
Quaranta et al. Adv. Model. and Simul.
in Eng. Sci.           (2019) 6:11 
https://doi.org/10.1186/s40323-019-0135-x

RESEARCH ART ICLE Open Access

Aminimally-intrusive fully 3D separated
plate formulation in computational
structural mechanics
Giacomo Quaranta1, Mustapha Ziane1, Eberhard Haug1, Jean-Louis Duval1

and Francisco Chinesta2*

*Correspondence:
Francisco.CHINESTA@ensam.eu
2PIMM, ENSAM ParisTech & ESI
GROUP Chair on Advanced
Modeling and Simulation of
Manufacturing Processes, 151
Boulevard de l’Hopital, 75013
Paris, France
Full list of author information is
available at the end of the article

Abstract

Most of mechanical systems and complex structures exhibit plate and shell
components. Therefore, 2D simulation, based on plate and shell theory, appears as an
appealing choice in structural analysis as it allows reducing the computational
complexity. Nevertheless, this 2D framework fails for capturing rich physics
compromising the usual hypotheses considered when deriving standard plate and
shell theories. To circumvent, or at least alleviate this issue, authors proposed in their
former works an in-plane–out-of-plane separated representation able to capture rich
3D behaviors while keeping the computational complexity the one of 2D simulations.
In the present paper we propose an efficient integration of fully 3D descriptions into
existing plate software.

Keywords: Plate and Shells theories, In-plane–out-of-plane separated representations,
PGD, Dynamics

Introduction
We consider the linear elastostatic problem defined in the plate domain � = �xy × �z ,
with �xy = [0, Hx] × [0, Hy] and �z = [0, Hz] in which the thickness (out-of-plane)
dimension is much lower than the other ones, i.e. Hz � Hx,Hy.
The linear elastic behavior relating the Cauchy’s stress σ and the strain ε using Voigt

notation reads

σ = C ε, (1)

where C is the elasticity matrix. The relation between strain ε and displacement u (with
components u = (u, v, w)) writes

ε = ∇su = Gu, (2)

where G = ∇s• = 1
2 (∇ • +∇T•) is the symmetric gradient operator.
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Considering an homogeneous and isotropic material the behavior writes

C = E
(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 (1−2ν)

2 0 0
0 0 0 0 (1−2ν)

2 0
0 0 0 0 0 (1−2ν)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

With g(x) the body forces, the displacement field u(x) for x ∈ � is described by the
linear momentum balance equation

∇ · σ + g = 0. (4)

The domain boundary ∂� is partitioned into Dirichlet, �D, and Neumann, �N , bound-
aries, where displacement ug and tractions T are enforced respectively. In what follows
and without loss of generality we assume T = 0
The problem weak form associated to the strong form (4) lies in looking for the dis-

placement field u verifying the Dirichlet boundary conditions such that the weak form
∫

�

ε(u∗) · (C · ε(u)) dx =
∫

�

u∗ · g dx, (5)

fulfills for any test function u∗, with the trial and test fields defined in appropriate func-
tional spaces.

Plate theory

The Reissner–Mindlin theory is based on the following fundamental hypotheses [1]: (i) on
the middle plane (z = 0) the in-plane displacements vanish, i.e. u(x, y, z = 0) = v(x, y, z =
0) = 0 that implies that points located in the middle-plane only moves vertically; (ii) the
plate thickness remains unchanged; (iii) the plane stress assumption remains valid, i.e.
σzz = 0 and (v) a straight line normal to the undeformed middle plane remains straight
but not necessarily orthogonal to the middle plane after deformation.
From these assumptions the displacement field can be written as:

⎧⎪⎪⎨
⎪⎪⎩

u(x, y, z) = − zθx(x, y)

v(x, y, z) = − zθy(x, y)

w(x, y, z) = w(x, y)

(6)

where w is the vertical displacement (deflection) of the points on the middle plane and
the rotations θx and θy coincide with the angles followed by the normal vectors contained
in the planes xz and yz respectively in their motions.
We define the generalized displacement vector û

