random trapping of dislocations during
plastic deformation by associating the internal variables with the statistically stored dis-
location densities, here denoted ρα , according to

rα = b

√√√√ N∑
β=1

hαβρβ . (29)

Inserted into Eq. (28), this then gives the following expression for the energy contribution
related to the scalar dislocation densities ρα :

ψρ(φ, rα) = 1
2

μ b2 φ

N∑
α=1

N∑
β=1

hαβρβ . (30)

This stored energy is an important driving force for grain boundary migration [7,8]. The
coupling with the phase-field variable by means of the linear term in φ ensures that
local gradients in the stored energy result in grain boundary migration [26,27]. In the
grain boundary regions, φ tends toward zero. This means that energy is stored mainly
in the bulk, and not inside the grain boundaries where the concept of statistically stored
dislocations loses its significance.
Whereas the contribution due to the phase-field φ in the energy density (27) contains

standard bulk and interphase terms, the contribution due to the curvature, which can be
considered as a generalization to three dimensions of the energy contribution proposed
by [24,25] for the orientation phase-field, must contain the rank one term ||∇κ∼||. It is this
term that ensures a solution with localized grain boundaries. At zero lattice curvature
this term renders the energy density non differentiable and in the numerical treatment a
regularization is therefore applied [28,36]. In the context of non-local crystal plasticity,
several authors have considered energy densities that contain linear contributions due to
the GND density tensor [37–39], interpreting the linear term to represent the self energy
of the GNDs whereas the quadratic term represents the energy due to their interactions.
It may be noted that [40] found solutions with substructure partitioning, reminiscent of
subgrains, even without a rank one term for a large deformation Cosserat crystal plastic-
ity model. While those results are not directly applicable to the coupled model, it may
nevertheless be warranted to reconsider the optimal format of the energy density in the
future.
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The functions g(φ) andh(φ) are required tobenon-negative.A simplequadratic function
is chosen for the latter such that h(φ) = φ2 whereas, following [24], a logarithmic function
is chosen for g(φ) such that

g(φ) = −2
[
log(1 − φ) + φ

]
. (31)

This choice allows to fit a Read-Shockley type behavior for low angle grain boundaries.
Due to the singularity for φ = 1, a small positive constant is added in the logarithm in the
numerical treatment.
In the second line in (27), the symmetric elastic deformation is included via a standard

quadratic form, where E≈ s is the usual elasticity tensor. The skew-symmetric elastic defor-
mation is penalized by choosing the Cosserat parameter μc sufficiently large and thereby
approaching the constraint (26) that the Cosserat microrotation should follow the lattice
reorientation [30,40–43]. This constraint could alternatively be directly imposed by using
Lagrange multipliers.
The stress, couple stress and microstresses take the following forms:

sym(σ∼) =E≈
s : ε∼

e , (32)

×
σ = 2μc

×ee (33)

m∼ = f0

[
s g(φ)

1
||κ∼|| + ε2 h(φ)

]
κ∼ , (34)

π
eq
φ = − f0

[
1 − φ − s

∂g
∂φ

||κ∼|| − ε2

2
∂h
∂φ

||κ∼||2
]

−
N∑

α=1

1
2

μ rα2 , (35)

ξ
φ

= f0 a2∇φ . (36)

From (33) together with (24), it is apparent that a migrating grain boundary, which
locally reorients the lattice as a result of atomic reshuffling processes, would give rise to
a skew-symmetric stress. In order to relax this stress and allow the grain boundaries to
migrate (without storing elastic energy), the plastic dissipation potential Ωp is assumed
to consist of two terms:

Ωp =
N∑

α=1

Kv
n + 1

〈 |τα| − Rα/φ

Kv

〉n+1
+ 1

2
τ−1
� (φ,∇φ, κ∼)

×
σ · ×

σ , (37)

where 〈•〉 = Max(•, 0) and ×
σ contains the skew-symmetric contributions to the stress.

The choice (28) results in a Taylor type hardening law for the associated force Rα

Rα = ∂ψ

∂rα
= φ μ rα = φ μ b

√√√√ N∑
β=1

hαβρβ , (38)
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which is interpreted as the critical resolved shear stress on slip system α. Equation (37)
has been constructed so that the value of the phase-field φ will not influence the plastic
slip flow evolution.
The first term of (37) leads to a classic crystal flow rule. The resolved shear stress τα on

slip system α can be calculated as

τα = �α · σ∼ · nα , (39)

where �α and nα are respectively the slip direction and normal to the slip plane. Note that
the additional contribution to the resolved shear stress due to the non-symmetry of the
stress tensor can be interpreted as a size-dependent kinematic hardening [4,44–46]. The
evolution of plastic deformation follows from (22) and (37)

ė∼p =
N∑

α=1
γ̇ α �α ⊗ nα + τ−1

� (φ,∇φ, κ∼) skew( σ∼ ) , (40)

with the slip rate given by

γ̇ α =
〈 |τα| − Rα/φ

Kv

〉n
sign τα . (41)

The second term in (40) allows the relaxation of the skew-symmetric stress by acting on
the plastic spin ω∼

p. The viscosity type term τ�(φ,∇φ, κ∼) is constructed so that it is small in
the interface region but large in the bulk of the grains, thereby restricting the relaxation
to the grain boundaries.
There are therefore two contributions to the plastic spin

×
ω� = τ−1

� (φ,∇φ, κ∼)
×
σ , (42)

ω∼
p − ω∼

� = skew
( N∑

α=1
γ̇ α �α ⊗ nα

)
, (43)

due to the relaxation of the skew-symmetric stress at moving interfaces and to plastic
slip processes, respectively. The skew-symmetric plastic deformation, likewise, can be
considered to consist of two separate contributions

×ep = ×eslip + ×e� , (44)

with

×̇eslip = ×
ωp − ×

ω� , ×̇e� = ×
ω� . (45)

