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Abstract

The present work aims at the identification of the effective constitutive behavior of �5
aluminum grain boundaries (GB) for proportional loading by using machine learning
(ML) techniques. The input for the ML approach is high accuracy data gathered in
challenging molecular dynamics (MD) simulations at the atomic scale for varying
temperatures and loading conditions. The effective traction-separation relation is
recorded during the MD simulations. The raw MD data then serves for the training of an
artificial neural network (ANN) as a surrogate model of the constitutive behavior at the
grain boundary. Despite the extremely fluctuating nature of the MD data and its
inhomogeneous distribution in the traction-separation space, the ANN surrogate
trained on the raw MD data shows a very good agreement in the average behavior
without any data-smoothing or pre-processing. Further, it is shown that the trained
traction-separation ANN captures important physical properties and is able to predict
traction values for given separations not contained in the training data. For example,
MD simulations show a transition in traction-separation behaviour from pure sliding
mode under shear load to combined GB sliding and decohesion with intermediate
hardening regime at mixed load directions. These changes in GB behaviour are fully
captured in the ANN predictions. Furthermore, by construction, the ANN surrogate is
differentiable for arbitrary separation and also temperature, such that a
thermo-mechanical tangent stiffness operator can always be evaluated. The trained
ANN can then serve for large-scale FE simulation as an alternative to direct MD-FE
coupling which is often infeasible in practical applications.

Keywords: Interfaces, Traction-separation relation, Grain boundary, Molecular
dynamics, Machine learning (ML), Artificial neural networks (ANN), Data-driven
surrogate

Introduction
Understanding and predicting the interface behavior plays a major role in the optimum
design ofmany heterogeneous and defecticious engineeringmaterials. The range of appli-
cations varies fromcomposite structures at themacro-scale, see, e.g., [1,2], to grain bound-
aries at themicro-scale, as presented in, e.g., [3]. For example, in laminate compositemate-

© The Author(s) 2020. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-019-0138-7&domain=pdf
http://orcid.org/0000-0003-1840-1243
http://creativecommons.org/licenses/by/4.0/


Fernández et al. Adv. Model. and Simul. in Eng. Sci.            (2020) 7:1 Page 2 of 27

rials the modeling of the mechanical behavior at the interface is of great importance, see
[4–6]. A cohesive zone formulation is frequently utilized to describe the interface constitu-
tive behavior in terms of traction (projection of the stress tensor on the crack plane) versus
separation (displacement jump). For an arbitrary interface, one has to take into account
interface plasticity as well as surface elasticity effects, which calls for more advanced and
consistent interface models, see, e.g., [7]. For instance, a framework for a cohesive model
by considering additional tractions related to membrane-like forces is discussed in [8].
Despite the recent developments, the coupling of different active mechanisms such as
plasticity and damage at the interface requires more attention and investigations [9]. An
interface model to accurately incorporate grain boundary sliding as well as intergranular
fracture was proposed in [10] which is motivated by means of atomistic simulations.
A grain boundary (GB) is an interesting example of an interface in whichmany complex

mechanical phenomena—such as GB sliding—may contribute to the interface behavior,
see [11,12]. The accurate and efficient modeling of GB constitutive behavior and cap-
turing all relevant phenomena remains a challenging field in materials science, see, e.g.,
[13–16]. Many theoretical models are able to capture selected material phenomena, but
require substantial numerical treatment in macroscopic simulations and are, therefore,
not suitable for practical application. This opens the search for computationally more
efficient alternatives. One alternative is the calibration of a data-driven surrogate model
for the GB constitutive behavior based on experimental and/or synthetic data. Hereby,
the calibration data should be generated as closely as possible to the underlying physics
in order to incorporate all relevant phenomena. This can be achieved by atomistic sim-
ulations of the GB [10,17,18]. The generated data can then be used for the training of a
suitable machine learning approach in order to generate an efficient surrogate model for
the GB. This approach is explored in the following.

Small scale matters: importance of atomistic simulations

The macroscopic response of materials is rooted in its discrete nature at the atomic scale
[19–21]. In metals, for example, the evolution of an ensemble of point defects (such
as vacancies), line defects (e.g. dislocations), surface defects (e.g. GBs) and volumetric
defects (such as precipitates) leads to the macroscopic behavior. Evolution of each of
these is controlled by motion and interaction of the atoms. Thus, atomistic simulations
are proven to be an effective approach to obtain deeper insight into the behavior of a range
of materials [22,23]. Capturing relevant atomistic scale details of material properties and
transferring them to macroscopic scale is an active and ongoing field of research [24,25].
These include, for example, modeling configurational [26] and compositional [27] aspects
of the evolution of defects (dislocations) using atomistically informed phase field model.
Underlying atomistic details are especially important when it comes to studies on fracture
and damage [28]. A new theory is formulated in [29] for dislocation emission under mode
I loading using molecular statics simulations. A multiscale method is developed in [30]
for examining fracture of polycrystals by coupling molecular dynamics and mesoscale
peridynamics.
Concerning investigations on GBs, molecular dynamics (MD) simulations offer one

approach for in depth examinations of the GB phenomena. Due to the computation cost
of MD, these simulations are usually limited to two neighboring grains, see, e.g., [31–34].
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Nevertheless, MD offers the possibility to investigate many GB phenomena. For example,
in [35,36] the intergranular fracture process in aluminum is examined and the consti-
tutive relation for the grain boundary debonding is determined. The GB behavior under
various mixed-mode loadings is investigated in [18]. In [37], MD is used for the explo-
ration of metal/ceramic interface shear failure. In [10] it is shown that MD reveals several
intergranular features under fracture modes I and II while loading as well as unloading of
the GB. Further, the same study shows that the MD simulations can very well improve
continuum models of GB cohesive zones. In summary, MD simulation data can reflect,
in principle, the relevant intrinsic GB phenomena such that data-driven surrogates built
upon such informationmay offer attractive scalable alternatives toMD simulation. These
could represent scalability in space and time through coarse-grain continuummodels and
diffusive time scale models, respectively, thus, reducing the computational cost of a fully
resolved atomistic model without loosing the important details of small scales.

Machine learning methods as an alternative to material models

The complexities of new materials and cumbersome numerical expenses for the evalua-
tion of the corresponding material models pose several difficulties for the exploration and
simulation of novel material combinations at engineering scale. Current computational
power and novel machine learning (ML) approaches offer scalable methods which can
combine insights of material modeling with the flexibility and efficiency of data-driven
surrogates [38]. New ML approaches show promising performance in many engineering
fields, as, e.g., computational mechanics [39–42] and structural engineering [43]. At this
point, one should also mention data-driven computing [44,45]. In these works, the mate-
rial behavior is only described by data. The idea is to find the point in the data set which
is closest to the constraint set given by kinematical relations, balance laws and boundary
conditions (see also [46,47]).
A promising ansatz in multi-scale problems is to incorporate ML models as surrogates

