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Abstract

In this paper we present a collection of techniques used to formulate a
projection-based reduced order model (ROM) for zero Mach limit thermally coupled
Navier–Stokes equations. The formulation derives from a standard proper orthogonal
decomposition (POD) model reduction, and includes modifications to improve the
drawbacks caused by the inherent non-linearity of the used Navier–Stokes equations: a
hyper-ROM technique based on mesh coarsening; an implicit ROM subscales
formulation based on a variational multi-scale (VMS) framework; and a Petrov–Galerkin
projection necessary in the case of non-symmetric terms. At the end of the article, we
test the proposed ROM formulation using 2D and 3D versions of the same example: a
differentially heated cavity.

Keywords: Reduced order models, Finite element method, Variational multiscale,
Hyper-reduction, Thermally coupled flow, Low Mach number flow

Introduction
The main purpose of this paper is to develop a model reduction formulation suitable for
thermally coupled flows, by expanding the techniques in projection-based model reduc-
tion developed for several applications on fluid dynamics—mostly for incompressible
Navier–Stokes equations—to the zero Mach limit Navier–Stokes equations developed in
[1,2].
Following the model reduction developments in [3] we choose a PODmodel reduction

approach. The POD, as any projection-based model reduction, aims to describe any phe-
nomena that otherwise would be represented by a ‘computationally expensive’ numerical
method with a surrogate lower dimensional model. This surrogate model is obtained by
projecting the computational expensive numerical approximation onto a previously com-
puted reduced space. Thus, the model reduction is arranged in two stages: an offline part,
where the solution obtained from a ‘high fidelity’ full order model (FOM) is used to build
the desired reduced order subspace; and an online part, where by projecting the original
model onto the reduced subspace the ROM is built and subsequently solved.
The traditional PODmodel reduction approach presents certain drawbacks when con-

sidering non-linear complex problems: added computational cost of representing the
non-linearities over a linearized computational model, inherent numerical instabilities
caused by the Navier–Stokes formulation, and non-optimal projection over the reduced
space caused by the asymmetrical nature of the formulation.
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To overcome the first issue, a wide variety of methods inspired by the work of Everson
and Sirovich [4] have been introduced [5–10], with the term ‘hyper-ROM’ coined by
Ryckelink [11]. This family of methods consists in using a sample of the geometrical
domain. In this paper, we propose an idea of hyper-ROM that differs from the sampling
way: to set the ROM on a geometrical space smaller than the original one. This, applied to
mesh based methods, implies the interpolation of the developed ROM—basis included—
onto a coarser mesh.
To stabilize both the FOM and ROM, we follow the same approach: a VMS framework.

For the FOM case, we follow the stabilized formulation of the thermally coupled zero
Mach limit Navier–Stokes equations developed in [12], using the Orthogonal Subgrid-
Scales (OSS) as defined in [13]. For the ROM case, we propose an analogous method
where the OSS are defined orthogonal to the ROM sub-space.
Lastly, to solve the non-optimality in the reduced space projection, we use a Petrov–

Galerkin projection instead of the standard Galerkin projection as proposed in [7]. In the
specific case of mesh based methods, the POD-ROM method can be seen as a solution
of the original problem using a projection method as in [14], where the Petrov–Galerkin
projection is the one that satisfies the non-singularity of the system of equations when the
FOM is not symmetric.
This article is organized as follows. In the first section, we present a brief description

of the zero Mach number limit Navier–Stokes model. In the second section, we describe
briefly the idea of model reduction along with an explanation of the POD compression
technique for the construction of the basis. In the third section, we present a modified
finite element (FE)-ROM implementation, including the stabilization using VMS, the
new proposed hyper-ROM method, and the Petrov–Galerkin projection. In the fourth
section, we present examples consisting in a differential heated cavity, with 2D and 3D
cases. Finally, we close the paper with some conclusions.

Thermally coupled flow problems
Let us start by describing a general thermally coupled Navier–Stokes formulation as a
system of nonlinear convection–diffusion–reaction equations posed in a time interval
(0, tf ) and in a domain � ∈ R

d with a boundary �, as:

M(Y )∂tY + L(Y ;Y ) = F , in �, t > 0, (1)

with the nonlinear operator L defined as:

L(Y ;Y ) ..= Ai(Y )∂iY − ∂i
(
K ij(Y )∂jY

) + S(Y )Y , (2)

and the boundary and initial conditions:

Y = Ŷ on �D, t > 0, (3a)

niK ij∂jY − niA
f
i Y = T̂n on �N , t > 0, (3b)

Y = Y 0 in �, t = 0, (3c)

where Y = (u, p, T ) is the vector of unknowns (velocity u, pressure p and temperature
T ), n is the geometric unit outward normal vector on �, F is a known vector of d + 2
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components and M, Ai, K ij and S are (d + 2 × d + 2) mass, convection, diffusion, and
reaction matrices respectively. The usual summation convention is implied, with indices
running from 1 to the number of space dimensions d, and the convection matrix Ai =
Ac
i + Af

i is split in order to define the appropriate Dirichlet (�D) and Neumann (�N )
boundary conditions.