û = [θx, θy, w]T (7)

defined at any point on the middle plane.
Injecting plate theory assumptions into the 3D elastostatic problem weak form, Eq. (5)

reduces to the following 2D formulation
∫

�xy

ε̂(û∗) · (
Ĉε̂(û)

)
dx =

∫

�xy

û∗ · ĝ dx, (8)
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whose standard finite element discretization leads to

KxyU = Bxy (9)

where for notational simplicity the hat symbol (•̂) is omitted. In the previous expression
(9),Kxy is the stiffnessmatrix andU andBxy are the vector of the generalizeddisplacements
and forces, the former containing nodal rotations and deflections and the last the dual
quantities: the nodal moments and vertical nodal forces. The 3D displacement field can
be then recovered by using the relations (6).
In many cases, the complexity of the solution makes impossible the introduction of

pertinent hypotheses for reducing the dimensionality of the model from 3D to 2D. In that
case a fully 3D descriptions seem compulsory, and the in-plane–out-of-plane separated
representations become particularly suitable.

PGD-based in-plane–out-of-plane decomposition

The in-plane–out-of-plane separated representation was applied in our former works to
efficiently solve 3D elastic problems in plate geometries [2–4]. The elastic problem was
defined in a plate domain � = �xy × �z with (x, y) ∈ �xy, �xy ⊂ R

2 and z ∈ �z ,
�z ⊂ R. The separated representation of the displacement field u = (u, v, w) consists in
a finite sum decomposition on N terms, each one of them consisting in the product of
two unknown functions, one depending on the in-plane coordinates (x, y) and one on the
out-of-plane coordinate z, i.e.:

u(x, y, z) =

⎛
⎜⎜⎝

u(x, y, z)

v(x, y, z)

w(x, y, z)

⎞
⎟⎟⎠ ≈

N∑
i=1

⎛
⎜⎜⎝

uixy(x, y) · uiz(z)
vixy(x, y) · viz(z)
wi
xy(x, y) · wi

z(z)

⎞
⎟⎟⎠. (10)

Expression (10) can be written in a more compact form by using the Hadamard
(component-to-component) product:

u(x, y, z) ≈
N∑
i=1

Ui
xy(x, y) ◦ Ui

z(z). (11)

Enriched formulations
As reported in the previous section plate kinematics can be written as a single-term
separated decomposition

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(x, y, z) = θx(x, y)f x(z)

v(x, y, z) = θy(x, y)f y(z)

w(x, y, z) = w(x, y)f z(z)

, (12)

with f x(z) = − z, f y(z) = − z and f z(z) = 1.
For the sake of generality we are considering generic functions f x(z), f y(z) and f z(z)

assumed known, but than can be different to the ones related to the standard Reissner–
Mindlin plate theory, and its associated 3D kinematics given by Eq. (12). Consequently
θx, θy and w do not represent rotations and deflection anymore.
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The displacements gradient becomes

∇u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u
∂x
∂u
∂y
∂u
∂z
∂v
∂x
∂v
∂y
∂v
∂z
∂w
∂x
∂w
∂y
∂w
∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂θx

∂x
∂θx

∂y

θx

∂θy

∂x
∂θy

∂y

θy

∂w
∂x
∂w
∂x

w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

◦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f x

f x
df x(z)
dz

f y

f y
df y(z)
dz

f z

f z
df z
∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

that allows defining the strain separated form, that taking into account its symmetry reads

ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂v
∂z + ∂w

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂θx

∂x
∂θy

∂y

w
∂θx

∂y

θx

θy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

◦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f x

f y
df z
dz

f x
df x
dz
df y
dz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0
∂θy

∂x
∂w
∂x
∂w
∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

◦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

f y

f z

f z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

= �1(x, y) ◦ F1(z) + �2(x, y) ◦ F2(z). (15)

In the case of a general material the Hooke tensor can also be written as

C(x, y, z) =
M∑
i=1

Ci
xy(x, y) ◦ Ci

z(z). (16)

