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Abstract

Some of the most important geometric integrators for both ordinary and partial
differential equations are reviewed and illustrated with examples in mechanics. The
class of Hamiltonian differential systems is recalled and its symplectic structure is
highlighted. The associated natural geometric integrators, known as symplectic
integrators, are then presented. In particular, their ability to numerically reproduce first
integrals with a bounded error over a long time interval is shown. The extension to
partial differential Hamiltonian systems and to multisymplectic integrators is presented
afterwards. Next, the class of Lagrangian systems is described. It is highlighted that the
variational structure carries both the dynamics (Euler–Lagrange equations) and the
conservation laws (Nœther’s theorem). Integrators preserving the variational structure
are constructed by mimicking the calculus of variation at the discrete level. We show
that this approach leads to numerical schemes which preserve exactly the energy of the
system. After that, the Lie group of local symmetries of partial differential equations is
recalled. A construction of Lie-symmetry-preserving numerical scheme is then exposed.
This is done via the moving frame method. Applications to Burgers equation are shown.
The last part is devoted to the Discrete Exterior Calculus, which is a structure-preserving
integrator based on differential geometry and exterior calculus. The efficiency of the
approach is demonstrated on fluid flow problems with a passive scalar advection.

Keywords: Geometric integration, Symplectic integrator, Multisymplectic, Variational
integrator, Lie-symmetry preserving scheme, Discrete Exterior Calculus

Introduction
With the increasing performance of computers (speed, parallel processing, storage capac-
ity, …), one might think that it is not worth to design completely new algorithms to solve
numerically basic problems in mechanics. It is tempting to think that to simulate physics
with a fair precision, one just has to take small enough time and space steps. Yet, experi-
ments show that, even with an academic problem such as an harmonic oscillator, classical
numerical schemeswhich rely on a direct discretization of the equations are unable to pre-
dict correctly the solution over a long time period, evenwith a fine time and space grids. In
fact, the equation of a systemmay hide physically very important properties, such as con-
servation laws, which are destroyed by these schemes, leading to ameaningless prediction
or a blow up.
Many physical properties of a system are encoded within a geometric structure of the

equation. A natural way to correctly predict these properties is then to preserve exactly the

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

0123456789().,–: vol

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-018-0110-y&domain=pdf
http://orcid.org/0000-0001-6622-9615
http://creativecommons.org/licenses/by/4.0/


Razafindralandy et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:16 Page 2 of 67

geometric structure during the simulation. This is the foundation principle of geometric
integrators. This approach of discretization generally enables a better representation of
the physics of the system and a particular robustness for a long time or/and large space
simulation.
The aim of this article is to draw the attention of computational mechanics specialists

to geometric integrators. However, since many geometric structures, and consequently
many geometric integrators, exist, it is not conceivable to describe all of them. Instead,
we will focus on the most widely used. The main properties of these integrators will be
listed. Examples of construction will be presented and illustration on mechanical systems
will be given. Many references will be provided throughout the article for each part of the
article for more complete details.
One of the oldest geometric structures used in physics is the symplecticity of Hamilto-

nian systems. When it can be written in a symplectic framework, an ordinary differential
equation (ODE) exhibits a preservation of a differential form, the symplectic form, over
time. The symplectic formulation also permits to obtain conservation laws via Nœther’s
theorem [1–3]. Symplectic integrators are built to preserve the symplecticity of the flow
at the discrete level. One of the first works on symplectic integrators is that of Vogeleare
in 1956 (see [4]), followed by many papers and books in the 1980’s [5–11]. Since then, an
abundant literature can be found on the subject.
Many symplectic systems come from a variational problem. In this case, the equation

represents a trajectory which minimizes a Lagrangian action. A way of building a sym-
plectic integrator for such a problem is to discretize the Lagrangian function and solve
the corresponding discrete variational problem. This approach yields variational inte-
grators [4,12–14]. Variational integrators are automatically symplectic and momentum
preserving. They have been developed since the 1960’s in optimal control theory and the
1970’s inmechanics ([15–22], see [13] for a more complete historical overview). Note that
variational integrators can be extended to solve efficiently non-variational problems by
embeeding the latter into a larger Lagrangian system [23,24].
Attempts on the extension of the symplectic geometry to fields appeared from the

1950’s with the works of Gallisot [25] and Dedecker (see [26–28]), followed by many
others a decade later [28–31]. That gave rise to two major theories. The first one is
based on the polysymplectic approach in which the symplectic form is extended into a
vector-valued form [32–37]. The other theory led to themultisymplectic notionwhere the
cotangent bundle is replaced by the bundle of k-forms [26,30,38,39]. Nœther’s theorem
has been extended to the polysymplectic and multisymplectic approaches [40–43]. At the
computational side, the extensionof symplectic integrators topartial differential equations
(PDEs) led to multisymplectic integrators [44–49]. They have been used to solve a wide
range of problems in physics [16,50–53].
Other equations of mechanics cannot straightforwardly formulated with a Lagrangian

functional nor a (multi-)symplectic structure. It is the case ofmanymechanical dissipative
systems. Yet, many of them have important invariance properties, called symmetries [54],
under some transformations. Symmetries play a fundamental role since they may encode
exact model solutions (self-similar, vortex, shock solutions, …), conservation laws via
Nother’s theorem or physical principles (Galilean invariance, scale invariance, …) [55–
68]. They have also been used for modelling purposes such as the establishment of wall
laws in turbulent flows or the development of turbulence models [69–76]. It is then
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important that numerical schemes do not break symmetries if one wishes to reproduce
numerically the cited model solutions and properties. Preserving the symmetries of the
equations at the discrete level is the founding key of invariant integrators [77–83], as
will be seen in “Invariant integrators” section. Note that the symmetry structure does
not exclude simplecticity structure. So, combining symplectic/variational algorithm and
invariant scheme is feasible, but not done in this article.
Recently, a new generation of geometric integrators, called discrete exterior calculus

(DEC), has been developed. It appeared from the observation that equations of physics,
especially electromagnetism, are better written with differential forms (instead of vector
fields) and exterior calculus operators (see [84–87] and the series of papers of Bossavit
[88–92]). DEC aims at developing a discrete version of the theory of exterior calculus, and
more generally differential geometry, where most equations of physics are formulated.
This framework offers naturally coherent discretization of derivation operators (diver-
gence, gradient, curl) since, in exterior calculus, they are represented by a single operator
d, the exterior derivative.Thebasic tools inDEC theory are discrete differential forms, seen
as simplicial cochains. This approach of discrete form could be found in the work of Tonti
[93] (see also [94]) in the 1970’s, and later in [95–98]. The current development of DEC
has been inspired by the works of Bossavit in electromagnetism [99–105]. More recent
works in electromagnetism include [106–109]. In the field of mechanics, DEC has been
employed to solve Darcy, Euler andNavier–Stokes equations in some basic configurations
[110–112], to geometrizes elasticity problems [113,114] or to solve port-Hamiltonian sys-
tems [115]. DEC belongs to the family of cochain-based mimetic discretization methods
described in [116]. Among the members of this family, we can cite the covolume method
[117], spline-based cochain discretization [118], mimetic spectral elements [119–121] or
spectral DEC [122,123]. Other compatible discretization techniques include the Finite
Element Exterior Calculus (FEEC) [124–126], mimetic finite differences ([127] and refer-
ences therein) and works in [128–132].
In the next section, we recall the basic principle of symplectic geometry. We then

show why and how to build symplectic and multisymplectic integrators. In “Variational
integrators” section, variational systems and variational integrators are presented. A total
variation approach, which extends the usual presentation of Lagrangian mechanics, is
used. Indeed, with a total variation consideration, an energy equation (and momentum
equation in case of PDE) naturally arises. This equation can be used to build, for instance,
energy-preserving schemes. Invariant integrators are dealt with in “Invariant integrators”
section. The approach used is that of Kim [79,133] and Chhay and Hamdouni [80] which
consists in modifying classical schemes to make them invariant. At last, discrete exterior
calculus is described in “Discrete exterior calculus” section. Simulations of fluid flows
convecting a passive scalar are presented.
Some theoretical tools of differential geometry are used in this article to highlight the

geometry structures. Their definition can be found, for example, in [1,54,134–143]. How-
ever, their use has been limited (at the risk of using formal definitions) and the examples
are simple enough for readers more interested in the computational aspect.
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Symplectic integrators
Webegin with a brief introduction to Hamiltonianmechanics. Interested readers can find
deeper presentations in [1,2,144–146].