for small scale material behavior in macroscopic simulations [38,48–50]. Multiscale anal-
ysis of reinforced concrete is conducted in [51], where ANNs are used to approximate
the stress vs. crack opening material response based on mesoscale simulations (see also
[52]). Radial numerically explicit potentials have been developed in [53] for hyperelastic
materials for the acceleration of two-scale problems, which can be improved by recent
strategies for the generation of points on hyperspheres, see, e.g., [54]. In [55], ANNs are
used in combination with FE simulations in order to capture the hydro-mechanical cou-
pling of porous media. Based on FE simulations, trained ANNs can show excellent results
in predicting the effective electrical response of graphene/polymer nanocomposites and
in macroscopic computations [56]. An on-the-fly adaptive scheme with error estimators
is developed in [57], allowing the flexible switching between highly efficient microscale-
trained ANNs and the physics-driven reduced-order model in macroscopic mechanical
FE simulations. The wide spectrum of ANN models and the application of them show
that ANNs are not only capable of bridging constitutive behavior across scales in mate-
rials science but they also offer the opportunity to efficiently utilize trained surrogates in
large scale simulations.
Also in the more specific context of interface modelling and multiscale problems, ML

has shown promising results. In the recent work [58], a framework is proposed in order to
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Fig. 1 Scale bridging utilizing an artificial neural network trained by molecular dynamics simulation results

generate models for interfaces based on game theory, deep-learning and discrete element
modeling. While the approach shows excellent results and applicability for large scale FE
simulations, it leaves open the question, if ANNs can be calibrated by noisy/fluctuating
data.
Obviously, one may smooth the data for a subsequent calibration of an ANN surrogate.

But any data-smoothing or data-processing step can potentially falsify or improve the
calibrated constitutive behavior to an unclear degree. Therefore, the central issue whether
an ANN surrogate can be calibrated directly based on raw oscillatory data needs to be
investigated. Further, from the perspective of macroscopic FE process simulations, it is
of interest whether temperature-dependent interface behavior is also traceable. Finally,
as remarked in [57], if an ANN is calibrated for the approximation of a material law
within a training region, it is necessary to answer the question, whether an evaluation of
the trained ANN far outside of the training region yields physical results. This point is
important for multiscale problems, since a macroscopic FE computation may call in its
integration points for a material behavior which is far outside of the ANN training region.

Combination of MD simulations and ANNs

The present work aims at bridging the atomistic scale at the GB level and the contin-
uum scale at the polycrystalline level by calibrating a computationally efficient traction-
separation surrogate model for the GB, which can serve for multiscale problems, as illus-
trated in Fig. 1.
In the present study, proportional loading of the GB is investigated. MD simulation

data for varying loading and temperature is taken into account for the calibration of the
ANN surrogate. The latter is formulated with the objective of serving macroscopic FE
simulations, i.e., the ANN surrogate architecture is chosen such that the surrogate is
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differentiable for all separation and temperature values in order to be able to obtain a tan-
gent operator through automatic differentiation. Further, the ANN surrogate is calibrated
directly on the raw MD data which shows—due to the nature of MD—not only strong
fluctuating behavior but also a strong inhomogeneity in the separation and in the traction
values. The present work shows that the trained ANN can in fact be calibrated from the
rawMD data and it then follows very well the average behavior of the separation-traction
relation. The best performing ANN is tested against MD simulations not contained in the
training data set and it is shown that the ANN exhibits important physical properties after
training. A physics-guided model completion is sketched for the surrogate model, such
that the completed model stays differentiable and can securely be evaluated in future FE
computation at larger scales.
The outline of the paper is as follows. In section “Atomistic simulation and constitutive

behavior of grain boundaries” all details of the MD simulations are described. Then, in
section “Artificial neural networks for surrogate modeling of the constitutive behavior of
grain boundaries”, the architecture and training approach of ANNs for the problem at
hand are illustrated and the best performing ANN is compared to the MD results. The
paper ends with section “‘Summary and outlook”.

Atomistic simulation and constitutive behavior of grain boundaries
In the current work, atomistic simulations of intergranular crack growth are considered as
the physical model of damage evolution. Traction-separation values extracted from MD
simulations in this section are used to train theML surrogate model discussed in the next
section. For this purpose, face-centered cubic (fcc) Al, modeled using the embedded atom
method (EAM) of [59], is chosen as the metal of interest. The embedded atom potential
of [59] is shown to reproduce accurate defect energy values close to density functional
theory (DFT) calculations.
A simulation box, see Fig. 2, with dimensions (Lx, Ly, Lz) = (32.0, 42.3, 1.2) nm is defined.

The box is periodic along x and z directions while it has free surfaces along y direction,
resulting in an infinitely large GB, thus, eliminating any surface effect on the interface.
The upper half of the box, from y = Ly/2 to y = Ly, is filled with fcc Al atoms with lattice
orientation of x||[031], y||[01̄3] and z||[100]. The lower half is filled with fcc Al atoms
with lattice orientation of x||[031̄], y||[013] and z||[100]. The system’s internal energy
is then minimized using overdamped dynamics [60] for 5000 time steps of size 2fs. To
ensure fully relaxed grain boundary structure, the simulation box temperature is kept
at 300K for 10,000 steps under isothermal-isobaric (NPθ ) ensemble, where N, P and θ

represent number of atoms, pressure and temperature, respectively, with zero Txx, Tzz
and Txz stress components. All other stress components are also zero due to free surface.
During another 10,000 NPθ steps, the system temperature is reduced from 300K to the
defined load temperature. Relaxing the GB structure at elevated temperature is necessary
for accelerating the energy minimization as well as pushing the system out of the local
minima.Note that a simple static energyminimization is usually not enough to reach a fully
relaxed atomic structure at theGB.Once the grain boundary structure is in a relaxed state,
a small crack is created at the boundary by removing atoms inside the region of 0 < x < Lc
and Ly/2 − 0.4 nm < y < Ly/2 + 0.4 nm. Note that the initial crack is embedded on the
GB to act as a defect on the boundary. As it is shown in [10], the initial crack length will
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Fig. 2 Left: Geometry and dimensions of the MD simulation box. Right: The boundary conditions on top and
bottom of the simulation box. The color coding is based on common neighbor analysis (CNA) implemented
in Ovito. Green represents a perfect fcc structure and blue the unknown atoms (i.e. dislocation cores and
disordered grain boundaries or free surfaces such as crack surface)

affect the results, as it should. This corresponds to a defected GB which is usually the
case in real applications. Depending on the material of the interest and the production
procedure,GBswill often include defects such as nanoscopic crack, precipitates, voids, etc.
More accurate characterization of the GB quality requires experimental observations and
depend on the engineering material of interest which is beyond the scope of the current
work. Once the initial crack is created, the system is relaxed during 10,000 NPθ steps
under zero stress. Five atomic layers at lower section of the box (shown as cyan in Fig. 2)
are fixed, while the top five layers are moved in x and y directions depending on the load
angle. The load is applied with the velocity of 5× 10−3 nm/ps and the simulation roughly
lasts 100,000 steps under the canonical (NVθ ) ensemble, where N, V and θ represent
number of atoms, volume and temperature, respectively. The system temperature is kept
constant at the desired load temperature using the velocity rescale method [61]. This is
necessary to dissipate energy release during defect (crack) growth.
Following [10], traction values are calculated close to the interface to eliminate the

influence of atomic structure irregularity at the crack surface in calculating the stresses
(see brown regions in Fig. 2). These regions are chosen close to the GB in order to reduce
the effect of elastic deformation between the brown regions. It shall be noted that the
accurate definition of the stress tensor at atomic scale is subject to debate [62]. In this
work, we adopt the virial definition [62,63], due to its simplicity and low computation
cost. The kinetic term of the virial stress is ignored since the simulations are limited
to low temperatures, thus, the structural changes are the main contributors to the stress.
Including the kinetic termwill change the stress results by 1.8% at the highest temperature
case considered in this study. Thus, the virial stress