For an homogenous material we have simply

C = Ci
xy ◦ Ci

z . (17)

where Cz is given by Eq. (3) and Cxy is a tensor whose all the entries are 1,

Cxy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

Taking this into consideration the method that we are going to explain can be used both
for homogenous and not homogenous materials. For the sake of simplicity we are going
to present it in the case where in expression (16) only one term appears in the sum, but it
can be easily extended to involve more terms. The virtual work principle, expressed using
a matrix notation, involves the internal work

ε∗Tσ = ε∗TCε

= {�1∗(x, y) ◦ F1(z) + �2∗(x, y) ◦ F2(z)}T {Cxy(x, y) ◦ Cz(z)}
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{�1(x, y) ◦ F1(z) + �2(x, y) ◦ F2(z)}
= �1∗T (x, y){Cxy(x, y) ◦ Ĉ11

z (z)}�1(x, y) + �1∗T (x, y){Cxy(x, y) ◦ Ĉ12
z (z)}

�2(x, y) + �2∗T (x, y){Cxy(x, y) ◦ Ĉ21
z (z)}�1(x, y) + �2∗T (x, y)

{Cxy(x, y) ◦ Ĉ22
z (z)}�2(x, y). (19)

In the previous expression matrices Ĉij
z (z) results

Ĉij
zkl (z) = Czkl (z)F

i
k (z)F

j
l(z), i, j ∈ [1, 2] & k, l ∈ [1, · · · , 6]. (20)

Now, the virtual work integral reads
∫

�xy×�z

2∑
i=1

2∑
j=1

�i∗T (x, y){Cxy(x, y) ◦ Ĉij
z (z)}�j(x, y) dz dx dy

=
∫

�xy

2∑
i=1

2∑
j=1

�i∗T (x, y)Dij(x, y)�j(x, y) dx dy, (21)

where

Dij(x, y) = Cxy(x, y) ◦
∫

�z
Ĉij
z (z) dz. (22)

Now, if we assume an approximation based on a piecewise linear interpolation on a
triangular finite element, related to an in-plane mesh of �xy = ∪E

e=1�
e
xy, with the shape

functions defined by Ne
i (x, y), i = 1, 2, 3; e = 1, . . . ,E; it results

⎧⎪⎪⎨
⎪⎪⎩

θx,e(x, y) = Ne
1 (x, y)θ

x,e
1 + Ne

2 (x, y)θ
x,e
2 + Ne

3 (x, y)θ
x,e
3

θy,e(x, y) = Ne
1 (x, y)θ

y,e
1 + Ne

2 (x, y)θ
y,e
2 + Ne

3 (x, y)θ
y,e
3

we(x, y) = Ne
1 (x, y)w

e
1 + Ne

2 (x, y)w
e
2 + Ne

3 (x, y)w
e
3

(23)

Using that approximation we can express vectors �i(x, y) in each element �e from the
generalized nodal displacements

UeT = (θx,e1 , θy,e1 , we
1, θ

x,e
2 , θy,e2 , we

2, θ
x,e
3 , θy,e3 , we

3), (24)

from

�i((x, y) ∈ �e
xy) = Bi,e(x, y)Ue, (25)

where Bi,e(x, y) contains the shape functions and theirs derivatives, according to the
expressions involved in the components of �i(x, y), i = 1, 2.
Thus, integral (21) reads

E∑
e=1

Ue∗T
⎧⎨
⎩

∫
�e
xy

2∑
i=1

2∑
j=1

Bi,eT (x, y)Dij(x, y)Bj,e(x, y) dx dy

⎫⎬
⎭Ue

=
E∑

e=1
Ue∗TKe

xyUe = U∗TKxyU. (26)

