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Abstract

This work aims to present a complete full coupling eXtended finite element
formulation of the thermo-mechanical problem of cracked bodies. The basic concept
of the extended finite element method is discussed in the context of mechanical and
thermal discontinuities. Benchmarks are presented to validate at the same time the
implementation of stress intensity factors and numerical mechanical and thermal
responses. A quasi-transient crack propagation model, subjected to transient thermal
load combined with a quasi-static crack growth was presented and implemented into a
home-made object-oriented code. The developed eXtended finite element tool for
modeling two-dimensional thermo-mechanical problem involving multiple cracks and
defects are confirmed through selected examples by estimating the stress intensity
factors with remarkable accuracy and robustness.

Keywords: Thermo-mechanical, Extended finite element method, Full coupling,
Crack growth, Stress intensity factors computation, Quasi-transient

Background
The interest in fracturemechanics and its applicationshas gainedconsiderable importance
in recent years in various industries: aerospace engineering, automobile industry, civil
engineering, etc. This attention is due to the high cost caused by the presence of cracks
and defects, which require more energy, time, substantial efforts and dedicated strategies
regarding intervention, maintenance, repair, etc. Practically, taking into account the real
environmental conditions in service has become essential, when the material is subject to
a significant gradient of temperature. For instance, temperature change in real structures,
where the deformation are constrained, can engender a mechanical load and a high-stress
concentration around crack tips. Subsequently, crack can propagate with a, a priori, not
known orientation, direction, intensity etc. Since, cracks cannot be eliminated under any
circumstances; this prompts engineers to guide our efforts towards winning strategies in
prevention, design and especially analysis that can be provided by the tool of numerical
modeling.
The numerical modeling of cracked domains using finite element method (FEM) has
clearly stood aside for the eXtendedfinite elementmethod (XFEM) in the last twodecades.
XFEM has been able to provide essential answers for several situations, where the FEM
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method becomes numerically very expensive to have an optimal convergence, such as
singularities, strong discontinuities, high gradient, moving surfaces, etc. This technique
allows, by prior knowledge of the physical behavior of the problem, to enrich the space
of the solutions by non-polynomial asymptotic functions when it is a singularity and a
jump-function when it comes to a discontinuity or a combination of both of them. The
resulting approximation space has to reproduce the Partition of Unity (PU), Babuška and
Melenk [1]. The first work that introduced enriched FEMwas Belytchko and Black’s paper
[2] which presented an implicit description of the crack with minimal remeshing. Moës
et al. [3] improved this technique by incorporating a more suitable way to consider the
discontinuities throughout the crack faces away from the crack tip by the generalized
Heaviside function and branching functions for the near crack tip. Daux et al. [4] later
extend the approach for multiple cracks and holes for the mechanical problem.
Sukumar et al. [5] used the XFEM tomodel fracture in three-dimensional by using the PU
concept, where the two-dimensional asymptotic crack tip displacement fields were added
to the FE approximation to account for the crack. The XFEM for non-planar cracks in
three dimensions illustrating the crack geometry using two signed distance functions was
presentedbyMoës et al. [6]. Sukumar andPrévost [7] extendedXFEMfor two-dimensional
crack modeling in isotropic and bimaterial media and later to demonstrate the numerical
modeling of stress intensity factors in crack growth problems in Sukumar, and Prévost
[8]. Lee et al. [9] exposed a combination of the XFEM and themesh superpositionmethod
for modeling of stationary and growing cracks, where a step function implicitly described
the discontinuity on the PU, and the crack tip was modeled by superimposed quarter
point elements on an overlaid mesh. Budyn et al. [10] displayed amodel for multiple crack
growth considering the junction of cracks in brittle materials using XFEM, which does
not require remeshing as the cracks grow.
Other XFEM aspects have been addressed: In contact, Khoei et al. [11] used XFEM to
model the frictional contact problemusing the penaltymethod.Nistor et al. [12] developed
an approach to couple the XFEM with the Lagrangian large sliding frictionless contact
algorithm. An algorithm based on node-to-segment XFEM contact was presented by
Khoei et al. [13] based on the XFEM to model the large deformation-large sliding contact
problem using the penalty approach. In stabilization aspect, an XFEM pre-conditioner
which stabilizes the enrichments by applying Cholesky decompositions to certain sub-
matrices of the stiffness matrix was proposed by Béchet et al. [14]. Menk et al. [15] expose
another pre-conditioningmethod suited for parallel computation. Also, another approach
initially developedbyHansbo et al. [16] to simulate strong andweakdiscontinuities in solid
mechanics. A similarmethodwas used by Song et al. [17], namedphantomnodes, for shear
modeling dynamic crack and shear band propagation. Rabczuk et al. [18] developed a new
crack tip element for the phantom node method suited for one-point quadrature scheme
and can be used with other general quadrature schemes. XFEM numerical integration
aspect is performed by Dolbow et al. [19] by using a sub-triangulation for computing the
element area below and above the crack and to set criteria for node enrichment with
discontinuity function. Laborde et al. [20] used a singular mapping for each sub-triangle
and a bidirectional Gauss quadrature in each direction. In Ventura [21], the constructing
sub-cells in the numerical integration of discontinuity functions is removed by defining
an equivalent polynomial function. Schwarz–Christoffel conformal mapping was used to
map an arbitrary polygon onto a unit disk by Natarajan et al. [22]. A fairly comprehensive
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review of the different aspects of XFEM was presented by Khoei [23]. All these advances
in XFEMmentioned before are in the field of solid mechanics.
In this paper, the approach taken is based on a semi-implicit thermo-mechanical-crack-
growth algorithm in which the combined full coupling thermal andmechanical responses
have to be estimated beforehand. Then, the developed numerical fracture mechanics
module takes those responses as inputs to evaluate the stress intensity factors, J-integral,
the update of the crack in growth, etc. This actualization is done by an implicit description
of the crack, using theLevel-SetMethod (LSM)presentedfirstly byOsher andSethian [24].
The LSMprovides a fundamental complementary to knowwhen, where and how to enrich
the crack by determining its relative position. Stolarska et al. [25] introduced an algorithm
that combines the XFEM and LSM to model mechanical crack growth, where the LSM
was used to model the crack surface and crack tip locations. Moreover, stress intensity
factors (SIFs) computation, as the prime parameter of prediction, makes it possible to
obtain an essential knowledge of the behavior of the crack. This evaluation enables to
predict whether the structure becomes unsafe in service conditions, especially when it is
in a thermo-mechanical context, where the spatial distribution of the mechanical stresses
induced by the thermal field is unpredictable.
Interest in thermo-mechanical applications appeared later with Michlik and Berndt [26]
presented an approach of thermo-mechanical XFEM analysis to account for the existence
of cracks in thermal barrier coating for predicting an effective thermal conductivity and
Young’s moduli of multi-layered. Duflot [27] used the XFEM for the analysis of steady-
state thermally stressed, cracked solids in thermo-elastic problems, where he enriched
both thermal and mechanical fields to represent the discontinuous temperature and dis-
placement. Fagerstöm and Larsson [28] presented a thermo-mechanical fracture formu-
lation based on discontinuous representation for temperature and displacements fields
applicable to the fracture process zone into a cohesive zone. Zamani et al. [29] proposed a
higher orderXFEM to predict the SIFs for thermo-elasticwith stationary cracks, The com-
putation of SIF is extracted directly from theXFEMdegrees of freedom. Zamani et al. [30],
in a later work, implemented the XFEM tomodel the effect of themechanical and thermal
shocks on a bodywith a stationary crack. Lee et al. [31] presented anXFEMmethod for the
analysis of heat conduction at submicron scales of geometrically complex nanostructured
heterogeneous materials. Fan et al. [32] used XFEM to investigate the effect of thermally
grown oxide on multiple surfaces cracking behavior in an air plasma sprayed thermal
barrier coating system. Hosseini et al. [33] introduced a computational method based on
the XFEM for fracture analysis of isotropic and orthotropic functionally graded materi-
als (FGM) under mechanical and steady-state thermal loadings. Yu et al. [34] exploited
XFEM for modeling the temperature field in heterogeneous materials, where the stan-
dard temperature field was enriched by using the level-set-based enrichment functions
which model the interfaces. Macri et al. [35] presented a multiscale technique for mod-
eling heterogeneous materials based on an enriched partition of unity that incorporates
the thermal effects occurring on the microstructure into the global model for simulation.
In Sapora et al. [36], an analogy between fracture and contact mechanics is proposed to
investigate debonding phenomena at imperfect interfaces due to thermomechanical load-
ing and thermal fields in bodies with cohesive cracks. From fracture mechanics point of
view, Goli et al. [37] implemented the path-independent interaction integral in the con-
text of the partition of unity for mixed mode adiabatic cracks under thermo-mechanical
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loadings particularly in orthotropic non-homogenous materials for a steady-state ther-
mal problem. Bayesteh et al. [38] study a thermo-mechanical fracture of inhomogeneous
cracked solids by the extended isogeometric analysis method, crack faces, and tip XFEM
enrichment are incorporated into the non-uniform rational basis splines functions of iso-
geometric analysis (IGA) for static crack and steady-state thermal problem. Jia and Nie
[39] adopted XFEM to analyze the interaction between a single or multiple macroscopic
or microscopic inclusion and cracks for static crack and under the steady-state thermal
problem. The work of Jaśkowiec [40] is concerned with modeling the heat flow through
cracks in three-dimensional thermo-mechanical problems, the model for crack heat flow
is combinedwith cohesive crackmodel. He et al. [41] established an XFEM thermo-elastic
fracture problem for aluminium alloy metal inert gas welding, which includes a variable
heat source with the initial and boundary conditions for a cracked plate structure. Li and
Fish [42] developed a thermo-mechanical extended layerwise method for the laminated
composite plates with delaminations and transverse cracks; transverse cracks are mod-
eled using classical XFEMunder puremode-I. Recently, Zarmehri et al. [43] implemented
XFEM to extract stress intensity factors for a stationary crack in an isotropic 2D finite
domain under thermal shock, the coupled generalized thermo-elasticity theory employed
is based on Green-Lindsay model.
Although the plethora of works has treated numerical thermo-mechanical analysis using
classical XFEM recently, few works have employed the enhanced version of XFEMnamed
XFEM-f.a. in order to ensure an optimal convergence through a geometrical enrichment
regardless of the mesh size. This work aims at developing the complete full thermo-
mechanical coupling using XFEM in adiabatic cracked media adopting a geometrical
enrichment. The implementation was firstly validated for a single crack from the existing
examples in the literature. Then, validation of the case of the combination between a hole
and cracks, and the influence of crack size and a single hole size on the stress intensity
factors, i.e., on the behavior of the rupture in a given structure, is performed. This case was
investigated with the work of Prasad et al. based on the dual boundary element method
for thermo-elastic crack problems [44]. Notably, the case of transient thermal loading and
its impact on the SIFs profiles was treated, then a situation of the growth in mode-I was
analyzed. Moreover, this work study the case of the thermo-mechanical propagation of
multiple cracks in the presence of multiple holes in mixed mode.
This paper consists of six sections. The second one sketch the mathematical, physical and
variational framework of the two-dimensional plane strain thermo-mechanical problem
studied in a cracked medium. The third section intended for approximation spaces and
the XFEMdiscretized forms of displacement and temperature fields as well as the full cou-
pling XFEMmatrices for each sub-problem part and the integration technique employed.
Section four deals with the crack growth criterion assumed in this study, the form of the
thermo-mechanical J-integral and the extraction of SIFs. Section five describes the specific
numerical approach of amodifiedXFEMversion involved. Several validationmodels from
the literature are then considered for validation purpose; another benchmark with cracks
and a manufacturing flaw idealized by a hole; an example of crack growth in mode-I,
then in transient thermal loading; and lastly a mixed-mode crack growth model designed
carefully for a specimen with multiple holes and cracks in the thermo-mechanical case.
Finally, we conclude by a summary and some proposed extensions of this work.
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Problem and variational formulations
Governing equations

