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Abstract

Using a continuous representation of dislocations in elastoplastic polycrystals, we
investigate slip transfer at grain boundaries by assessing the compatibility of the slip
system shear rates with tangential continuity of the plastic distortion rate tensor at
these interfaces. Fulfillment of this tangential continuity condition is needed for
consistency of the continuous description of dislocations in polycrystals. We show that,
in f.c.c. materials at moderate temperatures, this condition unequivocally translates into
constraints on the slip rates on both sides of grain boundaries. Appended to the
elastoplastic boundary value problem, it allows a complete determination of the slip
system shear rates. An algorithm enabling the implementation of compatible slip
transfer in both the finite element methods and the spectral methods based on Fast
Fourier Transforms is provided in both standard crystal plasticity and the mechanics of
dislocations fields.

Introduction
Grain boundaries have a significant impact on plasticity mediated by dislocation glide.
By acting as barriers to dislocation motion, they may limit the mean free path of dislo-
cations and hinder plasticity. The Hall-Petch law [23,38], which describes the evolution
of the yield stress as a function of the inverse square root of the average grain size, is a
well-known manifestation of this limiting effect. Nevertheless, dislocations may be trans-
ferred across grain boundaries, either indirectly, because their accumulation in pile-ups
on one side of the boundary may induce large internal stresses able to activate dislocation
glide or even new dislocation sources on the other side, or directly because they may
interact with the boundary, be absorbed and re-emitted on a different slip system, while
leaving a residual part along the boundary. The present understanding of slip transmis-
sion across boundaries has been developed through numerous investigations of particular
grain boundaries, from which several slip transfer criteria have been proposed [29,31–
33,45]. In these papers, different aspects of the phenomenon were invoked to predict the
experimentally observed slip transfer reactions. [29] assumed tangential continuity of the
plastic strain tensor field across the boundary and drew the consequence that at least four
slip systems have to operate between the two crystals, distributed either with two in each
crystal or with three in one and one in the other. However, as we shall see below, they did
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not recognize the slip incompatibility possibly arising from the tangential discontinuity
of the plastic rotation field and failed to follow further that path. Instead, they proposed a
criterion based on the resolved shear stress being the largest on the outgoing slip system.
[45] combined two criteria: in the first one, the angle between the emission and pile-up
slip planes should beminimized, and in the second one, the outgoing slip direction should
maximize the resolved shear stress, as previously conjectured by [29]. [32] suggested that
the residual dislocation left in the grain boundary plane also plays a role in slip transfer: not
only the angle of the slip planes in both crystals, but also the slip directions angle should be
minimized to promote slip transfer. Thus, Burgers vector conservation is involved in slip
transfer. Burgers vector conservation and tangential continuity of the plastic distortion
are closely related as will be recalled below, implying an intimate connection between the
results in [32] and the context set forth in [29]. To predict which outgoing slip system
is favorable, [33] proposed a cumulative set of criteria closely related to the above ones,
namely: (1) the angle between the lines of intersection of the incoming and outgoing slip
planes with the boundary should be as small as possible; (2) the resolved shear stress acting
on the possible outgoing slip systems should be as large as possible and (3) the magnitude
of the Burgers vector of the residual dislocations left at the grain boundary should be a
minimum. Since then, these criteria have been qualitatively confirmed by experimental
observations in various materials [5,6,24,28].
Predominantly, the above slip transfer criteria are motivated by slip system and grain

boundary geometry as well as the state of internal stress within a continuum framework.
They do not resolve atomic level interactions between dislocations and grain boundaries.
An additional level of analysis is made possible by simulations at atomic scale, e.g. using
molecular dynamics (MD) simulations. Atomistic simulations provide approaches where
the grain boundary core structure can be thoroughly described at a resolution length scale
of the order of inter-atomic spacing [10,18,48]. The goal of such simulations in the field
of slip transfer has been to explore the atomic interactions over a wide range of metallic
materials and grain boundary structures in order to improve the accuracy of slip transfer
prediction criteria (see for example [12–14] and the review in [44]). However, from the
possible five degrees of freedom of a grain boundary, an infinite space of possible slip
transfer configurations exists, while only a relatively small amount has been analyzed
with MD simulations. A more complete survey of the pertinent variables is needed to
probe more completely the space of slip transmission events, which clearly represents
an overwhelming challenge to the MD community. Therefore, continuum models built
either by embedding the three main slip transfer criteria indicated above, or by proposing
model mechanisms for grain boundary and dislocation interactions are of great interest in
complement to atomistic simulations. They are able to encompass all these situations, and
may in addition allow tackling large polycrystalline samples submitted to realistic loading.
Common to all continuum crystal plasticity models solving boundary value problems is
the incorporation of the resolved shear stresses due to the inherent modeling of plastic
slip, which can be either combined with an introduction of the geometric transfer criteria,
or with a continuous model for the description of grain boundaries and dislocations [8].
Models aimed at describing slip transfer across grain boundaries from a continuum

perspective include surface-dislocation density based approaches, non-exhaustively rep-
resented here by reference [21]. In these models, surface-dislocation densities are defects
designed to accommodate tangential discontinuities of the plastic distortion [7,19]. Their
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support is limited to the infinitely thin interface itself. Such a description may be taken
more or less literally and accepted in certain circumstances: electron microscopy has
revealed that the structure of low angle boundaries or semi-coherent interfaces actually
involves dislocations [11,36]. In most cases however, the so-called surface-dislocations
cannot be identified with observable dislocations and reduce to being only mathematical
artefacts. For example, they cannot represent the actual structure of high angle boundaries,
because their spacing would have to be so small that their cores would overlap [30,39]. As
a result, surface-dislocation-based modeling approaches fail to account for the structure
and energy of high-angle boundaries, because they overlook their core properties. In addi-
tion, by allowing the accommodation of any tangential discontinuity of the elastic/plastic
distortion and distortion rate, they tend to reduce grain-to-grain interactions, even for
low-angle boundaries, with consequences on the prediction of texture evolution [34], size
and Bauschinger effects [37,43,46] and plastic strain localization [47]. Here we similarly
foresee consequences on slip transfer.
In the present work, we also have in mind a mesoscale representation where the spa-