LowMach number model

Following the description of themodel in [1], the zeroMach limit Navier–Stokes model is
based on the splitting of the pressure into two relevant parts: mechanical p, which behaves
as in the incompressible and Boussinesq approximations; and thermodynamic pth, which
is constant over the domain � but dependent on the energy added in such domain and
therefore time dependent. Using the previous notation for the thermally coupled flows,
this formulation can be written as:

M =
⎡

⎢
⎣

ρI 0 0
0� 0 0
0� 0 ρcp

⎤

⎥
⎦ , Ac

i =
⎡

⎢
⎣

ρIui 0 0
0� 0 0
0� 0 ρcpui

⎤

⎥
⎦ , Af

i =
⎡

⎢
⎣
0 ⊗ 0 ei 0
ρe�

i 0 0
0� 0 0

⎤

⎥
⎦ ,

K ii =
⎡

⎢
⎣

μI 0 0
0� 0 0
0� 0 λ

⎤

⎥
⎦ , K ij =

⎡

⎢
⎣

μej ⊗ ei − 2
3μei ⊗ ej 0 0

0� 0 0
0� 0 0

⎤

⎥
⎦ , S = 0,

F =
⎡

⎢
⎣

ρg
−dρ

dt
dpth
dt + Q

⎤

⎥
⎦ ,

(4)

where 0 is the vector of Rd with zero in all its components, ei is the unit vector in the
i-th cartesian direction, I is the d × d identity matrix, and ρ is the fluid density. Viscosity
μ, thermal conductivity λ, specific heat at constant pressure cp, and heat capacity ratio γ

are used as constant physical properties; and g and Q represent a body force vector and a
given external heat source respectively. Considering that a state equation is necessary to
close the system, for simplicity, in this work we will focus exclusively on ideal gases, with
p = ρRT as the state equation and R the specific gas constant.
Finally, the formulation is complete with the thermodynamic pressure equations: for

open flows (�u
N �= ∅), where the thermodynamic pressure is determined through global

conservation equations over � (Eq. 5a); and for closed flows (�u
N = ∅), where the ther-

modynamic pressure is determined by the boundary conditions (Eq. 5b):

pth = pth0

∫
�

1
T0
d�

∫
�

1
T d�

(5a)

|�|
(γ − 1)

dpth

dt
+ γ

γ − 1
pth

∫

∂�

n · ud� =
∫

�

Qd� +
∫

∂�

n · λ∇Td� (5b)

Model reduction
Projection-based ROMs rely on the existence of a reduced dimensional sub-space that
approximates the solution space. Let us define a high dimensional space Yh of dimension
M, withϕ its orthonormal basis. Then, the i-th component of any elementY h ∈ Yh can be
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written as the linear combination Yh,i = ∑M
k=1(Yh,i,ϕk

i )ϕ
k
i , with (:, :) a L2-inner product.

Note that Yh may be an approximation to a continuous—infinite dimensional—space.
Since formost cases the exact basisϕ is unknown,we candefine a lower-dimensional space
Yr ⊂ Yh of dimensionm, which approximatesYh asm → M, with a basisφ. Using this test
basis, we can approximate the i-th component of any element Y h as Yh,i ≈ ∑m

k=1 φk
i Y

k ,
where the accuracy of the approximation will depend on how accurate is the basis φ

compared to the exact basis ϕ.

Construction of the basis

Following previous works in model reduction in FE [3,7,9], we use the POD statistical
procedure as a way to build the reduced order sub-space basis φ. The objective of the
PODmethod is finding a basis for a collection of high-fidelity ‘snapshots’ to use it as a the
basis of the desired reduced sub-space.
Let us organize a set of data that has been previously obtained from a solution of the

problem in Eq. 1, as a N -collection of ‘snapshots’ Y s
h,j = Y h,j − Ȳ h in an ensemble:

{Y s
h,j}Nj=1 = {Y s

h,1,Y
s
h,2, . . . ,Y

s
h,N }, (6)

with Ȳ h the mean value of the snapshots.
Now, let us denote as {φk}mk=1 an orthonormal basis of Yh, where any member Y h,j of

the ensemble in Eq. 6 can be approximated as:

Y h,j ≈ Ȳ h +
m∑

k=1
(Y s

h,j ,φ
k )φk . (7)

The POD consists in finding the orthonormal basis {φk}mk=1, such that, for every
k ∈ {1, . . . , m} the mean square error between the elements Y h,j , 1 ≤ j ≤ N , and the
corresponding j-th partial sum of Eq. 7 is minimized on average:

min
{φ}mk=1

1
N

N∑

j=1

∥∥
∥∥∥
Y s

h,j −
m∑

k=1
(Y s

h,j ,φ
k )φk

∥∥
∥∥∥

2

,

subject to (φi,φj) = δij , 1 ≤ i, j ≤ m. (8)

To solve the problem in Eq. 8 we follow a singular value decomposition (SVD) of the
‘snapshots’ collection in Eq. 6, where the resulting left singular-vectors of the decomposi-
tion represent the basis {φk}Mk=1. Here, based on the Eckart–Young–Mirsky theorem we
can define a reduced basis simply by truncating the left singular-vectors at them column
as: {φk}m�M

k=1 . As a criterion for the truncation, we use the retained energy η defined in [3]
as:

η =
∑m

k=1 λk
∑M

k=1 λk
, (9)

where λk are the SVD non-zero singular values.
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Remark Note that this is the way we approximate φ, but there are several other ways
to find a basis for the reduced order sub-space (as the ones in [15,16]). The projection-
based model reduction formulation below should be valid for any basis regardless of the
technique used to obtain it.

Remark In this paper, the ‘snapshots’ data is obtained using a FE approximation and
therefore, the basis φ approximates the FE space Yh—of dimension M—which in turn
approximates the space of the continuous problem.

FE-ROM formulation
Having stated the equations that represent the physical problem and the standard model
reduction approach, we now describe the FE-ROM approximation of the problem.
In this section, let us denoteY as the functional continuous spacewhereY exist. Instead

of following a standard Galerkin approximation of the variational problem—where the
FE space is denoted as Yh—we construct the approximation space Yr ⊂ Y for the ROM.
The FE space is assumed to be built from a FE partition Th = K of the domain �. The
order of the FE interpolation is irrelevant for our discussion.
Introducing the notation (:, :) = (:, :)� and (:, :)� , for the L2-inner product on � and �

respectively, or for the integral of the product of two functions—if they are not square
integrable but their product can be integrated, we can define the variational problem as
finding Y r ∈ Yr , such that:

(M(Y )∂tY r ,ϒr) + B(Y ;Y r ,ϒr) = L(ϒr) ∀ϒr ∈ Yr , (10)

where ϒr is the test function and the problem is written using the forms B and L defined
as:

B(Y ;Y r ,ϒr) ..= (
Ac
i (Y )∂iY r ,ϒr

) − (Af
i (Y )Y r , ∂iϒr)

+ (
K ij(Y )∂jY r , ∂iϒr

) + (S(Y )Y r ,ϒr) , (11)

L(ϒr) ..= (F ,ϒr) + (
T̂n,ϒr

)
�
. (12)

Note that the terms where Y is not approximated by Y r in Eq. 11 involve non-linearities.
In a further section we discuss the linearization scheme and two ways of approximating
these terms.

VMS for FE-ROM

Given the well-known lack of stability in the Galerkin standard formulation—present in
convective dominated regimes—a stabilization technique is necessary. Inspired in previ-
ous works that acknowledge instability issues [17,18] and using a VMS framework as done
for several problems in FE approximations, we develop what we call FE-ROM-Subgrid-
Scales (SGS), which resembles FE-SGS.
We start by splitting the unknown of the continuous problem Y in a part Y r , which

can be resolved by the FE-ROM standard approximation; and a remainder Y̆ , the FE-
ROM-SGS. In this way we can re-define the approximation of the continuous space as
Y = Yr ⊕ Y̆ , where the SGS space Y̆ is any space that completes Yr in Y . Then, the
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variational form of the problem in Eq. 10 expands into two: finding Y r ∈ Yr and Y̆ ∈ Y̆ ,
such that:

(M(Y )∂tY r ,ϒr)+B(Y ;Y r ,ϒr) + (M(Y )∂t Y̆ ,ϒr)

+ B(Y ; Y̆ ,ϒr) = L(ϒr) ∀ϒr ∈ Yr , (13a)

(M(Y )∂tY r , ϒ̆)+B(Y ;Y r , ϒ̆) + (M(Y )∂t Y̆ , ϒ̆)

+ B(Y ; Y̆ , ϒ̆) = L(ϒ̆) ∀ϒ̆ ∈ Y̆ . (13b)