Consider a linear-elastic, isotropic and homogeneous body occupying a geometrical
cracked domain � bounded by � = ∂� in Fig. 1. The boundary � is composed of parts
�u, �T , �t , �q and �c. The equations of thermo-mechanical problem, assuming small
displacements and small strains on � \ �c are

ρc
∂T
∂t

(x, t) + ∇ · q(x, t) = Q(x, t) (1)

q(x, t) = −k∇T (x, t) (2)

∇ · σ (x, t) + b(x) = 0 (3)

σ (x, t) = C : (ε − εT )(x, t) (4)

εT (x, t) = α(T (x, t) − T0(x))I (5)

ε(x, t) = ∇su(x, t) (6)

The objective is to find u(x, t) kinematically admissible, T (x, t), σ (x, t) and q(x, t) for any
(x, t) ∈ (� \ �c)×]0, T f ], where, Tf is the end time. The fields are displacement vector
u, temperature T , stress tensor σ , strain tensor ε, ’thermal strain’ tensor εT defined with
respect to a reference temperature T0, heat flux vector q; the properties of materials are
scalar thermal conductivity k , thermal expansion coefficient α, density ρ, specific heat
capacity c, and the isotropic fourth-order Hooke tensor C, Q(x) and b(x) are respectively
the imposed heat source and the body force on�\�c. I is the second-order identity tensor
and ∇s is the symmetric gradient operator on a vector field. Prescribed displacements u
and temperatures T are imposed respictively on �u and �T , while tractions t0 and heat
flux q are imposed on �t and �q as

u = u on �u, σ · n = t on �t , σ · n = 0 on �c, (7)

T = T on �T , q · n = q on �q, q · n = 0 on �c, (8)

The crack surface �c is assumed to be traction-free. The problem is well-defined with
�T ∪ �q ⊂ �, �T ∩ �q = ∅ and �u ∪ �t ⊂ �, �u ∩ �t = ∅.
Thermal problem is merely time-dependent, while the mechanical one is quasi-static
by neglecting inertial effects, Khoei et al. [45]. The time appeared in σ (., t), ε(., t) is a
pseudo-time induced by the real-time in the time-space ]0, T f ]. In the staggered thermo-
mechanical problem, which is not the case for this present work, the transient thermal
problem is solved first to compute the temperature field at the real-time t, then the quasi-
static mechanical problem defined by the equation Eq. (3) is solved by taking T (t) as
input. Consequently, the resolution of the mechanical problem, in pseudo-time ’march-
ing’, becomes conditioned continuously in real-time by the resolution of the thermal
problem. Hence, by splitting the mechanical stress σ (., t) to a global stress σ g(., t) and
’thermal stress’ σ th(., t), the continuous space of mechanical pseudo-times can be defined
for a traction-free crack by

PT t =
{
t̃ : ∇ · σ g(x, t̃) + b = F (t);u|�u =u; σ · n|�t = t such F (t) = ∇ · σ th(x, t)

}

(9)

For a given real-time t, space PT t will be reduced to a singleton. This definition explains
that for each real-time a unique pseudo-time is defined implicitly and naturally with the
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Fig. 1 Cracked domain in two dimensions

temporal evolution of the system. This allows to simply consider t̃ ≡ t. Also, from the
numerical discretized point of view, it is possible to study a direct steady problem and to
avoid the pseudo-time steppingwith an associated small-time step in the non-steady state.
Since, in this study, the problem is strongly coupled, Eqs. (1)–(6), the overall dynamic of the
system is driven by the transient problem. Thus, the causal real-time retrace the ’dynamic’
of the mechanical problem which becomes pseudo-time-dependent. Subsequently, the
entire problem is treated as a monolithic object, and all sub-problem parts progressed
simultaneously.
Note that in case of several cracks, the mother crack �c can be decomposed into many
n adiabatic cracks, �c = ⋃n

1 �ci such every ith crack remains adiabatic q · n = 0 and
traction-free σ · n = 0 on each �ci , for any i ∈ �1, n�. Henceforth, we will present the
XFEM developments for the mother crack, which remains valid for all sub-cracks.

Variational form

The space of admissible displacement and temperature is U × T , X = (u, T ) ∈ U × T ,
where variational spaces U and T are defined on Sobolev space H1(�) by

U = {u ∈ H1(�)2 : u = u on �u and u is discontinuous on �c},
T = {T ∈ H1(�) : T = T on �T and T is discontinuous on �c},

and the spaces of homogeneous essential conditions are given by

U0 = {u ∈ H1(�)2 : u = 0 on �u} ⊂ H1
0 (�)2, (10)

T0 = {T ∈ H1(�) : T = 0 on �T } ⊂ H1
0 (�) (11)

The weak form of the thermo-mechanical problem, with the test functions v and w, can
be expressed as follow: Find u ∈ U and T ∈ T such
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Wu
t (u, v) =

∫

�

ε(v) : C : ε(u)d� −
∫

�

v · b d� −
∫

�t
v · t d�

−
∫

�

ε(v) : C : εT (T )d� = 0, ∀v ∈ U0 (12)

WT (T,w; t) =
∫

�

w
(

ρc
∂T
∂t

)
d� +

∫

�

∇w · (k∇T ) d� −
∫

�

w · Q d�

+
∫

�q
w · q d� = 0, ∀w ∈ T0 (13)

XFEM approximation and numerical integration
Full coupled eXtended Finite Element form

Considering a finite elementmeshMwithout taking account of the crack which is treated
separately by an implicit description using the level-set method. The XFEM shifted dis-
crete form of each component, u ∈ {u, v}, of the displacement field on M takes the
following form:

uh(x, y) =
∑
i∈NA

Ni(x, y)ui +
∑

j∈NAcr

Nj(x, y)[H (x, y) − H (xj, yj)]︸ ︷︷ ︸
	j

buj

+
∑

k∈NAtip

Nk (x, y)
∑

l∈�1,L�

[Fl(r, θ ) − Fl(rk , θk )]

︸ ︷︷ ︸
�k

cukl , (14)

whereA represents the whole set of nodes forming themesh including all enriched nodes,
A � M; Acr describes all the nodes building the elements crossed by the crack without
tips, Acr ⊂ A; and Atip denotes the nodes constructing the tip elements, Atip ⊂ A. NA,
NAcr and NAtip are the countable sets of the nodes, respectively, of A, Acr and Atip. The
singular asymptotic basis functions are given in polar coordinates (r, θ ) by

{Fl(r, θ )} = √
r
{
sin

θ

2
, cos

θ

2
, sin

θ

2
cos θ , cos

θ

2
cos θ

}
(15)

Similarly, the discrete form of the temperature field with a single asymptotic function,
and with the same definitions mentioned above can be written as

Th(x, y) =
∑
i∈NA

Ni(x, y)Ti +
∑

j∈NAcr

Nj(x, y)[H (x, y) − H (xj, yj)]︸ ︷︷ ︸
	j

bTj

+
∑

k∈NAtip

Nk (x, y)[F1(r, θ ) − F1(rk , θk )]︸ ︷︷ ︸
ϒk

cTk1, (16)

namely that the asymptotic expression of the temperature field of an adiabatic crack can
be expressed on the point (r, θ ) in the polar reference centered on the corresponding
crack-tip, Duflot [27], as