Hamiltonian system and flow

Hamiltonian system

Let (S ,ω) be a symplecticmanifold, consisting of a smoothmanifoldS , the phasemanifold,
equiped with a symplectic structure, i.e. a closed and non-degenerate two-form field ω.
Let H be a Hamiltonian function on S , that is a smooth function H : S → R. The
Hamiltonian function H determines a unique vector field XH defined by:

XH
¬

ω = dH, (1)

the symbol ¬ standing for the interior product1 and dH is the differential or exterior
derivative of H . A Hamiltonian system on (S ,ω), associated to the Hamiltonian function
H , is a dynamical system s(t) governed by the equation

ds(t)
dt

= XH (s(t)). (2)

Let �t be the Hamiltonian flow, i.e. the map

�t :
S −→ S

s0 �−→ s(t)
(3)

which, to any initial condition s0, associates the solution at time t ≥ 0. The Hamiltonian
flow �t is a symplectomorphism, meaning that along trajectories,

�∗
t ω = ω (4)

where �∗
t is the pull-back2 of �t . In other words, the Hamiltonian flow preserves the

symplectic structure of the equation.
The symplectic manifold S has necessarily an even dimension, say 2nq , and there exists

canonical coordinates s = (q,p)T belonging to an open set of Rnq ×R
nq in which Eqs. (1)

and (2) can be written as follows:

dq
dt

= ∇pH,

dp
dt

= − ∇qH,

(5)

1The interior product or contraction of a vector field X and a differential form μ is often noted iXω instead of X¬
ω. It

is defined as (X¬
μ)(Y) = μ(X,Y) if μ is a 2-form and Y any vector field.

2The pull-back of ω is defined as (�∗
t ω)|s(X1 ,X2) = ω|�t (s)

(
d�t |s(X1), d�t |s(X2)

)
for any pair of vector fields X1 and

X2 , d�t being the differential of �t .
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the Hamiltonian H being a function (t,q,p) ∈ R × R
nq × R

nq �→ H (t,q,p) ∈ R. Equa-
tion (5) can be written in a more compact way as follows:

J
ds
dt

= ∇H (6)

where ∇H = (∇qH,∇pH )T and J is the skew-symmetric matrix

J =
(

0 −Inq
Inq 0

)

,

Inq being the identity matrix of Rnq . The matrix J is the matricial representation of the
symplectic form ω. In canonical coordinates, ω writes:

ω =
nq∑

i=1
dpi ∧ dqi ≡ dp ∧ dq. (7)

where ∧ is the exterior product symbol.3

In canonical coordinates, the symplecticity property (4) reduces to

(∇�t )T J (∇�t ) = J (8)

in matricial form, and to

dp(t) ∧ dq(t) = dp(0) ∧ dq(0) (9)

in exterior calculus notation.

Flow of a numerical scheme

The flow of a numerical integration scheme of Eq. (2) is defined as

�n :
S −→ S

s0 �−→ sn
(10)

where sn is the numerical approximation, at a discrete time t = tn, of the solution s(t)
corresponding to an initial condition s0. A numerical integrator is said symplectic if, like
the exact flow, it preserves the symplectic structure of the equation. More rigorously, a
numerical scheme is symplectic if its flow verifies

�∗
nω = ω. (11)

The numerical pull-back �∗
n is an approximation of the exact pull-back �∗

t at t = tn.

3The exterior product of two differential 1-forms ω1 and ω2 is defined as the two form (ω1 ∧ ω2)(X1 ,X2) =
ω1(X1)ω2(X2) − ω1(X2)ω2(X1) for any pair of vector fields X1 and X2 . More generally, the exterior product of a
k-form α and a l-form β is defined as the (k + l)-form [147]:

α ∧ β(X1 , . . . ,Xk+l ) = 1
k !l!

∑
τ∈Sk+l

sign(τ ) α(Xτ (1) , . . . ,Xτ (k)) β(Xτ (k+1) , . . . ,Xτ (k+l)) for any vector fields

X1 , . . . ,Xk+l , Sk+l being the permutation group of {1, . . . , k + l}.
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In practice, we only consider one-step incremental integrators. For such integrators, it
is more convenient to work with the one-step flow

��t :
S −→ S

sn �−→ sn+1
(12)

instead of�n. Note that��t may depend on n. As examples, the flow of the explicit Euler
integration scheme of (2) is

�Euler
�t (sn) = sn + �t X(sn). (13)

The flow of a second order Runge–Kutta scheme is

�RK2
�t (sn) = sn + �t

f1 + f2
2

(14)

where

f1 = X(sn), f2 = X(sn + �t f1).

And the flow of a fourth order Runge–Kutta scheme is

�RK4
�t (sn) = sn + �t

f1 + 2f2 + 2f3 + f4
6

(15)

where

f1 = X(sn), f2 = X (sn + �t
2 f1

)
, f3 = X (sn + �t

2 f2
)
, f4 = X(sn + �t f3).

A sufficient condition for a one-step incremental integrator to be symplectic is that��t
is symplectic (for any n), that is:

�∗
�tω = ω. (16)

Inmatricial and in exterior calculus forms in canonical coordinates, this condition writes:

(∇��t )T J (∇��t ) = J. (17)

and

dpn+1 ∧ dqn+1 = dpn ∧ dqn ∀n ∈ N. (18)

Failure of classical integrators

In this section, we show, through elementary examples, that the use of non-structure-
preserving algorithms may have dramatic consequences when simulating a long-time
evolution problem.
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Harmonic oscillator

Consider the 1D harmonic oscillator, described by the autonomous Hamiltonian

H = p2 + q2

2
. (19)

This Hamiltonian is conserved along exact trajectories. Since nq = 1, the symplectic form
is a volume (or area) form.
The one-step flow of the first order explicit Euler scheme on the harmonic oscillator is

pn+1 = pn − �t qn,

qn+1 = qn + �t pn.
(20)

The explicit Euler scheme is not symplectic. Indeed, for this scheme,

∇��t =

⎛

⎜⎜⎜
⎜⎜
⎝

∂qn+1

∂qn
∂qn+1

∂pn

∂pn+1

∂qn
∂pn+1

∂pn

⎞

⎟⎟⎟
⎟⎟
⎠

=
⎛

⎜
⎝

1 �t

−�t 1

⎞

⎟
⎠

It can easily be checked that condition (17) is not fulfilled. The symplectic form evolves
between two time steps as follows:

dpn+1 ∧ dqn+1 = (1 + �t2)(dpn ∧ dqn).

This relation shows that an infinitesimal volume in the phase space grows each time step
with a rate 1 + �t2. As a consequence, when used to simulate a long-time evolution
problem, the scheme fails to represent correctly the physics of the equation.
The implicit Euler scheme has a similar behaviour. Its one-step flow can be written as

pn+1 = pn − �t qn+1,
qn+1 = qn + �t pn+1.