Now, if we consider the virtual work of the body forces g(x), it involves

u∗Tg(x), (27)

where without loss of generality we assume

u(x, y, z) = V ◦ W, (28)
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with VT = (θx, θy, w) andWT = (f x(z), f y(z), f z(z)), and the single-mode decomposition
of the body forces given by

g(x, y, z) = G ◦ H, (29)

with GT = (Mx(x, y),My(x, y), T (x, y)) and HT = (hx(z), hy(z), hz(z)). The fact of consid-
ering a single mode in the decomposition of the body force is not restrictive as discussed
later.
The virtual work (27) can be expressed as

u∗Tg(x) = V∗T (x, y)Ĵ(z)G(x, y), (30)

where matrix Ĵ reads

Ĵkl(z) = IklWk (z)Hl(z), (31)

with I the identity matrix.
Now, the integral results

∫

�xy×�z

u∗Tg(x) dz dx dy =
∫

�xy

V∗T (x, y)JG(x, y) dx dy, (32)

with

J =
∫

�z

Ĵ(z) dz, (33)

Integrating in the mesh �xy = ∪E
e=1�

e
xy,

∫

�xy

V∗T (x, y)JG(x, y) dx dy =
E∑

e=1

∫

�e
xy

Ve∗T (x, y)JGe(x, y) dx dy, (34)

where Ve(x, y) and Ge(x, y) are approximated respectively from

Ve(x, y) = N(x, y)Ue, (35)

and

Ge(x, y) = N(x, y)Re, (36)

with Re containing the nodal values of G(x, y) and N(x, y) = [N1(x, y) N2(x, y) N3(x, y)],
and

Ni =
⎛
⎜⎝
Ne
i (x, y) 0 0
0 Ne

i (x, y) 0
0 0 Ne

i (x, y)

⎞
⎟⎠ . (37)

Thus, it results

E∑
e=1

∫

�e
xy

Ve∗T (x, y)JGe(x, y) dx dy =
E∑

e=1
Ue∗T

⎧⎪⎨
⎪⎩

∫

�e
xy

NT JN dx dy

⎫⎪⎬
⎪⎭
Re

=
E∑

e=1
Ue∗TAe

xyRe =
E∑

e=1
Ue∗TBe

xy = U∗TBxy, (38)

from which, the principle of virtual works reads

U∗TKxyU = U∗TBxy. (39)
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Remark 1 In general the displacement decomposition within the PGD rationale involves
more than a single mode, however, within the updating process, when calculating the n
mode, the n− 1 already computed move to the right hand member, acting as generalized
body force.

Remark 2 Thus, the in-plane functions determining the kinematics can be obtained from
a standard plate theory software by using the elementary rigidity and forces given respec-
tively by Ke

xy and Be
xy considered in expression (26) and (38).

Remark 3 If tractionT 
= 0 the same procedure can be applied to treat the corresponding
terms.

Calculation of the out-of plane functions
The expression of solution obtained in the previous section is given by

u(x, y, z) =
⎛
⎜⎝

u(x, y, z)
v(x, y, z)
w(x, y, z)

⎞
⎟⎠ =

⎛
⎜⎝

θx(x, y)f x(z)
θy(x, y)f y(z)
w(x, y)f z(z)

⎞
⎟⎠ = V(x, y) ◦ W(z), (40)

where

V(x, y) =
⎛
⎜⎝

θx(x, y)
θy(x, y)
w(x, y)

⎞
⎟⎠ (41)

and

W(z) =
⎛
⎜⎝
f x(z)
f y(z)
f z(z)

⎞
⎟⎠. (42)

Now, we proceed to updated the out-of-plane functions involved inW(z) from the just
calculated in-plane functions V(x, y) by considering again the principle of virtual work∫

�xy×�z

ε(u∗) · (C · ε(u) dx =
∫

�xy×�z

u∗ · f dx (43)

where now in Eq. (40) the in-plane functions are assumed known and we look for the
ones involved in the out-of-plane contribution W(z). Thus, the previous integral form
can be integrated on �xy, and then Eq. (43) reduced to a one dimensional problem in �z
involving as unknown functions f x(z), f y(z) and f z(z).
The same rationale that was previously addressed when performing the in-plane calcu-

lations is considered again but now with the test functions given by

ε∗ = �1(x, y) ◦ F1∗(z) + �2(x, y) ◦ F2∗(z), (44)

and

u∗(x, y, z) = V(x, y) ◦ W∗(z). (45)