T = −KT
k

√
2r
π

sin
(

θ

2

)
(17)

Henceforth, we adopt the notations of u := uh and T := Th for numerical develop-
ment, without making a difference between the continuous and the discrete form of both
displacement and temperature.
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Time discretization can be obtained by assuming that two displacement-temperature {Xi}
at time ti and {Xi+1} at time ti+1, ti+1 = ti + �t, are related by the generalized trapezoid
rule, including a parameter to set β ,

{Xi+1} = {Xi} + [
(1 − β){Ẋi} + β{Ẋi+1}

]
�t (18)

For a given time-dependant linear system [C]{Ẋ} + [K ]{X} = {F}, we can write Eq. (18)
for ti then for ti+1, multiplying the first by (1 − β) and the second by β , adding the two
resulting equations and eliminating the time derivative term for ti+1 by Eq. (18); then, after
some handling, we obtain the time-dependent scheme to compute {Xi+1} at the actual
time by⎧⎪⎪⎨

⎪⎪⎩

(
β[K ] + 1

�t [C]
) {Xi+1} = β{Fi+1} + [C]

( 1
�t {Xi} + (1 − β){Ẋi}

)
,

{Ẋi} = [C]−1 ({Fi} − [K ]{Xi}) ,
{X0} = X0

To improve stability of the previous scheme, we choose the particular case of Crank–
Nicolson, with β = 1

2 which is unconditionally stable and with no numeric dissipation
into the numerical approximation.
Let X be the global variable of the full XFEM thermo-mechanical coupling, such {X}T ={{Ustd}T , {Uenr}T , {Tstd}T , {Tenr}T

}
; where {Ustd} and {Uenr} are respectively the standard part

and the enriched part of the displacement; the same goes for the temperature. The full
coupling form of the XFEM stiffness matrix, damping matrix and force vector are given
by

[
KXFEM

glob

] =
⎡
⎢⎣
[KUU ] [KUT ]

[0] [KTT ]

⎤
⎥⎦ ,

[
CXFEM

glob

]
=

⎡
⎢⎣

[0] [0]

[0] [CTT ]

⎤
⎥⎦ , (19)

{FXFEM
glob }T =

{
{FU }T , {FT }T

}
(20)

where [KUU ] is the purely mechanical part; [KTT ] is the purely thermal part; [KUT ] is the
coupling part describes the influence of the thermal problem on the mechanical one; and
the zero termmatrix explains that there is no influence of the mechanical problem on the
thermal one.

• Mechanical part:
The unknowns for mechanical problem are {Ui, bui , c

u
i }T ; the mechanical stiffness matrix

can be written as

[KUU ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Kuu
uu ] [Kuu

uv ] [Kubu
uu ] [Kubu

uv ] [Kucu
uu ] [Kucu

uv ]
[Kuu

vv ] [Kubu
vu ] [Kubu

vv ] [Kucu
vu ] [Kucu

vv ]
[Kbbu

uu ] [Kbbu
uv ] [Kbcu

uu ] [Kbcu
uv ]

[Kbbu
vv ] [Kbcu

vu ] [Kbcu
vv ]

Sym. [Kccu
uu ] [Kccu

uv ]
[Kccu

vv ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (21)

where the expression of each sub-matrix component, with respect to the Lamé’s constants
μ and λ denoting in the indicial notation of the stress σij = 2μεij+[λεkk −α(3λ+2μ)(T −
T0)]δij , can be given explicitly by

[Kuu
uu ] =

∫

�

{
(2μ + λ)

∂Ni
∂x

∂Nj

∂x
+ μ

∂Ni
∂y

∂Nj

∂y

}
d�, (22)
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[Kuu
uv ] =

∫

�

{
λ

∂Ni
∂x

∂Nj

∂y
+ μ

∂Ni
∂y

∂Nj

∂x

}
d�, (23)

[Kuu
vv ] =

∫

�

{
(2μ + λ)

∂Ni
∂y

∂Nj

∂y
+ μ

∂Ni
∂x

∂Nj

∂x

}
d�, (24)

and,

[Kubu
uu ] =

∫

�

{
(2μ + λ)

∂Ni
∂x

∂	j

∂x
+ μ

∂Ni
∂y

∂	j

∂y

}
d�, (25)

[Kubu
uv ] =

∫

�

{
λ

∂Ni
∂x

∂	j

∂y
+ μ

∂Ni
∂y

∂	j

∂x

}
d�, (26)

[Kubu
vu ] =

∫

�

{
λ

∂Ni
∂y

∂	j

∂x
+ μ

∂Ni
∂x

∂	j

∂y

}
d�, (27)

[Kubu
vv ] =

∫

�

{
(2μ + λ)

∂Ni
∂y

∂	j

∂y
+ μ

∂Ni
∂x

∂	j

∂x

}
d�, (28)

and,

[Kucu
uu ] =

∫

�

{
(2μ + λ)

∂Ni
∂x

∂�k
∂x

+ μ
∂Ni
∂y

∂�k
∂y

}
d�, (29)

[Kucu
uv ] =

∫

�

{
λ

∂Ni
∂x

∂�k
∂y

+ μ
∂Ni
∂y

∂�k
∂x

}
d�, (30)

[Kucu
vu ] =

∫

�

{
λ

∂Ni
∂y

∂�k
∂x

+ μ
∂Ni
∂x

∂�k
∂y

}
d�, (31)

[Kucu
vv ] =

∫

�

{
(2μ + λ)

∂Ni
∂y

∂�k
∂y

+ μ
∂Ni
∂x

∂�k
∂x

}
d�, (32)

and,

[Kbbu
uu ] =

∫

�

{
(2μ + λ)

∂	i
∂x

∂	j

∂x
+ μ

∂	i
∂y

∂	j

∂y

}
d�, (33)

[Kbbu
uv ] =

∫

�

{
λ

∂	i
∂x

∂	j

∂y
+ μ

∂	i
∂y

∂	j

∂x

}
d�, (34)

[Kbbu
vv ] =

∫

�

{
(2μ + λ)

∂	i
∂y

∂	j

∂y
+ μ

∂	i
∂x

∂	j

∂x

}
d�, (35)

and,

[Kbcu
uu ] =

∫

�

{
(2μ + λ)

∂	i
∂x

∂�k
∂x

+ μ
∂	i
∂y

∂�k
∂y

}
d�, (36)

[Kbcu
uv ] =

∫

�

{
λ

∂	i
∂x

∂�k
∂y

+ μ
∂	i
∂y

∂�k
∂x

}
d�, (37)

[Kbcu
vu ] =

∫

�

{
λ

∂	i
∂y

∂�k
∂x

+ μ
∂	i
∂x

∂�k
∂y

}
d�, (38)

[Kbcu
vv ] =

∫

�

{
(2μ + λ)

∂	i
∂y

∂�k
∂y

+ μ
∂	i
∂x

∂�k
∂x

}
d�, (39)

and,

[Kccu
uu ] =

∫

�

{
(2μ + λ)

∂�i
∂x

∂�k
∂x

+ μ
∂�i
∂y

∂�k
∂y

}
d�, (40)

[Kccu
uv ] =

∫

�

{
λ

∂�i
∂x

∂�k
∂y

+ μ
∂�i
∂y

∂�k
∂x

}
d�, (41)

[Kccu
vv ] =

∫

�

{
(2μ + λ)

∂�i
∂y

∂�k
∂y

+ μ
∂�i
∂x

∂�k
∂x

}
d� (42)
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The mechanical part of the force vector,

{FU }T =
{

{Fu
u }T {Fu

v }T {Fbu
u }T {Fbu

v }T {Fcu
u }T {Fcu

v }T
}

(43)

{Fu
u } =

∫

�

Ni b1 d� +
∫

�t
Ni t1 d� −

∫

�

β
∂Ni
∂x

T0 d�;

{Fu
v } =

∫

�

Ni b2 d� +
∫

�t
Ni t2 d� −

∫

�

β
∂Ni
∂y

T0 d�, (44)

{Fbu
u } =

∫

�

	j b1 d� +
∫

�t
	j t1 d� −

∫

�

β
∂	j

∂x
T0 d�;

{Fbu
v } =

∫

�

	j b2 d� +
∫

�t
	j t2 d� −

∫

�

β
∂	j

∂y
T0 d�, (45)

{Fcu
u } =

∫

�

�k b1 d� +
∫

�t
�k t1 d� −

∫

�

β
∂�k
∂x

T0 d�;

{Fcu
v } =

∫

�

�k b2 d� +
∫

�t
�k t2 d� −

∫

�

β
∂�k
∂y

T0 d� (46)

• Thermal part:
The unknowns for thermal problem are {Ti, bTi , c

T
i }T ; the thermal stiffness matrix can be

written as

[KTT ] =
⎡
⎢⎣
[KTT ] [KTbT ] [KTcT ]

[KbTbT ] [KbT cT ]
Sym. [KcT cT ]

⎤
⎥⎦ , (47)

where the expression of each sub-matrix component can be given explicitly by

[KTT ] =
∫

�

k
{

∂Ni
∂x

∂Nj

∂x
+ ∂Ni

∂y
∂Nj

∂y

}
d�, (48)