T = − 1
V

∑

i,j
i �=j

f ij ⊗ ri (1)

is calculated, where ri and f ij are position of atom i and force vector acting on atom i
from atom j, respectively. V is the volume of the considered region and the summation
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Fig. 3 Atomistically calculated traction-separation curves under different loading angles ϕ and temperature
θ = 20 K: normal traction versus normal separation for different loading angles (left), shear traction versus
shear separation for different loading angles (right)

is over all atoms in the region. Normal (Tyy) and shear (Txy) components of the stress
tensor in (1) are considered as the corresponding traction values in mode I (tn) and II
(ts), respectively. The effective gap vector contains the nominal normal gn = δȳ − δȳ0
and transversal (shear) gs = δx̄ − δx̄0 separations, defined through the average atomic
displacements

δȳ =
∑Nbt

i yi
Nbt

−
∑Nbb

i yi
Nbb

, δx̄ =
∑Nyt

i xi
Nyt

−
∑Nyb

i xi
Nyb

(2)

in the measurement regions, where Nbt and Nbb are the numbers of atoms in top and
bottom brown regions in Fig. 2, respectively. Analogously,Nyt andNyb are the numbers of
atoms in top and bottom yellow regions in Fig. 2, respectively. Since the system is periodic
in x direction, simply averaging x position of atoms in the whole brown region will result
in constant value of Lx/2. Thus, the yellow region inside the brown one is defined to track
the shear separation. Note that subscript 0 in the normal and shear gap definition denotes
the initial distance between two regions under zero load. Load angles (ϕ) in the range of 0
to 180◦ and load temperatures (θ ) of 20, 40, 60 and 80K are considered in this study (see
(14) and (15)). The atomistic simulations are performed using LAMMPS [64]. Ovito [65]
is employed for visualization and post-processing. A few examples of traction-separation
curves fromMD simulations are shown in Fig. 3 for different load angles ϕ (see Fig. 4) and
temperature θ = 20K.
As illustrated in the left plot in Fig. 3, pure mode I (ϕ = 90◦) shows the highest normal

traction (of about 3.5GPa) before crack growth is started. The highest stress is slightly
reduced when the load is tilted towards 45◦. However, reducing the load angle further to
15◦ dramatically reduces the peak traction to about 2.5 GPa. Considering shear traction-
separation curves (Fig. 3 right), the case off mode II (ϕ = 0◦) shows almost ideal plastic
deformation without any crack growth (confirmed by observing the atomic structure
during the loading). This is the case of grain boundary sliding. Tilting the load to 15◦, the
final separation, at which virtually no shear traction is observed, drops to 6nm and for 45◦

to 2.4 nm.
Furthermore, results of 5, 10 and 15◦ load angles (Fig. 3, left) show an increase of the

normal traction (similar to hardening) after the initial drop of the traction (i.e. starting
around gn ≈ 0.7nm until the second traction drop at gn ≈ 1.5nm for the case of 5◦). As
it is seen in Fig. 3, the length of the hardening-like region is reduced as the load angle
increases from5 to 10 and 15◦. In the limit of normal load (ϕ = 90◦), there is no observable
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Fig. 4 MD snapshots for two different loading angles ϕ and temperature θ = 20 K

hardening region and secondary traction drop, thus the traction-separation follows the
classical model of interface decohesion. Inspecting the corresponding atomic structures
(see Fig. 4), it is revealed that the hardening behavior in the mixed mode loading is due to
GB sliding and partial healing of the initial crack. In other words, it seems that GB sliding,
in particular at low angle loads, makes the interface stronger, due to atoms sliding on top
of each other and filling the initial gaps at the GB and crack, compared to the same GB if
the sliding was prevented (or not correctly included in the larger scale models).
Snapshots of the atomic structure for loading cases of 5◦ and 45◦ are shown in Fig. 4.

As it is seen, in case of 45◦, after reaching maximum normal traction at gn ≈ 0.6nm,
the crack grows relatively rapidly due to the normal component of the load. Note also
that the defect density in the remaining connected domain raises significantly which hints
at a high local defect density. In Fig. 4, bottom right, structures resembling dislocation
cell structures can be identified. In addition, the GB plane, in this case, remains straight.
However, in the case of 5◦ load, the GB plane, due to the excessive amount of sliding,
does not remain straight. This, as it is seen in the top row of Fig. 4, leads to the hardening
region in the traction behavior observed in Fig. 3.
As it is seen in Fig. 3, the traction curves of theMD simulations show strongly oscillatory

behavior. These fluctuations (although partly due to the small system size) are natural and
typical at atomic scales, when damage and plastic behaviour is observed locally. Tracking
these fluctuations is necessary for physical modeling of plasticity and damage. Unfortu-
nately, the huge computational costs of full atomistic simulations prevent the application
of these methods to larger systems, hence the necessity of transferring appropriately up-
scaled data to the coarse-grained models as explained in the following section.

Artificial neural networks for surrogate modeling of the constitutive behavior
of grain boundaries
Choice of ANNs and formulation of the surrogate model

The calibration of general material behavior is a challenging task in materials science. In
general, nonlinear, path-dependent material behavior with characteristic material sym-
metriesmust be considered. For the present work, artificial neural networks [66] are taken
into consideration for the calibration of a surrogate model for the effective material law of
the grain boundary. For history-dependent functions, naturally, recurrent neural networks
(RNNs) offer attractive alternatives, but require enormous amounts of training paths of
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standardized lengths, which is a highly non-trivial and, furthermore, overly costly task if
MD simulations serve as data source for the training of the networks. Furthermore, the
path-dependency poses major challenges, such that the investigation of path-dependent
functions fromhighly oscillating data, as providedbyMDsimulations, is out of the scope of
the present work. Nevertheless, if at least proportional loading is considered, then a corre-
sponding surrogate model for the solely state-dependent (i.e., path-independent) traction
vector t(g , θ ) can drastically reduce the computational costs of multiscale simulations,
which is the objective in the remainder of the present work. Based on these arguments, in
the following we choose feedforward neural networks (FFNNs) for the approximation of
the homogenized/up-scaled material law t(g , θ ) based on MD simulation data.
The notation of this section follows standard vector-matrix-notation from a data per-

spective. Physical tensors, e.g., t , are addressed by the corresponding data (vector compo-
nents), e.g., t. With respect to the GB, normal and shear components of a physical tensor
are marked by subscripts n and s, respectively. Hereby, the normal component of a related
physical quantity is the first vector component, i.e., n ↔ 1, and the shear components
corresponds to the second vector components, i.e., s ↔ 2. We then address the normal
and shear components of the gap g = (gn, gs) and traction vector t = (tn, ts) as gn ↔ g1,
gs ↔ g2, tn ↔ t1 and ts ↔ t2. The load state s = (g, θ ) = (g1, g2, θ ) = (s1, s2, s3) ∈ R