Now, from the updated out-of-plane functions inW(z), the in-plane functions inV(x, y)
are again updated and the procedure repeats until reaching the convergence (fixed point).
The procedure for computing the out-of-plane components in this minimally-intrusive
way is detailed in Appendix A.
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Fig. 1 The problem taken into consideration

Table 1 Model parameters

Hx : Length in the x direction (mm) 250

Hy : Length in the y direction (mm) 250

Hz : Length in the z direction (mm) 250

E : Young modulus (N/m2) 2 · 1011
ν : Poisson coefficient 0.25

Numerical results
The problem taken into consideration is depicted in Fig. 1. The geometrical and mechan-
ical properties of the plate domain � = [0, Hx] × [0, Hy] × [0, Hz] are defined in Table 1
On the right boundary face of the domain (the blue zone in Fig. 1) a vertical traction
is enforced, T = (0, 0, 8 · 109)N/m2 and on the opposite face homogeneous Dirichlet
boundary conditions are imposed. No volumetric body forces are considered. As in the
considered domain the thickness (out-of-plane) dimension is not much lower than the
other ones (in-plane dimensions), the linear variation of the displacement field along the
thickness described by (2) is not more true as we can notice in Fig. 2 that compares the
plate solution from the fully 3D solution assumed as reference. However using the just
proposedminimally-intrusive fully 3D separated plate formulation we can notice how the
solution is improved. Figure 3 shows the error of the solution respect to the 3D FEM
solution, computed as

ξ (u) =
(∫

� (u − uFEM)2 d x
) 1
2

(∫
� (uFEM)2 d x

) 1
2

, (46)

as a function of the number of modes. The error of the plate theory solution results
ξ (uplate) = 0.0633.
We consider now the same problem as in the previous example but this timewe suppose

that there is an hole in the domain. As in the previous example, in Fig. 4 it is depicted the
solution computed using the different techniques. Moreover in Figs. 5, 6 and 7 different
perspectives of the out-of-plane stress tensor components are depicted. Let’s note how the
proposed method is able to take into consideration the σzz components, which is ignored
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Fig. 2 Displacement field using: plate theory (a), minimally-intrusive fully 3D separated plate formulation (b),
3D FEM (c)

in plate theory, and to obtain the parabolic evolution around the thickness for the σxz and
σyz typical of a 3D solution (Fig. 7).
In Figs. 8, 9 and 10 the same quantities are computed using a 3D finite element method,

proving the good accuracy of the proposed method.
Again, in Fig. 11 shows the error of the solution respect to the 3D FEM solution as a

function of the number of modes. The error of the plate theory solution being ξ (uplate) =
0.0638.
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0
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0.02

0.03

0.04
Error respect to the 3D solution

Fig. 3 Error of the enriched solution respect to the 3D solution for different number of modes

Extension of themethod to elasto-plastic dynamics
In this section we extend the method to dynamics problem in which plastic behavior can
occur. With g(x, t) the body forces, the displacement field evolution u(x, t) in the domain
� and time interval t ∈ I = (0, T ] is described by the linear momentum balance equation

ρü(x, t) = ∇ · σ + g, (47)

where ρ is the density (kg/m3).
The boundary ∂� is decomposed according to ∂� = �D ∪ �N where displacement and

tractions T(t) are prescribed.
The behavior relating the Cauchy’s stress σ and the elastic strain εe reads [5]

σ = Cεe = C(ε − εp), (48)

where C is the Hooke tensor, ε is total strain and εp is the plastic strain.
The problem weak form associated with the strong form (47) results in looking for the

displacement field u verifying the initial and Dirichlet boundary conditions, and fulfilling

ρ

∫

�

u∗ · ü dx +
∫

�

ε(u∗) · (C (ε(u) − εp(u))) dx =
∫

�

u∗ · g dx +
∫

�N

u∗ · T(t) dx

(49)

for any test function u∗ in an appropriate functional space.
We consider at time tj+1 the standard explicit time integration [6] (widely considered

in commercial codes) given by

ρ

∫

�

u∗ · u
j+1 − 2uj + uj−1


t2
dx +

∫

�

ε(u∗) ·
(
C

(
ε(uj) − εp(uj)