[KTbT ] =
∫

�

k
{

∂Ni
∂x

∂	j

∂x
+ ∂Ni

∂y
∂	j

∂y

}
d�, (49)

[KbTbT ] =
∫

�

k
{

∂	i
∂x

∂	j

∂x
+ ∂	i

∂y
∂	j

∂y

}
d�, (50)

and

[KTcT ] =
∫

�

k
{

∂Ni
∂x

∂ϒk
∂x

+ ∂Ni
∂y

∂ϒk
∂y

}
d�, (51)

[KbT cT ] =
∫

�

k
{

∂	i
∂x

∂ϒk
∂x

+ ∂	i
∂y

∂ϒk
∂y

}
d�, (52)

[KcT cT ] =
∫

�

k
{

∂ϒj

∂x
∂ϒk
∂x

+ ∂ϒj

∂y
∂ϒk
∂y

}
d�, (53)

The thermal part of the global force vector,

{FT }T =
{

{FT }T {FbT }T {FcT }T
}
, (54)

{FT } =
∫

�

NiQ d� −
∫

�q
Niq d�; {FbT } =

∫

�

	iQ d� −
∫

�q
	iq d�,

{FcT } =
∫

�

ϒiQ d� −
∫

�q
ϒiq d� (55)
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• Coupled part:
The thermo-mechanical coupled part can be expressed as

[KUT ] = α

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[KTu
u. ] [KbTu

u. ] [KcTu
u. ]

[KTu
v. ] [KbTu

v. ] [KcTu
v. ]

[KTbu
u. ] [KbTbu

u. ] [KcTbu
u. ]

[KTbu
v. ] [KbTbu

v. ] [KcTbu
v. ]

[KTcu
u. ] [KbT cu

u. ] [KcT cu
u. ]

[KTcu
v. ] [KbT cu

v. ] [KcT cu
v. ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2α(μ + λ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni
∂Nj
∂x 	i

∂Nj
∂x ϒi

∂Nj
∂x

Ni
∂Nj
∂y 	i

∂Nj
∂y ϒi

∂Nj
∂y

Ni
∂	j
∂x 	i

∂	j
∂x ϒi

∂	j
∂x

Ni
∂	j
∂y 	i

∂	j
∂y ϒi

∂	j
∂y

Ni
∂�j
∂x 	i

∂�j
∂x ϒi

∂�j
∂x

Ni
∂�j
∂y 	i

∂�j
∂y ϒi

∂�j
∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(56)

And the damping non-zero matrix [CTT ] is given by

[CTT ] =
⎡
⎢⎣
[CTT ] [CTbT ] [CTcT ]

[CbTbT ] [CbT cT ]
Sym. [CcT cT ]

⎤
⎥⎦ , (57)

where each component can be expresses by,

[CTT ] =
∫

�

ρcNiNj d�; [CTbT ] =
∫

�

ρcNi	j d� (58)

[CbTbT ] =
∫

�

ρc	i	j d�; [CTcT ] =
∫

�

ρcNi�j d� (59)

[CbT cT ] =
∫

�

ρc	i�j d�; [CcT cT ] =
∫

�

ρc�i�j d� (60)

Numerical integration

In XFEM, the standard Gauss approximation approach cannot be used for the elements
crossed by the crack. It is then necessary to modify it appropriately to evaluate the contri-
bution of the weak form Wu

t and WT for the two compartments generated by the crack
at the sub-domain element �e level. Indeed, the XFEM numerical integration requires
a particular treatment due to the complexity encountered when integrating elements
traversed by the discontinuity (�c,e = �e ∩ �c) or crack-tip-element where the approxi-
mation functions are non-polynomials. The enrichment remains local in the vicinity of the
crack region, termed enriched-zone; therefore, the area affected by this special treatment
is located at the level of the enriched-zone. Beyond this zone, the elements are considered
as standards with 4 or 8 integration points per non-enriched element. In the elements
crossed completely by the crack �c

e, split or vertex element, the resulting configuration
yields to a convex domain C and a complement non-convex domain Cc

�c
e
. This situation

needs a suitable geometrical approach, to deal with all possible cases, by a sub-polygons
subdivision process to form a convex disjoint partition. A set ofme sub-convex-elements
K of the same dimension taking account the relative position of the crack at the sub-
domain element, such �e = ⋃me

1 K , Dolbow et al. [19] and Laborde et al. [20], is taken.
The same procedure can be done for tip-elements, or partially crossed by the crack, with
muchmore attention due to the non-polynomial aspect of the functions of approximation.
Commonly for both cases, the whole subdivision at the local element level can be seen as
a spider-web delimited by the element borders, Fig. 2, centered on the crack-tip for the
tip-element case and on the iso-barycenter of C or Cc for split or vertex element cases.
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Fig. 2 Integration procedure used: sub-triangulation mesh formed from Gauss points generated around
surface and tip of the crack

In split element each sub-element take 7 integration points per K , in total we obtain
7 ∗ me points per split/vertex element. Also, we assume more integration points on the
tip-elements to capture well numerically the singularity by 19 integration points per K ; in
total, we get 18 ∗ me per tip element. To note that to refine the XFEM approximation on
the elements of transition between fully enriched elements and standard ones, we keep
the same treatment as tip element with a spider-web centered on the iso-barycenter of
the element.

Enriched zone update in crack growth

In the initial state of propagation, the position of the crack is predefined �0
c ; the meshM

is properly generated, once and for all, without any change on it during the process of
growth. Then, the relative position of the crack is implicitly identified by level-set func-
tions, leaving aside its knownCartesian global position. Consequently, crack is recognized
independently of the mesh definition, relatively, with respect to its nodal environment
thanks to the signed-distance function. At this early stage, to write the discrete XFEM
form of the displacement, Eq. (14), and the temperature, Eq. (16), fields, we ought to
select the two kinds of enriched nodes families, Heaviside and tip enriched nodes. All the
mesh nodes including those wholly enriched are roughly approximated by the standard
shape functions. The nodes enriched by Heaviside function are described by the nodes
forming the elements thoroughly crossed by the crack. The tip candidate nodes are such
as those nodes composing the tip element for a topological enrichment; in geometrical
enrichment on a given disk, D of radius R and centered on the tip, the discrete set of tip
nodes is formed by the intersection of the mesh M and the disk D, M ∩ D. In geomet-
rical enrichment instance, D crosses undoubtedly, for a large radius, the already selected
Heaviside nodes. As a result, these nodes should be enriched simultaneously by the com-
bined form of branching function and Heaviside, F + H . This selection configuration is
performed for the initial increment and will identify the enriched-zone EZ0 related to the
position of the crack �0

c which is supposed to be unique. At the next increment, the same
procedure is followed until a (k − 1)th incremental crack is reached, �k−1

c . At the kth
increment, we suppose that the chosen crack growth criterion is satisfied, which allows
extending the crack in the appropriate direction. This progress creates a new geometrical
configuration of the crack and a new enriched-zone EZk to be identified. We proceed in
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the sameway, by recurrence, as the (k − 1)th increment. This timewe find ourselves with
two different configurations where some nodes in the previous increment that they were,
for example, of Heaviside type become tip nodes, or standard nodes convert to Heavi-
side/tip nodes, or vice versa. The transport of nodal fields corresponding to temperature
and displacements computed at the (k − 1)th increment to the kth one will be performed
by an L2-projection on the discrete space generated by the kth recent configuration by
means of least squares method. This strategy is possible since the different quantities are
square-integrable, which allows ensuring the stability and efficiency of the used scheme.
To note that, the advancement of the crack generates a new geometrical, topological and
numerical reality of the thermo-mechanical problem resolution which requires a specific
treatment at each increment. This results in an extensible and flexible set of degrees of
freedomwith the crack evolution; therefore, the linear system of discrete equations is also
extensible and changes in dimension depending on the crack growth state, it can enlarge
or diminish. On the other hand, the selection rule of the EZk nodes is independent of the
previous configuration and related only to the relative position of the crack in its nodal
environment at the actual increment. We are thus left with two different configurations
of two successive increments. This process is repeated iteratively until the estimated or
evaluated end of the propagation process.

Crack growth criterion and stress intensity factors evaluation
Propagation criterion and crack update

It has been shown that the use of level-set function plays an essential role in the implicit
description of the crack and evaluation of enriched fields, mechanical Moës et al. [6] and
thermal in this work. The crack is representing the zero-level set of a given function.
The crack tip positions can be found by considering the intersection between zero-level
contour and a second orthogonal level-set function Stolarska et al. [25] using the signed-
distance function. The signed-distance in the level-set method is represented by a finite
element approximation with the same mesh used for the mechanical and thermal prob-
lems. Adopting this representation makes the task easier when it is necessary to evaluate
the level-set at element level by interpolation and when we need to compute its derivative
which is well-defined by the derivative of shape functions.
To monitoring crack growth, we use the maximum hoop (circumferential) tensile stress
theory introduced firstly by Erdogan and Sih [46]. In mixed-mode, the information is
extracted in the vicinity of the crack tip by evaluating the stress state, written in polar
coordinates. We assume that the crack extension starts at its tip in a radial direction, it is
produced in the plane perpendicular to the direction of uttermost tension, i.e., at a critical
angle θc, and it begins when σθθ reaches a critical given value. When KII = 0 then θc = 0
also, in this case, we have a pure mode-I. By considering KII < 0 the critical crack growth
θc > 0, and if KII > 0 the angle θc < 0. A handy expression of θc was given by Sukumar
[7],

θc = 2 tan−1
[

−2(KII/KI )
1 + √

1 + 8(KII/KI )2

]
(61)