tial resolution length scale is not sufficiently small to reveal the core structure of the
grain boundaries, but allows instead encompassing large polycrystals at relatively low
cost. Indeed, we partly see grain boundaries as interfaces of vanishingly small thickness,
across which the stress, total distortion, elastic/plastic distortion and distortion rate com-
ponents may experience a discontinuity. However, following [2,20], we contend that all
such discontinuities are not acceptable and that some continuity is mandatory for consis-
tency of a field approach to dislocations. Besides tangential continuity of the total distor-
tion/distortion rate tensor—the so-called Hadamard compatibility conditions [22], which
ensures continuity of the body across the interface, and normal continuity of the stress
tensor (the traction vector needs to be continuous across the interface to respect mechan-
ical equilibrium), we require tangential continuity of the plastic distortion/distortion rate
tensors across the interface, thus following the steps taken in the early work of [29] on
slip transfer. Such a statement induces non-locality of the elasto-plastic response of the
polycrystal across the interface, because elastic/plastic distortion values from the left of
the interface have to be equal to their counterparts from the right. It amounts to viewing
the dislocations that accumulate at grain boundaries as a continuous density field defined
over a finite boundary layer, perhaps of a small thickness—but definitely not vanishingly
small. Such non-locality was shown to have a strong impact on the elastic/plastic strain
and rotation fields, both in the vicinity of grain boundaries and throughout the body. As
already suggested above, it allowed retrieving such complex features as size andmorphol-
ogy effects, loading path-dependency, the Bauschinger effect and directional hardening in
the plastic response of particle-reinforced alloys and thin polycrystalline fims [37,43,46],
overall texture intensity and a β fiber more consistent with experimental observation in
f.c.c. metals than the Taylormodels [34], and shear strain localization in lamellar Al-Cu-Li
alloys that conventional crystal plasticity fails to capture [47].
In the present paper, slip transfer at grain boundaries, from grain to grain at the level

of each slip system, is described on the basis of Burgers vector conservation and tangen-
tial continuity of the plastic distortion rate at interfaces. The model is grounded in the
mechanical theory of continuously distributed dislocations [1,26,27], but it may also be
applied to crystal plasticity appended with tangential continuity of the plastic distortion
rate. The outline of the paper is therefore as follows. After setting up notations in “Nota-
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tions” section, a primer for the mechanics of dislocation fields is presented in “Mechanics
of dislocation fields” section and tangential continuity conditions on the plastic/total dis-
tortion/distortion rate tensors across interfaces are reviewed in “Tangential continuity
constraints along interfaces” section. “Slip transfer” section presents the application to
slip transfer. In “Numerical procedures” section, numerical procedures are proposed for
the implementation of the model in both standard crystal plasticity and the mechanics of
dislocation fields. Conclusions on the potential applicability of the analysis to the plasticity
of polycrystals follow.

Notations
Abold symbol denotes a tensor, as in:A.When theremay be ambiguity, an arrow is super-
posed to represent a vector: �V. The transpose of tensorA isAt . All tensor subscript indices
are written with respect to the basis (ei, i = 1, 2, 3) of a rectangular Cartesian coordinate
system. Vertical arrays of one or two dots represent contraction of the respective number
of "adjacent" indices on two immediately neighboring tensors, in standard fashion. For
example, the tensor A.B with components AikBkj results from the dot product of tensors
A and B, andA : B = AijBij represents their inner product. The cross product of a second
order tensor A and a vector V, the div and curl operations for second order tensors are
defined row by row, in analogy with the vectorial case. For example:

(A × V)ij = ejklAikVl (1)

(div A)i = Aij,j (2)

(curl A)ij = ejklAil,k . (3)

where ejkl = ej .(ek×el) is a component of the third-order alternating Levi-Civita tensorX,
equal to 1 if the jkl permutation is even, −1 if it is odd and 0 otherwise. In the component
representation, the comma followed by a component index indicates a spatial derivative
with respect to the corresponding Cartesian coordinate as in relations (2, 3). A vector �A
is associated with tensor A by using the inner product of A with tensor X:

( �A)k = −1
2
(X : A)k = −1

2
ekijAij (4)

(A)ij = −(X. �A)ij = −eijk ( �A)k . (5)

The symmetric and skew-symmetric parts of tensorA are denotedAsym andAskew respec-
tively. Given a unit vector n normal to an interface I in a domain D and orienting I from
sub-domain D− to sub-domain D+, the normal part An and tangential part At of tensor
A are

An = A.n ⊗ n (6)

At = A − An = A.(I − n ⊗ n), (7)

where I − n ⊗ n is an operator performing tangential projection. For a vector V:

Vn = (V.n)n = Vnn (8)

Vt = V − Vn. (9)