(21)

Like the explicit version, this scheme does not preserve the symplectic form since

dpn+1 ∧ dqn+1 = 1
1 + �t2

(dpn ∧ dqn).

An infinitesimal volume in S is multiplied by (1 + �t2)−1 at each iteration.
To illustrate the above properties of the explicit and implicit Euler schemes, we take

a set of initial conditions forming a circle centered at (p = 1, q = 0) and with radius
0.2. The equation is solved with the two Euler schemes. The solution is plotted on Fig. 1
each π/6 s. As anticipated, the area delimited by the circle is not preserved over time. It
increases drastically with the explicit scheme and decreases with the implicit one.
The growth of the initial volume can be interpreted as a numerical production of energy,

whereas the diminution of the volume is associated to a numerical dissipation. Hence,
through this elementary example, it was shown that the non preservation of an intrinsic
property of the system yields an accumulation of numerical errors, modfying the initial
area and contradicting Liouville’s theorem.
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Fig. 1 Harmonic oscillator. Evolution of a disc (in red at t = 0) with the flow of explicit and implicit Euler
schemes. a Explicit Euler scheme. b Implicit Euler scheme

Fig. 2 Relative error of explicit (E) and implicit (I) Euler methods on the energy of the harmonic oscillator

In fact, the discrete energy Hn is not constant and evolves numerically as

Hn+1 = (pn+1)2 + (qn+1)2

2
= (1 + �t2)

(pn)2 + (qn)2

2
= (1 + �t2)Hn

with the explicit scheme and as

Hn+1 = 1
1 + �t2

Hn

with the implicit scheme. Figure 2 shows the evolution of the absolute relative error

|Hn − H0|
|H0| ,

with an initial condition (q = 0, p = 1). As can be observed, the absolute error increases
for both schemes. A refinement of the time step reduces the growth rate but does not
avoid the problem. Even with �t = 2.10−2, the relative error is 10% at t = 5 s. The use of
such schemes on long-time evolution problem may be catastrophic.
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Fig. 3 Kepler’s problem. Evolution of the relative error on the Hamiltonian and the angular momentum with
the second-order Runge–Kutta scheme. a Error on H over time. b Error on 
 over time

Kepler’s problem

As a second example, consider Kepler’s problem [146,148,149], described by the Hamil-
tonian function

H = p21 + p22
2

− 1
√
q21 + q22

. (22)

This Hamiltonian being autonomous, it is an invariant of the system. The (third compo-
nent of the) angular momentum


 = q1p2 − q2p1 (23)

is also a first integral.
The equation, with initial conditions (q1 = 1/2, q2 = 0, p1 = 0, p2 = √

3) is solved with
the second order Runge–Kutta scheme. The flow is described by Eq. (14). It can be shown
that this scheme is not symplectic.
The absolute relative error on the Hamiltonian and the angular momentum are pre-

sented in Fig. 3. As can be observed, the numerical error on both invariants has an increas-
ing trend over time. A time-step refinement reduces the error but the growth rate is essen-
tially the same whatever the time step. Moreover, increasing the order of the scheme is
not the solution. Indeed, with a 4th-order Runge–Kutta integrator, defined in Eq. (15), the
trend stays similar, as will be exhibited in “Kepler’s problem” section.
Other examples, including molecular dynamics and population evolution problems,

which show the failure of classical methods are presented in [150]. In the next section,
we present some symplectic schemes and show how they are suitable for the resolution
of long-time evolution problem having a Hamiltonian structure.

Some symplectic integrators

There are some ways to build symplectic integrators [151–155]. One of them is through a
generating function. Another way is to adapt existing integrators. In the present paper, we
adopt the latter method. Two types of integrators are investigated, those based on Euler
schemes and those belonging to the Runge–Kutta method family.
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Euler-type symplectic integrators

The classical explicit and implicit schemes on a generalHamiltonian Eq. (5) can bewritten,
respectively, as follows:

pn+1 = pn − �t ∇qH (pn,qn),
qn+1 = qn + �t ∇pH (pn,qn)

and

pn+1 = pn − �t ∇qH (pn+1,qn+1),
qn+1 = qn + �t ∇pH (pn+1,qn+1)

By mixing these schemes, a symplectic integrator can be deduced as follows [151]:

pn+1 = pn − �t ∇qH (pn+1,qn),
qn+1 = qn + �t ∇pH (pn+1,qn). (24)

Indeed, using the relations

dpn+1 = dpn − �t
(

∂∇qH
∂pn+1 dp

n+1 + ∂∇qH
∂qn dpn

)

,

dqn+1 = dqn + �t
(

∂∇pH
∂pn+1 dp

n+1 + ∂∇pH
∂qn dpn

)

,

a straightforward computation shows that scheme (24), called symplectic Euler scheme,
is symplectic.
Another symplectic integrator is the centered Euler schemeobtainedwith themid-point

method:

pn+1 = pn − �t ∇qH (pn+1/2,qn+1/2),
qn+1 = qn + �t ∇pH (pn+1/2,qn+1/2),

(25)

with

pn+1/2 = pn+1 + pn
2

, qn+1/2 = qn+1 + qn
2

.

Symplectic Runge–Kuttamethods

An s-stage Runge–Kutta integrator of Eq. (5) can be formulated as follows [9,151]:

pn+1 = pn − �t
s∑

i=1
βi∇q(Pi,Qi)

qn+1 = qn + �t
s∑

i=1
βi∇q(Pi,Qi)

(26)

with

Pi = pn − �t
s∑

j=1
αij∇q(Pj ,Qj), i = 1, . . . , s,

Qi = qn + �t
s∑

j=1
αij∇p(Pj ,Qj), i = 1, . . . , s,
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for some real numbers αij , βi, i, j = 1, . . . , s. It was proven that the s-stage Runge–Kutta
(26) is symplectic if and only if the coefficients verify the relation [10,11]:

βiβj = βiαij + βjαji, ∀i, j = 1, . . . , s. (27)

For example, when s = 1, α1 = 1
2 and β1 = 1, scheme (26) reduces to the centered

symplectic Euler scheme. With s = 2, we have a 4th-order Gauss–Legendre scheme with

α =
⎛

⎜
⎝

1
4

3−2
√
3

12

3+2
√
3

12
1
4

⎞

⎟
⎠ , β =

(
1
2

1
2

)

Another 4th-order scheme, but with a lower triangular matrix α, is the 3-stage, diagonally
implicit, 4th-order Runge–Kutta, defined by

α =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

b
2 0 0

b 1
2 − b 0

b 1 − 2b b
2

⎞

⎟⎟⎟
⎟⎟⎟
⎠

, β =
(
b 1 − 2b b

)
, (28)

where

b = 2 + 21/2 + 2−1/3

3
.

Many other variants of symplectic Runge–Kutta methods can be found in the literature
(see for example [152]). Some of them are suited only to particular Hamiltonian systems.
Generally, symplectic integrators do not preserve exactly the Hamiltonian [156] (when

the latter is autonomous).However, the symplecticity condition seems tobe strong enough
that, experimentally, symplectic integrators exhibit a good behaviour toward the preser-
vation property. In fact, we have the following error estimation on the Hamiltonian
[157,158]:

|H (pn, qn) − H (p0, q0)| = O(�tr) for n�t ≤ e
γ

2�t (29)

for some constant γ > 0, r being the order of the symplectic scheme. This relation states
that the error is bounded over an exponentially long discrete time.Moreover, it was shown
in [159] that symplectic Runge–Kutta methods preserve exactly quadratic invariants.
In fact, a backward analysis shows that symplectic integrators solve exactly a Hamil-

tonian system, with a Hamiltonian function H̃ which is a perturbation of H [160]. This
explains the bounded error on H .