The elastic skew-symmetric deformation is then given by

×ee = ×
ϑ − ×eslip − ×e� − Θ , (46)

where
×
ϑ is the pseudo-vector of the skew-symmetric tensor ϑ∼ = skew( u ⊗ ∇ ) denoting

the material rotation.
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In the present model, the Cosserat microrotation is associated with the lattice (crystal)
orientation as measured with respect to some fixed frame. It is therefore in general non-
zero in the reference configuration. It follows [21,28] that the initial plastic deformation
must be non-zero for the reference configuration to remain stress-free. Specifically, this
is obtained by adopting the initial condition

×ep(t = 0) = ×e�(t = 0) = −Θ(t = 0) . (47)

The part of the inelastic deformation that is not due to slip processes during deformation
can therefore be seen as necessary to accommodate an initial orientation distribution
created from a previous, homogeneous state. It can be interpreted therefore, somewhat
simplified, as representing a reference orientation state of the grain, and its associated
evolution law ensures that it is inherited to a region swept by a migrating grain boundary.
The evolution of the plastic deformation due to migrating grain boundaries according to
Eq. (45) was reported in [22].
The standard evolution equation is obtained for the phase-field φ by choosing a

quadratic dissipation potential [26,33]

Ωφ = 1
2
τ−1
φ

(
π
neq
φ

)2 , (48)

where τφ is a viscosity type parameter, so that

τφ φ̇ = −π
neq
φ . (49)

Instead of formulating a dissipation potential for the internal variables, which are asso-
ciated with the scalar dislocation density in Eq. (29), modified Kocks–Mecking–Teodosiu
evolution laws are used, given by

ρ̇α =

⎧⎪⎪⎨
⎪⎪⎩

1
b

(
1
K

√∑
β ρβ − 2dρα

)
|γ̇ α| − ρα CD A(|κ∼|) φ̇ if φ̇ > 0

1
b

(
1
K

√∑
β ρβ − 2dρα

)
|γ̇ α| if φ̇ ≤ 0

(50)

The additional recovery term, with parameter CD, was originally introduced by [26,27].
It allows for static recovery behind the front of a migrating grain boundary, with the
amount of recovery governed by the parameter CD. The static recovery is localized to the
interface region by the function A(|κ∼|) = tanh(C2

A ||κ∼||2). The competing nucleation and
annihilation mechanisms in Eq. (50) determine whether energy is stored or dissipated. In
particular, the additional recovery term allows for stored energy to be released through
grain boundary migration.

Identification of model parameters

Themodel parameters used in the simulations are given inTable 1.While typical values for
most of the elasto-viscoplastic material parameters of pure copper at room temperature
can be found in the literature (in this paper values adapted from [47,48] are used), Table 1
also gives values for the recovery parameterCD in (50) and theCosserat couplingmodulus.
The former is chosen so that full static recovery takes place in the wake of migrating
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Table 1 Model parameters used in the simulations

Parameter Value Unit Comment

Elasto-viscoplastic parameters

C11 160 GPa Elasticity moduli for cubic symmetry

C12 110 GPa

C44 75 GPa

μc/f0 11.5 GPa Cosserat modulus

μ 46 GPa Mean shear modulus

b 0.2556 nm Burgers vector (magnitude)

Kv 10 MPa s1/n Viscoplasticity parameters

n 10

K 1/10 Kocks–Mecking parameters

d 10 nm

CD 100 Determines the rate of static recovery

CA 1 µm

Phase-field and mobility parameters

f0 1.15 MPa Sets the magnitude of the grain boundary energy

s 1.5 µm

a 0.62 µm

ε 2 µm Sets the grain boundary width

τφ/f0 100 s Viscosity type (mobility) parameter for φ̇

τ̂�/f0 10 s Viscosity type parameter for
×
ω�

grain boundaries. For the moment, only self interaction between static dislocations is
considered. In Eq. (29), hαβ = 0.3 if α = β and otherwise hαβ = 0 if α �= β . The Cosserat
modulus is chosen sufficiently large to act as a numerical penalty parameter.
The parameters f0, a, and s, related to the phase-field inspired energy contribution in

(27), are calibrated to fit values obtained from atomistic calculations for < 100 > tilt
grain boundaries. Following [28], the general calibration procedure relies on the matched
asymptotic analysis of the original KWC model as proposed in [49]. At the lowest order
corresponding to equilibrium, the coupledmodel becomes equivalent to the KWCmodel.
Hence, using the results from [49], it is possible to calculate the grain boundary energy
as a function of the misorientation angle. Some grain boundary energies—calculated by
atomistic simulations [50–52] for copper tilt grain boundaries—are collected in Fig. 1
(top). The grain boundary energy exhibits cusps, i.e., favoredmisorientations which result
in local energy minima. The current model does not take into consideration such local
minima so the calibration was only performed on the first part of the curve up to a
misorientation angle of 30◦. The result is shown with stars in Fig. 1 (bottom) and the
calibrated parameters are given in Table 1. The parameter ε controls (together with a)
the width of the grain boundary. It is chosen to be ε = 2 µm, which results in a diffuse
interface width of around 500 nm. The interface width puts a restriction on the element
size in the finite element discretization. At least four to five nodes, but ideally more, are
required to resolve the curvature.
Whereas the coupled Cosserat model and the model proposed in [26] (which is close to

the original KWCmodel) become similar at equilibrium, they differ in dynamic situations.
The two formulations have been compared in [21,28]. The model in [26] relies on a
relaxation dynamics for the orientation, whereas in the coupled model the orientation
is at each instant governed by the constraint (46) together with the balance equation
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Fig. 1 Top: grain boundary energy as a function of misorientation for copper, obtained from atomistic
calculations [50–52]. Bottom: result from calibration of model parameters for the orientation phase-field
model (black stars) to fit the calculated grain boundary energy of a < 100 > tilt grain boundary from [50]
(solid blue line). Only angles up to 30◦ are considered in the calibration because the model does not capture
the cusps seen in the full range of misorientation angles