The discontinuity of a tensor A at the interface I is denoted �A� = A+ − A−, where
A− and A+ are the limits of tensor A when evaluated at limit points on the interface
along direction n in D− and D+, respectively. A superposed dot represents a material
time derivative.
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Mechanics of dislocation fields
In the present framework, continuity of the displacement vector field u along with con-
tinuity of its derivatives, is assumed at any point in a simply-connected body undergoing
elasto-plastic deformation, except perhaps along interfaceswhere continuity of the deriva-
tives may not hold. Consequently, the distortion tensor can be defined as the gradient of
the displacement U = grad u. As such, it is curl-free:

curl U = 0. (10)

Equation (10) is a necessary condition for the integrability of the displacement u and a
compatibility condition for the distortion U. However, in the presence of dislocations,
the elastic,Ue, and plastic,Up, components ofU are incompatible. Indeed, if dislocations
thread a patch S in the body, a constant discontinuity b in the elastic displacement exists
across S, and manifests itself as a closure defect along the circuit C surrounding S:

b = �ue� =
∫
C
Ue.dl. (11)

C is referred to as aBurgers circuit andb as theBurgers vector of this dislocation ensemble.
By virtue of Stoke’s theorem:

∫
C
Ue.dl =

∫
S
curl Ue.ndS, (12)

the discontinuity b can be characterized in a pointwise continuous manner by the tensor
α:

curl Ue = α (13)

such that

b =
∫
S
α.ndS. (14)

α is known asNye’s dislocation density tensor [35]. In its presence, there is an incompatible
(non curl-free) part,U⊥

e , of the elastic distortion tensor. By invoking the Stokes-Helmholtz
decompositionof a square-integrable tensor fieldwith square-integrable first order deriva-
tives [25], it is possible to find uniquely the square-integrable tensor and vector fields φ

and z such that the elastic distortion field Ue reads as the sum:

Ue = curl φ + grad z. (15)

Taking the curl of Ue in Eq. (15) extracts curl φ and discards grad z, whereas taking its
divergence extracts grad z and eliminates curl φ. Therefore, Eq. (13) actually involves only
curl φ, which we identify as the incompatible part U⊥

e of Ue:

curl U⊥
e = curl curl φ = α. (16)

In addition, grad z can be identified as the compatible partU‖
e of the elastic distortionUe,

while z is the compatible elastic displacementu‖
e , up to a constant.However, Eq. (16) is still

insufficient to determineU⊥
e from a given dislocation field α. To ensure correctness of this
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identification, U⊥
e must vanish identically throughout the body when α = 0. Following

[4,25], we therefore augment Eq. (16) with the side conditions

div U⊥
e = 0 and U⊥

e .n = 0, (17)

the latter being imposed on the external boundary ∂B with unit normal n, to ensure that
its solution does not contain a gradient part. Taking the curl of Eq. (16), we then find:

curl curl U⊥
e = grad div U⊥

e − div gradU⊥
e = curl α, (18)

and therefore, using the side conditions (17):

div gradU⊥
e = −curl α, U⊥

e .n = 0 on ∂B. (19)

Equation (19) is a Poisson equation for the unknownU⊥
e whose solution under the above

boundary condition vanishes identically throughout the body when α = 0, as required.
Similarly, we could have evidenced the existence of an incompatible part of the plastic
distortion, U⊥

p , opposite to the incompatible elastic distortion U⊥
e and such that lattice

continuity is maintained. Further, a curl-free compatible component, U‖
p of the plastic

distortionUp,may also exist, aswell as a compatible plastic displacementu‖
p. The following

relations are therefore satisfied:

U = Ue + Up (20)

Ue = U⊥
e + U‖

e (21)

Up = U⊥
p + U‖

p (22)

0 = U⊥
e + U⊥

p (23)

if infinitesimal transformations are assumed. Using Eqs. (16, 23), it is readily seen that the
relation

α = −curl U⊥
p (24)

is equivalent to Eq. (16), and that similarly the equation

α = −curl Up (25)

is also valid. Note that the continuity condition:

div α = 0 (26)

follows directly from Eqs. (13, 16).
The kinematics of dislocation densities derives from the conservation of the Burgers

vector during their motion across arbitrary material patches. Consider a material surface
S bounded by a closed curve C . Let f be the dislocation flux field used to measure the rate
of inflow into S of dislocation lines, carrying along with them their corresponding Burgers
vectors through a line element dx of curve C . Let V be the velocity of the dislocations
with respect to the lattice. In the absence of dislocation sources, the conservation of the
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Burgers’ vector content demands that the rate of change of the Burgers’ vector of all
dislocation lines threading S be equal to the total dislocation flux across curve C :

d
dt

∫
S
α.ndS =

∫
C
f .dx. (27)

Due to Stokes’ theorem, the point-wise statement corresponding to (27) is, for small
transformations:

α̇ = curl f (28)

where α̇ represents the time derivative of the dislocation density tensor. As shown in [3]:

f = −α × V. (29)

Consequently, the local statement of balance (28) becomes:

α̇ + curl (α × V) = 0. (30)

Equation (30) is referred to as a transport law for the dislocation density tensor α. It can
be understood as an evolution equation for α when the dislocation velocity V is provided
as a function of the stress state and dislocation character through constitutive statements.
With this information, Eq. (30) constitutes a natural basis for the dynamic description of
dislocation microstructures. Its meaning is that, through the curl term, the incompatible
part of the dislocation flux incrementally feeds the dislocation density. Comparing Eqs.
(25, 30) it follows, after time derivation of Eq. (25), that the cross product α × V can be
identified with the plastic distortion rate tensor U̇p, up to a gradient:

α̇ + curl U̇p = 0 (31)

U̇p = α × V + grad u̇∗
p. (32)