Numerical tests

Harmonic oscillator

As a first test, we solve the harmonic oscillator problemwith the symplectic Euler scheme
andwith its centered version. By construction, both schemes preserve the symplectic form
up to machine precision. So, any area in the phase space is preserved. This property can
be observed in Fig. 4 which shows the evolution of the disc delimited by the same circle
as in “Harmonic oscillator” section. Indeed, even if, contrarily to the exact evolution, the
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Fig. 4 Harmonic oscillator. Evolution of a disc (in red at t = 0) with symplectic Euler-type integrators. a
Symplectic Euler. b Centered symplectic Euler

a b

Fig. 5 Harmonic oscillator. Relative error on H with symplectic Euler-type schemes a Symplectic Euler. b
Centered symplectic Euler. Blue: �t = 0.1. Green: �t = 0.06. Red: �t = 0.02

disc is deformed by the Euler symplectic scheme, its area is invariant. With the centered
symplectic scheme which is second order accurate, the form of the disc is unmodified and
its area is invariant.
Figure 5 presents the evolution of the relative error on the Hamiltonian H . As can be

observed on the left of this figure, H is not preserved by the non-centered symplectic
Euler scheme. However, the error is bounded, almost periodic, contrarily to the result of
the classical, non-symplectic Euler schemes in “Harmonic oscillator” section. Moreover,
a closer comparison with Fig. 2 shows that the error is much smaller with the symplectic
scheme.
With the centered symplectic scheme, the error on H is below the machine precision

(Fig. 5b). In fact, it can be shown that, since this scheme is a Runge–Kutta one, it preserves
H exactly.

Kepler’s problem

As a second test, we consider again Kepler’s problem. The equation is solved with the
classical 4th-order Runge–Kutta scheme (RK4) and its symplectic version (RK4sym).
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Fig. 6 Kepler’s problem. Relative error on H and on 
 with the Runge–Kutta schemes. a Error on H with RK4.
b Error on H with RK4sym. c Error on 
 with RK4. d Error on 
 with RK4sym

The time evolution of the error on H and 
 are plotted in Fig. 6. As seen in subfigures
(a) and (c), the error of RK4 on H and 
 is smaller than that of the second order scheme
in “Kepler’s problem”, but both schemes have similar trend when time grows. The error
increases without upper limit.
As for the symplectic scheme, the error of RK4sym on H stays almost the same over a

long time period, as could be predicted with estimation (29).
The above results show that symplectic integrators preserve many first integrals (in the

sense that the error is bounded). However, not necessarily all first integrals are preserved.
For example, standard symplectic integrators do not necessarily preserve the Laplace–
Runge–Lenz vector. Recall that this vector is an invariant ofKepler’s problemwhichmakes
the equation super-integrable (see [161]). It is possible to build specific schemes which
preserve this invariant. It is done in [162] using the canonical Levi-Civita transformation
[163].

Vortex dynamic

To end this section, a qualitative study of the convection of passive point vortices in an
ideal incompressible fluid is presented [164–167]. A system ofN point vortices or tracers
is described by a singular vorticity field

w(x) =
N∑

i=1
γiδ(x − xi)
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Fig. 7 Initial configuration with square symmetry (left) and trajectory (right)

where xi = (xi, yi) is the position of vortex i, γi its strength and δ is the Dirac distribution.
The strength of each vortex is assumed constant. The evolution of the system is governed
by a Hamiltonian function:

H = − 1
2π

N∑

i=1

∑

j =i
γiγj ln ‖xi − xj‖ (30)

with the conjugate variables pi = γixi and qi = yi.
We take N = 4 identical vortices. In this case, some typical behaviours have to be

observed according to the initial configuration of the vorticies. When the vortices are
initially positionned with a square symmetry as in Fig. 7, left, then the trajectory of each
particle is stable and periodic (Fig. 7, right). In fact, the system is integrable and the
configuration of the vortices remains symmetric at any time.
If the initial position of two opposite vortices are shifted from the square configuration

with a small angle α as in Fig. 8 then the system is quasi-integrable. Each particle has a
quasi-periodic trajectory. But if only one vortex (instead of two opposite ones) is shifted
from the square configuration, symmetries are lost and the trajectory becomes chaotic
(see [168–170]).
We now solve the system numerically, with RK4 and its symplectic version RK4sym.

When the initial configuration is square symmetric, both integrators reproduce the peri-
odic behaviour of the solution, even over a long time period, as can be noticed in Fig. 9.
In this figure, the approximate solution is plotted over 5.105 iterations with a time step
�t = 5.10−3.
When the initial position of two opposite vortices are perturbed as in Fig. 8, left, with

an angle α = π/5, the violation of the symplectic structure of the equations makes the
classical Runge–Kutta scheme unable to reproduce the physics. The quasi-periodicity
is indeed lost and the trajectory seems chaotic, as shown in Fig. 10. As for it, RK4sym
reproduces the quasi-periodicity of the solution thanks to its symplecticity property.
These results show the importance of the preservation of the equation’s structure when

simulating Hamiltonian ODEs. In order to extend symplectic integrators to PDEs, multi-
symplectic geometry will be introduced in the next subsection.
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Fig. 8 Angularly perturbed initial configuration (left) and trajectory (right)

Fig. 9 Computed trajectories with RK4 and RK4sym. Square symmetric initial configuration

Fig. 10 Computed trajectories with RK4 and RK4sym. Angulary perturbed initial configuration

Multisymplectic integrators

Mulstisymplectic integrators have been intensively developped for PDE, specifically in the
framework ofwaterwaves [47,171]. Indeed, a large class ofmodels forwaterwaves inherits
a Hamiltonian structure of infinite dimension. Thus a multisymplectic structure can be
exhibited, for example, for Serre-type equations in deep water configuration [172], and
for the Serre–Green–Naghdi equations in shallow water configuration [173]. Therefore
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multisymplectic schemes appear as natural structure preserving integrators applied to
these models. The efficiency of such geometric numerical methods is presented in [174]
where a long-time simulation of the Korteweg–de Vries dynamics is performed with
more robustness and more accuracy using a multisymplectic scheme than a Fourier-type
pseudo-spectral method.
A precise presentation of the multisymplectic structure on a manifold necessitates the

introduction of many mathematical tools. As our article aims to be a review paper, we do
not wish to do it here. The reader can refer to [175, §1.1–1.3] for a good mathematical
approach. Instead, we propose a simplified framework, in a vector space.
Consider be an open subset U of R2 and a regular function

s :
U −→ R

ns

(t, x) �−→ s(t, x) = (s1(t, x), . . . , sns (t, x))T
(31)

with ns ≥ 2. Let H : U × R
ns −→ R be a regular Hamiltonian function.