3,
i.e. s1 = g1, s2 = g2 and s3 = θ , represents the arguments of the unknown traction vector
t(g , θ ) ↔ t(s) ∈ R

2. The identification of a surrogate model t̂(s) : R3 �→ R
2, t̂(s) ≈ t(s),

is addressed by FFNNs. Based on an initial suitable rescaling r(s) of the given load state s,
the FFNN for the present work is described as

z[0] = r(s) ∈ R
3 , z[i] = a[i](W [i]z[i−1] + b[i]) ∈ R

n[i] , i = 1, . . . , N (3)

and the surrogate model t̂(s) for the traction law is then defined as

t̂(s) =
[
t̂n(s)
t̂s(s)

]
=

[
t̂1(s)
t̂2(s)

]
=

[
s1z[N+1]

1
s2z[N+1]

2

]
∈ R

2 , z[N+1] = W [N+1]z[N ] ∈ R
2 , (4)

such that by construction t̂(s) vanishes for g = 0 for all temperatures. Further, the ansatz
(4) ensures t̂s = 0 for gs = 0 independent of gn and t̂n = 0 for gn = 0 independent of gs,
which are properties relevant for crack opening modes I and II. The FFNN output z[N+1]

can be interpreted as the secant stiffness/slope of the traction with respect to the gap
vector g . While the secant stiffness z[N+1] is the output of a standard FFNN, the surrogate
t̂(s) can be considered as ResNet-like structure, which builds upon feature re-use and has
shown very satisfactory results in the ANN literature, see, e.g., [67] or [68]. The layers
of the standard FFNN z[i] for i = 1, . . . , N are referred to as hidden layers, while the
intermediate output z[N+1] is referred to as the output layer of the standard FFNN. The
FFNN is characterized by the parameters:

1. number of hidden layers N ,
2. number of neurons n[i] of each hidden layer i = 1, . . . , N ,
3. element-wise activation function a[i](x) of each hidden layer i = 1, . . . , N ,
4. weightsW [i] ∈ R

n[i]×n[i−1] of each layer i = 1, . . . , N + 1, and
5. biases b[i] ∈ R

n[i] of each hidden layer i = 1, . . . , N .

As an illustrative example, the surrogate model t̂(s) with a FFNN with N = 3, n[1] = 4,
n[2] = 4, n[3] = 4 is schematically depicted in Fig. 5.
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Fig. 5 Schematic structure of the surrogate model t̂(s) based on a standard FFNN z[i]j with N = 3 hidden

layers containing n[1] = 4, n[2] = 4 and n[3] = 4 neurons

The determination of the parameters of a network is a highly non-trivial problem com-
mon to all ANNs. First, the number of hidden layers, number of neurons and activation
functions are fixed and then the weights and biases of the FFNN are determined through
the minimization of a suitable error measure with respect to provided data. The identifi-
cation of the meta-parameters, i.e., the optimal number of hidden layers and number of
neurons per layer, requires extensive testing, often referred to as architecture sweeping in
Machine Learning. The choice of activation functions is guided by the problem at hand
and by the requirements on the final surrogate model. For the present problem setting,
since the final surrogate model t̂(s) is needed to be differentiable for all states which is
due to the necessity of a tangent operator in future multiscale simulations, the following
activation functions are taken into consideration:

1. Softplus a(x) = sp(x) = log(1 + exp(x)),
2. Hyperbolic tangent a(x) = tanh(x) = (exp(2x) − 1)/(exp(2x) + 1).

The softplus function is positive, unbounded and offers a smooth approximation of the
widely used rectified linear unit a(x) = max(x, 0), which mimics the behavior of a neu-
ron/unit only reacting if the input signal x is greater than the threshold, i.e. x ≥ 0. The
hyperbolic tangent offers a smooth and saturating transition for values in the interval
(−1, 1) mimicking a neuron/unit yielding positive or negative output depending on the
input signal x. The chosen activation functions have theirmost important transition zones
around x = 0. Therefore, the rescaling r(s) in (3) should bring a given state to this transi-
tion zone. The present work simply considers a rescaling with component-wise mean and
standard deviation with respect to a given dataset of states.
The activation functions can, in general, be either chosen for each layer individually

or the same one is used for all layers. In the present work, we use a single activation
function for all hidden layers and we keep the number of neurons per layer constant,
i.e., a[i](x) = a(x) and n[i] = n for all i = 1, . . . , N . However, the weights and biases are
allowed to differ from layer to layer. The architecture of the FFNN explored in the sequel
is, therefore, parameterized by

A = {N, n, a(x)} . (5)
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For fixed architecture, i.e., given N , n and a(x), the weights and biases of all layers, all
together simply addressed from now on asW and b for a compact notation, respectively,
need calibration. In order to do so, we consider three disjoint groups of datasets:

• Calibration dataset

DC = {sC(1), . . .} ⊂ R
3 , DC

t = {t ∈ R
2 : t = t(s), s ∈ DC} , (6)

• Validation dataset

DV = {sV(1), . . .} ⊂ R
3 , DV

t = {t ∈ R
2 : t = t(s), s ∈ DV} , (7)

• Testing dataset

DT = {sT(1), . . .} ⊂ R
3 , DT

t = {t ∈ R
2 : t = t(s), s ∈ DT} . (8)

The number of samples of a dataset D will be denoted as #(D). We consider the mean
squared error (MSE) of the surrogate t̂(s) with respect to a dataset D

MSE(D) = 1
2

2∑

i=1

1
#(D)

∑

s∈D
[ti(s) − t̂i(s)]2 (9)

and the coefficient of determination R2 (pronounced: R squared) with respect to a dataset
D

R2(D) = 1
2

2∑

i=1

[
1 −

∑
s∈D[ti(s) − t̂i(s)]2∑
s∈D[ti(s) − t̄i(D)]2

]
, t̄(D) = 1

#(D)
∑

s∈D
t(s) (10)

The MSE offers the possibility to minimize the average square error. Thereby, the model
is calibrated aiming at an accurate average behavior. This is particularly useful in the
presence of noisy data, such as theMD simulation data of this work. Note that errors in the
tractions in tangential and normal direction are treated equally which can be considered
as an isotropic errormeasure. The R2 scoremeasures the component-wise average quality
of the prediction of the surrogate t̂(s) compared to the simple average over the data set
t̄(D). Hereby, one should note that the term

∑
s∈D[ti(s)− t̄i(D)]2 for i ∈ {1, 2} corresponds

to the (scaled) component-wise sample variance for the dataset D. Of course, the MSE
is bounded from below by 0, while R2 is bounded from above by 1, such that these
values indicate a “good quality” of a surrogate model. It is shortly remarked that R2 is
not the square of any quantity, but a simple measure commonly used in ML for the
quality assessment of a model. More explicitly, R2 can be negative, e.g., consider the data
Dt = {(1, 1), (2, 2), (3, 3)} and some model predictions D̂t = {(3, 3), (2, 2), (1, 1)}, which
yield R2(D) = −3, i.e., the trained model is worse than simply using the average t̄(D) over
the data for new predictions.
The training of the FFNN with fixed architecture is performed as follows: First, the

calibration dataset DC is used to build the rescaling function r(s) in (3) as follows (i ∈
{1, 2, 3})

ri(s) = si − μi
σi

, μi = 1
#(DC)