))
dx

=
∫

�

u∗ · gj dx +
∫

�N

u∗ · Tjdx, (50)

or, by putting all the explicit terms at the right hand side,
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Fig. 4 Displacement field using: plate theory (a), minimally-intrusive fully 3D separated plate formulation (b),
3D FEM (c)

ρ

∫

�

u∗ · uj+1dx = ρ

∫

�

u∗ ·
(
2uj − uj−1

)
dx

− 
t2

⎛
⎜⎝

∫

�

ε(u∗) ·
(
C

(
ε(uj) − εp(uj)

))
dx +

∫

�

u∗ · gj dx +
∫

�N

u∗ · Tjdx

⎞
⎟⎠ .

(51)
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Fig. 5 Out-of-plane stress tensor components around the hole using the minimally-intrusive fully 3D
separated plate formulation

Fig. 6 Out-of-plane stress tensor components in the z = 65 mm plane using the minimally-intrusive fully 3D
separated plate formulation
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Fig. 7 Out-of-plane stress tensor components around the hole for x = 146 mm and y = 97 mm using the
minimally-intrusive fully 3D separated plate formulation

Fig. 8 Out-of-plane stress tensor components around the hole using 3D FEM
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Fig. 9 Out-of-plane stress tensor components in the z = 65 mm plane using 3D FEM

Fig. 10 Out-of-plane stress tensor components around the hole for x = 146 mm and y = 97 mm using 3D
FEM
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Fig. 11 Error of the enriched solution respect to the 3D solution for different number of modes

Recalling (28) we can write

uj+1(x, y, z) = Vj+1 ◦ Wj+1. (52)

Supposing the out-of-plane functions known, the left hand side term in (51) can be
expressed as

u∗Tuj+1(x) = Vj+1,∗T (x, y)Ĵj+1(z)Vj+1(x, y), (53)

where matrix Ĵj+1 reads

Ĵj+1
kl (z) = IklW

j+1
k (z)Wj+1

l (z), (54)

with I the identity matrix.
Now, the integral results

ρ

∫

�

u∗ · uj+1 dz dx dy =
∫

�xy

Vj+1,∗T (x, y)Jj+1Vj+1(x, y) dx dy, (55)

with

Jj+1 =
∫

�z

Ĵj+1(z) dz, (56)

Integrating in the mesh �xy = ∪E
e=1�

e
xy,

∫

�xy

Vj+1,∗T Jj+1Vj+1 dx dy =
E∑

e=1

∫

�e
xy

Vj+1,e∗T Jj+1Vj+1,e dx dy, (57)

where Vj+1,e(x, y) is approximated from

Vj+1,e(x, y) = N(x, y)Uj+1,e, (58)

with N(x, y) = [N1(x, y) N2(x, y) N3(x, y)], and

Ni =
⎛
⎜⎝
Ne
i (x, y) 0 0
0 Ne

i (x, y) 0
0 0 Ne

i (x, y)

⎞
⎟⎠ . (59)
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Fig. 12 The elasto-plastic dynamical problem taken into consideration

Table 2 Model parameters

Hx : Length in the x direction (mm) 250

Hy : Length in the y direction (mm) 250

Hz : Length in the z direction (mm) 20

E : Young modulus (N/m2) 6.68 · 1010
ν : Poisson coefficient 0.35

ρ : Density (kg/m3) 2700

Thus, it results

E∑
e=1

∫

�e
xy

Vj+1,e∗T Jj+1Vj+1,e dx dy =
E∑

e=1
Uj+1,e∗T

⎧⎪⎨
⎪⎩

∫

�e
xy

NT Jj+1N dx dy

⎫⎪⎬
⎪⎭
Uj+1,e

=
E∑

e=1
Uj+1,e∗TMj+1,e

xy Uj+1,e = Uj+1,∗TMj+1
xy Uj+1. (60)

The different terms at the right hand side of (51) can be treated in a similar way, as already
explained for the static case, so that at each time step j the virtual work principle reads

Uj+1,∗TMj+1
xy Uj+1 = Uj+1,∗TBj

xy. (61)

Remark 4 As for the static case, the in-plane functions determining the kinematics can be
obtained from a standard plate theory software by using the elementary mass and forces
given respectively byMj+1,e

xy and Bj,e
xy.