In most of applications, a multisymplectic system is a system of partial differential
equations of the following form:

W
∂s
∂t

+ K
∂s
∂x

= ∇H (t, x, s). (32)

In (32),W and K are skew-symmetric matrices in R
ns and the gradient of H is relative to

s. Equation (32) is a generalisation of the (one-)symplectic Eq. (6).
ToW and K can be associated two skew-symmetric two-forms ω and κ defined by4

ω = 1
2
ds ∧ Wds, κ = 1

2
ds ∧ Kds. (33)

Conservation laws

There are conservation lawsof Eq. (32) that shouldbe consideredwhendesigning anumer-
ical integrator for the equation. First, in the (one-)symplectic case, the two-form is con-
served along trajectories. In the 2-symplectic case, it is a sum of the variation in each
direction which is conserved. More precisely, it can be shown that [171]:

∂ω

∂t
+ ∂κ

∂x
= 0. (34)

This is a consequence of a linearization of (32) and the symmetry of the Hessian of H .
Furthermore, in the (one-)symplectic case, the Hamiltonian is a first integral, provided it
does not depend explicitely on time. In multisymplectic case, this conservation law is split
and we have one conservation law in each direction. More precisely, ifH does not depend
explicitly on t then one can deduce an energy conservation law:

∂F1

∂t
+ ∂F2

∂x
= 0 (35)

4More precisely,

ω = 1
2

ns∑

i=1
dsi ∧

⎛

⎝
ns∑

j=1
Wijdsj

⎞

⎠

if the Wij are the components of W. Moreover, ω(X1 ,X2) = (WX1)·X2 for two arbitrary vectors X1 and X2 of Rns ,
the dot symbol · being the Euclidean inner product of Rns . Similar remarks apply to κ .
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where F1 and F2 are the functions

F1(s) = H (s) − 1
2
κ

(
∂s
∂x

, s
)

, F2(s) = 1
2
κ

(
∂s
∂t

, s
)

.

Conservation law (35) comes from the inner product of Eq. (32) with ∂s/∂t:

ω

(
∂s
∂t

,
∂s
∂t

)

+ κ

(
∂s
∂x

,
∂s
∂t

)

= ∇H
∂s
∂t

= ∂H (s)
∂t

.

The first term vanishes because of the skew-symmetry of ω. And since

κ

(
∂s
∂x

,
∂s
∂t

)

= 1
2

∂

∂t
κ

(
∂s
∂x

, s
)

+ 1
2

∂

∂x
κ

(

s,
∂s
∂t

)

,

Equation (35) follows immediately.
Similarly, if H does not depend explicitly on x then the inner product of Eq. (32) with

∂s/∂x yields the momentum conservation law

∂G1

∂t
+ ∂G2

∂x
= 0 (36)

with

G1(s) = 1
2
ω

(
∂s
∂x

, s
)

, G2(s) = H (s) − 1
2
ω

(
∂s
∂t

, s
)

.

Examples

As an example, consider the following Hamiltonian function with s = (u, v, w):

H (u, v, w) = 1
2
v2 − 1

2
w2 + V (u).

Let ω = dv ∧ du and κ = du ∧ dw. The corresponding matrix expressions are

W =
⎛

⎜
⎝
0 −1 0
1 0 0
0 0 0

⎞

⎟
⎠ and K =

⎛

⎜
⎝

0 0 1
0 0 0

−1 0 0

⎞

⎟
⎠ .

Equation (32) reads

−∂v
∂t

+ ∂w
∂x

= V ′(u),

∂u
∂t

= v,

∂u
∂x

= w,

(37)

where V is a source function. This system is equivalent to the wave equation

∂2u
∂t2

− ∂2u
∂x2

= −V ′(u).

The quantities involved in conservation laws (35) and (36) are

F1 = 1
2
(v2 + w2) + V (u), F2 = −vw
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and

G1 = −vw, G2 = 1
2
(w2 + v2) + V (u).

Another multisymplectic equation is the Korteweg de–Vries equation

∂u
∂t

+ u
∂u
∂x

+ ∂3u
∂x3

= 0. (38)

Indeed, if s = (φ, u, v, w), z = (t, x) and

ω = 1
2
dϕ ∧ du, κ = dϕ ∧ dw + dv ∧ du, and H = 1

2
v2 − uw + u3

6
,

then Eq. (32) is equivalent to Korteweg–de Vries Eq. (38). The matrix representations of
ω and κ are

W =

⎛

⎜⎜⎜
⎝

0 1
2 0 0

− 1
2 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎟
⎠

and K =

⎛

⎜⎜⎜
⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞

⎟⎟⎟
⎠
.

The conserved quantities are defined by

F1 = −1
2

(

uw + ϕ
∂w
∂x

− ∂v
∂x

u
)

+ u3

6
,

F2 = 1
2

(

ϕ
∂w
∂t

− ∂v
∂t

u − ∂w
∂t

∂ϕ

∂t
+ v

∂u
∂t

)

and

G1 = 1
4

(

ϕ
∂u
∂x

− ∂ϕ

∂x
u
)

, G2 = 1
2
v2 − uw − 1

4

(
∂u
∂t

ϕ − ∂ϕ

∂t
u
)

.

Lastly, the non-linear Schrödinger equation

i
∂ψ

∂t
+ ∂2ψ

∂x2
+ |ψ |2ψ = 0, i2 = −1

can be written in multisymplectic form with s = (p, q, v, w), ψ = p + iq,

H (s) = 1
2
(
p2 + q2

)2 + 1
2
(
u2 + v2

)2

and

ω = dp ∧ dq, κ = dv ∧ dp + dw ∧ dq.

Amultisymplectic integrator is a discretization scheme of (32) which satisfies the corre-
sponding discrete form of the multisymplectic conservation law (34) [176]. As for ODEs,
many classical PDE integrators have their multisymplectic version. In this subsection,
some examples of multisymplectic integrators are presented. To this aim, the expression
of the Hamilton equation in local coordinates (32) is used. As for the symplectic case,
Euler-type and Runge–Kutta-type schemes are considered.
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Euler-typemultisymplectic schemes

To build a multisymplectic Euler scheme, the skew-symmetric matricesW andK are split
into [177]:

W = W+ + W− and K = K+ + K−

with

W
T

+ = −W− and K
T
+ = −K− .

For example, the splitting may be in upper and lower triangular parts. Next, define a grid
formed with points (tn, xi). Recall the forward and backward Euler discretization schemes
in each direction:

�±
t sni = ±sn±1

i − sni
�t

, �±
x sni = ±sni±1 − sni

�x
.

One multisymplectic Euler discretization of (32) is defined by
(
W+�+

t sni + W−�−
t sni

)
+
(
K+�+

x sni + K−�−
x sni

)
= ∇H (sni ).

It is first order in time and second in x. Any solution of this equation verifies the following
discrete multisymplectic conservation law

�+
t ωn

i + �+
x κn

i = 0

where

ωn
i = 1

2
dsn−1

i ∧ W+dsni , κn
i = 1

2
dsni−1 ∧ K+dsni .

This scheme also verifies semi-discrete forms of energy andmomentumconservation laws
(35) and (36) [170].
Another multisymplectic discretization scheme of (32) is the Preissman box scheme

W�+
t sni+ 1

2
+ K�+

x s
n+ 1

2
i = ∇sH

(sn+ 1
2

i+ 1
2

)
.

This scheme is second order in both t and x, and verifies the discrete multisymplicity
conservation

�+
t ωn

i+ 1
2

+ �+
x κ

n+ 1
2

i = 0

with

ωn
i = 1

2
dsni ∧ Wdsni , κn

i = 1
2
dsni ∧ Kdsni .