Since it is desirable to avoid derivatives over the subscale Y̆ , we can re-write the bilinear
form B(Y ; Y̆ ,ϒr) in Eq. 13a by integrating by parts within each element and assuming
that the exact tractions are continuous across inter-element boundaries, yielding:

(M(Y )∂tY r ,ϒr) + B(Y ;Y r ,ϒr) + (M(Y )∂t Y̆ ,ϒr)

+
∑

K

(
Y̆ ,L∗(Y ;ϒr)

)
K = L(ϒr) ∀ϒr ∈ Yr , (14)

where (:, :)K is the L2 inner product over element K , and L∗ is the adjoint of the lineal
operator L(Y ; :). Following the formulation in [12], this adjoint operator L∗ is:

L∗(Y ;ϒr) ..= ∂t (M(Y )ϒr) − Af �
j (Y )∂jϒr

− Ac�
j (Y )∂jϒr − ∂jK�

ij (Y )∂iϒr + S�(Y )ϒr . (15)

Subscales approximation

At this point, we have described two sets of equations: a FE-ROM one, in which all the
terms have been described; and a FE-ROM-SGS one. In order to solve the second system,
we follow a standard VMS formulation. After doing integration by parts in some terms,
neglecting the tractions across inter-element boundaries, and replacingu·∇ρ by−ρu

T ·∇T ;
we can re-write Eq. 13b as:

∑

K

(
∂t (M(Y )Y̆ ), ϒ̆

)
K +

∑

K

(
L̆(Y ; Y̆ ), ϒ̆

)

K
=

∑

K

(
R(Y ,Y r), ϒ̆

)
K ∀ϒ̆∈ Y̆ , (16)

with the residual defined asR(Y ,Y r) = F−M(Y )∂tY r −L̆(Y ;Y r), and the linear operator
defined as L̆(Y ;Y r) ..= ∂i(Ac

i (Y )Y r) + Ăf
i (Y r)∂iY − ∂i

(
K ij(Y )∂jY r

) + S(Y )Y r , with:

Ăf
i =

⎡

⎢
⎣
0 ⊗ 0 ei 0
ρe�

i 0 ρui
T

0� 0 0

⎤

⎥
⎦ . (17)

We can re-write Eq. 16 in the following way:

∂t (M(Y )Y̆ ) + L̆(Y ; Y̆ ) = R(Y ,Y r) + ϒ⊥
r in K ∈ Th, (18)

where ϒ⊥
r is a term that ensures that Eq. 18 belongs to Y̆ ⊥ and its definition depends on

the choice of Y̆ .
Now, using the algebraic approximation L̆(Y ; Y̆ ) ≈ τ−1(Y )Y̆ , we can re-write Eq. 18 as:

∂t (M(Y )Y̆ ) + τ−1(Y )Y̆ = R(Y ,Y r) + ϒ⊥
r in K ∈ Th, (19)



Reyes et al. Adv. Model. and Simul. in Eng. Sci.           (2018) 5:28 Page 7 of 20

where τ is the matrix of stabilization parameters that depends on K and the coefficients
of the operator L̆. It is important to notice that so far the matrix τ does not depend on
the choice of the approximation space Yr , and therefore we can use the same definition
of the stabilization parameters as in the FE approximation of the problem. In this case, we
use the definition of the algebraic operator τ given by [2,13]:

τ−1(Y ) =
⎡

⎢
⎣

τ−1
m (Y )I 0 0
0� τ−1

c (Y ) 0
0� 0 τ−1

e (Y )

⎤

⎥
⎦ , (20)

with the stabilization parameters defined as:

τ−1
m = c1

μ

h2
+ c2

ρ|u|
h

, (21a)

τ−1
c = c1ρτm

h2
, (21b)

τ−1
e = c1

λ

h2
+ c2

ρcp|u|
h

, (21c)

where h is the element size and c1 and c2 are algorithmic constants.
To complete the approximation of the subscales, it still remains to define the term

ϒ⊥
r , that is, to choose the appropriate subscales space Y̆ . Based on the orthogonality

property of the basis φ and on the work developed in [13,19], we define the subscales
space Y̆ = Y ∩ Y ⊥

r , which can be thought as being orthogonal to the approximation
space Yr , that implies having:

Y̆ ≈ Y ⊥
r , (22a)

Y̆ ∈ Y ⊥
r , (22b)

ϒ⊥
r ∈ Y̆ ⊥. (22c)

To numerically compute ϒ⊥
r we follow the supposition made in [20], where the

orthogonality between Yr and Y̆ is defined respect to the weighted inner product
(Y ,ϒ)M = (Y ,M(Y )ϒ). Following this condition any subscale Y̆ must satisfy:

(M(Y )Y̆ ,ϒr) = 0 ∀ϒr ∈ Yr . (23)

Now replacing the orthogonality condition (Eq. 23) in Eq. 19, we obtain:

∑

K

(
∂t (M(Y )Y̆ ),ϒr

) = 0 ∀ϒr ∈ Yr ,

∑

K

(
R(Y ,Y r) − τ−1(Y )Y̆ ,ϒr

) +
∑

K

(
ϒ⊥

r ,ϒr
)

= 0 ∀ϒr ∈ Yr . (24)

from where it follows that ϒ⊥
r is the following projection onto the space Y with respect

to L2-inner product, denoted by 
r :

ϒ⊥
r = 
r

(−R(Y ,Y r) + τ−1(Y )Y̆
)
. (25)
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Replacingϒ⊥
r intoEq. 19, andusing the approximation
r

(
τ−1(Y )Y̆

) = M−1(Y )τ−1(Y )
r(
M(Y )Y̆

) = 0 presented in [20], we find an expression for the FE-ROM-SGS:

∂t (M(Y )Y̆ ) + τ−1(Y )Y̆ = 
⊥
r (R(Y ,Y r)) , (26)

with
⊥
r

..= I−
r defined as the orthogonal projection onYr , where I is now the identity
in Yr .
Finally, by introducing the orthogonality condition (Eq. 23) in Eq. 14, neglecting the

term M(Y )∂tY in the residual R of Eq. 26—due to its orthogonality to Y̆ given by
(
M(Y )∂tY , ϒ̆

) = 0, and rearranging Eqs. 14 and 26, we can state the problem in Eq.
13 as finding Y r ∈ Yr and Y̆ ∈ Y̆ , such that:

(M(Y )∂tY r ,ϒr) + B(Y ;Y r ,ϒr) +
∑

K

(
Y̆ ,L∗(Y ;ϒr)

)
K = L(ϒr), (27a)

∂t (M(Y )Y̆ ) + τ−1(Y )Y̆ = 
⊥
r (R(Y ,Y r)) , (27b)

with the adjoint operator L∗ and the residual R redefined as:

L∗(Y ;ϒr) = S�(Y )ϒr − Af �
j (Y )∂jϒr − Ac�

j (Y )∂jϒr − ∂jK�
ij (Y )∂iϒr ,

R(Y ,Y r) = F − L̆(Y ;Y r).

Remark By following the same analysis performed when deriving the orthogonal SGS in
[13,19], we have come to a rather similar definition of the FE-ROM-SGS, where the most
important difference lies in the definition of the orthogonal projection
⊥ in Eq. 26. In the
FE case the projection is done onto the space Y ⊥

h , while in the FE-ROM approximation
it is done onto the space Y ⊥

r .

Remark The choice of the stabilizationparameters τ is done following the Fourier analysis
done in [13]. Since the information represented by the reduced basis corresponds to the
resolved scales from the FOM, the subscales for both the FOM and the ROM are part of
the continuous solution which cannot be approximated by the FOM.

Remark Theprevious definitionof the FE-ROM-SGS is equivalent to thedynamic orthog-
onal SGSmodel in [20]; it is important to acknowledge that subscales could also be imple-
mented without the temporal term (quasi-static), or not orthogonal to Yr . An extensive
analysis of the FE equivalent models is depicted in [12,20].

Time discretization

Any time integration scheme could now be applied to discretize in time the FE-ROM
and FE-ROM-SGS equations together (Eq. 27). Considering the results in [21], where it is
shown that the time integration for the subscales could be one order less accurate than for
the finite element equations without affecting the accuracy of the scheme, we choose for
this work two BackwardDifferentiation Formula (BDFs): of second order for the FE-ROM
equations and of first order for the FE-ROM-SGS ones. Setting a uniform partition of the
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time interval of analysis [0, tf ],with δt the time step and n the superscript that denotes the
current time step, we can approximate the temporal derivatives in Eq. 27 using:

∂tY r |n+1 ≈ δY n+1
r
δt

..= 3Y n+1
r − 4Y n

r + Y n−1
r

2δt
, (28a)

∂t Y̆ |n+1 ≈ δY̆ n+1

δt
..= Y̆ n+1 − Y̆ n

δt
. (28b)

Replacing the time integration scheme (Eq. 28b) in Eq. 27b we get an equation for the
subscales:

Y̆ n+1 = τt (Y n+1)
(


⊥
r

(
R(Y n+1,Y n+1

r )
) + M(Y n+1)

Y̆ n

δt

)