(34). Because of this difference, it is not possible to use the asymptotic analysis of the
KWCmodel to calibrate the mobility parameters of the coupled model, because only the
expansion to lowest order is valid in this case.
The choice of the parameter τ�(φ,∇φ, κ∼) in Eq. (42) was studied in [28] where it was

shown that it must be bounded by the choice of τφ in order not to restrict the grain
boundary mobility. It will be assumed to be of the general form

τ�(φ,∇φ, κ∼) = τ̂� P�(φ, ||κ∼||) . (51)

The function P�(φ, ||κ∼||), which is meant to localize the stress relaxation to the interface
region, will be discussed in the next section. In concordance with [28], the parameter
τ̂� is chosen to be τφ/10. Both values are given (scaled by f0 for clarity) in Table 1. The
choice of the parameters for the dynamic behavior is revisited in the next section when
the numerical simulations are discussed. A formal procedure for identifying the dynamic
coefficients of the model remains to be established, which is why in this work the mobility
parameter τφ is adjusted by running numerical simulations on simplified test cases.

Microstructure evolution in deformed polycrystals
In this section, themicrostructure evolution predicted by the proposedmodel in deformed
polycrystals is investigated by numerical simulations. In particular, the effect of localized
reorientation of the lattice and the grain boundarymigration due to statistically stored dis-
location densities are studied. The numerical simulations are performed using the finite
element code Z-set [53]. The discretization of the weak form of the balance equations
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results in amonolithic, coupled system of equations which is solved using implicit integra-
tion in an iterative Newton–Raphson scheme. The constitutive equations are integrated
using a fourth order Runge-Kutta method with automatic time-stepping. For details on
the numerical implementation, see [22,28] and also [26,41] and for the Cosserat crystal
plasticity and the phase-field model, respectively. Since only planar problems are con-
sidered, Θ = [ 0 0 θ ]T , with x3 considered to be the out-of-plane axis and θ3 = θ the
only non-zero orientation degree of freedom. The planar problem therefore has only four
degrees of freedom: two components of displacement, the microrotation θ , associated
with the crystal orientation, and the phase-field φ.
Periodic geometries and boundary conditions are considered. Simple shear loading is

then applied by imposing

u = B∼ · x + p (52)

with the tensor B∼ given by

B∼ =
⎡
⎢⎣

0 B12 0
B21 0 0
0 0 0

⎤
⎥⎦ , (53)

with only either B12 or B21 non-zero. The vector p is a periodic fluctuation that takes the
same value in opposite points of the boundary.

Grain boundary mobility

As discussed in the previous section, the grain boundary mobility cannot be calibrated
based on results for the orientation phase-field model, as the evolution equations for the
two models are different. While a formal calibration procedure remains to be established,
the grain boundary mobility can be estimated and adjusted by running a simple test case.
This test case is a periodic bigrain of the type considered in [28], with a flat grain boundary
and 15◦ misorientation between the two grains. One grain is assigned a (constant) scalar
dislocation density and the other grain is assumed to be dislocation-free. The resulting
stored energy gradient acts as a driving force for grain boundary migration.With a planar
grain boundary and a constant stored energy gradient, the grain boundary mobility can
be calculated asM = v/ψρ , with v being the grain boundary velocity andψρ the pressure
acting on the grain boundary due to the stored energy.
In the viscosity type parameter τ�(φ,∇φ, κ∼) in Eq. (51), the localizing function is chosen

to be

P�(||κ∼||) = 1 −
[ μp

ε
− 1

]
exp(−βp ε ||κ∼||) , (54)

following [25]. In [28], the same localizing function was used for the orientation phase-
field, whereas a tanh function was used for the τ� coefficient. The constant μp determines
the value of P�(||κ∼||) in the bulk of the grains and should be chosen to be large so that
1/τ� → 0 there. The constant βp sets the width of the region around the grain boundary
where P�(||κ∼||) ≈ 1 and should be chosen βp ≤ 103 in order to achieve localization. In the
simulations, μp = 109µu and βp = 102 are used.
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With the driving pressure due to the stored dislocation density given byψρ = 0.23MPa
and using thematerial parameters given inTable 1, the resulting simulated grain boundary
velocity is v = 0.8 nm/s. The resultingmobility isM = 3.5 nm/(MPa s).While there is not
a plethora of available experimental data on the grain boundary mobility, [54] measured
an average grain boundary mobility of 0.61 nm/(MPa s) at 121 ◦C for recrystallization of
cold deformed copper. Theoretical average grain boundarymobilities were also calculated
in [54]. Compared to that data, M = 3.5 nm/(MPa s) corresponds to recrystallization at
a temperature of approximately 150–160 ◦C. In the present work, thermal effects are not
accounted for in the simulations, and the indicated temperature range should not be
considered predictive of the true final temperature of the system.
In order to compare the behavior of the coupled model and the orientation phase-field

model, the latter was also used to run the same example of a periodic bigrain with a stored
energy gradient.Themodel parameters,where applicable,were the sameas for the coupled
model, and in the evolution equation for the orientation phase-field (c.f. [24,26,28]), the
mobility parameter was chosen identical to τ�(φ,∇φ, κ∼). The mobility predicted by that
simulation was M = 0.87 nm/(MPa s), which is lower than for the coupled model. This
is as expected and further indicates that it is necessary to establish a separate calibration
procedure for the mobility of the coupled model.