∑

s∈DC

si , σi = 1
#(DC)

∑

s∈DC

(si − μi)2 , (11)

i.e., r(s) has then zeromean and component-wise a standard deviation of 1 with respect to
DC. Next, we employ theMSEwith respect to DC as the objective functionψ = MSE(DC),
referred to as loss function in the ANN literature. Then, the weights W and biases b of
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the FFNN are determined through the minimization of the loss function ψ :

min
W,b

ψ . (12)

It is important to note that the weights and biases are updated based on the minimization
of ψ , i.e., exclusively based on the calibration dataset DC. In particular, DV and DT do not
influence theweights andbiases until now.ThedatasetDV is usedduring theminimization
of ψ not to update the weight and biases, but (i) to keep track of the validation measures
MSE(DV) and R2(DV) and (ii) to terminate the minimization of the loss function ψ if
these validation measures do not improve over a determined number of iterations over
the complete calibration data (referred to as epochs in the ANN literature). The use of
validation data (DV) alongside the actual calibration data (DC) is well-established today.
Besides sensing stagnation of the loss function, corresponding to local or global minima
ofψ , a key responsibility of the validation set is the detection and avoidance of overfitting,
which corresponds to a rise of the loss function ψ on the control group DV despite
decaying ψ on the calibration set DC. The identification of the weights and biases based
on calibration and validation data is referred to as training of the network. After training,
the network should undergo final testing. This can not be carried out with DC or DV, since
the network is optimized for DC and is indirectly influenced by DV due to the training
termination. Therefore, the final testing of the trained network is performed based on the
supplementary dataset DT, which the network has never “seen”. In this work, we classify
trained networks based on their respective scores for R2(DT) after training. One should
note that DT should be of substantial size in order to allow for thorough testing. On the
other hand, as the input data is scarce due to the expensive MD simulations, the overall
amount of available data is limited. A compromise must, thus, be made in order to still
have sufficient calibration data while retaining representative validation and testing data.
Naturally, different architectures should be tested. An architecture sweep is referred to

as the optimization (12) for every architecture of the architecture set

A = {A1, . . .} , Ai = {Ni, ni, ai(x)} , (13)

at what the minimization (12) is performed for each architecture several times with ran-
dom initialization of the weights and biases. The best performing architectures in terms
of R2(DT) are then considered as candidates for the surrogate t̂(s).

Explicit datasets and training of surrogate model

The MD simulation data is organized in the following two datasets DMD
1 and DMD

2

DMD
1 = {s ∈ R

3 : s = (g1, g2, θ ) for load angle ϕ ∈ Dϕ
1 and temperature θ ∈ Dθ

1} ,
Dϕ
1 = {0◦, 5◦, 10◦, 15◦, 20◦, 30◦, 45◦, 60◦, 70◦, 80◦, 90◦, 120◦, 145◦, 160◦, 180◦} ,

Dθ
1 = {20K, 40K, 80K} . (14)

DMD
2 = {s ∈ R

3 : s = (g1, g2, θ ) for load angle ϕ ∈ Dϕ
2 and θ ∈ Dθ

2} ,
Dϕ
2 = {37◦, 85◦, 143◦} , Dθ

2 = {60K} . (15)

The reason for the distinction between DMD
1 and DMD

2 will be motivated in this section.
The dataset DMD

1 is comprised by a total of 2,600,341 data points, while DMD
2 contains

54,421 data points. Due to the nature of MD simulations, the corresponding g and t
data are fluctuating. Furthermore, the number of recorded equilibrium states in eachMD
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Fig. 6 Size of MD datasets for each load angle ϕ and temperature θ

simulation varies depending on the load angle ϕ and temperature θ . This is illustrated
in Fig. 6. These properties of the MD datasets pose two challenges for the training of
a surrogate model: (i) noisy input and output quantities (g and t, respectively) and (ii)
oversampling in certain regions of the input- and output-space.
While noisy data is critical in direct interpolation approaches, the FFNNs used in our

study are calibrated against theMSE which represents an average error measure. TheMD
training data can, therefore, be left untouched, i.e., no data post-processing is required.
This is an important point, since onemay also apply smoothingprocedures on theMDdata
in order to try to improve the calibration of a surrogatemodel. But, for theMDdata of this
investigation, not only the output t, but also the input g would have to be smoothed, each
of them independently. Every smoothing algorithm would then falsify the connection
between input and output to some arbitrarily unclear degree, depending on arbitrary
smoothing parameters (choice of ansatz functions, size of smoothing window,...) and
assumptions on the relationship between input and output. The present work, therefore,
regards the direct usage of the raw MD data as an unbiased feature of the calibration of
FFNNs as a surrogate model.
For fixed architecture of a FFNN, its training is performed with the objective of mini-

mizing the loss function, i.e. theMSE over the calibration data, according to (12). Here, the
second challenge—the oversampling for some ϕ and θ in the MD datasets—needs to be
considered. If, e.g., for θ = 20K the number of recorded gap vectors g and corresponding
traction vectors t for ϕ = 5◦ is one order of magnitude larger than for ϕ = 60◦, cf. Fig-
ure 6, then the optimization of the loss function will be biased towards the bigger data set
leaving certain temperatures and load angles at a lower coverage. This perspective makes
clear that some sort of homogeneous data reduction is to be considered in the definition
of DC,V,T.
Aiming for (i) a sufficient coverage of thematerial behavior during the training and (ii) a

challenging final testing of the surrogate, the dataset DMD
1 is considered for the construc-

tion of the calibration and validation datasets DC andDV, while DMD
2 has been deliberately

designed for the test dataset DT. The test dataset DMD
2 = DT for final evaluation is not

a subset of DMD
1 and not even defined on the load directions implicitly defining DMD

1
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but at intermediate load angles and temperature. This is in contrast to standard training
procedures of ANNs, where, usually, the split DC,V,T is not even mentioned or DC,V,T

are extracted from one common dataset, which has been shuffled randomly. For such
approaches, due to the extraction of points from a common randomly shuffled dataset,
the corresponding DC,V,T datasets do not differ substantially such that the prediction
quality of a trained network shows no significant deviation comparing DC and DT. This
could easily be achieved by the union of DMD

1 and DMD
2 , random shuffling of the data

pairs and corresponding percentual definition of DC,V,T. But, in contrast to such standard
approaches, the present work explicitly aims at a more challenging testing of the trained
networks and, therefore, chooses to consider the two distinct datasets DMD

1 and DMD
2 and

to define DT through DMD
2 . Further, the MD simulations allow only for few discrete load

directions. Hence, the generalization capabilities of trained networks should be tested
more thoroughly to prevent unintended overfitting along the training directions.
Based on the previously discussed arguments, the FFNNs are trained in a two-phase

procedure as follows:

• Phase 1—optimizing using homogeneous number of samples

P1.1 For every load angle ϕ and temperature θ , extract 1500 random data pairs (g, t)
per load path from the availableMDdata, which then constitute the correspond-
ing reduced datasets DMD,r

1,2 . The reduced data sets contain then #(DMD,r
i ) =

#(Dϕ
i ) × #(Dθ

i ) × 1500 data points, for i = 1, 2, i.e., #(DMD,r
1 ) = 67, 500 and

#(DMD,r)2 = 4, 500 with #(DMD,r
1 )/#(DMD

1 ) ≈ 0.0260 and #(DMD,r
2 )/#(DMD

2 ) ≈
0.0827.