Remark 5 Again the out-of-plane functions can be obtained in a similarmanner as already
explained in the static case.

For evaluating the performances of the method we consider the problem defined in
Fig. 12. The geometrical and mechanical properties of the plate domain are defined in
Table 2. On the right boundary face of the domain (the blue zone in Fig. 12) an horizontal
traction is enforced, T = (2.7 · 108, 0, 0)N/m2 and on the opposite face homogeneous
Dirichlet boundary conditions are imposed. No volumetric body forces are considered.
For the sake of simplicity, we use the Von Mises criterion [7], assuming a Krupkowski
isotropic hardening [8] given by the formula:

σ̄ = K
(
ε̄0 + ε̄p

)p (62)

where ε̄0 = 0.008 is the initial equivalent plastic strain, ε̄p is the equivalent plastic strain,
K = 0.4619 GPa is a strength coefficient and p = 0.1 is the strain hardening exponent
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Fig. 13 Horizontal loading for the elasto-plastic dynamical problem

Fig. 14 Displacement field using the three methods for t = 0.1 ms and t = 0.5 ms

[9]. The problem is solved in the time interval [0, 50] ms with a time step 
t = 10−4 ms
which ensures the stability of the explicitmethod. Inorder to get the stationary solution the
traction is applied gradually as depicted in Fig. 13 and a Rayleigh damping (proportional
to the mass) is used. Figs. 14, 15 and 16 compares the solution obtained with the three
methods at different times. For this problem the 2D solution is given by shell theory [1]
as
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Fig. 15 Displacement field using the three methods for t = 1 ms and t = 5 ms

⎧⎪⎪⎨
⎪⎪⎩

u(x, y, z) = u0(x, y) − zθx(x, y)

v(x, y, z) = v0(x, y) − zθy(x, y)

w(x, y, z) = w0(x, y)

(63)

where u0, v0 and w0 are the displacements of the points on the middle plane along
x, y and z respectively and the rotations θx and θy coincide with the angles fol-
lowed by the normal vectors contained in the planes xz and yz respectively in their
motions.
Again the solution computed using the proposed method is able to get a 3D behavior

(as the one of the 3D FEM solution) with the striction along the thickness in the zone with
a smaller section, which is typical of a 3D plastic solution.

Conclusions
Here we proposed a minimally intrusive formulation of mechanical problems (linear,
elasto-plastic, static and dynamic) defined in separable domains, enabling 3D solutions
expressed as a finite sum decomposition involving the product of functions defined in the
plane and in the thickness. The main contribution of the present work is that the calcula-
tion of functions defined in the plane, themost expensive computationally, can be ensured
by a standard plate solver, whereas the solution of those defined in the thickness, defining
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Fig. 16 Displacement field using the three methods for t = 10 ms and t = 30 ms

1D problems extremely simple and cheap, is externalized and ensured by a function called
by the plate solver.
The different numerical examples prove the procedure efficiency that allows computing

3D solutions while keeping the computational cost the one characteristic of standard 2D
plate and shell calculations.
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Appendix A: Calculation of the out-of plane functions in aminimally-intrusive
manner
We write the virtual work principle

ε∗Tσ = ε∗TCε

= {�1(x, y) ◦ F1∗(z) + �2(x, y) ◦ F2∗(z)}T {Cxy(x, y) ◦ Cz(z)}
{�1(x, y) ◦ F1(z) + �2(x, y) ◦ F2(z)}
= F1∗T (x, y){Ĉ11

xy (x, y) ◦ Cz(z)}F1(x, y) + F1∗T (x, y) {Ĉ12
xy (x, y) ◦ Cz(z)}

F2(x, y) + F2∗T (x, y){Ĉ21
xy (x, y) ◦ Cz(z)}F1(x, y) + F2∗T (x, y)