Lastly, the multisymplectic midpoint scheme is defined by

W
�+

t sni + �−
t sni

2
+ K

�+
x sni + �−

x sni
2

= ∇H (sni ).

and satisfies the discrete multisymplicticity property

�+
t ωn

i + �+
x κn

i = 0

with

ωn
i = 1

2
dsni ∧ Wdsn−1

i , κn
i = 1

2
dsni ∧ Ksni−1.
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Multisymplectic Runge–Kutta schemes

It was shown in “Symplectic Runge–Kutta methods” section that a symplectic Runge–
Kutta scheme can be obtained with a rather simple condition of the coefficients in the
Butcher tableau which guarantees the symplecticity. However, no extension has been
established yet in the generic multisymplectic case. Multisymplectic RK schemes were
presented and studied in [178–180] for thepartitioned case.AnotherparticularRKscheme
is the implicit Gauss–Legendre integrator [181]. It will be illustrated hereafter on the Sine-
Gordon equation. Other multisymplectic schemes, based on the Runge–Kutta–Nyström
method, can be found in [182–184].
Consider the multisymplectic formulation of Eq. (37), discretized with some discrete

time and space derivative operators �t and �x:

�tuni = vni , �xuni = wn
i , �tvni − �xwn

i = −V ′(uni ).
A multisymplectic Gauss–Legendre discretization scheme of this equation is a combina-
tion of space and time Runge–Kutta integrators with (sv + sw) stages, defined with the
intermediate variables (Ui, Vi)i=1,...,sv and (Ui,Wi)i=1,...,sw as follows:

uni+1 = uni + �x
sw∑

i=1
bi�xUn

i , wn
i+1 = wn

i + �x
sw∑

i=1
bi�xWn

i

where

Un
i = uni + �x

sw∑

j=1
aij�xUn

j , Wn
i = wn

i + �x
sw∑

j=1
aij�xWn

j

and

un+1
i = uni + �t

sv∑

m=1
b̃m�tUm

j , vn+1
i = vni + �t

sv∑

m=1
b̃m�tWm

j

where

Un
i = uni + �t

sv∑

k=1
ãnk�tUk

i , V n
i = vni + �t

sv∑

k=1
ãnk�tW k

i .

The multisymplecticity condition on the coefficients of this RK scheme is similar to the
symplectic case for our scheme:

bjaji + biaij − bibj = 0, b̃j ãji + b̃iãij − b̃ib̃j = 0.

The discrete conservation law reads:
nw∑

i=1
bi
[
dun+1

i ∧ dvn+1
i − duni ∧ dvni

]
�x

−
nv∑

n=1
b̃i
[
duni+1 ∧ dvni+1 − duni ∧ dvni

]
�t = 0.

Numerical test

Consider the Sine-Gordon equation

∂2u
∂t2

− ∂2u
∂x2

+ V ′(u) = 0 (39)

withV (u) = − cosu, in a space domain [−L, L], along with a periodic boundary condition

u(−L, t) = u(L, t), for all t ≥ 0.

Equation (39) is discretized with the following three different schemes.
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Fig. 11 Approximate solutions for t ∈ [0; 30], with �t = 5.10−2, �x = 5.10−2. a Leapfrog scheme. b
Multisymplectic scheme

• A leapfrog (LF) scheme:

un+1
i − 2uni + un−1

i
�t2

− uni+1 − 2uni + uni−1
�x2

+ V ′(uni ) = 0.

This scheme is in fact a symplectic (not multisymplectic) scheme in the sense that it
preserves a spatial symplectic two-form over time.

• An energy conserving but not multisymplectic scheme developped in [185] that we
call EC:

un+1
i − 2uni + un−1

i
�t2

− uni+1 − 2uni + uni−1
�x2

+ V (un+1
i ) − V (un−1

i )
un+1
i − un−1

i
= 0.

• A nine-point box multisymplectic (MS) scheme, which is a Runge–Kutta scheme,
simplified by variable substitution [186]:

�2
t

(
un+1
i − 2uni + un−1

i

)
− �2

x
(
uni+1 − 2uni + uni−1

)

+V ′
(
un+ 1

2
i+ 1

2

)
+ V ′

(
un− 1

2
i+ 1

2

)
+ V ′

(
un+ 1

2
i− 1

2

)
+ V ′

(
un− 1

2
i− 1

2

)
= 0.

where the time and space discretization operators are defined by

�2
t z

n
i = zn+1

i − 2zni + zn−1
i

�t2
, �2

xz
n
i = zni+1 − 2zni + zni−1

�x2
.

When the space step is small enough and the time step is smaller, the three schemes
reproduce the exact solution with a fair precision. However, when the time step grows,
the Leapfrog integrator looses stability, despite its symplecticity in one direction. This
behaviour can be seen in Fig. 11a, where �t = �x. Figures 11b and 12 show that, with
the same time and space steps, the energy conserving and the multisymplectic integrators
remain stable, even over a long time period.
When the time step is bigger than the space step, the scheme EC based on energy

conservation blows up from the first iterations (the corresponding approximate solution
is not plotted here). As for it, the multisymplectic scheme gives a relatively well behaved
solution, even with a coarse time grid, as can be seen in Fig. 13.
Some results on the quality of the multisymplectic scheme regarding conservation laws

are given in [170]. It can be concluded that symplectic and multisymplectic schemes are
particularly suitable to the numerical resolution of long time evolution problems.



Razafindralandy et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:16 Page 22 of 67

Fig. 12 Approximate solutions for t ∈ [0; 500], with �t = 5.10−2, �x = 5.10−2. a Energy conserving
scheme. bMultisymplectic scheme

Fig. 13 Approximate solutions with �t = 1.10−1, �x = 5.10−2. aMultisymplectic scheme, t ∈ [0; 40], b
multisymplectic scheme, t ∈ [100; 140]

In the next section, geometric integrators for variational ODEs and PDEs are presented.

Variational integrators
In this section, we deal with Lagrangian systems, that are systems coming from a calculus
of variation.

Reminders on Lagrangian mechanics

In Lagrangian mechanics, a Lagrangian system is described by a Lagrangian density. Tak-
ing the variation of the corresponding Lagrangian action over the configuration variable
q, the Euler–Lagrange equation of the system is deduced from Hamilton’s principle of
least action. This is the traditional approach of presenting the Euler–Lagrange equation
[1,187,188].
In a similar way, variational integrators are obtained by taking the variation of a discrete

Lagrangian action over the discrete variable qn. Abundant literature on the traditional
presentation of variational integrators exists [13,14,150].
Generally, the numerical solution of the discrete Euler–Lagrange equation preserves

the evolution law of energy of the system with a good precision, but not exactly. In [189],
Kane et al. proposed to associate an ad hoc equation to the discrete equations in order to
satisfy a discrete energy conservation.



Razafindralandy et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:16 Page 23 of 67

In fact, the algorithm obtained in [189] can be viewed as a generalisation of variational
calculus, where variation along time is permitted [170,190]. In this new approach, the
energy equation is not defined as in [189] but results naturally from the variation of the
action in time direction. In the present paper, this second approach is adopted.

Total variation calculus

Consider a dynamic system, which configuration over time is defined by q(t). Denote
Q the configuration manifold, TQ its tangent bundle and M = R × Q the extended
configuration space including time. A Lagrangian density on Q is a C2 function defined
on R × TQ:

L :
R × TQ −→ R

(t,q, q̇) �−→ L(t,q, q̇).
The associated Lagrangian action over a time interval [t0, t1] is the functional

L :

C2([t0, t1], Q) −→ R

q(t) �−→
∫ t1

t0
L(t,q, q̇)dt.

(40)

The variation of L in the direction of a tangent vector δm = (δt, δq) ∈ TmM is:

δL ≡ (D L, δm) = ∂L
∂t

δt + ∂L
∂q δq + ∂L

∂q̇

(
d
dt

δq − q̇
d
dt

δt
)

= Etδt + EL δq + d
dt

[(

L − ∂L
∂q̇ q̇

)

δt + ∂L
∂q̇ δq

]

where D is the functional derivative operator and

Et = ∂L
∂t

+ d
dt

(
∂L
∂q̇ q̇ − L

)

,

EL = ∂L
∂q − d

dt

(
∂L
∂q̇

)

.