Initial conditions for polycrystal simulations

In general, initial microstructures for polycrystalline aggregates are obtained from mea-
surements of real samples, or generated by tessellation using dedicated software such
as Neper [55]. The tessellations can then be translated into a finite element mesh with
discrete regions of different orientation, i.e., grains. In this work, two periodic, planar
microstructures generatedwithNeper are used, onewith six grains and onewith 32 grains.
The smaller geometry is 20 × 20µm in size, discretized with 8464 (92 × 92) elements
with quadratic interpolation functions and reduced integration. The larger geometry is
50 × 50µm, and it is discretized with 47089 (217 × 217) elements. The element size is
therefore nearly the same in both examples, 0.21µm in the six grains geometry compared
to 0.23µm in the one with 32 grains. The orientations are distributed in the range 0◦ to
35◦, which corresponds to the range of misorientations in the grain boundary energy for
which the model is calibrated.
The grain morphologies and orientation distributions obtained using Neper are not

suitable for use as initial conditions in the coupled model as they are far from the equi-
librium solution, with jagged edges tied to the finite element grid, and so will result in
convergence problems (Fig. 2, left). In order to generate suitable initial conditions for

the non-zero component θ of
×
Θ as well as φ, simulations using the KWC orientation

phase-field model are performed. This will also generate initial conditions for the non-
zero component ×ep of ×ep (c.f., Eq. (47)). The simulations take the grain morphologies
generated by Neper as initial conditions, together with a uniform φ = 1. The simulations
are run until a solution with localized, smooth grain boundaries is found. Figure 2 shows
the microstructure generated by Neper for the geometry with six grains and the corre-
sponding output for the orientation field from the phase-field simulation. This field will
serve as initial conditions on θ and -×ep in the coupled simulations, as shown in Fig. 3 (top
left). The phase-field simulations also find the corresponding solution for φ, shown in Fig.
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Fig. 2 Initial orientation distribution generated with Neper (left) and the orientation distribution after initial
simulations with the orientation phase-field model (right). The orientation is given in radians. Because the
orientation behaves as a phase-field, the grain boundaries in the coupled model are not restricted to follow
the finite element grid and so there is no need to adapt the mesh to the morphology of the microstructure

3 (bottom left). Initial conditions for the geometry with 32 grains are generated by the
same procedure. In all simulations, the dislocation densities have a uniform initial value
of ρα = 2 · 1011 m−2.

Kink bands and subgrain formation

Up to four possible slip systems are considered for the planar problem with the slip
directions given by

l1 = ( 1, 0 ) , l2 = ( 0, 1 )

l3 = 1√
2
( 1, 1 ) , l4 = 1√

2
(−1, 1 ) .

(55)

The slip plane normal in each case is perpendicular to the slip direction. By choosing
which slip systems are allowed to be active in a simulation, localization phenomena such
as kink or slip bands can be triggered. In particular, the formation of kink bands, which
are bands of localized plastic deformation that are perpendicular to the slip direction, can
result in large localized reorientation of the lattice (see the recent contribution [3] for a
detailed descriptionof kink and slip bands in crystals andhow they arise in crystal plasticity
simulations). In the simulations, a periodic shear deformation is applied with B21 = 0.05
in Eq. (52). Kink bands are triggered when only one slip system can be activated.
Figure 3 shows the orientation field θ (top), the phase-field φ (middle) and the cur-

vature norm |∇θ | (bottom) before (left) and after (right) deformation of the six grains
microstructure. The deformation is not shown, i.e., the fields are projected onto the unde-
formed mesh (the total shear deformation is five percent). Only slip system α = 2 was
allowed to activate in the simulation. The formation of kink bands ismost easily seen in the
bottom right figure, which shows the norm of the curvature |∇θ | in the deformed struc-
ture. These bands are also visible in the phase-field φ. Note that the grains are oriented
between 0◦and 35◦ from the x1-direction, so the localized bands are perpendicular to the
slip direction since it is the (0, 1) slip direction that is active. In the top left image, the slip
direction of each grain is indicated with black lines. The orientation phase-field method
always localizes grain boundaries where there is a sufficient orientation gradient [24], and
clearly this property is inherited to the coupled model, as may be expected. In particular,
a kink band has formed across the bottom part of the left central (green) grain and the
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Fig. 3 The six grain microstructure before and after applied shear deformation. The initial values are shown
to the left for θ (top), φ (middle) and norm of the curvature |∇θ | (bottom). Top right shows the orientation
distribution after shear deformation, middle right shows the corresponding phase-field φ and bottom right
shows the norm of the curvature. The true maximum value of the curvature norm is around |∇θ | = 1.9µm−1

but it has been capped off at 1µm−1 for a better visualization. In the simulation, only one slip system α = 2
was active, resulting in the formation of kink bands and subgrains. The slip direction of each grain is indicated
with black lines in the top right figure

right central (blue) grains, resulting in what appears to be two, maybe three, new grain
boundaries delimiting new subgrains. The locations of the new grain boundaries are near
the spots marked 1 and 2, respectively, in the top right image. Here, the term subgrain is
used to denote regions that result from partitioning of the original grain structure due to
the deformation. Themodel automatically handles localization and, while it is sensitive to
the magnitude of the orientation gradient, does not differentiate between different types
of grain boundaries.
Figure 4 shows the results from calculations when only slip system α = 1 was allowed

to activate. Kink band formation is again observed but the localization is less pronounced
than in the previous example. Slip band formation is not observed. The figure shows the
orientation field θ (top), the phase-field φ (middle) and the curvature norm |∇θ | (bottom)
before (left) and after (right) deformation.
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Fig. 4 The six grain microstructure before and after applied shear deformation. The initial values are shown
to the left for θ (top), φ (middle) and norm of the curvature |∇θ | (bottom). Top right shows the orientation
distribution after shear deformation, middle right shows the corresponding phase-field φ and bottom right
shows the norm of the curvature. The true maximum value of the curvature norm is around |∇θ | = 1.9µm−1

but it has been capped off at 1µm−1 for a better visualization. In the simulation, only one slip system α = 1
was active, resulting in the formation of kink bands. The localization is less pronounced than in the case
where only slip system α = 2 was active. The slip direction of each grain is indicated with black lines in the
top right figure

Figure 5 shows the same results as Fig. 3, but for the larger geometry with 32 grains.
Again, the formation of kink bands is most notable in the contour map showing the norm
of the orientation gradient |∇θ | in the deformed microstructure (bottom right), but it is
also visible in the phase-field φ (middle right). In particular, below the spot marked with
1 in the top right image, a little bit above the center of the geometry, there are two new
subgrains that seem to have formed due to the reorientation at the edges of two existing
grains. The simulation shows how a kink band associated with a strong lattice curvature
transforms into a true grain boundary, which is associated with a significant decrease in
φ due to the large accumulation of dislocation densities.
The interest of these examples is that by triggering kink deformation in the simulations,

it is possible to study how themodel behaveswhen very localized reorientation takes place.
Clearly, the coupled framework allows for the formation of new subgrains by reorientation
without the need for post-processing or reinterpretation of the results.