The extension of the crack path is determined by a constant increment of growth as
an attractive approach. The selection of �a is almost always made a priori as an input
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parameter of the numerical crack propagation model. Several settings affect the quality
of crack propagation path; those factors are widely studied by [8] using many examples
illustrating the impact of these choices on the path. Therefore, it is more judicious numer-
ically to choose a �a that takes into account those number of parameters Belytschko [2]
to ensure convergence toward the appropriate path. Principally, three parameters influ-
ence the quality of the crack path: Firstly the crack growth magnitude (length of the crack
incremental segment) which have to be considered within a range of le ≤ �a ≤ 3

2 le,
such, the element size le = √

Ae and Ae is the average area of the elements. Secondly,
the mesh size is important to have the best approximation of the field near crack with a
finer one. Finally, the choice of J-integral domain is decisive to evaluate adequately the
J-integral which allow extracting stress intensity factors in mode-I, II and in mixed mode
and determining after that the value of crack growth orientation θc.
On the other hand, different crack extension criteria exist in the literature and ade-

quately ensures the crack progression, governed by fatigue law varieties. They are adapted
to the crack progress when it is subjected to cyclic loading. The crack rate increment
with respect to the loading cycle, i.e., speed growth, appeared in these laws and assumed
to be, in general, a function which depends on the stress intensity factor range between
two cycles and the stress ratio, Beden et al. [47]. The popular one is the classical law of
Paris which is a version of the general law of fatigue, where the speed growth depends
on the stress intensity factor range, and two constants, called constants of Paris law,
that have to be identified for each specific material, Cherepanov et al. [48]. Its limitation
lies in the fact that it requires a minimum stress intensity factor to ensure the propa-
gation and does not take into account the stress ratio. Another version appeared later
by Xiaoping et al. [49] that overcomes these limitations of the classical Paris law but
requires three additional parameters more than the classical Paris law. All these mod-
els can ‘better’ capture the crack progress and monitor the history of the adapted crack
increment for each promotion. They are more suited to fatigue propagation fashion and
also require additional parameters related to the material that can be determined by
fatigue tests. This last point may be a drawback for the attractiveness of these meth-
ods for the present work. However, the convergence of fixed crack increment method
may be ‘lower’ in some cases, but with a suitable choice of the crack increment, which
depends on the mesh and other parameters as cited previously, one can reach good
results. Besides, fixed crack increment technique is more attractive; it needs less mate-
rial parameters compared with the earlier mentioned laws. Its ability to obtain crack
paths that coincide very well with reference solutions is investigated by Baydoun et al.
[50].

Stress intensity factors evaluation

The J-integral, with free body force b, was introduced by Rice [51] as a way to compute
the energy release rate G. Rice defined a line path independent integral, which keeps the
same value for any path surrounding crack tip as

J = lim
�ε−→0

∫

�ε

[
W δ1i − σij

∂uj
∂x1

]
nid�, (62)

where δ.. is the Kronecker operator, ni is the component in i-direction of the normal
outward vector to the contour �ε , tj = σijni and uj are components of the interior
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traction and displacements,W is the strain energy density per unit volume defined in the
thermo-mechanical state by

W = 1
2
σijε

m
ij = 1

2
σij(εtij − α�Tδij), (63)

where�T = T −T0, εmij represents the mechanical part of strain and εtij denotes the total
strain. The form of the integral (62) is not adapted for a finite element computation, in
particular in XFEM,while preserving the same shape functions. An enclosed contour�∗ is
considered as a sum of piecewise lines as defined in Fig. 3, �∗ = γ + ∪γ0 ∪γ − ∪γ1. Hence,
the J-integral can be converted into a domain integral by introducing a weight function
q in the expression of (62), that is unity on γ0, zero on γ1 and varying monotonically
in-between. In this work, we used a plateau truncated cone. By applying the divergence
theorem, the equivalent domain integral (EDI) form of the J-integral is obtained as

J =
∫

A
(σijui,1 − W δ1j)q,j dA +

∫

A
(σijui,1 − W δ1j),jq dA (64)

The J-integral of the superimposed of two equilibrium states: State 1 with u, σ and ε

corresponds to the real state and state 2 with uaux, σ aux and εaux corresponds to an auxiliary
situation, is given by

J s(σ + σ aux, ε + εaux, u + uaux) = J (σ , ε, u) + J (σ aux, εaux, uaux) + I, (65)

which can be explicitly written as

J s =
∫

A

{
(σij + σ aux

ij )(ui,1 + uaux
i,1) − 1

2
(σik + σ aux

ik )(εmik + εaux
ik )δ1j

}
q,j dA

+
∫

A

{
(σij + σ aux

ij )(ui,1 + uaux
i,1) − 1

2
(σik + σ aux

ik )(εmik + εaux
ik )δ1j

}

,j
q dA

By developing J s, the interaction integral I is obtained by

I =
∫

A

{
(σijuaux

i,1 + σ aux
ij ui,1) − 1

2
(σikεaux

ik + εaux
ik εmik )δ1j

}
q,j dA

+
∫

A

{
(σijuaux

i,1 + σ aux
ij uaux

i,1) − 1
2
(σikεaux

ik + εaux
ik εmik )δ1j

}

,j
q dA (66)

By assuming crack faces to be traction free, using equilibrium (i.e., σij,j=0), strain-
displacement equations, and after some handling, we obtain

I =
∫

A

{
(σijuaux

i,1 + σ aux
ij ui,1) − σikε

aux
ik δ1j

}
q,j dA

+
∫

A
ασ aux

ij (�T ),1δijq dA (67)

For generalmixedmode problems and isotropicmaterials, the direct relationship between
J-integral and the stress intensity factors, having dimensions of [stress.

√
lenght ], in mode

I and II is given by

J = K 2
I

E∗ + K 2
II

E∗ , (68)
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Fig. 3 Arbitrary J-integral area surrounding the crack tip

where E∗ = E for plane stress and E∗ = E/(1 − ν2) for plane strain. Equations (65) and
(68) leads to the following expression

I = 2
E∗

(
KIK aux

I + KIIK aux
II
)

(69)

The extraction of individual mode-I and mode-II stress intensity factors can be done by
the choice of K aux

I = 1 and K aux
II = 0 to find KI and K aux

I = 0 and K aux
II = 1 to find KII as

KI = E∗

2
I (1) and KII = E∗

2
I (2) (70)

The identification of SIFs and update of the crack by LSM after the computation of the
thermal and mechanical responses by XFEM makes it possible to present now some
examples of validation.

Numerical examples of thermo-mechanical analysis
A set of thermo-mechanical examples are herein discussed by considering a strong mate-
rial discontinuity; for a static adiabatic crack and in propagation state of an isotropic
material. Validation of the results is fulfilled by a comparison with the computation of the
stress intensity factors which allows validating both mechanical and thermal responses as
well as the quantification of the linear elastic fracture mechanics (LEFM) parameters. The
computation domains chosen for the benchmarks are extracted from the literature and
meshes are generated using Gmsh [52]. A hybrid object-oriented code has been developed
in a monolithic multi-physical philosophy treating each step starting from the mesh gen-
erated fromGmsh, the definition of the enrichment-zone, the XFEMmatrix computation
blocks associated to each physical segment and to each coupled part, the computation of
fracture mechanics quantities and post-processing context.
The rate of convergence of conventional XFEM, using a ‘topological’ enrichment, is not
improved when the characteristic mesh length h goes to zero because of the presence of a
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singularity. Laborde et al. [20] proposed amodified version of XFEM by enriching a whole
fixed area (f.a) around the crack-tip, named XFEM-f.a. In the standard XFEM, only the
nodes of the crack tip element are enriched by branching functions, the support of the
additional basis functions vanishes when h is going to zero. In two dimensions, the fixed
enriched area of a radius Ej

R according to the jth crack-tip is giving by the disk

Dj(E
j
R) =

{
x ∈ � \ �c, ‖x − xjtip‖ � Ej

R

}
(71)

The major drawback of ‘topological’ enrichment is that the size of the enriched zone
depends linearly on the size of the mesh. However, ‘geometrical’ enrichment has an asset
by enriching all the elements containing in the disk D. for a given radius E.