, (29)

with the matrix of effective stabilization parameters is defined as τt (Y n+1)
..=

(
M(Y n+1)

δt + τ−1(Y n+1)
)−1

.
Now, replacing Eq. 29 and the integration scheme (Eq. 28a) in Eq. 27a, we get:

(

M(Y n+1)
δY n+1

r
δt

,ϒr

)

+ B(Y n+1;Y n+1
r ,ϒr)

+
∑

K

(
τt (Y n+1)
⊥

r
(
R(Y n+1,Y n+1

r )
)
,L∗(Y n+1;ϒr)

)

K

+
∑

K

(

τt (Y n+1)M(Y n+1)
Y̆ n

δt
,L∗(Y n+1;ϒr)

)

K
= L(ϒr), (30)

Linearization

To solve the non-linearity present in the terms involving Y , we implement a linearization
scheme based on Picard’s method. Using the terminology used in [20], for each time
step n + 1, we first solve Eq. 30 for iteration i + 1, where the non-linear terms can
be approximated in two ways: as Y n+1,i

r , for linear subscales; or as Y n+1,i
r + Y̆ n+1,i, for

nonlinear subscales. Thenwe solve Eq. 29 for iteration j+1, approximating the non-linear
terms in the same way: by linear subscales (Y n+1,i+1

r ); or non-linear subscales (Y n+1,i+1
r +

Y̆ n+1,j).

Discrete approximation

We can describe the discrete representation of the FE-ROM problem as a composition
of the FE and ROM approximations. In FE the space Yh is defined as made of con-
tinuous piece-wise polynomial functions in the domain �, where we can write the dis-
crete approximation of the unknown as Y ≈ Y h(x, t) ..= ∑n

i=1N (xi)Y i(t), with N (xi)
the shape function of node i. In contrast, in ROM we approximate the unknown Y as
Y (t) ≈ Ȳ + ∑m

k=1 φkY k (t).
Using these two approximations, we can describe the spaceYr in twoways: as a FE space

Yh, represented using orthogonal basis φ, or as a ROM approximation of the problem,
discretized in � using continuous piece-wise polynomial functions. In that way, we can
write the discrete representation of Y r as:
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Y r(x, t) ..=
n∑

i=1
N (xi)

[

Ȳ +
m∑

k=1
φk (xi)Y k (t)

]

, ∀x ∈ �, t > 0. (31)

Petrov–Galerkin projection

Since the formulation presented above introduces the non-symmetrical linear operators
L and L∗, it is necessary to find an optimal projection in a way that it gives us a feasible
solution [14]. To solve this lack of optimality in the projection, we replace the traditional
Galerkin projection by the Petrov–Galerkin projection defined in [7]. Let us re-write the
linearized version of Eq. 30 as the linear system:

��L�Yr = ��R (32)

where � is the discrete basis matrix, ��L� and ��R are the discrete left and right hand
sides of Eq. 30, and Yr the discrete unknown.
To apply in a natural way the Petrov–Galerkin projection we define W = ��L� as

a matrix whose column vectors form a basis to the projection space that allows us to
transform the left hand side of Eq. 32 into a positive semi-define matrix. Projecting Eq. 32
onto such space we get:

W���L�Y r = W���R,
��L����L�Yr = ��L����R. (33)

Using the orthogonality property of the basis��� = I, Eq. 33 becomes one that resembles
the Petrov–Galerkin ROM formulations in [7,9]:

��L�L�Yr = ��L�R (34)

Hyper-ROM

Lastly, in order to reduce the computational cost of evaluatingnonlinear terms,wepropose
a mesh-based hyper-ROM as an alternative to the sampling-based domain reduction
algorithms [5–10].
The mesh-based hyper-ROM consists in the solution of the described ROM problem

using a coarser mesh than the one of the FOM. The implementation of this technique is
done straightforwardly by writing the discrete approximation (Eq. 31) in function of the
new coarser mesh.
Ideally, the coarsening should be performed as a function of the ‘less important’ areas of

the geometry, which can be achieved using already existing mesh refinement algorithms.
In the subsequent exampleswe test this technique using a uniform coarsening of themesh.

Remark When the POD basis is obtained by sampling a mesh-based solution—a FE one
for example—the coarsening of the mesh implies an interpolation of such basis.