P1.2 Define 70% of DMD,r
1 as DC, 30% of DMD,r

1 as DV and DT = DMD,r
2 .

P1.3 Run the architecture sweep for the architecture setA with

N ∈ {2, 3, 4, 5, 6} ,
n ∈ {4, 5, 6, 7, 8, 16, 32} ,
a(x) ∈ {sp(x), tanh(x)} ,
A = {2, 3, 4, 5, 6} × {4, 5, 6, 7, 8, 16, 32} × {sp(x), tanh(x)} .

(16)

Each architecture is initialized four times, each time with new random initial
values for the weights and biases of the network.

P1.4 Save trained FFNNs with the five best R2(DT).

• Phase 2—refinement using variable number of samples per load path

P2.1 Use the complete MD data, i.e., define 70% of DMD
1 as DC, 30% of DMD

1 as DV

and DT = DMD
2 .

P2.2 Retrain the trained FFNNs of Phase 1 with the new DC,V.
P2.3 Save trained FFNNs with the three best R2(DT).

It should be pointed out, that the approach taken in Phase 1 aims at an initial homogeneous
data reduction with equal number of points for each ϕ and θ . In Phase 2, the complete
datasets are taken into account for final tuning of the best performing networks.
The corresponding FFNNs were implemented and trained with Google’s TensorFlow

(v1.12.0) with Python3 (v3.4.4). For the training routines, whole batch training was carried
out and TensorFlow’s ADAM optimizer was used, see [69] and Tensorflow’s documen-
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Table 1 Best performing FFNN sorted by R2(DT) after
Phase 2

ID Architecture Phase 2

{N, n, a(x)} R2(DT) R2(DC) R2(DV)
FFNN1 {4, 8, tanh(x)} 0.9475 0.9756 0.9756

FFNN2 {4, 7, tanh(x)} 0.9442 0.9736 0.9736

FFNN3 {3, 8, tanh(x)} 0.9401 0.9727 0.9727

tation of ADAM for details. The learning rate η of the ADAM optimizer was decreased
every 10% of the maximum number of training epochs by a factor ρ. Note that each
reduction of the learning rate leads to a reinstantiation of the ADAM solver. This can
help to overcome local minima and stagnation. Training was terminated if the validation
MSE(DV) did not improve over 30% of the maximum number of epochs. The state of the
network with the lowest MSE(DV) during training was returned for each architecture.
Then the trained FFNNwas tested with R2(DT). During Phase 1, 10,000 epochs, a starting
learning rate of η = 0.1 and ρ = 0.7 were considered, yielding a final learning rate of
η = 0.1 × (0.79) ≈ 0.004. Phase 2 was performed with 100 epochs, an initial η = 0.002
and ρ = 0.95. The best performing FFNNs obtained are tabulated in Table 1.
In Table 1, the best performing network of the present work reaches amaximumR2(DT )

of 0.9475, which is assumed to be still acceptable due to the highly oscillatory MD data.
The network FFNN1 of Table 1 is comprised of N = 4 hidden layers with n = 8 neurons
each and it is built upon the tanh(x) activation function. FFNN1 is chosen as the surrogate
model for further inspection. The corresponding t̂FFNN1(s) is simply addressed as t̂(s).

Selected predictions of the surrogate model

For amore intuitivemechanical interpretation of the following evaluation of the surrogate
model, in this section we switch back the subscript notation n and s for normal and shear
components, , i.e. 1 ↔ n and 2 ↔ s, respectively, are used.

Predictions forDMD
1 We first examine the predictions with respect to the dataset DMD

1 , cf.
(14), from which the calibration and validation datasets DC and DV are both extracted.
Evaluation of the FFNN1 t̂(s) for the load angles ϕ ∈ {0◦, 30◦, 90◦, 145◦} ⊂ Dϕ

1 for all
training temperatures θ ∈ {20K, 40K, 80K} is depicted in Figs. 7, 9, 11 and 12. Hereby,
the gap vectors g of the MD simulations (which do not always strictly follow ϕ) have been
used in order to evaluate the FFNN1 predictions.
In Fig. 7 the evaluation of FFNN1 for ϕ = 0◦ shows the performance of FFNN1 close

to mode II behavior. It should be remarked that the MD data shows oscillatory behavior
for t and g . Further, due to measuring approach of the gap vector close to the vicinity
of the GB, cf. Sect. , the measured g (depicted in blue in the left plots in Fig. 7) does not
exactly follow the load angle ϕ = 0◦ (depicted by the green dashed line in the left plots
in Fig. 7). Due to the non-vanishing gn, the material law is evaluated, at what the material
response possesses steep gradients in the vicinity of the origin. The calibrated FFNN1 is
evaluated along the recorded MD path, which jumps back and forward w.r.t. gn, yielding
the oscillatory curves in the middle plots of Fig. 7. The oscillatory displayed behavior is
not a problem of FFNN1 (which is single-valued), but a consequence of the evaluation of
the oscillatory non-ideal gap vector path of the MD simulations. Despite the non-ideal
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Fig. 7 Evaluation of FFNN1 for ϕ = 0◦ and θ ∈ {20 K, 40 K, 80 K} compared to the MD data

path of the MD gap vector, the prediction of FFNN1 (depicted in orange in Fig. 7), seems
to capture the average behavior of the grain boundary even for large shear offsets of the
opposing crack surfaces (gs).
First, it should be stressed again, that the FFNNs of the present work have been trained

directly on the oscillating raw MD data based on the MSE. Consider the load path for
θ = 40 K for the load angle ϕ = 0◦ (see, also, Fig. 7, right column, middle plot) contained
in DMD

1 , cf. (14). For this case, the (gs, ts) data is illustrated in more detail in Fig. 8. Here, a
Gaussian kernel density estimator has been applied to theMDdata in order to visualize the
sample clustering along the load path. Further, a Savitzky-Golay (SG) filter for a smoothing
window of 1/40-th of the number of samples and a polynomial order of 3 have been used.
It should be stressed that the SG filter smooths the gs and the ts separately. The SG filter
yields the black curve displayed in Fig. 8. The SGfiltereddata follows the effective behavior,
at what due to the small smoothing window length (1/40-th of the number of samples) a
oscillatory behavior is still visible. This can be suppressed by, e.g, choosing an even larger
smoothing window size, which is one of many arbitrary smoothing parameters. In Fig. 8
it is visible that the trained network FFNN1 is able to approximate the average behavior
of the effective traction law in a smooth fashion, without any biased data processing. The
visualization shown in Fig. 8 clearly states that, assuming a normal distribution for the
oscillations, the FFNN finds almost the maximum likelihood approximation of the input
data. In terms of the prediction quality based on the R2 values based solely on the (gs, ts)
data displayed in Fig. 8, the SG filtered data yields R2 ≈ 0.8942, while FFNN1 reaches a
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Fig. 8 (gs, ts) data for load path corresponding to θ = 40 K and ϕ = 0◦ : the MD results are illustrated by the
colored points, at what the color legend shows the approximated point density (approximated by Gaussian
kernel estimators), such that the clustering regions with respect to gs and ts of the corresponding MD data are
visible; the black line depicts the corresponding smoothed MD data based on a Savitzky-Golay filter; the red
line depicts the predictions of the trained FFNN1

value of R2 ≈ 0.6643. This is due to rather homogeneous distribution of gs and the highly
noisy ts values for the current case. This shows that high R2 values in the prediction of
the MD data for ϕ = 0◦ is not only challenging for neural networks, but even for flexible
smoothing filters.
For increasing load angleϕ, amixture betweenmode I andmode II is to be accounted for.