R regardless of
the mesh size. Therefore, XFEM-f.a. achieves the expected optimal rate of convergence
of O(h). For a given configuration where several singularities (crack-tips) are apparently
present, the fixed enriched area defined by gathering the multiple disks assigned to each
singularity, ensuring that they remain disjointed by a judicious choice of the radius of each
disk. Then, the global f.a. is given by

D =
⎧⎨
⎩

⋃
j∈Ntip

Dj(E
j
R) ; Dj(E

j
R) ∩ Di(Ei

R) = ∅ for each j �= i

⎫⎬
⎭ , (72)

where Ntip is the discrete set of crack-tips. The discrete approximations of displacement,
Eq. (14), and temperature, Eq. (16), by XFEM keep the same expression with a significant
change in the topological enrichment of the crack-tip. Thus, the set NAtip of the nodes
enriched by branching functions is transformed to ND which represents all the nodes
forming the geometrical enrichment zone established byD. It is noteworthy that the effect
of the blending elements decreases systematically with the increase of the enrichment area
on the whole D. Also, there is no significant effect observed on the numerical solutions
Fries [53].
Numerical results are performed for a full thermo-mechanical coupling problem in a
cracked domain using a plane strain analysis, where the mechanical loading is induced
by a pure thermal one under the prescribed temperatures and flux on boundaries. This
case represents the most relevant situation, which can be easily combined with a pure
mechanical load acted by external forces. One can simplify the analysis by considering
� = T − T0, with T0 = 0 initially for the whole domain, and with no heat source Q and
no body force b, which is the case for our analyzes. The crack surface is thermally insu-
lated, so the flux lines have to circumvent the crack. Stress intensity factors computation
is commonly normalized with respect to another choice of the triplet (E, k,α) material and
with a fixed value of Poisson ration to 0.3. Normalized SIFs are presented for all the exam-
ples, including the negative values of KI , for a static crack, which represents an important
indicator of the compressive effect at the crack lips. The contact between crack surfaces is
not taken into account in the numerical model, leaving XFEM-f.a. to produce information
that can predict an inter-penetration of crack faces for certain thermo-mechanical config-
urations/domains. This plight remains entirely true, valid and adequate from a conceptual
point of view. The J-integral radius is considered as a function of enrichment radius and
have to be greater than or equal to Ej

R to obtain good results of SIFs computations and
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Table 1 Material properties

Poisson ratio-ν 0.3 [−]

Young’s modulus-E 2.184 ∗ 105 [Pa]

Thermal conductivity-k 205 [W m−1 ◦C−1]

Thermal expansion coefficient-α 1.67 ∗ 10−5 [◦C−1]
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Fig. 4 Rectangular plate with a slope crack: a thermo-mechanical boundary conditions, b structured mesh
used for the computation, c J-integral paths used for a square plate with a centred crack

taken in general for all cases, unless otherwise stated, equal to 3
2 ×Ej

R. Material parameters
are set by default for all the examples, unless otherwise stated, by Table 1.
In this section, we present various examples to validate the thermo-mechanical model by
XFEM-f.a. implementation, comparingwith several benchmarks taken from the literature.
The primary objective of all these cases is to investigate the accuracy and robustness of the
numerical results. Then, we present an example of the cracked domain under transient-
thermal load and in crack growth governed bymode-I. Finally, we design amodel of crack
propagation in mixed mode for a pure thermal loading, with round holes and multiple
cracks.

Rectangular plate with a centered slope crack

A rectangular plate specimen with a centered inclined crack subjected to a pure thermal
load is analyzed, with the dimensions 2L, 2W , the crack is defined with the half-length
a and the slope is characterized by the β angle Fig. 4a. The displacements along the ey-
axis is fixed at the bottom extreme right corner, and the bottom left corner is clamped.
Both right and left boards are completely insulated, an imposed temperatures of ±�0 are
defined at the top and bottom sides, such�0 = 10 ◦C.We consider a uniform enrichment
disks radius in the case where several crack-tips exist; hence, ER ≡ Ej

R. The radius of disks
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Table 2 Normalized SIFs, various J-integral paths

Paths References

Path 1 Path 2 Path 3 Path 4 Average [54] [44] [27]

Radius [m] 0.1139 0.2278 0.3037 0.4176

K norm
II 0.189978 0.189497 0.190830 0.191294 0.190399 0.188 0.190 0.191

Table3 Normalized SIFs for centred crack in a square plate, variousa/W
a
W Knorm

II
Present work Murakami [54] Prasad et al. [44] Duflot [27]

0.1 0.0181 0.021 0.018 0.019

0.2 0.0535 0.053 0.054 0.054

0.3 0.0966 0.094 0.095 0.096

0.4 0.1412 0.141 0.141 0.141

0.5 0.1920 0.188 0.190 0.191

0.6 0.2480 0.247 0.243 0.245

enrichment ER is taken equal to 0.15 m for both rectangular and square plates examples.
We divide this example into two cases.
First, a particular case of a square plate with a centered horizontal crack is considered,
L = W = 2.0 m and β = 0◦, Fig. 4c. The objective of this example is, firstly, to study
the accuracy of J-integral computation independently of the choice of Rice integral con-
tour. Secondly, to show the robustness of computation of stress intensity factors in the
dominated mode-II for various horizontal crack lengths. The stress intensity factors are
normalized by dividing KII by α�0E

√
W which gives K norm

II . In Table 2, the numerical
normalized SIFs results are presented for four selected paths centered on right crack tip,
referred by numbers ‘1’ to ‘4’. There is no difference related to the choice of the right or
left tip. The physical domain is discretized with a structured quadrilateral mesh with a
characteristic length of 0.016 m. The variation of the SIFs values remains in the range
[0, 0.9482%] with a maximum variation of 0.94% with respect to the minimum value,
which corresponds to Path 2. The results obtained with XFEM-f.a. show a good outcome
for path independence.
Next, we consider different crack lengths starting from 0.1 to 0.6 with a jump of 0.1 with
the same specimen configuration. The normalized SIFs results obtained with XFEM-f.a.
agree closely with those presented byMurakami [54], Prasad et al. [44] and Duflot [27] for
each crack length as shown shortly in Table 3 with respect to the results presented by the
previous cited references. Complete results of this example are presented in Appendix:
Table 7, with 6 digits, including the negative values of SIFs illustrating, as an indicator, of
an important compressive aspect in the vicinity of the two tips. Temperature distribution
is illustrated in Fig. 5a, as well as the ex, in Fig. 5b, and ey, in Fig. 5c, displacements.
An important concentration of the stresses at the crack-tips are observed by Fig. 6a–c.
Thermal flux is perpendicular to the crack Fig. 7a, b, since the crack is adiabatic; one notes
a gradual deviation of the flux lines to circumvent the geometry of the crack Fig. 7c. These
results are not presented by the references cited above.
Second, as a benchmark problem, we treat the general case of any choice of β ∈ [0, π

2 ] and
various choices of crack lengths. Dimensions is chosen such L/W = 0.5, inclined crack is
defined by the total crack length 2a Fig. 4b. The main objective of this example is to show
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Fig. 5 Square plate with a centred crack, a/W = 0.5: a temperature, b ex -displacement and c
ey -displacement
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Fig. 6 Square plate with a centred crack, a/W = 0.5: a σxx -stress, b σyy -stress, c σxy -stress
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Fig. 7 Square plate with a centred crack, a/W = 0.5: a qx -heat flux, b qy -heat flux, c flux lines

the accuracy and the robustness at the same time to predict mixed mode KI and KII stress
intensity factors. The stress intensity factors are normalized by α�0(W /L)E

√
2W which

gives K norm
I and K norm

II correspond respectively to mode-I and mode-II. Table 4 summarizes
the results of normalized SIFs for a fixed angle β = 30◦ and various crack lengths varying
from 0.2 to 0.6. In Table 5, we give the normalized SIFs results for a fixed crack length,
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Table4 Normalized SIFs for slope crack, β = 30◦ and various a/W
a
W Knorm

I Knorm
II

Present work [54] [44] [27] Present work [54] [44] [27]

0.2 0.0021 0.002 0.002 0.0020 0.0301 0.030 0.030 0.0302

0.3 0.0069 0.008 0.006 0.0068 0.0484 0.048 0.048 0.0489

0.4 0.0152 0.015 0.014 0.0149 0.0640 0.064 0.064 0.0650

0.5 0.0269 0.027 0.026 0.0265 0.0773 0.076 0.076 0.0774

0.6 0.0408 0.041 0.040 0.0407 0.0872 0.086 0.087 0.0878

Table5 Normalized SIFs for slope crack at both tips, a/W = 0.3 and various β

a
W Knorm

I Knorm
II

Present work [54] [44] [27] Present work [54] [44] [27]

0◦ 0.0000 0.0000 0.0000 0.0000 0.0548 0.054 0.054 0.0546

15◦ 0.0036 0.0038 0.0036 0.0038 0.0533 0.054 0.054 0.0533

30◦ 0.0069 0.0071 0.0064 0.0068 0.0484 0.048 0.048 0.0489

45◦ 0.0075 0.0077 0.0071 0.0076 0.0413 0.042 0.041 0.0420

60◦ 0.0054 0.0053 0.0049 0.0054 0.0324 0.032 0.032 0.0322

75◦ 0.0012 0.0023 0.0010 0.0017 0.0181 0.018 0.018 0.0180

90◦ 0.0003 0.0000 0.0003 0.0000 0.0000 0.000 0.000 0.0000
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Fig. 8 Rectangular plate with inclined crack, β = 30◦ and a/W = 0.3: a temperature, b ex -displacement, c
ey -displacement

here a/W = 0.3, and different values of β . Complete results of both cases are given
respectively in Appendix: Tables 8 and 9 with 6 digits, including again the negative values
of SIFs. Results are observed to be in good agreement with Murakami [54], Prasad et al.
[44] and Duflot [27]. Temperature distribution influenced by the prescence of crack, ex
and ey displacements are presented respectively in Fig. 8a–c. Horizontal, vertical and line
flux are plotted respectively in Fig. 9a–c. Stresses, Fig. 10a–c, show the same behavior
around the crack-tips like in the case of the square plate. Again, these results are not
presented by the references cited above.