Numerical examples
In this section we present two examples consisting of 2D and 3D versions of the initial
transient part of adifferentially heated cavity of aspect ratio 1—similar to theonepresented
in [12,22]. In both examples the flow is considered an ideal gas with physical properties
R = 287.0 J

kgK , cp = 1004.5 J
kgK , and μ = 0.001 kg

m s .
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The computational domain for both problems is defined as � = [0, L] × [0, L] for the
2D problem, and � = [0, L] × [0, L] × [0, L] for the 3D problem, with L = 1 m. The
temperatures on the walls perpendicular to the x-coordinate (horizontal) are fixed to
Th = 960 K and Tc = 240 K; while adiabatic boundary conditions are prescribed in
the remaining walls. Additionally, no slip and impermeable conditions are set over all the
walls, togetherwith a homogeneous gravity force g prescribed in the negative y-coordinate
(vertical). The initial thermodynamic pressure, temperature and density are set to pth0 =
101, 325 Pa, T0 = 600 K, and ρ0 = 0.58841 kg

m3 respectively, and the dimensionless Prandtl

and Rayleigh numbers are set to Pr = cpμ
λ

= 0.71 and Ra = 2|g|ρ2cp
λμ

(Th−Tc)
(Th+Tc) = 3.55 · 106.

For the FOMsolution (as a reference solution and for the construction of the snapshots),
we follow the VMS formulation presented in [20], using the dynamic orthogonal SGS
model. In all cases, we use a constant time step size of δt = 0.01 s. For the finite element
meshes used (described below) this time step is slightly higher than the critical time step
of an explicit scheme due to advection, which in turn is of the same order as that due to
viscous effects. Since we use an implicit scheme, we are not restricted to a critical time
step size, but this observation serves to justify that our choice is adequate.
Additionally to the following examples, we have tested a differentially heated cavity of

aspect ratio 8 analyzed in [23], getting inconclusive results.

Two dimensional case

In the 2D problem, we use 2 uniform structured meshes composed of quadrilateral ele-
ments: one with 10,000 elements and a mesh size h = 0.01, used for the solving the FOM
and the ROM; and one with 2500 elements and a mesh size h = 0.02, for testing the
hyper-ROM formulation. To construct the basis, we collect 500 snapshots for velocity,
pressure and temperature at every 4 time steps in a 20 s interval. Figures 1, 2, and 3, show
temperature contours of the solutions obtained using the FOM, ROM, and hyper-ROM
formulations respectively.
To evaluate the accuracy of the ROM and hyper-ROM formulations, we perform a

series of numerical tests using 12 different sets of basis, varying the retained energy from
η1 = 0.99 to η12 = 0.3. Figure 4 depicts the number of vectors in the basis in function of
the retained energy.

Fig. 1 FOM temperature contours at t = 1, t = 2, and t = 3 s for the 2D differentially heated cavity



Reyes et al. Adv. Model. and Simul. in Eng. Sci.           (2018) 5:28 Page 12 of 20

Fig. 2 ROM temperature contours at t = 1, t = 2, and t = 3 s for the 2D differentially heated cavity

Fig. 3 Hyper-ROM temperature contours at t = 1, t = 2, and t = 3 s for the 2D differentially heated cavity
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Fig. 4 Number of basis vectors for 2D

In Figs. 5 and 6 we compare the Nusselt number for FOM, ROM, and hyper-ROM
solutions. The Nusselt number is calculated as the integral of the local Nusselt number
over the hot and cold walls

∫
�
Nu(x, t)d�, with the local Nusselt number defined as:

Nu(x, t) =
∑

a

L
Th − Tc

n · ∇T (x, t), ∀x ∈ �, t > 0. (35)

As expected,weobserve amorediffusive behaviour, in both themean and thefluctuation
of the Nusselt number, when fewer basis vectors are included. The hyper-ROM results
appear to have the same behaviour of the ROM with lower amplitude. Additionally, we
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Fig. 6 Nusselt number evolution for the cold wall

include a FOM solution (labeled FOMH ) using the coarser mesh to evaluate how the
hyper-ROM formulation relates to a FE mesh coarsening.
Since we are computing an initial transient period of the physical phenomenawe choose

a rootmean square of theNusselt error—over the hot and cold walls—as a way tomeasure
the overall error. The discrete L2-norm error of the Nusselt number—for each time step
i—over all the nodes of coordinates xa of a boundary � is defined as:
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εi =
∑

a ((NuROM(xa) − NuFOM(xa))2
∑

a (NuFOM(xa))2
, (36)

and the root squared mean of εi—for N time steps— is defined as:

εrms =
√√√√

N∑

i=1

(
ε2i
N

)

. (37)

Figure 7 shows the convergence of εrms over the hot and cold walls, and the mean value
over both of them ε̄rms. We also include the convergence error for the FOM using the
coarse mesh.
Although the convergence error does not have a clear slope, it behaves as expected,

with the error decreasing with the addition of basis vectors. It is important to notice that
appears to be an optimal value for η �= 1—the maximum number of basis vectors—where
the error reaches the minimum; considering that this results occur near η = 1, we believe
it can attributed to an overfitting phenomenon. The same idea is explored in [24,25],
where it is attributed to a lack of smoothness or noisiness in low energy basis vectors. The
overall results for the hyper-ROM seem adequate, given that the error is the same order
of the ROM and the coarse mesh FOM solutions.
To evaluate the temporal evolution we perform a discrete Fourier transform of the

Nusselt number. In Figs. 8 and 9 we compare the Nusselt number spectra for the hot and
cold walls respectively.
Againwe see how reducing the amount of basis vectors leads to amore diffusive solution.