Such a scenario is depicted in Fig. 9 for ϕ = 30◦. Again, as remarked in the discussion of
Fig. 7, the measured gap vector of the MD simulations does not follow the ideal direction
at all simulation steps, see left plots in Fig. 9. The FFNN1 is able to extract the corre-
sponding average behavior of the normal and shear component of the traction vector up
to failure (represented by virtually zero tractions t̂(s)). Furthermore, the surrogate model
t̂(s) remains close to zero for post-critical gap openings, which highlights the consistency
of the surrogate model. It should be noted, that the surrogate model t̂(s), cf. (4), has been
constructed only to vanish identically for gn = 0 nm or gs = 0 nm. The behavior of the
trained FFNN1 almost vanishing after material failure was not specifically accounted for.
This behavior is captured through the trained network solely by the provided MD data,
despite of its highly noisy nature.
We shortly consider the case for θ = 40 K and ϕ = 30◦ and the (gn, tn) data displayed

in Fig. 10 in more detail. The same parameters as for θ = 40 K and ϕ = 0◦ (yielding
Fig. 8) have been applied for the Gaussian kernel density estimator and the SG filter. In
Fig. 10 it immediately becomes visible that up to the peak value of tn the sample density is
relatively homogeneous with respect to gs and only small oscillations of tn are observed.
Then, debonding events occur very quickly, such that only a few gn points with decreasing
tn are available. After material failure, the normal tractions tn remain in the vicinity of
zero with a concentrated, but highly noisy behavior. The corresponding SG filtered (gn, tn)
data is depicted through the black line in Fig. 10. The SG filter yields data points close to
the effective behavior but shows a weak performance in the material failure phase. This
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Fig. 9 Evaluation of FFNN1 for ϕ = 30◦ and θ ∈ {20 K, 40 K, 80 K} compared to the MD data

Fig. 10 (gn, tn) data for load path corresponding to θ = 40 K and ϕ = 30◦ : the MD results are illustrated by
the colored points, at what the color legend shows the approximated point density (approximated by
Gaussian kernel estimators), such that the clustering regions with respect to gn and tn of the corresponding
MD data are visible; the black line depicts the corresponding smoothed MD data based on a Savitzki-Golay
filter; the red line depicts the predictions of the trained FFNN1 for the current case

occurs due to the separate smoothing of gn and tn, which then falsifies the relation to an
unclear/arbitrary degree. This could be enhanced, based on possibly suitable assumptions
for the current process, with an even smaller smoothing window size (i.e, smaller than
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Fig. 11 Evaluation of FFNN1 for ϕ = 90◦ and θ ∈ {20 K, 40 K, 80 K} compared to the MD data

1/40th of the number of samples) and, possibly, with alternative polynomial order (i.e.,
other than 3). This shows that for the problem at hand, a smoothing algorithm needs to
be tuned for each load path individually due to inhomogeneous point distribution and
region dependent noise of the MD results. The calibrated FFNN1 shows a satisfactory
approximation of the current load path, even in the material failure phase. As for the
discussion corresponding to Fig. 8, the visualization Fig. 10 also strongly indicates, that
FFNN1 offers an excellent alternative close to the maximum likelihood approximation of
the data, assuming a normal distribution for the oscillations.
At ϕ = 90◦ pure mode I is considered. In Fig. 11 it can be seen that FFNN1 is able to

follow the qualitative behavior up to failure (see middle plots in Fig. 11), while the shear
component of the traction vector stays around zero due to the construction of t̂(s), cf. (4).
As depicted in Fig. 12, it can be seen that the network is also able to capture the effective

behavior for ϕ = 145◦. Load angles beyond ϕ = 90◦ are also of interest since—based
on the topology of the grain boundary and the dependency on the load direction—a
non-symmetric behavior could be observed.

Prediction for DMD
2 Next, we look at the prediction quality of FFNN1 for the cases in

the test dataset DMD
2 , cf. (15). Note that these are the load and temperature conditions

that were not used during the training of the ANN. Fig. 13 shows the traction-separation
prediction of FFNN1 on top of the MD results. As it is seen in Fig. 13, ANN predicts
relatively good traction-separation curves for the cases not included in the training. In
particular, the peak traction values, as well as final separation values are captured quite



Fernández et al. Adv. Model. and Simul. in Eng. Sci.            (2020) 7:1 Page 20 of 27

Fig. 12 Evaluation of FFNN1 for ϕ = 145◦ and θ ∈ {20 K, 40 K, 80 K} compared to the MD data

well. Inmost of the curves, ANNpredictions follow the shape of the curves in details. Note
that the details of the traction-separation curves are due to atomic scale events during
crack opening, as shown in right column of the figure.

Evaluation of the surrogate model for ideal load angles While the previous comparisons
somewhat confirm that the MD data is well reproduced, the intrinsic appeal of the sur-
rogate is that it accepts virtually arbitrary inputs s. In Fig. 14 the evaluation for ideal
gap vectors, i.e., g follows the ideal load angle ϕideal exactly, is illustrated for different
temperatures.
It should be noted that the evaluations presented in Fig. 14 are closely related to the

predictions with respect to the MD data, but are not equal, since the gap vectors of the
MD data do not follow the load angle at all times (see, e.g., left plots of Figs. 7 and 9).
For example, evaluation of the trained surrogate t̂(s) for the gap vectors corresponding to
the load angle ϕ = 0◦, as shown in Fig. 7, is comparable to the corresponding evaluation
of t̂(s) for the ideal load angle ϕideal = 0◦, depicted by the blue lines in Fig. 14. Hereby,
it should be noted that t̂n vanishes identically for ϕideal = 0◦. The evaluation of t̂(s) for
ϕ = 30◦, see Fig. 9, shows a good agreement with the evaluation for ϕideal = 30◦, see red
curves in Fig. 14. For ideal gap vector the trained t̂ seems to retain the effective behavior
provided by theMDdata. The extractedGBbehavior is highly complex, e.g., the load curve
for ϕideal = 5◦ in Fig. 14 seems counterintuitive, but due to the complexities of atomic
bond formations at the GB, such behavior is possible, cf. Fig. 3 and discussion leading to
Fig. 4. Analytical approaches capturing this behaviorwould require extensive investigation
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Fig. 13 Predictions of the trained ANN for unknown load directions and temperature from dataset DMD
2

and appropriate models. The current data-driven approach inherits this behavior based
exclusively on the availableMD data. Further, the surrogate model captures the transition
behavior between pure mode II and pure mode I loading quite well. For pure mode II, i.e.,
ϕideal = 0◦, t̂n = 0 holds and t̂s stays in the vicinity of a constant value even for large gs.
This behavior resembles the ideally plastic shearing of a metal. For increasing ideal angle
ϕideal, material failure manifests itself at smaller magnitudes of gs, while t̂n stabilizes fairly
rapidly for ϕideal ∈ [30◦, 145◦]. After material failure, tractions predicted by the surrogate
drop to the vicinity of zero and show a stable behavior.