Ask et al. Adv. Model. and Simul. in Eng. Sci.            (2020) 7:9 Page 18 of 28

Fig. 5 The 32 grain microstructure before and after applied shear deformation. The initial values are shown
to the left for θ (top), φ (middle) and curvature |∇θ | (bottom). Top right shows the orientation distribution
after shear deformation, middle right shows the corresponding phase-field φ and bottom right shows the
curvature. The true maximum value of the curvature norm is around |∇θ | = 1.7µm−1 but it has been
capped off at 1µm−1 for a better visualization. In the simulation, only one slip system was active, resulting in
the formation of kink bands and subgrains

Dislocation driven grain boundary migration

During the elasto-viscoplastic deformation, energy is stored in the bulk of the grains due
to random trapping of dislocations. This is included in the model via the energy term (28)
and the modified Kocks–Mecking–Teodosiu evolution law (50) for the evolution of the
scalar dislocation densities ρα . Because the energy contribution (28) is coupled with φ in
the energy density, a difference in stored energy between two grains contributes to grain
boundary migration. This effect is illustrated by comparing simulations performed with
only one active slip system (the same as in the previous example) or all four slip systems
of (55). In the former case, the difference in stored energy is higher, and correspondingly
there is a stronger contribution to the microstructure evolution due to the statistically
stored dislocation densities.
Figure 6 shows the accumulated plastic strain (left) and static dislocation density (right)

in the case of only one active slip system for the six grain geometry. The maximum scalar
dislocation density is in reality 2.4 ·1015 m−2, but in the figure themaximum display value



Ask et al. Adv. Model. and Simul. in Eng. Sci.            (2020) 7:9 Page 19 of 28

Fig. 6 The accumulated plastic slip γ (left) and the scalar dislocation density ρ (right) with only one active
slip system. The maximum display value for ρ has been set to 5 · 1014 m−2 (the scale in the colorbar is in
µm−2) in order to more clearly demonstrate how it is distributed over the grains. The true maximum value is
2.4 · 1015 m−2. For the same reason, the maximum display value for γ has also been limited (at 0.3). In a very
narrow region larger values are observed, with a maximum of almost 1

Fig. 7 The non-dimensionalized stored energy ψρ/f0 with one (left) or four (right) active slip systems. The
scale for the left-hand image has been cut-off at 0.5 in order to more clearly show how the stored energy is
distributed in the different grains. The true maximum value is around ψρ/f0 = 0.9. The scale for the
right-hand side image has not been altered

has been limited to 5 · 1014 m−2 in order to better highlight how the dislocation density
is distributed between different grains. In Fig. 7, the scaled stored energy ψρ/f0 with one
(left) or four (right) active slip systems is shown. When all four slip systems are active,
energy is stored much more evenly in the grains. The maximum value is around 0.9 for
one possible slip system, whereas it is only around 0.1 with four possible slip systems,
so its contribution to the driving force for grain boundary migration in the latter case is
considerably smaller. Note that in Fig. 7, the maximum display value in the left figure (one
possible slip system) has been limited to 0.5 in order to better represent how the stored
energy is distributed in the different grains.
The microstructure evolution is studied by applying a shear deformation and then

holding it constant for 2 h under a moderately elevated temperature. The grain boundary
mobility was chosen to correspond with a (constant) temperature of around 150 ◦C. This
value is not predictive of the true temperature of the system; it would be necessary to
fully take into account thermal effects to achieve this. The final microstructure for the six
grains microstructure is shown in Fig. 8 for one (left) or four (right) possible active slip
systems. The images show, from top to bottom, the orientation field, the phase-field φ
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Fig. 8 The microstructure after 2 h of constant shear deformation at moderately elevated temperature. The
simulations allow one (left) or four (right) possible active slip systems. From top to bottom the images show
the orientation field, the phase-field φ and the curvature |∇θ |. The original grain boundaries are outlined in
black. The initial microstructure is the same in both cases

and the curvature |∇θ |, respectively. The initial configuration is the same for both cases
and the initial grain boundaries are outlined in black.
It is clear that the predicted grain structures are very different. With only one active slip

system, it seems that the grain boundary migration is primarily driven by the difference
in stored energy associated with statistically dislocation densities. With four possible slip
systems on the other hand, it appears that the grain boundary migration is driven mostly
by the grain boundary curvature. This is evident from the shrinking of the smallest grain,
which has a slightly lower stored energy than its neighbor to the left and therefore should
expand in that direction if this had been themain driving force. Instead, it shrinks to lower
the energy in the triple junction. It is also clear from comparing the two examples that
the stored energy due to the scalar dislocation densities is a stronger driving force than
curvature for grain boundary migration in this case. This is in agreement with the typical
driving pressures given in [7], with typical driving pressures due to stored dislocations
generally several magnitudes larger than those due to the grain boundary energy.
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Fig. 9 The scalar dislocation density ρ with only one active slip systems just after deformation has been
applied (left) and 2 h later (right). The maximum display value for ρ has been set to 5 · 1014 m−2 (the scale of
the colorbar is in µm−2) in order to more clearly demonstrate how it is distributed over the grains. The true
maximum value is 2.4 · 1015 m−2

To study the evolution of the statistically stored dislocations, the simulation with one
possible active slip system is considered again. In Fig. 9, the dislocation density in the
grains is compared at two time points: just after the deformation is applied (left) and after
2 h (right). The grain with the highest dislocation density post deformation has vanished
completely after 2 h, and in the wake of the migrating grain boundaries, static recovery
has left a region free of statistically stored dislocations.
The larger geometry with 32 grains is also studied. Figure 10 shows, from left to right,

the orientation field, the phase-field φ and the norm of the curvature |∇θ | after 1 h of final
deformation maintained constant. The initial conditions and the corresponding fields
immediately after the deformation is applied are given in Fig. 5. The microstructure has
evolved relatively little in the time interval considered. In part, this may be due to the
distribution of the stored energy inside the grains, which may be less favorable to grain
boundary migration than in the smaller sample. The maximum value of the stored energy
is also lower than in the previous example, approximately 1.9 · 1015 m−2 (in Fig. 11, the
maximum display value for ρ has been set to 5 · 1014 m−2). In the smaller sample, most
of the microstructure evolution takes place within the first hour, so the shorter time span
considered in the larger example is not in itself sufficient to explain the difference.