Atmicroscale, there is nophysicalmechanism that could be describedby the term grad u̇∗
p,

which has therefore to be cancelled. Equation (32) then describes plasticity solely from
α dislocation motion. At mesoscale grad u̇∗

p can be given the significance of a statistical
plastic distortion rate, meaning that plasticity may be obtained even when the dislocation
density tensor vanishes at this scale. Indeed, using space-time running averages of the
dislocation density tensor α, dislocation velocity V and plastic distortion rate tensor U̇p
over a domain of mesoscopic size, allows writing the mesoscopic plastic distortion rate
U̇p as:

U̇p = α × V = α × V + Lp, (33)

where overbars indicate averaged variables [4]. It is seen that U̇p may be non-zero when
the net dislocation density vanishes at mesoscale (α = 0), in which case it becomes:

U̇p = Lp, (34)
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and is to be physically interpreted as the distortion rate produced by the so-called “statis-
tical dislocations”. Dropping the overbars for convenience, the plastic distortion rate may
be written at this scale as:

U̇p = α × V + Lp. (35)

Averaging in space thus provides a link with conventional crystal plasticity: Lp may be
derived from well-established slip system-based constitutive relationships for the vis-
coplasticity of crystalline materials. At microscale, the relation U̇p = α × V may be
seen as a tensorial Orowan relationship in the continuum, not making reference to the
cristallography and slip systems of the material. However, we look here for a microscale
expression of U̇p, such that Lp = 0 and V �= 0, but with such an explicit reference to
cristallography through the incoming and outgoing slip systems at grain boundaries. This
is different from the averaged point of view of [34] who assumed instead Lp �= 0 and
V = 0. Consider f.c.c. materials: on the one hand, they feature four < 111 > slip planes
with unit normal vectorsms, each with three [110] slip directions ss, and therefore twelve
slip systems with Schmid tensors Ps = ss ⊗ms, s ∈ (1, 12). In each slip plane, only two out
of three slip directions are independent, and therefore only eight slip systems out of twelve
are independent. On the other hand, U̇p has eight independent components if pressure
independence of plasticity is assumed. In such conditions, the relation

U̇p =
∑

s∈(1,8)
γ̇sPs, (36)

between the components of theplastic distortion rate U̇p and the shear rates γ̇s on the inde-
pendent slip systems Ps, s ∈ (1, 8) is a full rank linear algebraic system of eight equations
for the eight unknowns γ̇s, allowing to describe uniquely plasticitymediated by dislocation
glide in terms of slip system shear rates [43]. Assuming pressure independence implies that
Eq. (36) does not account for dislocation climb. However, it still accounts for cross-slip. In
b.c.c. and h.c.p. materials, the number of independent slip systems is material-dependent,
and it may be as high as 48 in α − Fe in b.c.c. materials and twelve in h.c.p. materials,
thereby obviously precluding any such one-to-one correspondence.
In a small pertubation setting, the rest of the equations of the mechanics of dislocation

fields is not different from standard crystal plasticity, to which the theory reduces when
the dislocation density tensor is formally set to zero. Assuming linear elasticity, the stress
tensorT is obtained from the tensorC of elasticmoduli and elastic strain tensor εe = Usym

e
as

T = C : εe. (37)

Neglecting inertial forces and any volumetric force density as unessential for the present
purposes, it satisfies the balance of momentum equation

div T = 0. (38)

Complemented with constitutive relations for the dislocation velocity V as a function of
the stress and dislocation density tensors and for the shear strain rates γ̇s involved in the
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plastic velocity gradient Lp as a function of the stress tensor, Eqs. (19, 20–23, 31, 35, 37, 38)
form a complete set of equations, of hyperbolic character, for the evolution of the dis-
placement and dislocation density fields. Boundary conditions comprise the conventional
stress and displacement conditions.

Tangential continuity constraints along interfaces
Material properties and/or field variables, such as the elastic/plastic displacement and dis-
tortion/distortion rate fields or the dislocation density fieldmay encounter discontinuities
across surfaces such as grain boundaries in polycrystals. However, as indicated above, not
all discontinuities are admissible in the present framework:mechanical balance, the conti-
nuity of matter and the conservation of the Burgers vector across such interfaces mandate
satisfaction of partial continuity conditions. To recall these conditions, we assume the
existence of a surface of discontinuity I separating the body B into two sub-domains B−

and B+. At any point P on I , the unit normal vector n to the interface is oriented from
B− toward B+, and we denote by l and τ = n × l two unit vectors belonging to the inter-
face (see Fig. 1). In the absence of cracks and shocks, continuum mechanics respectively
requires that the displacement u and traction vector t = T.n be continuous across the
interface: �u� = 0, �t� = 0. The continuity of the traction vector is reflected as well by
the continuity of the normal part, Tn = T.n ⊗ n, of the stress tensor: �Tn� = 0, whereas
the tangential part Tt = T − Tn of the latter may be discontinuous across the interface.
Continuity of the displacement at the interface requires that the total distortion U be a
gradient tensor and therefore satisfy

∫
C
U.dx = 0 (39)

along the rectangular closed circuit C lying across the interface as shown in Fig. 1. When
C is collapsed onto point P by letting L → 0, h− → 0, h+ → 0, the limit of the above
integral provides the interfacial relation

∀l ∈ I, �U�.l = 0, (40)

Fig. 1 Burgers circuit C = U+ ∪ R+ ∪ R− ∪ B− ∪ L− ∪ L+ across an interface I separating the body B into
domains B− , B+ . l is the unit tangent to curve C , n is the unit normal to interface I, and τ = n × l the
“tangent normal” to the bounded surface S and curve C
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whose meaning is tangential continuity of the total distortion. This property is also ren-
dered more compactly as:

�U� × n = 0, (41)

or as

�Ut� = �U − U.n ⊗ n� = 0. (42)

The discontinuity of the distortion is therefore limited to its normal part �Un�. Eqs. (41, 42)
are known as Hadamard’s compatibility conditions [22]. By differentiating Eq. (39) with
respect to time, tangential continuity is also found to apply to the total distortion rate U̇:

∀l ∈ I, �U̇�.l = 0 (43)

�U̇� × n = 0, (44)

whereas the normal part U̇n of the distortion rate tensor may encounter a discontinuity.
Of course, the satisfaction of relations (41, 42, 44) precludes any occurrence of matter
disruption mechanisms at interfaces, such as grain boundary sliding or cavitation. How-
ever, Hadamard’s compatibility equations (41, 42) do not impose any constraint on the
plastic distortion tensor Up at the interface. We show below that tangential continuity
conditions onUp arise at the interface if the choice is made to represent continuously the
dislocations in the interface area by adopting a small resolution length scale [2].
With this aim, we consider again the rectangular closed circuit C lying across the inter-

face in the manner shown in Fig. 1. The intersection of surface S and interface I defines a
curve C on I , to which the orthonormal frameD = (P, e1 = l, e2 = τ, e3 = n) is a natural
frame at point P. A bulk areal dislocation density field α is assumed to take place over
surface S, and a surface-dislocation density αS(I) is provisionally allowed to exist along
the interface I . To first comment on the role of the surface-dislocation density αS(I), we
consider the limit of the Burgers vector content of circuit C

b = −
∫
C
Up · lds =

∫
S
α · τdS. (45)

when C is collapsed onto point P by letting L → 0, h− → 0, h+ → 0 as previously. We
find:

∀l ∈ I, −�Up�.l = αS(I).τ. (46)

This relation is nothing else than the celebrated Frank’s relation of the theory of disloca-
tions [7,19], which provides

αS(I) = �Up� × n. (47)

Its meaning is that, whatever the tangential discontinuity �Up� of the plastic distortion,
it can be accommodated by an appropriate surface-dislocation density tensor αS(I). Note
that αS(I) is referred to as the “grain boundary Burgers tensor” in [21]. It must be borne
in mind that αS(I) and the dislocation density tensor α are mathematical objects of a
different nature. Whereas α (expressed in units of Burgers vector length per unit surface)
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is a continuously defined field representing a volumetric dislocation ensemble in the
bulk of the material, αS(I) (in units of Burgers vector length per unit length, i.e. non
dimensional) is a surfacic density field supported by the singular interface I . As indicated in
the introduction Section, these surface-dislocations cannot be identified with observable
dislocations. They usually reduce to being only mathematical artefacts whose role is, as
already stated, to accommodate a tangential discontinuity of the plastic distortion across
the interface. In order to restore tangential continuity of the plastic distortion, we shall
instead assume αS(I) = 0 in the following, in sharp contrast with Gurtin’s model. Thus,
we set the condition

∀l ∈ I, �Up�.l = 0. (48)

A more compact way of stating this property is alternatively:

�Up� × n = 0, (49)

or, using the tangential part �Up,t� of �Up�:

�Up,t� = �Up − Up.n ⊗ n� = 0. (50)

Equations (48, 49, 50) are regularity conditions for the computation of the dislocation den-
sity tensor α through Eq. (25). Only when they are satisfied can a continuous dislocation
density tensor be defined across the interface [17]. As already suggested, the effect of such
a constraint is to distribute smoothly the dislocation density arising fromplastic distortion
incompatibility at the interface over a finite width volumetric boundary layer. In doing
so, nonlocal interactions between domains B− and B+ across the interface are enhanced,
because values of the plastic distortion at limit points on either sides of the interface have
to be equal. Of course, the interface conditions (48, 49, 50) do not put constraints on
the normal discontinuity �Up,n� = �Up.n ⊗ n�, which generally involves a plastic shear
jump with components in the local frame D (�εp13� = �ε

p
31�, �ε

p
23� = �ε

p
32�), a tilt rotation

jump (�ωp
1�, �ω

p
2�) and a normal stretch jump �ε

p
33� in pressure-sensitive materials. How-

ever, compatibility conditions between these normal discontinuities arise when several
interfaces with respective discontinuities of the plastic distortions �Up�i, i ∈ (1, 2 . . . , N )
connect along a multiple-line, in practice a triple-line with N = 3 in polycrystals. Indeed,
closure requires that the sum of all discontinuities vanish at the multiple-line:

N∑
i=1

�Up�i = 0 (51)

because the same grain is used to start and finish a closed circuit around themultiple-line.
Summing the relations (49) for all interfaces, and using Eq. (51), it is seen that the normal
discontinuities in the plastic distortion need to satisfy a Kirchhoff-type relation at the
multiple-line:

N∑
i=1

�Up�i.ni ⊗ ni = 0. (52)
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When all normals ni are coplanar, Eq. (52) reduces to an Herring-type relationship at the
multiple-line [20].
Now, performing the time-derivative of the net Burgers vector obtained from the circuit

C in Eq. 45, collapsing C onto point P ∈ I by letting again L → 0, h− → 0, h+ → 0, we
obtain the jump condition

∀l ∈ I, �U̇p�.l = 0, (53)

which reflects both Burgers vector conservation at the interface and tangential continuity
of U̇p [2]. Equation (53) may alternatively read in compact form:

�U̇p� × n = 0 (54)

or equivalently

�U̇p,t� = �U̇p − U̇p.n ⊗ n� = 0, (55)

or else:

U̇−
p,t = U̇+

p,t . (56)

Since the interface conditions (54, 55, 56) ensure consistency of a field description
of dislocations in a polycrystalline body, they must be appended to the boundary value
problem in the mechanics of dislocation fields. They may also be appended to standard
crystal plasticity, in which case the latter is augmented into a nonlocal model accounting
for grain interactions [47].