The total infinitesmal variation of L is

δL ≡ (DL, δm) =
∫ t1

t0

(
Etδt + EL δq

)
dt +

[(

L − ∂L
∂q̇ q̇

)

δt + ∂L
∂q̇ δq

]t1

t0

. (41)

Liouville’s 1-form below emerges from the last term of (41):

�L =
(

L − ∂L
∂q̇ q̇

)

dt + ∂L
∂q̇ dq. (42)

A system is said Lagrangian if it evolves under Hamilton’s principle of stationary action,
stating that the trajectory corresponds to an extremum of L among q(t) ∈ C2([t0, t1],M)
with fixed endpoints. In other words, the trajectory is a solution of

δL = 0
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for any δm ∈ TmM such that

δm(t0) = δm(t1) = 0 (43)

This condition leads to the Euler–Lagrange equation

EL ≡ ∂L
∂q − d

dt

(
∂L
∂q̇

)

= 0 (44)

and to the energy evolution equation

Et ≡ ∂L
∂t

+ d
dt

(
∂L
∂q̇ q̇ − L

)

= 0. (45)

Equation (45), which reduces to the energy conservation law when L is autonomous, is
automatically verified by any solution of Eq. (44). But numerically, this is not always the
case.
In the standard way of deducing the Euler–Lagrange equation, only tangent vectors

δq ∈ TqQ are considered. However, by considering the time as a variable, and thus the
tangent vectors (δt, δq), conservation laws, as defined in Nœther’s theorem [191–194],
appear naturally.

Nœther’s theorem

Consider a curve inM defined by the one-parameter transformation:

ga : (t,q) ∈ M �−→ (
t̂(t,q, a), q̂(t,q, a)) ∈ M (46)

passing at (t,q) when a = 0 (see Fig. 14). Take (δt, δq) as the tangent vector to this curve
at (t,q):

δt = dt̂
da |a=0, δq = dq̂

da |a=0.

First Nœther’s theorem states that if ga preserves the Lagrangian action L, that is
L(q̂(t̂)) = L(q(t))

for any a belonging to a vicinity of 0 then the following conservation law holds along
trajectories of the system:

d
dt

[(

L − ∂L
∂q̇ q̇

)

δt + ∂L
∂q̇ δq

]

= 0. (47)

This equation is obtained from δL = 0 in (41) along a solution trajectorywithout imposing
the fix endpoint condition (43).
The flow

�t
L :

M −→ M

(t0,q0) �−→ (t,q).
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Fig. 14 One-parameter transformation ga onM and its tangent vector (δt, δq) ∈ T(t,q)M

mn

tn

tn-1

mn-1

mn+1

tn+1

Fig. 15 Discretization ofM

of Eq. (44) is a symplectomorphism. Indeed, it can be shown that

�t∗
L ωL = ωL (48)

where ωL = d�L is the Lagrangian symplectic form. The form ωL endows TM with a
symplectic structure.

Variational integrators

A variational integrator is a scheme which verifies a discrete Hamiltonian’s variational
principle. The most popular way of obtaining a variational integrator is from a discretiza-
tion of the Lagrangian density and a derivation of a discrete version of Eqs. (44), (45) by
mimicking the variational procedure used in “Total variation calculus” section. This is
the approach of Marsden and West [13,14], based on a finite difference discretization of
the Lagrangian density. Other approaches can be found, for instance, in [22,195–200]. As
examples, a higher-order, spectral method is presented in [22]. A finite element method
is described in [195]. Another approach, where at each time iteration an exact variational
problem is solved, is developped in [198,201].
The time interval is discretized into a sequence t = (t0, . . . , tN ). Similarly, the config-

uration variable is discretized into q = (q0, . . . ,qN ) ⊂ Q. We denote mn = (tn,qn) and
m = (m0, . . . ,mN ) ⊂ M (see Fig. 15).
With a suitable discretization of q̇ we can get a discrete Lagrangian function L(m). And

with a suitable quadraturemethod, a discrete Lagrangian actionL over [t0, tN ] is deduced:

L(t,q) � L(t0, . . . , tN ,q0, . . . ,qN ). (49)

L is a discrete functionMN+1 → R. Its variation reads

δL ≡ (DL, δm)

=
N−1∑

n=1

(
En
t (m)δtn + ELn(m)δqn

)
+ 〈�−

L ; δm0〉 + 〈�+
L ; δmN 〉 (50)
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for some functions En
t and ELn and some 1-forms �−

L and �+
L which depend on the

discretization scheme of the Lagrangian density and the quadrature. Imposing that

(DL, δm) = 0 (51)

for any δm such that δm0 = δmN = 0 generates the discrete Euler–Lagrange equations

ELn(m) = 0, n = 1, . . . , N − 1 (52)

and the discrete energy equations

En
t (m) = 0, n = 1, . . . , N − 1. (53)

Let us illustrate the above discrete variational equations through explicit examples.

Examples

Rectangle rule

A simple example of a variational integrator is obtained with a first order finite difference
discretization of q̇ and a rectangle rule quadrature method of the action. In this case, the
discrete Lagrangian density is

L(t,q, q̇)|tn � L (tn,qn, q̇n) with q̇n = qn+1 − qn
tn+1 − tn

The discrete action is:

L(t,q) � L(m) =
N−1∑

n=0
(tn+1 − tn)L (tn,qn, q̇n) .

The variation is

δL =
N−1∑

n=0

{[

−L(n) + (tn+1 − tn)
∂L
∂t

(n) + q̇n
∂L
∂q̇ (n)

]

δtn

+
[

L(n) − q̇n
∂L
∂q̇ (n)

]

δtn+1

+
[

(tn+1 − tn)
∂L
∂q (n) − ∂L

∂q̇ (n)
]

δqn +
[

∂L
∂q̇ (n)

]

δqn+1
}

(54)

where

L(n) = L (tn,qn, q̇n) ,
∂L
∂α

(n) = ∂L
∂α

(tn,qn, q̇n) , α = t,q, q̇.

Shifting the summation index in terms containing δtn+1 and δqn+1, one can find En
t (m),

ELn(m), �−
L and �+

L verifying

δL =
N−1∑

n=1

{
En
t (m)δtn + ELn(m)δqn

}
+ 〈�−

L ; δm〉 + 〈�+
L ; δm〉
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where 〈�−
L ; δm〉 (respectively 〈�+

L ; δm〉) is composed of the coefficients of δm0 (resp.
δmN ). Imposing the discrete Hamiltonan principle (51) with δm0 = δmN = 0, we get the
discrete Euler–Lagrange equation and discrete energy law:

ELn(m) ≡ (tn+1 − tn)
∂L
∂q (n) − ∂L

∂q̇ (n) + ∂L
∂q̇ (n − 1) = 0, (55a)

En
t (m) ≡ (tn+1 − tn)

∂L
∂t

(n) +
(
qn+1 − qn
tn+1 − tn

∂L
∂q̇ (n) − L(n)

)

−
(
qn − qn−1

tn − tn−1
∂L
∂q̇ (n − 1) − L(n − 1)

)

= 0, (55b)

for n = 1, . . . , N − 1.

Midpoint rule

If a midpoint rule is used as quadrature method then the discrete Lagrangian action can
be written:

L(t,q) �
N−1∑

n=0
(tn+1 − tn) L

(

tn,
qn+1 + qn

2
,
qn+1 − qn
tn+1 − tn

)

In this case, the discrete variational equations are

tn+1 − tn

2
∂L
∂q (n) + tn − tn−1

2
∂L
∂q (n − 1) − ∂l

∂q̇ (n) + ∂L
∂q̇ (n − 1) = 0 (56a)

tn+1 − tn

2
∂L
∂t

(n) + tn − tn−1

2
∂L
∂t

(n − 1)

+
(
qn+1 − qn
tn+1 − tn

∂L
∂q̇ (n) − L(n)

)

−
(
qn − qn−1

tn − tn−1
∂L
∂q̇ (n − 1) − L(n − 1)

)

= 0 (56b)

In Eqs. (55a), (55b) and (56a), (56b), the unknowns are tn+1 and qn+1. The time step adapts
itself to satisfy both the Euler–Lagrange and the energy equations.
Some other variational integrators, such as Newmark scheme or symplectic Runge–

Kutta written for separated Lagrangian, can be found in [13,150].