Observed phenomena for further investigation

For both considered geometries, there are somephenomena that appear in the simulations
that may require further investigation. Figure 12 shows a zoom on the subgrain boundary
that has formed in the lower left corner of the six grain geometry after deformation, c.f.
Figs. 3 and 6. Only one slip system is allowed. From top to bottom the images show the
orientation, the dislocation density ρ, the norm of the curvature |∇θ |, the phase-field φ,
and the resolved shear stress τ (ranging from − 160 to 230 MPa). The time evolution
is shown from left to right: just after deformation and then after 5min, 1 h, and 2h of
deformation.
Already immediately after the deformation is applied, it seems that the reoriented bands

(blue above andyellowbelow) arenotuniformand that there are small spots of darker color
dispersed inside them.Already after 5min, and evenmore so after 1 h, the reorientedbands
have mostly vanished (due to local reorientation) except for these spots. Furthermore, in
the same position, there appears in the scalar dislocation density small regions where
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Fig. 10 The microstructure of the 32 grain geometry after holding the deformation constant for 1 h. Top left:
the orientation field, and top right: the phase-field φ, and bottom: the norm of the curvature |∇θ |. There is
only one possible slip-system

Fig. 11 The dislocation density distribution in the 32 grain microstructure immediately after deformation
(left) and after 35min of constant deformation (right). The maximum display value for ρ has been set to
5 · 1014 m−2 (the scale of the colorbar is in µm−2) in order to more clearly demonstrate how it is distributed
over the grains. The true maximum value is 1.9 · 1015 m−2. There is only one possible slip system in the
simulations

static recovery has taken place but without apparent grain boundary migration (recovery
in connection with grain boundary curvature on the other hand seems to have taken place
to the right of the region of interest, where the grain to the right has grown into the grain
to the left). There is some, but very little additional change between t = 1h and t = 2h,
and there is no definite indication for the moment that these small regions will eventually
expand.
The same behavior can be seen for the larger simulation geometry in Figs. 10 and

11. There are two grains a little bit above the center (below the spot marked with 1 in
Fig. 5, top right) where there is significant local reorientation and a similar pattern of
spots appear in the orientation field (Fig. 10 left) and corresponding regions of apparent



Ask et al. Adv. Model. and Simul. in Eng. Sci.            (2020) 7:9 Page 23 of 28

Fig. 12 A zoom on a new (sub-)grain boundary generated in the six grain microstructure due to kink band
formation, c.f. Figs. 3 and 6 (the grain boundary appears in the lower left corner of the microstructure in those
figures). From top to bottom the images show the orientation, the dislocation density ρ , the norm of the
curvature |∇θ |, the phase-field φ, and the resolved shear stress τ (ranging from − 160 to 230 MPa). The
evolution is shown from left to right: just after deformation and then after 5min, 1 h, and 2 h of deformation. It
appears that the reoriented bands (blue above and yellow below) are slightly fragmented, with scattered
darker spots. As the microstructure evolves, the reoriented bands start to vanish except for these spots, which
appear to remain. In the stored energy, blue regions appear at the same positions, indicating that static
recovery has taken place there

static recovery in the dislocation density (Fig. 11 right). In order to study if this behavior
is due to poor resolution of the localization taking place in the kink bands, a second
simulation was performed for the six grain geometry with a finer mesh with 20,449 (143
by 143) elements (the coarsermesh has 8464 elements). The same type of behavior is again
observed, as shown in Fig. 13. It is thus present in two different geometries, and for the
same geometry with two different finite element sizes. Further investigation is necessary
to determine the precise origin of the irregularities in the orientation distribution, and if
it is possible that they could act as seeds for new grains and subsequent recrystallization.
The evolution of the other fields, notably the scalar dislocation density, can be explained
by the time evolution predicted by the model as a consequence of the heterogeneities in
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Fig. 13 A zoom on a subgrain boundary generated in the six grain microstructure due to kink band
formation, c.f. Figs. 3 and 6 (the subgrain boundary appears in the lower left corner of the microstructure in
those figures). Two solutions are compared after 6min of constant deformation, which is when the very
localized recovery of the dislocation density starts to appear. To the left, the same mesh was used as in the
previous figure whereas in the images to the right, a finer mesh was used. From top to bottom, the images
show the orientation, the dislocation density ρ and the norm of the curvature |∇θ |. The two solutions are not
identical, but the same phenomena can be observed with localization near or inside regions with high local
curvature and dislocation density

the microstructure. The phase field φ always follows the orientation field, as indicated
in the previous examples, and this also activates the static recovery term in the modified
Kocks–Mecking–Teodosiu equations (50).
The second phenomena that may warrant further investigation appears in the 32 grain

geometry, where one grain boundary exhibits signs of bulging. The grain boundary can be
located in Fig. 5 (top right) where it is near the spot marked with a 2. This is shown in Figs.
14 and 15. The grain has a boundary near the edge of the simulation box (in the periodic
geometry), and so the change in the profile to the very right in the figures is likely due to
ordinary grain boundary migration. However, a little to the left there is a small bulge that
appears which can not be explained by the geometry. This bulge is apparent in both the
orientation field in Fig. 14 and in the phase-field φ in Fig. 15 (top). In addition, it seems to
be associated with static recovery of the dislocation density ρ, shown in Fig. 15 (bottom).
Again there is not much evolution however after the bulge initially appears. It seems to
stay at the same size between 1000 s and 1h in Fig. 14. It is likely that it will be eaten up
by the moving front to the right before it evolves much further.
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Fig. 14 A zoom on a grain boundary in the 32 grain microstructure, c.f. Figs. 5 and 10 (the subgrain
boundary appears in the lower right quadrant of the microstructure in those figures). From left to right, top to
bottom, the orientation field around the grain boundary is shown immediately after deformation, at 500,
1000 and 3600 s, respectively. The grain is on the edge of the simulation box, and so the change in the profile
to the very right in the figure is likely due to ordinary grain boundary migration. However, a little to the left
there is a small bulge that appears which can not be explained by the geometry