But in contrast to Fig. 7, in Nusselt number spectra we observe that the ROM and hyper-
ROM spectra tend to the FOM spectra as we approach η = 1.
Regarding computational time, Fig. 10 shows speedup for all the cases under the same

initial conditions, time step, and computer configuration. As expected the computational
time is reduced when the coarser mesh is used. It is important to note that the computa-
tional time for the ROMand hyper-ROM is decreased not only by the solution of a smaller
linear system but as well for having fewer non-linear iterations.

Three dimensional case

For the 3D problem, we use 2 uniform structuredmeshes composed of regular hexahedral
elements: one with 64,000 elements and a mesh size h = 0.025, used for the solving the
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Fig. 9 Fourier transform of the Nusselt number for the cold wall

FOM and the ROM; and one with 35937 elements and a mesh size h = 0.0̄3, for solving
the hyper-ROM. To construct the basis, we collect 500 snapshots for velocity, pressure
and temperature at every 2 time steps in a 10 s interval.
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Fig. 11 Streamlines at t = 10 for FOM, ROM and hyper-ROM with η = 0.8
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Figure 11 shows a comparison of streamlines of the FOM, ROM and hyper-ROM solu-
tions at the last time step of the simulation.
To test the 3D problem we perform similar tests as the ones in the 2D problem using

6 different sets of bases, varying the retained energy from η1 = 0.99 to η6 = 0.5 Fig. 12
depicts the number of vectors in the basis as a function of the retained energy.
As in the 2D problem, for the 3D case we compute the Nusselt number, the root mean

square of the Nusselt error and the discrete Fourier transform of the Nusselt number for
the hot and cold walls, getting similar results.
In Figs. 13 and 14 we compare the Nusselt number spectra for the hot and cold walls.

Although the results behave in a similar way as in the 2D case, the ROM and hyper-ROM
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seems to be more dissipative, in spite of the ratio of the meshes being smaller. We believe
this could be attributed to the quality of basis, which directly depends on the quality of
the snapshots used to construct it.
Figure 15 shows the root mean square of the Nusselt error for ROM and hyper-ROM,

showing similar results as the 2D case, including the overfitting phenomena when the
retained energy η approaches 1.
Figure 16 shows speedup for ROM and hyper-ROM solutions. The reduction in the

computational time for the 3Dproblem is larger than the one achieved for the 2Dproblem,
using a similar amount of basis vectors.
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Conclusions
In this work we have developed a formulation that allowed us to perform ROMs on the
zero Mach number Navier–Stokes approximation. For that purpose we have described a
set of tools that allowus to tackle themain problems that arise: lack of stability, added com-
putational cost due to the non-linearities and non-optimal projection over the reduced
space.
To solve the lack of stability, we have proposed a VMS-FE-ROM formulation with the

following characteristics:

• It is an implicit formulation, reducing the offline costs and easing the implementation.
• Since it is built over a VMS framework, it incorporates non-linear terms in the adjoint

operator (Eq. 15), which may become relevant in complex flows.
• Itmaintains the orthogonality definition, proposed in [18,26], between the sub-spaces
Yr and Y̆ .

• It is residual-based, as shown in Eq. 18.
• It works with the same stabilization coefficients τ as the ones developed for the VMS-

FE formulation in [2,12].

Although in this work we focused solely in the use of dynamic subscales, it is possible to
construct the same method for quasi-static subscales or other stabilization techniques.
To solve the added computational cost, we have proposed a mesh-based hyper-ROM

that contrary to the traditional sample-based methods, does not require any algorithm
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to select these sampling points. The numerical experiments performed show that this
hyper-ROM method behaves appropriately, only inducing an expected added diffusion
to the solution. A natural extension of the mesh-based hyper-ROM method is the use of
mesh refinement techniques to improve both the computational time and the accuracy of
the method.
Finally, to tackle the non-optimal projection of the non-linear formulation, we give a

different interpretation to the Petrov–Galerkin projection—originally described in [7]—in
order to include it in our formulation.
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