Physics-guided surrogate completion Finally, in view of future multiscale simulation, the
behavior of the calibrated surrogate for input quantities outside of the training region
needs to be addressed. In [57], calibrated FFNNs were used in two-scale problems as
surrogates for the microscopic non-linear hyperelastic material law. There, during the
macroscopic simulation, the surrogate was called in several Gauss points of the FE com-
putation for input quantities outside of the training region. Due to the fact that in a
general macroscopic or multi-scale simulation, the loading of a material point in terms
of strain or displacement input cannot be foreseen, it is not possible to identify a general
training region and train surrogates for all possible scenarios. As remarked by [57], the
usage of a surrogate outside of the training region can be unreliable. In such cases, one
may call for alternative physics-guided but computationally more expensive models, e.g.,
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Fig. 14 Evaluation of calibrated FFNN1 for gap vector following exactly the load angle

reduced-order models. Concerning the present work, it is clear that in future grain scale
simulations, the surrogate t̂(s) most probably will be called for larger gap vector values
than provided by the available MD simulation data. Hereby, based on the obvious behav-
ior of material failure, t̂ should drop asymptotically to zero for large ‖g‖, except for pure
mode II since friction remains active. Due to the clear limit behavior of the function to be
approximated, the present work simply proposes to consider a physics-guided completion
of the trained surrogate t̂(s) with respect to the gap vector as follows

t̂c(s) =
[
t̂n(s)cn(g)
t̂s(s)cs(g)

]
(17)
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Fig. 15 Completion functions cn(g) and cs(g) with parameters μn = 3.2332 nm, μs = 26.0303 nm,

dn = ds = 0.2 nm−2, γ = 5 nm−1 and g0 = 0.3 nm

with the completion functions
[
cn(g)
cs(g)

]
=

[
exp

(
− dn sp(gn − μn)2

)

exp
(−dsχs(gn)[sp (gs − μs) + sp (−gs − μs)]2

)

]
,

χs(gn) = 1
2
(tanh(γ [gn − g0]) + 1) ,

[
μn
μs

]
=

⎡

⎢⎣
max

DMD
1 ∪DMD

2

gn

max
DMD
1 ∪DMD

2 :ϕ≥5◦
|gs|

⎤

⎥⎦ .

(18)

The parameterμn is defined in (18) as themaximumobserved gn over allMD simulations.
The parameter μs defined in (18) corresponds to the maximum observed absolute value
of gs for ϕ ≥ 5◦. The completion functions cn and cs ensure that for values beyond
μn/s an exponential decay of the tractions is activated through the softplus function
sp(x), at what the decay parameters dn/s > 0 can be chosen as required. The completion
function cs further aims at the deactivation of the exponential decay for gn = 0 (pure
mode II) through the transition function χs(gn) with parameters γ , g0 > 0. The proposed
completion functions for the traction-separation problem at hand are differentiable, such
that the completed surrogate t̂c(s) remains differentiable at all load states.Of course, sharp,
non-smooth completion functions based on max(x, 0) (instead of the softplus function in
(18)) and the unit step function (instead of the transition χs in (18)) could be considered
as well, but differentiability would then be lost. This would be a clear disadvantage from
the perspective of multiscale simulations and needed tangent operators. In Fig. 15, the
completion functions are visualized for the parameters μn = 3.2332 nm, μs = 26.0303
nm, dn = ds = 0.2 nm−2, γ = 5 nm−1 and g0 = 0.3 nm. For the chosen μn, in the
left plot of Fig. 15 one can see that the completion function cn(g) for t̂n(s) changes from
values close to 1 smoothly to values close to 0 for gn passingμn. This property then ensure
a definite asymptotic behavior of t̂cn = t̂n(s)cn(g) towards 0 for large normal separation
gn. The completion function cs(g) for t̂s(s) allows for gn > g0 and |gs| < μs a normal
evaluation of the model, while for |gs| > μs, due to cs(g) → 0, an asymptotic behavior of
t̂cs (s) = t̂s(s)cs(g) towards 0 is obtained. For gn = 0 < g0, the asymptotic decay is turned
off for all gs and mode II behavior trained in t̂s(s) is allowed for.

Summary and outlook
Thepresent study investigates the identificationof a surrogateANNmodel for the effective
traction-separation at the GB interface, based on MD simulation data. Intensive MD
simulations at the atomic scale have been performed for varying loading conditions and
for various temperatures. Despite the highly fluctuating and inhomogeneous nature of the
traction-separation values of the MD simulations, ANNs have been shown to be able to
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extract the effective material behavior. This has been achieved without any smoothing of
the MD data. The ResNet like architecture of the trained ANNs with a standard FFNN as
secant has shown satisfactory quality, as well as a stable physical behavior, even for large
separation values. In view of a usage of the calibrated model well outside of the training
range, a physics-guided model completion has been proposed. The surrogate completion
extends the surrogate to arbitrarily large separation values and offers a secure evaluation
in macroscopic FE simulations. The completed surrogate is differentiable by design, such
that a tangent operator is always computable for arbitrary separation and temperature.
The present work focused on proportional loading and varying temperature. For future

work it is, therefore, important to further investigate the abilities of ML approaches
in interface problems with more dependencies (temperature, history and more) and to
explicitly address thequestion if the approachworks on the inhomogeneous, raw/unbiased
data or necessitates a pre-processing of it before training—therefore, assuming the corre-
sponding error and falsified material response. The consideration of more dependencies
in the effective material law naturally offers a more accurate prediction with better physi-
cal insights, see, e.g., [58,70]. Concerning GBs specifically, not only temperature, but also
loading rates (see, e.g., [71,72]) andGBmisorientationwith corresponding dislocation pile
ups (see, e.g. [34,73]) could be considered in advanced ML approaches. Modeling general
GBs under different load/temperature and rate conditions is a high dimensional prob-
lem and well beyond the current computational power. However, employing the material
symmetry together with known special GB types and mechanisms involved will reduce
the number of atomistic simulations required to train the ANN. If the special cases are
selected wisely, the ANN will be able to fill the gaps, as presented in the current work.
Note that besides crack growth or GB sliding, other mechanisms, such as GB migration,
could be activated depending on the GB type. For example, as shown in [10], a �3 twin
boundarywillmigrate undermode II loading. Thus,�3 is one of the important boundaries
to be included in future work for ANN training on full range of GBs. Hereby, based on
either homogenization relations or upscaled ad-hoc models, new homogenization-theory
inspired ANN approaches as the one of [50] may offer a promising start. Additionally,
future developments in macroscopic FE simulations of polycrystals addressing the com-
parison between classical interface models and ML approaches are of high interest not
only from the physical prediction perspective but also from the computationally efficiency
point of view, specially for non-proportional loading.
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