Fig. 15 A zoom on a grain boundary in the 32 grain microstructure, c.f. Figs. 5 and 10 (the subgrain
boundary appears in the lower right quadrant of the microstructure in those figures). Top line shows the
phase-field φ and bottom line the dislocation density ρ . The images on the left are immediately after the
deformation is applied and the images on the right are after 1 h of constant deformation. The maximum
display value for the dislocation density has not been capped in these images, unlike in previous figures
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Summary and conclusions
Microstructure evolution in deformed polycrystals is studied in this work by finite element
simulations, applying a constitutive model that combines Cosserat single crystal plasticity
with a phase-field model. It is shown that the model is capable of taking into account
significant microstructural changes. A major result is the importance of strain localiza-
tion (slip bands) and curvature localization (kink bands) on subsequent grain boundary
formation and grain boundary migration. Simulations with only one possible slip system
are used to trigger the formation of kink bands and obtain curvature localization. There
is some clear evidence in the results of new grain boundaries appearing—that is to say:
it is demonstrated that the phase-field variable is sensitive to regions of high dislocation
density and that the coupled simulation model has inherited the quality of the KWC
orientation phase-field model to localize grain boundaries in regions of strong curvature.
Grain boundary migration is also present in the simulation results, both due to stored

energy (SSD densities) and to curvature. The most important driving pressures for grain
boundary migration are obtained when large stored energy gradients occur between indi-
vidual grains.
The presented simulations are still at their early stage (2D, small strain and rotations)

but they indicate that the model contains physical ingredients that are responsible for
subgrain boundary formation, formation of possible recrystallization seeds, and evidence
of bulging phenomenon. It will be necessary in a first step, which is a current focus, to
extend the model to perform more realistic 3D simulations. The full 3D version of the
model requires seven degrees of freedom at each material point, rather than four in the
2D case. The increase in numerical cost is therefore very significant. The main challenge,
however, is the representation of the orientation field in 3D. In the plane case, the grain
orientation is treated as a scalar field, with rotation only around one major axis. The fact
that the orientation is restricted to the plane in the 2D version of themodel severely limits
the types of slip systems that can be studied, whichwill not be the case in a 3D formulation.
However, if rotation around several axes is considered, the interpolation of the variation
of orientation between two grains requires some consideration.
The large deformation formulation of the model has already been established [22] and

in a second step, its numerical implementation will allow to study processes such as
cold working and subsequent annealing but also to tackle the more complex problem of
dynamic recrystallizationwith concurrent deformation, nucleation and grain growth.This
would for example allow to investigate if the model can predict a real threshold in stored
energy for strain induced grain boundary migration to take place. While the simulations
performed in the present study showed some tendency toward grain boundary bulging, it
is not clear whether a critical work-hardening can be an outcome of the model or if the
model must be enhanced.
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4. Sedláček R, BlumW, Kratochvil J, Forest S. Subgrain formation during deformation: physical origin and consequences.
Metall Mater Trans. 2002;33A:319–27.

5. Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21:399–424.
6. Bever MB, Holt DL, Titchener AL. The stored energy of cold work. Prog MaterSci. 1973;17:5–177. https://doi.org/10.

1016/0079-6425(73)90001-7.
7. Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Amsterdam: Elsevier; 2004.
8. Gottstein G, Shvindlerman LS. Grain boundary migration in metals. Berlin: CRC Press; 2010.
9. Renk O, Hohenwarter A, Wurster S, Pippan R. Direct evidence for grain boundary motion as the dominant restoration

mechanism in the steady-state regime of extremely cold-rolled copper. Acta Mater. 2014;77:401–10. https://doi.org/
10.1016/j.actamat.2014.06.010.

10. Taupin V, Capolungo L, Fressengeas C, Das A, Upadhyay M. Grain boundary modeling using an elasto-plastic theory
of dislocation and disclination. J Mech Phys Solids. 2013;61:370–84.

11. Berbenni S, Paliwal B, Cherkaoui M. A micromechanics-based model for shear-coupled grain boundary migration in
bicrystals. Int J Plast. 2013;44:68–94.

12. Raabe D, Becker RC. Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for
simulating primary static recrystallization in aluminium. Model Simul Mater Sci Eng. 2000;8(4):445.

13. Popova E, Staraselski Y, Brahme A, Mishra RK, Inal K. Coupled crystal plasticity—probabilistic cellular automata
approach to model dynamic recrystallization in magnesium alloys. Int J Plast. 2015;66:85–102. https://doi.org/10.
1016/j.ijplas.2014.04.008.

14. Hallberg H. A modified level set approach to 2D modeling of dynamic recrystallization. Modell Simul Mater Sci Eng.
2013;21(8):085012. https://doi.org/10.1088/0965-0393/21/8/085012.

15. Blesgen T. A variational model for dynamic recrystallization based on Cosserat plasticity. Compos Part B Eng.
2017;115:236–43.

16. Takaki T, Yamanaka A, Higa Y, Tomita Y. Phase-field model during static recrystallization based on crystal-plasticity
theory. J Comput Aided Mater Des. 2007;14(1):75–84.

17. Takaki T, Hisakuni Y, Hirouchi T, Yamanaka A, Tomita Y. Multi-phase-field simulations for dynamic recrystallization.
Comput Mater Sci. 2009;45(4):881–8.