Square plate with round hole and two cracks

In this example, we consider the case of a square plate with a hole and two cracks. The
objective is: firstly, to show the influence of the presence of a hole, due to a manufacturing
defect or willingly introduced into the material, on the stress intensity factors. Secondly,
to examine the influence of radius of the fixed enriched zone on the SIFs. Thirdly, to show
the influence of the characteristic length (h) on the convergence of SIFs when h goes to
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Fig. 9 Rectangular plate with inclined crack, β = 30◦ and a/W = 0.3: a qx -heat flux, b qy -heat flux, c flux
lines

0 0.5 1 1.5 2
X

-0.5

0

0.5

Y

0 0.5 1 1.5 2
X

-0.5

0

0.5

Y

-13.35-5.046e+01 2.376e+01
Sigma xx

0 0.5 1 1.5 2
X

-0.5

0

0.5

Y

0 0.5 1 1.5 2
X

-0.5

0

0.5

Y

-2.057-1.756e+01 1.344e+01
Sigma yy

0 0.5 1 1.5 2
X

-0.5

0

0.5

Y

0 0.5 1 1.5 2
X

-0.5

0

0.5

Y

-6.8 -0.23 6.4-1.345e+01 1.299e+01
Sigma xy

a b c

Fig. 10 Rectangular plate with inclined crack, β = 30◦ and a/W = 0.3: a σxx -stress, b σyy -stress, c σxy -stress

zero. The dimensions of the domain are chosen such L = 0.5 m, the hole is placed in
the center of the plate defined by the radius R Fig. 11a. The two cracks are defined at
the two ends, right and left, of the hole are centered (right and left cracks), with a length
l. Half-length of the apparent crack is defined by a = l + R. The bottom left corner is
clamped and displacements along ey-axis is fixed. The heat flux is zero at the right and
left edges, an imposed temperature of ±�0 are defined at the top and bottom sides, such
�0 = 10 ◦C.
We investigate the influence of various fractions of hole size R/L and cracks sizes l/L on
the SIFs computations. We choose a set of R/L resp., l/L between 0.0 and 0.3, resp., 0.1
and 0.6 with a jump of 0.1. The structured mesh is used Fig. 11b, such the characteristic
length is 0.011 m. It is worth noting that when R/L and l/L become too small, we refine
sufficiently close to the two cracks to ensure a good approximation of the SIFs for the
J-integral domain. The stress intensity factors are dominated by mode-II; we normalize it
by α�0E

√
W which gives K norm

II . The normalized SIFs for several choices of the two ratios
are illustrated in Fig. 12. Results obtained by the XFEM-f.a. are close to those given by
Prasad et al. [44]. Complete results of the two cracks are given in Appendix: Table 10.
Influence of the radius of the fixed enriched area on the SIFs computation is inspected for
several values ofER. A typical case are chosen for a holewithR/L = 0.1 and l/L = {0.5, 0.6}
for both left and right cracks, Table 6. It can be seen that there is no significant difference
in the computation of SIFs, for both left and right cracks, with respect to the choice of the
radius value of the enrichment disk. A relatively large radius related (and independently)
to the characteristic length of the mesh is desirable. As mentioned before, when the two
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a b

Fig. 11 Square plate with round hole and two cracks: a boundary conditions representation, b structured
mesh used

Fig. 12 Normalized SIFs for a square plate with round hole, various R/L and l/L

Table 6 Influence of enrichment radii on the computation of SIFs for square plate with
round hole and two cracks, R/L = 0.1
l
L Normalized SIFs Left crack Right crack

ER ER
0.2 0.15 0.1 0.2 0.15 0.1

0.5 K norm
II 0.219244 0.219256 0.219357 − 0.219244 − 0.219256 − 0.219357

0.6 K norm
II 0.273149 0.273162 0.273056 − 0.273149 − 0.273162 − 0.273056

ratios have become small, we tend to refine themesh in the vicinity of the crack. Therefore,
the selectionof radiusmust be adapted to the size of the crack and the characteristic length.
Convergence of SIFs computation has been demonstrated with respect to the size of

the mesh, by comparing between a range of a coarse mesh and a sufficiently finer one.
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Fig. 13 Convergence of SIFs computation, square plate with round hole, R/L = 0.1 and l/L = 0.3
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Fig. 14 Square plate with round hole, R/L = 0.2, l/L = 0.3: a temperature, b ex -displacement, c
ey -displacement

As illustrated in Fig. 13, XFEM-f.a. guarantees a significant convergence of the thermo-
mechanical model and the SIFs computation.
Distribution of the temperature generated by the effect of the crack and hole is presented

in Fig. 14a. Displacements in ex and ey Directions are given respectively in Fig. 14b, c.
We note an important concentration of the stress in the two crack-tips and around the
perimeter of the hole in the vertical direction, as showed respectively in Fig. 15a–c for
σxx, σyy and σxy. The heat flux in ex and ey directions are figured respectively in 16a–c
represents the spatial distribution of the flux lines that bypasses both the cracks and the
hole.

Edge cracked strip under thermal loading

We analyze in this example a case of the thermo-mechanical crack propagation of an edge
cracked plate subjected to a pure thermal load in first, governed by mode-I, and under
transient-thermal load in the second case. A rectangular plate ofW × 2L, with the width
W = 0.5 m and height L = 1.0 m, is assumed with an initial edge crack a = 0.25 m
at the middle of left edge, �c = [0, 0.25] × {0}. Displacements along the ey-axis are fixed
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Fig. 15 Square plate with round hole, R/L = 0.2, l/L = 0.3: a σxx -stress, b σyy -stress, c σxy -stress
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Fig. 16 Square plate with round hole R/L = 0.2, l/L = 0.3: a qx -heat flux, b qy -heat flux, c flux lines

at the bottom, and top edges excepted both the bottom and top right corners where
the plate is embedded. The two top and bottom sides are considered insulated, i.e., the
heat flux q is zero; a prescribed temperatures of ±�0 are imposed at the right and left
boards, such �0 = 10 ◦C in Fig. 17a. Crack geometry and the structured rectangular
uniform mesh of 30 elements upon the width and 120 across the height is shown in Fig.
17b. Material properties in Table 1 is considered to illustrate the profiles of temperature,
displacements, stress and heat flux for a specific choice of material. Young’s modulus
E = 103E, while the computation of SIFs are normalized by dividing KI by σ�0

√
πa, with

σ�0 = (E/(1 − ν))α�0 the stress at the right bord of the uncracked strip. This definition
gives K norm

I introduced in the transient-load case. The temperature distribution is linear in
the ex direction, � = ( 2�0

W )x. Disks radii ER is taken equal to 0.1 m.

Thermal transient loading

During this application, a gradual transient load is taken into account, keeping the same
configuration of physical domain presented above. Example is performed for the same
material parameters, with a solid density of ρ = 2.7 [kg/m3] and a heat capacity of
c = 921 [(W.s)/(◦C.kg)]. The end time Tf is taken equal to unity with a uniform, constant
time step with a maximum number of increments of 30. The temperature distribution
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Fig. 17 Edge cracked strip under pure thermal load: a geometry and crack growth boundary conditions, b
structured mesh used
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Fig. 18 Edge cracked strip under transient thermal load: a temperature field, cut over [(0,0);( 12 ,0)] line, b
euclidean norm of displacement, cut over the line [( 15 ,−1);( 15 ,1)]

is linear in space and in time horizontally and remains uniform along the ey axis, so a
typical cut over the line-section {x ∈ � \�c ; y = 0} is presented for different increments
until reaching the thermal equilibrium, as shown in Fig. 18a. On the left border, the plate
tends to expand. Additionally, the displacement is fixed along ey-axis throughout the top
and bottom sides; this generates a significant displacement, with respect to the pseudo-
time, of the upper crack surface towards ey and symmetrical displacement of the lower
crack surface towards −ey. This behavior leads to a gradual opening of the crack with
the continuous transient load until the achievement of the equilibrium state. Figure 18b
depict the Euclidean norm of displacement combining the horizontal and vertical one
over the line-section {y ∈ � \ �c; x = 1

5 }. The stress, with respect to the pseudo-time,
also becomes important near the crack tip after the incremental thermal loading.
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a b

Fig. 19 Edge cracked strip under transient thermal load: a normalized KI versus J-integral paths, at final time
T f , b normalized KI over time

A reassessment of the path-dependence of the J-integral computation, with respect to the
radius domain, over several paths is treated for this case in Fig. 19a. Selected paths are
indexed using red lines, by ‘1’ to ‘4’ in Fig. 17b. The curve of normalized SIFs at the final
equilibrium step is drawing. We note that the computation of SIFs evidently converges
for a large choice of the path radius. The computed normalized ’transient’ K norm

I (t) stress
intensity factor is plotted in Fig. 19b; the profile progresses with a positive slope and hold
steady from a value of t

T f
� 0.3. This stage implicitly interprets, as another way, that the

equilibrium state is reached by a post-XFEM-f.a. quantity, KI .
Thermal equilibrium subsequently leads to a mechanical one; its primary phase starts
from t

T f
∈ [20�t, 1]. Figure 20a–c represent respectively the distribution of temperature,

ex-displacement and ey-displacement at the final stage.