Slip transfer
The tangential plastic distortion rate tensor has only six independent components. There-
fore, six independent slip systems are required to enforce its continuity across an interface.
This is in contrastwith the four slip systemsneeded in [29] to fulfill tangential continuity of
the plastic strain rate tensor, i.e. the symmetric part of the plastic distortion rate tensor. As
already suggested, this last requirement overlooks the slip incompatibility possibly arising
from the tangential discontinuity of the plastic rotation rate field, i.e. the skew-symmetric
part of the plastic distortion rate tensor. Using Eqs. (36, 55), tangential continuity of the
plastic distortion rate may read in f.c.c. materials:

�

�
∑
i∈(1,8)

γ̇sPs · (I − n ⊗ n)

�

� = 0. (57)

We insist again that, in contrast with [34], Eq. (57) is not to be understood as an averaged
equation. It represents a full rank algebraic linear system of six independent equations for
the eight unknown shear rate jumps �γ̇s�. Using Eq. (36), the projection γ̇ of the plastic
distortion rate tensor U̇p on any slip system with Schmid tensor P = s ⊗ m is

γ̇ = U̇p : P =
∑
i∈(1,8)

γ̇s(ss ⊗ ms) : (s ⊗ m) =
∑
i∈(1,8)

γ̇s(ss.s)(ms.m). (58)
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Note from this relation that for multislip, γ̇ is generally different from the shear rate on
this particular slip system. It may be decomposed into its tangential part, γ̇t = U̇p,t : P,
and normal part, γ̇n = U̇p,n : P. We are concerned here only with the tangential part γ̇t ,
as the normal part γ̇n is left unaffected by Eqs. (54–57). On any incoming slip system with
Schmid tensor P− = s− ⊗ m−, the tangential part of the projection is

γ̇ −
t = U̇−

p,t : P
−, (59)

and on any outgoing slip system with Schmid tensor P+ = s+ ⊗ m+:

γ̇ +
t = U̇+

p,t : P
+. (60)

Substracting Eq. (59) from Eq. (60), we find

�γ̇t� = U̇+
p,t : P

+ − U̇−
p,t : P

− = �U̇p,t : P�, (61)

which is also, by decomposing the jump of the product:

�γ̇t� = U̇+
p,t : P

+ − U̇−
p,t : P

+ + U̇−
p,t : P

+ − U̇−
p,t : P

− = �U̇p,t� : P+ + U̇−
p,t : �P�, (62)

and finally, using Eqs. (55, 56):

�γ̇t� = U̇−
p,t : �P� = U̇+

p,t : �P�. (63)

Equation (63) is a relation constraining slip transfer from any incoming slip system P−

to any outgoing slip system P+. Once the tangential part of, say, the incoming plastic
distortion rate is known, the slip discontinuity �γ̇t� is found from its contracted product
with the jump of the Schmid tensor. In full detail, the left hand side relation in Eq. (63) is
also

�γ̇t� = (U̇p − U̇p.n ⊗ n)− : �P� =
∑
i∈(1,8)

γ̇ −
s s−s ⊗ (m−

s − (m−
s .n)n) : �s ⊗ m�, (64)

and

�γ̇t� =
∑
i∈(1,8)

γ̇ −
s �(s−s .s)((m−

s − (m−
s .n)n).m)� =

∑
i∈(1,8)

γ̇ −
s �(s−s .s)(m−

s,t .m)�, (65)

wherem−
s,t = m−

s − (m−
s .n)n is the tangential part ofm−

s . We observe from Eq. (63) that
the same is true for the outgoing side of the interface:

�γ̇t� =
∑
i∈(1,8)

γ̇ +
s �(s+s .s)(m+

s,t .m)�, (66)

and note that, in terms of the slip plane orientation and slip direction jumps, respectively
�m� and �s�, another expression for Eq. (65) is

�γ̇t� =
∑
i∈(1,8)

γ̇ −
s ((s−s .s−)(m−

s,t .�m�) + (s−s .�s�)(m−
s,t .m−) + (s−s .�s�)(m−

s,t .�m�)). (67)
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The slip discontinuity �γ̇t� is therefore a quasi-linear function of the slip plane orientation
and slip direction jumps, with a nonlinear term in (�s�, �m�) suggesting that the criteria
on slip plane orientation and slip direction are generally not independent of one another.
Equation (67) is qualitatively consistent with the geometric criteria proposed by [31–
33,45], but it provides a much more detailed quantitative description of slip transfer.
We now examine several simple examples to probe further Eqs. (65, 66, 67):

1. Assume first that the incoming and outgoing slip planes are parallel, with slip plane
normals in the same direction: �m� = 0. Then, according to Eq. (67),

�γ̇t� =
∑
i∈(1,8)

γ̇ −
s (s−s .�s�)(m−

s,t .m−). (68)

If in addition the slip direction is unchanged: �s� = 0, then �γ̇t� = 0, meaning
that there is no change in the tangential slip rate on this slip system across the
boundary. Thus, dislocations can slip across the boundary as if it were invisible and,
for single slip, the shear rate on this slip system is unchanged, as could be expected.
If both slip planes are parallel to the interface: m−

s,t = 0, then �γ̇t� = 0, meaning
again that the tangential slip rate does not change across the boundary, but now
whatever the slip directions. Instead, assume that both slip planes are normal to
the interface: m−

s,t .m− = 1. Then slip transfer depends only on the jumps �s� of
the slip direction and orientation angles φs = (s, ss): �γ̇t� = ∑

i∈(1,8) γ̇ −
s (s−s .�s�) =∑

i∈(1,8) γ̇ −
s �cosφs�. Finally, assume that both slip planes are inclined at angle θ with

the interface: m−
s,t .m− = cosθ . Then the slip transfer varies smoothly with θ as

�γ̇t� = cosθ
∑

i∈(1,8) γ̇ −
s �cosφs� between the last two configurations.