{Ĉ22
xy (x, y) ◦ Cz(z)}F2(x, y). (64)

In the previous expression matrices Ĉij
xy(x, y) results

Ĉij
xykl (x, y) = Cxykl (x, y)�

i
k (x, y)�

j
l(x, y), i, j ∈ [1, 2] & k, l ∈ [1, · · · , 6]. (65)

Now, the virtual work integral reads
∫

�xy×�z

2∑
i=1

2∑
j=1

Fi∗T (z){Ĉij
xy(x, y) ◦ Cz(z)}Fj(z) dz dx dy

=
∫

�z

2∑
i=1

2∑
j=1

Fi∗T (z)Pij(z)Fj(z) dz, (66)

where

Pij(z) = Cz(z) ◦
∫

�xy

Ĉij
xy(x, y) dx dy. (67)

Now, if we assume for instance an approximation based on piecewise linear interpola-
tions on the 1D finite element mesh of �z = ∪Q

q=1�
q
z , with the shape functions defined

by Nq
i (z), i = 1, 2; q = 1, . . . ,Q; it results
⎧⎪⎪⎨
⎪⎪⎩

f x,q(z) = Nq
1 (z)f

x,q
1 + Nq

2 (z)f
x,q
2

f y,q(z) = Nq
1 (z)f

y,q
1 + Nq

2 (z)f
y,q
2

f z,q(z) = Nq
1 (z)f

z,q
1 + Nq

2 (z)f
z,q
2

(68)

Using that approximation we can express vectors Fi(z) in each element �
q
z from

LqT = (f x,q1 , f y,q1 , f z,q1 , f x,q2 , f y,q2 , f z,q2 ), (69)

and

Fi(z ∈ �
q
z ) = Ti,q(z)Lq, (70)

whereTi,q(z) contains the shape functions and theirs derivatives, according to the expres-
sions involved in the components of Fi(z), i = 1, 2.
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Thus, integral (66) reads

Q∑
q=1

Lq∗T

⎧⎪⎨
⎪⎩

∫

�
q
z

2∑
i=1

2∑
j=1

Ti,qT (z)Pij(z)Tj,q(z) dz

⎫⎪⎬
⎪⎭
Lq

=
Q∑

q=1
Lq∗TKq

zLq = L∗TKzL. (71)

The virtual work (27) of the body forces can be expressed as

u∗Tg(x) = W∗T (z)Ô(x, y)H(z), (72)

where matrix Ô reads

Ôkl(x, y) = IklVk (x, y)Gl(x, y), (73)

with I the identity matrix.
Now, the integral results∫

�xy×�z

u∗Tg(x) dz dx dy =
∫

�z

W∗T (z)OH(z) dz, (74)

with

O =
∫

�xy

Ô(x, y) dx dy, (75)

Integrating in the mesh �z = ∪Q
q=1�

q
z ,

∫

�z

W∗T (z)OH(z) dz =
Q∑

q=1

∫

�
q
z

Wq∗T (z)OHq(z) dz, (76)

whereWq(z) andHq(z) are approximated respectively from

Wq(z) = S(z)Lq, (77)

and

Hq(z) = S(z)Mq, (78)

withMq containing the nodal values ofH(z) and S(z) = [N1(z) N2(z)], and

Ni =
(
Nq
i (z) 0
0 Nq

i (z)

)
. (79)

Thus, it results
Q∑

q=1

∫

�q

Wq∗T (z)OHq(z) dz =
Q∑

q=1
Lq∗T

⎧⎪⎨
⎪⎩

∫

�
q
z

STOS dz

⎫⎪⎬
⎪⎭
Mq

=
Q∑

q=1
Lq∗TAq

zMq =
Q∑

q=1
Lq∗TBq

z = L∗TBz, (80)

from which, the principle of virtual works reads

L∗TKzL = L∗TBz. (81)

Thus, the out-of-plane functions determining the kinematics can be obtained from a
standard 1D software by using the elementary rigidity and forces given respectively byKq

z
and Bq

z considered in expression (71) and (80).
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