18. Güven O, Henke T, Laschet G, Böttger B, Apel M, Bambach M, Hirt G. Modelling of static recrystallization kinetics by
coupling crystal plasticity FEM and multiphase field calculations. Comput Methods Mater Sci. 2013;13(2):368–74.

19. Güven O, Bambach M, Hirt G. Coupling of crystal plasticity finite element and phase field methods for the prediction
of SRX kinetics after hot working. Steel Res Int. 2014;85(6):999–1009.

20. Vondrous A, Bienger P, Schreijäg S, Selzer M, Schneider D, Nestler B, Helm D, Mönig R. Combined crystal plasticity and
phase-field method for recrystallization in a process chain of sheet metal production. Comput Mech. 2015;55(2):439–
52.

21. Ask A, Forest S, Appolaire B, Ammar K. Cosserat crystal plasticity with dislocation-driven grain boundary migration. J
Micromech Mol Phys. 2018;03(03n04):1840009. https://doi.org/10.1142/S242491301840009X.

22. Ask A, Forest S, Appolaire B, Ammar K. A cosserat-phase field theory of crystal plasticity and grain boundary migration
at finite deformation. Contin Mech Thermodyn. 2018;31(4):1109–41. https://doi.org/10.1007/s00161-018-0727-6.

23. Admal NC, Po G, Marian J. A unified framework for polycrystal plasticity with grain boundary evolution. Int J Plast.
2018;. https://doi.org/10.1016/j.ijplas.2018.01.014.

24. Kobayashi R, Warren JA, Carter WC. A continuummodel of grain boundaries. Phys D. 2000;140(1–2):141–50.
25. Warren JA, Kobayashi R, Lobkovsky AE, Carter WC. Extending phase field models of solidification to polycrystalline

materials. Acta Mater. 2003;51(20):6035–58.

https://doi.org/10.1016/0022-5096(77)90001-1
https://doi.org/10.1016/0022-5096(77)90001-1
https://doi.org/10.1016/S1359-6454(98)00012-3
https://doi.org/10.1016/j.actamat.2019.06.010
https://doi.org/10.1016/j.actamat.2019.06.010
https://doi.org/10.1016/0079-6425(73)90001-7
https://doi.org/10.1016/0079-6425(73)90001-7
https://doi.org/10.1016/j.actamat.2014.06.010
https://doi.org/10.1016/j.actamat.2014.06.010
https://doi.org/10.1016/j.ijplas.2014.04.008
https://doi.org/10.1016/j.ijplas.2014.04.008
https://doi.org/10.1088/0965-0393/21/8/085012
https://doi.org/10.1142/S242491301840009X
https://doi.org/10.1007/s00161-018-0727-6
https://doi.org/10.1016/j.ijplas.2018.01.014


Ask et al. Adv. Model. and Simul. in Eng. Sci.            (2020) 7:9 Page 28 of 28

26. Abrivard G, Busso EP, Forest S, Appolaire B. Phase field modelling of grain boundary motion driven by curvature and
stored energy gradients. Part I: theory and numerical implementation. Philos Mag. 2012;92:3618–42.

27. Abrivard G, Busso EP, Forest S, Appolaire B. Phase field modelling of grain boundary motion driven by curvature and
stored energy gradients. Part II: application to recrystallisation. Philos Mag. 2012;92:3643–64.

28. Ask A, Forest S, Appolaire B, Ammar K, Salman OU. A cosserat crystal plasticity and phase field theory for grain
boundary migration. J Mech Phys Solids. 2018;115:167–94. https://doi.org/10.1016/j.jmps.2018.03.006.

29. Eringen AC, Kafadar CB. Part I. Polar field theories. In: Eringen AC, editor. Continuum physics. New York: Academic
Press; 1976. p. 1–73.

30. Forest S, Cailletaud G, Sievert R. A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch
Mech. 1997;49(4):705–36.

31. Nye JF. Some geometrical relations in dislocated crystals. Acta Metall. 1953;1:153–62.
32. Forest S, Sievert R. Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 2003;160:71–111.
33. Gurtin ME. Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D

Nonlinear Phenom. 1996;92(3):178–92.
34. Gurtin ME, Lusk MT. Sharp-interface and phase-field theories of recrystallization in the plane. Phys D Nonlinear

Phenom. 1999;130(1–2):133–54.
35. Gurtin ME. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J

Mech Phys Solids. 2002;50(1):5–32.
36. Kobayashi R, Giga Y. Equations with singular diffusivity. J Stat Phys. 1999;95(5–6):1189–220.
37. Ohno N, Okumura D. Higher-order stress and grain size effects due to self-energy of geometrically necessary disloca-

tions. J Mech Phys Solids. 2007;55:1879–98.
38. Mesarovic SD, Forest S, Jaric JP. Size-dependent energy in crystal plasticity and continuum dislocation models. Proc

R Soc A Math Phys Eng Sci. 2015;471(2175):20140868.
39. Wulfinghoff S, Forest S, Böhlke T. Strain gradient plasticitymodeling of the cyclic behavior of laminatemicrostructures.

J Mech Phys Solids. 2015;79:1–20. https://doi.org/10.1016/j.jmps.2015.02.008.
40. Blesgen T. Deformation patterning in three-dimensional large-strain Cosserat plasticity. Mech Res Commun.

2014;62:37–43.
41. Forest S, Barbe F, Cailletaud G. Cosserat modelling of size effects in the mechanical behaviour of polycrystals and

multiphase materials. Int J Solids Struct. 2000;37:7105–26.
42. Mayeur JR, McDowell DL, Bammann DJ. Dislocation-based micropolar single crystal plasticity: comparison of multi-

and single criterion theories. J Mech Phys Solids. 2011;59:398–422.
43. Mayeur JR, McDowell DL. A comparison of gurtin type and micropolar theories of generalized single crystal plasticity.

Int J Plast. 2014;57:29–51. https://doi.org/10.1016/j.ijplas.2014.01.010.
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