2. Assume now that the probed slip directions are orthogonal: s−.s+ = 0. Then, Eq.
(65) provides

�γ̇t� = −
∑
i∈(1,8)

γ̇ −
s (s−s .s−)(m−

s,t .m−) = −cosθ
∑
i∈(1,8)

γ̇ −
s (s−s .s−), (69)

showing that slip is hindered at the interface. The extreme situation is obtained in
the presence of single slip: s− = s−s when the incoming slip plane is normal to the
interface: cosθ = 1. Then the slip discontinuity is maximized: �γ̇t� = −γ̇ −

s , meaning
that slip is fully blocked at the interface, as could be expected.

We now assume that a non-trivial solution to the geometrical constraints (57) has been
found, by using some yet unknown method, at all points of all interfaces in the body,
such that all tangential jumps �γ̇t� satisfy the transfer relations (67) and all shear rate
jumps (�γ̇s�, s ∈ (1, 8)) satisfy the tangential continuity conditions (57). Any set of shear
rate jumps (�λγ̇s�, s ∈ (1, 8), λ ∈ R) proportional to this first solution also leads to a
solution of Eq. (57). These λs can in fact be seen as stress-dependent coefficients, and the
actual λ value should allow satisfying the balance of momentum equations and boundary
conditions for the whole body. Thus, the geometric constraints (57) only provide a set of
admissible shear rates, amongwhich the actual values are obtained by using the stress field
derived from the solution of the mechanical boundary value problem. Hence, the latter
actually consists in the field equations for the unknown variables, subjected to standard
initial and boundary conditions, and complemented with the interfacial constraints (57).
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Such a complexity of the problem may not have always been recognized in the literature
devoted to slip transfer.

Numerical procedures
In this Section, we are interested in designing an approximate numerical method to deter-
mine slip transfer across grain boundaries based on the developments in “Slip transfer”
section. The method should be sufficiently versatile to allow its implementation in both a
finite element framework and a spectral FFT-basedmethod. Previouswork on the account
of tangential continuity of the plastic distortion rate include the finite element simulations
of [37,40,41,43,50] and [46,47]. In a Galerkin scheme for the solution of Eq. (30), tangen-
tial continuity of the plastic distortion rate is naturally obtained in a weak sense from the
choice of continuous test functions. In nodal finite element implementations, continu-
ity of the compatible/incompatible elastic/plastic displacements is further assumed at all
nodes along element interfaces, which implies tangential continuity of the corresponding
elastic/plastic distortions, exactly at nodes and approximately between nodes. [37] uses
additional multipoint constraints in a Galerkin-Least-Squares formulation [40,50]. Ele-
ment interfaces coincide with grain boundaries and double nodes are defined along the
boundaries with a different number on either side of the boundary. The involved fields
are defined at each node and constrained to be equal at the double nodes, which allows
modeling both the free flow of dislocations across the boundary and a completely blocked
flow on either side of the boundary. Here, we follow the work of [46,47] where the surfaces
of discontinuity do not necessarily coincide with element interfaces and do not necessarily
contain nodes. This is of interest in spectral FFT-based methods where plain rectangular
grids are used, or in a finite element framework when possibly transgranular surfaces of
discontinuity form during loading, as in shear banding [47]. We start with a solution of
the elastoplastic boundary value problem in the polycrystalline body, not accounting for
tangential continuity of the plastic distortion rate at grain boundaries. As a result, surface-
dislocation densities are present along boundaries to accommodate the plastic distortion
rate incompatibilities that have been arising between grains. We first manage to convert
these surface-dislocations into a volumetric dislocation density distribution in the neigh-
boring regions, then remove this distribution from the dislocation density field together
with the corresponding incompatible plastic distortion rate (see details below). Updates
of the dislocation density and incompatible plastic distortion rate fields are then needed
throughout the body, and consequently the elasto-plastic solution of the boundary value
problem also needs to be updated. Tangential continuity of the plastic distortion rate and
slip transfer relations may then be checked at interfaces, and the procedure iterated until
convergence if some residual discontinuity is found. The solutions provided in [47] in
the context of augmented crystal plasticity show that, at convergence, tangential conti-
nuity of the plastic distortion rate is satisfied at grain boundaries. Further, transgranular
shear band localization occurs that conventional crystal plasticity fails to predict. In [46],
the solutions provided in the context of the mechanics of dislocation fields show that
consequences of tangential continuity include the occurrence of dislocation pile-ups at
grain boundaries, the activation of slip across boundaries, sample and grain size effects on
mechanical behavior and induced anisotropy of hardening, i.e. the Bauschinger effect. As
discussed in [47], the dislocation density and internal stress fields are very likely underes-
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timated in augmented crystal plasticity. In the mechanics of dislocation fields, tangential
continuity of the plastic distortion rate ensures continuity of the dislocation density field
at interfaces, and it is likely that a more complete account of internal stresses and slip
transfer is reached. The foreseeable consequences on slip transfer were not thoroughly
examined in these papers.
We now provide details on the enforcement of tangential continuity of the plastic dis-