Crack growth

This section shows an application of XFEM-f.a. in the thermo-mechanical growth of an
edge crack governed by mode-I. The configuration is taken with the same considerations
and initial crack as mentioned above. Crack growth is monitoring using hoop stress, by
introducing an additional virtual crack extension (VCE) based on VCE-method Hellen
[55], Millwater et al. [56] after each equilibrium step. The direction of discrete crack
propagation is determined by the orientation in which the maximum energy is released
from the system. Crack propagation was simulated for a total of 14 steps, with each step
size of length �a = 0.01 m. Convergence of SIFs is proved by Fig. 13; simply choose a
sufficiently finer mesh to guarantee an optimal convergence, here characteristic length is
0.01 m. Determination of crack path is tested for several crack magnitudes �a, 2�a, 3�a
and 5�a and converges to the same path. Stress intensity factorsKI ,KII in Fig. 21a show a
crack growth driven bymode-I,KII keeps a zero value for all steps. Stability of crack growth
is illustrated by Fig. 21b, where the variation of energy release rateG remains negative for
the total of increments. Crack progresses in a parallel direction to ex and at y = 0, Fig.
22a, which means again the dominated character of KI . Figure 22b demonstrates that the
thermal expansion coefficient obviously influences stress intensity factors. The average
slope value of SIFs profiles in growth is inversely proportional to the coefficient of thermal
expansion. The set of SIFs profiles corresponding to the different values of the expansion
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Fig. 20 Edge cracked strip under transient thermal load at final time T f : a temperature, b ex -displacement, c
ey -displacement

a b

Fig. 21 Crack growth in edge cracked strip: a stress intensity factors KI and KII , b energy release rate G

coefficient keep the same pace and converge systematically to the same point of KI = 0.
This result explains that for any choice of α, for any other material properties, the system
converges towards the same end-growth point.
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a b

Fig. 22 Crack growth in edge cracked strip: a crack path, b influence of expansion coefficient on SIFs, KI

a b

Fig. 23 Plate with two circular holes and multiple cracks: a geometry and boundary conditions for crack
growth, b computational mesh used

Rectangular plate with two circular holes andmultiple cracks

A numerical example of a H × L rectangular plate, containing two circular holes and two
cracks was designed. Physical and numerical framework ensuring a thermo-mechanical
crack propagation is well defined and sketched in Fig. 23a. The width H = 0.5 m, the
length L = 1.0 m and the radius of each circle is R = 0.07 m. Initial cracks are set to start
from the limit of the left hole; the first crack termed ‘crack 1’ is a straight crackwith a length
a1 = 0.05 m, the second crack termed ‘crack 2’ is an inclined crack with an angle β = 60◦

and a length a2 = 0.1 m. Displacements of the specimen are fixed vertically throughout
the upper and lower part, excluding the two right corners which are embedded. The right
edge is cold at −�0 and hot on the left one at �0 temperature, where �0 = 20 ◦C. The
plate is completely insulated on the top and bottom borders. The computational domain
is outlined in Fig. 23b, characteristic length of the mesh used is 0.012 m; we refine a bit
more throughout the borders of the two circles. Material properties are defined in the
Table 1, with the consideration of Young’s modulus E and a specific choice of thermal
expansion coefficient α = 10α. The radius ER of disks related to each crack tip is taken
uniform and equal to 0.1m. No reference found in the literature dealing with this crack
growth example for comparison.
The configuration of specimen defined in this case, presenting two material defects

(holes) and multiple cracks, allows simulating a thermo-mechanical crack growth by
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a b

Fig. 24 Crack growth in plate with two circular holes and multiple cracks: stress intensity factors KI and KII ; a
crack 1, b crack 2

XFEM-f.a. driven by mixed mode. Similarly, the VCE method is assumed for the pro-
gression of cracks. Furthermore, considering the two cracks on the border of the left
hole is not an arbitrary choice. The idea is to identify the zone which has an important
stress concentration enabling a progression ’opening’. Cracks move forward simultane-
ously with a combined propagation criterion for both of them. The growth was simulated
for a total of 13 extension steps, with each step size of length �a = 0.01 m. Several crack
magnitudes and sufficient characteristic lengths of the mesh are chosen and converge to
the appropriate crack path. Stress intensity factors in mode-I and II, KI and KII , of the
two cracks ’1’ and ’2’ are presented respectively in Fig. 24a, b. Crack 1 is driven by a dom-
inated mode-I from the beginning with a range of ∼ 106 that is sufficient to preserve a
progressive growth. Whereas, the intensity of the driven magnitude at the vicinity of the
initial crack-tip 2 is 10 times less than the crack-tip 1 and 2 times less than the intensity
required to evolve the crack 2. This case brings to a crack ’initiation’ controlled by both
mode-I and II for the first extension and described by a drop, of ∼ 6 times less, of KII and
rise, of ∼ 2 times more, of KI .
Energy release rateG1 of crack 1 andG2 of crack 2, Fig. 25a, keep the samebehavior as the

stress intensity factors. The G1 remains stable throughout the incremental progression;
while crack 2 seeks to reach local stability for the first two extensions by getting the
required energy to progress crack and subsequently maintain the stability. Crack paths
are depicted in Fig. 25b including a representation of the initial preexisting cracks and the
left round hole.
The crack arrest is taken for a state related to the configuration defined by 13�a. This

represents the state where the crack 1 develops locally an important compression at the
crack surfaces; it produced by the newmaterial configuration caused by the displacement
of the lower surface of crack 2 along the −ey axis. The specimen is thermally loaded
throughout the process of crack propagation. Consequently, the temperature profile is
affected by the new configuration of the cracks which causes an incremental change in
the spatial redistribution of the temperature; the initial state and the final one are shown
respectively in Fig. 26a, b.
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a b

Fig. 25 Crack growth in plate with two circular holes and multiple cracks: a energy release rate G. , b cracks
path
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Fig. 26 Crack growth in plate with two circular holes and multiple cracks: Temperature profile; a initial state,
b 13�a

Displacements are more pronounced over ey direction; Fig. 27a, b stand for respectively
ey-displacement at initial state and at 13�a state.
Stress combining the information of different directional stresses is given by the von

Mises stress, σVM, at the initial state in Fig. 28a and at the final one in Fig. 28b. Spatial
redistribution of σVM, induced by the temperature profile, varies with the crack growth.
Stress becomes maximal near the crack tips and over the outer borders of the two holes
at the initial state; it increases for the holes and decreases slightly at the tip points thanks
to the release of energy caused by the crack progression.

Conclusions
A new thermo-mechanical crack propagation model in a cracked body was presented
which can be applied, for instance, to ensure the safety of structures subjected to ther-
mal loading. The developed geometrical eXtended finite element method was success-
fully applied to model crack growth and achieving the expected optimal rate of conver-
gence by confirming the benefit of the fixed enrichment area approach on the compu-
tation of stress intensity factor profile. Numerical development and various matrices in
full coupling were presented for each sub-problems, mechanical and thermal, and for



Habib et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:18 Page 32 of 38

0 0.2 0.4 0.6 0.8 1
X

0

0.1

0.2

0.3

0.4

0.5

Y

0 0.2 0.4 0.6 0.8 1
X

0

0.1

0.2

0.3

0.4

0.5

Y

0.00012-1.850e-04 4.250e-04

Displacement Y

0 0.2 0.4 0.6 0.8 1
X

0

0.1

0.2

0.3

0.4

0.5

Y

0 0.2 0.4 0.6 0.8 1
X

0

0.1

0.2

0.3

0.4

0.5

Y

0.00017-1.880e-04 5.380e-04

Displacement Y

a b

Fig. 27 Crack growth in plate with two circular holes and multiple cracks: ey -displacement; a initial state, b
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Fig. 28 Crack growth in plate with two circular holes and multiple cracks: von Mises stress—σVM; a initial
state, b 13�a

the full coupled XFEM part. The criteria for crack growth, as well as for the direction
of the virtual crack extension are described, and their performance in the context of
the XFEM is discussed. From three examples, various benchmarks result in a cracked
domain are examined and validated from the existing results in the literature. The robust-
ness and the accuracy of the model implementation to extract the thermo-mechanical
responses and to compute the associated stress intensity factors for stationary crack,
with and without holes, as well as the effect of crack length and hole position on the
SIFs are proved. Furthermore, a quasi-transient load example governed by mode-I is
presented and the contribution of this loading on the profile of the SIFs until reach-
ing thermal equilibrium is analyzed. Finally, an example of multiple mixed-mode cracks
growth and multiple holes that may be present as small flaws in the material manufac-
turing stage is examined; only the limiting cases of stable crack are discussed. When the
heat flow is distributed by the presence of the cracks, we observe a high local intensifi-
cation of thermal gradients followed by an intensification of thermo-mechanical stress
around them, which may lead to the crack growth or inevitable collapse of the struc-
ture.
As outlook of future works, possible improvement of this study can be made by taking

into consideration the mechanical contact aspect between the crack surfaces; this will
be important to extend to study of the last example to simulate the complete process
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of growth. Another point can be viewed by holding the crack propagation in the overall
dynamic of the whole problem and admitting a crack-pseudo-time-dependant; which
make it possible to control the evolution of the crack with the transient loading. This case
requires a sophisticated treatment of the stiffness matrix; K needs to be evaluated at two
different times for two different configurations of the crack, Ki and Ki+1.
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Appendix: Complete stress intensity factors tables
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Table7 Normalized SIFs for centred crack in a square plate, various a/W
a
W Normalized SIFs Left tip Right tip

Present work [27,44,54] Present work [54] [44] [27]

0.1 K norm
I 0.000000 – 0.000000 – – –

K norm
II − 0.018191 – 0.018191 0.021 0.018 0.019

0.2 K norm
I 0.000000 – 0.000000 – – –

K norm
II − 0.053515 – 0.053515 0.053 0.054 0.054

0.3 K norm
I 0.000000 – 0.000000 – – –

K norm
II − 0.096664 – 0.096664 0.094 0.095 0.096

0.4 K norm
I 0.000000 – 0.000000 – – –

K norm
II − 0.141209 – 0.141209 0.141 0.141 0.141

0.5 K norm
I 0.000000 – 0.000000 – – –

K norm
II − 0.192025 – 0.192025 0.188 0.190 0.191

0.6 K norm
I 0.000000 – 0.000000 – – –

K norm
II − 0.248057 – 0.248057 0.247 0.243 0.245
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