tortion rate and surface-dislocation removal. Interfaces possibly cross mesh elements in
finite element methods and certainly cross grids in FFT-based spectral methods. In the
corresponding "boundary elements", nodes (or voxels in FFT) pertain to the grain on the
left of the interface, others to the grain on the right, but they usually do not belong to the
interface. Since all variables are actually known from their nodal values, it seems reason-
able to consider the grain boundaries as spreading in practice over the closest nodes in
these boundary elements. Hence, the surface-dislocation density satisfying the interfacial
relation (54) also spreads over nodes in this area, and finding α̇S(I) is numerically equiv-
alent to incrementing a volumetric dislocation density �αI through Eq. (31). In other
words, the geometrically necessary dislocation density field �αI identified at nodes on
both sides of the interface reflects the interfacial density α̇S(I) spread out over the same
nodes. Thus, removing the surface-dislocation density α̇S(I) from the interface, is also
numerically equivalent to removing the volumetric dislocation density �αI from its close
neighborhood. The benefit brought by this surfacic-to-volumetric conversion is that it
allows substracting the corresponding incompatible plastic distortion rate field U̇I,⊥

p from
the existing approximation of the plastic distortion rate field in the body. Thus, the fol-
lowing steps should be implemented at each time increment �t of an explicit code:

1. Compute the plastic distortion rate tensor U̇p using the stress field obtained from
the solution of the elastic-plastic problem at the previous time step and update the
plastic distortion tensor Up in the body,

2. compute the increment �α = α̇�t in the body through Eq. (31),
3. select the nodes surrounding the interfaces and define the increment �αI = �α at

these nodes, �αI = 0 elsewhere,
4. update α in the whole body using the increment �α − �αI (implying that �α is set

to zero at the selected boundary nodes),
5. compute the incompatible plastic distortionU⊥,I

p associated with the increment�αI
by solving the corresponding Poisson equation (19),

6. substract U⊥,I
p from Up in the whole body,

7. update the stress field by solving again the elasto-plastic boundary value problem,
8. update the U̇p field, check for tangential continuity and slip transfer,
9. go to step (2) if residual discontinuity.

The steps (5, 6, 7) suggest that tangential continuity may have a long-range impact in the
body, because removing the U⊥,I

p field modifies the plastic distortion and stress fields in
the entire body. In contrast, incrementing α through steps (1, 2) and ignoring steps (3–7),
as commonly practiced in standard crystal plasticity simulations to provide an evaluation
of the dislocation density field, yields an α-field localized in the vicinity of the interfaces
and associated with undue tangential discontinuity of the plastic distortion rate.
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Concluding remarks
The present analysis of slip transfer is made in the generic context of a field theory of
dislocations [1,2,27]. We posit Burgers vector conservation, which implies tangential
continuity of the plastic distortion rate at grain boundaries, serving in turn as a basis
for slip transfer predictions. In addition to being reasonable from a physical point of
view, this fundamental postulate warrants smoothness of the dislocation density tensor
field across interfaces and therefore consistency of the present continuous approach.
The predictions are qualitatively consistent with the commonly accepted criteria for slip
transfer [31–33,45], which adds confidence in the Burgers vector conservation postulate.
Moreover, they complement these criteria with a detailed quantitative content based on
slip systemand interface geometry.However the shear rates on the slip systems involved in
Burgers vector conservation/tangential continuity of the plastic distortion rate are stress
dependent, which implies that slip transfer at grain boundaries does not depend only on
interfacial conditions, but also on the solution of the complete elasto-plastic boundary
value problem.
The present model for slip transfer is consistent with the existence of a continuous

dislocation density tensor field throughout the body, including at surfaces of discontinu-
ity, because the latter are required to involve only normal discontinuities of the plastic
distortion and distortion rate. In contrast, models where the grain boundaries are seen as
singular interfaces supporting surface-dislocations are inconsistent with a bulk descrip-
tion featuring a volumetric dislocation density tensor field because continuity of the latter
is not verified at interfaces. The present slip transfer analysis is also consistent with crystal
plasticity appended with tangential continuity of the plastic distortion rate, and it may be
implemented in this context. Crystal plasticity augmented in this manner has nonlocal
character through grains interacting with their neighbors, and the slip transfer relation-
ships reflect these nonlocal interactions. However, the internal stresses associated with
dislocation pile-ups at grain boundaries are likely to be more correctly estimated in the
mechanics of dislocation fields [1,2] than in this augmented version of crystal plasticity,
because the incompatible elastic strains associated with the presence of dislocations are
not accounted for in the latter, with predictable consequences on slip system activity on
both sides of the interfaces.
In the present paper, the slip transfer model is restricted to pressure-insensitive f.c.c.

materials. Dislocation climb is ruled out to preserve pressure independence of the plastic
behavior, which implies moderate temperatures. However, out-of-plane motion of dislo-
cations through cross-slip of screws is permitted. The model may be extended to specific
b.c.c. and h.c.p. materials provided they feature 8/9 independent slip systems. To take
advantage of the gains in computing costs obtained from the spectral FFT-based meth-
ods [42], further work will be devoted to the implementation of tangential continuity of
the plastic distortion rate and slip transfer relationships in the spectral methods recently
developed for the numerical solution of periodic boundary value problems in themechan-
ics of dislocation fields [9,15,16,49]. Simulations of relatively large polycrystalline samples
will be undertaken, either in augmented crystal plasticity or in the mechanics of dislo-
cation fields, to investigate at once numerous grain boundary/slip system configurations
while keeping computation costs acceptable.
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