Symplecticity of a variational integrator

Abasic stencil of a variational integrator like in the previous example involves three points:
mn−1,mn andmn+1. The numerical one step flow is the map

�L
�t : (mn−1,mn) �→ (mn,mn+1)

such that (mn,mn+1) verifies Eqs. (52), (53) as soon as (mn−1,mn) does.
As seen, two different discrete forms �−

L and �+
L appear from the discretization of a

variational problem. However, their exterior derivatives are equal up to a sign. If we call

ω′
L = −d�−

L = d�+
L

then it can be shown that the numerical flow is symplectic and preserves the 2-form ω′
L.

Note that a discrete Nœther’s theorem can also be derived.
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Numerical test

Consider the 1D harmonic oscillator, described by the Lagrangian

L(t, q, q̇) = 1
2
(q̇2 − q2).

Hamilton’s principle yields the Euler–Lagrange equation

q̈ + q = 0. (57)

Since the Lagrangian is autonomous, Eq. (45) reduces to the energy conservation equation:

d
dt

[
1
2
(q̇2 + q2)

]
= 0,

which is automatically verified by any solution of (57).
The Lagrangian density and the action are discretized as in section . In this case, Eqs.

(55a), (55b) become

−(tn+1 − tn)qn − qn+1 − qn

tn+1 − tn
+ qn − qn−1

tn − tn−1 = 0, (58a)

1
2

[(
qn+1 − qn

tn+1 − tn

)2
+ (qn)2

]

− 1
2

[(
qn − qn−1

tn − tn−1

)2
+ (qn−1)2

]

= 0 (58b)

In contrast to the continuous case, these two equations are independent. The first one
is the discrete Euler–Lagrange equation. The second expresses the conservation of the
discrete energy

Hn ≡ 1
2

(
qn+1 − qn

tn+1 − tn

)2
+ 1

2
(qn)2.

Observing the recurrence relation, (58b) can be written:

1
2

(
qn+1 − qn

tn+1 − tn

)2
+ 1

2
(qn)2 = H0 (59)

Knowing (tn−1, qn−1) and (tn, qn), Eqs. (58a) and (59) are solved for (tn+1, qn+1).
For the test, the initial conditions are choosen such that the analytic solution is a sine

function. The approximate solution is very close to the exact one, as presented in Fig. 16.
Figure 17 shows that the error on the energy is below the machine precision. This is due

to Eq. (59) which ensures that Hn = H0 at any discrete time.

Variational integrator on PDE

So far, we only considered variational integrator for ODEs. As we did for Hamiltonian
mechanics, the Lagrangian approach can be extended to PDEs.

Lagrangian approach of PDE

Consider a Lagrangian function

L(z,u,uz)
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Fig. 16 Approximate solution with rectangle-rule variational integrator

Fig. 17 Error on H with rectangle-rule variational integrator

where z belongs to an orientable base manifold Z with boundary ∂Z , u lies in a configu-
ration manifold U and uz designates the partial derivatives of u. DenoteM = Z × U .5
In a simplified way, the Lagrangian action can be viewed as

L :

C2(Z ,M) −→ R

u(z) �−→
∫

Z
L(z,u,uz)dz.

(60)

where C2(Z ,M) is the space of possible C2 trajectories defined from Z toM.
To simplify, we assume a two-dimensional base space, that is z = (t, x), and a one-

dimensional configuration space (dimM = 3). The components of uz are denoted ut and
ux. As done previously, the total variation of the action is (see [170,202])

5More rigorously, M should be a fibre bundle with base Z and a typical fiber U . The Lagrangian function is then
defined in the jet bundle.
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δL =
∫

Z

(
Etδt + Exδx + EL δu

)
dx ∧ dt +

∫

∂Z
I

where

Et = ∂L
∂t

+ d
dt

(
∂L
∂ut

ut − L
)

+ d
dx

(
∂L
∂ux

ut

)

Ex = ∂L
∂x

+ d
dx

(
∂L
∂ux

ux − L
)

+ d
dt

(
∂L
∂ut

ux

)

EL = ∂L
∂u

− d
dx

∂L
∂ux

− d
dt

∂L
∂ut

and

I =
[(

∂L
∂ut

ut − L
)

dx − ∂L
∂ux

utdt
]

δt

−
[(

∂L
∂ux

ux − L
)

dt − ∂L
∂ut

uxdx
]

δx +
[

∂L
∂ux

dt − ∂L
∂ut

dx
]

δu

Hence, when we impose the Hamilton’s principle of least action, under the condition that
(δt, δx, δu) = (0, 0, 0) on ∂Z , we get the so-called variational equations

∂L
∂u

− d
dx

∂L
∂ux

− d
dt

∂L
∂ut

= 0, (61a)

∂L
∂t

+ d
dt

(
∂L
∂ut

ut − L
)

+ d
dx

(
∂L
∂ux

ut

)

= 0, (61b)

∂L
∂x

+ d
dx

(
∂L
∂ux

ux − L
)

+ d
dt

(
∂L
∂ut

ux

)

= 0. (61c)

Equation (61a) is the Euler–Lagrange equation. Equations (61b) and (61c) are respectively
called the energy and the momentum evolution equations. When L does not explicitly
depend on t and x, Eqs. (61b) and (61c) reduce respectively to an energy and to a momen-
tum conservation laws. As in the case of ODE, these two equations are automatically
verified by any solution of the Euler–Lagrange equation. But, this is generally not true
when passing to discrete scale with a classical numerical scheme.
Nœther’s theorem can also be extended to Lagrangian PDEs as follows. If the Lagrangian

action is invariant under a transformation

(t, x, u) �→ (t̂(t, x, u, a), x̂(t, x, u, a), û(t, x, u, a))

then we have a conservation law:

d
dt

[(

L − ∂L
∂ut

ut

)

δt −
(

∂L
∂ut

ux

)

δx + ∂L
∂ut

δu
]

+ d
dx

[(

L − ∂L
∂ux

ux

)

δx −
(

∂L
∂ux

ut

)

δt + ∂L
∂ux

δu
]

= 0

where

δt = dt̂
da |a=0, δx = dx̂

da |a=0 and δu = dû
da |a=0.
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Fig. 18 Time and space discretization

As an example, the wave equation can be derived from the Lagrangian

L = −1
2

(
∂u
∂t

)2

+ 1
2

(
∂u
∂x

)2

. (62)

Indeed, the corresponding Euler–Lagrange equation is the wave equation

∂2u
∂t2

− ∂2u
∂x2

= 0. (63)

The energy and momentum equations read

d
dt

⎡

⎣−1
2

(
∂u
∂t

)2

− 1
2

(
∂u
∂x

)2⎤

⎦+ d
dx

[
∂u
∂x

∂u
∂t

]

= 0, (64)

d
dx

⎡

⎣1
2

(
∂u
∂x

)2

+ 1
2

(
∂u
∂x

)2⎤

⎦+ d
dt

[

−∂u
∂x

∂u
∂t

]

= 0. (65)

Since the Lagrangian depends explicitly neither on t nor on x, Eqs. (64) and (65) could
also be obtained from Nœther’s theorem.

Example of variational integrator

The domain Z is discretized into grid points (tn, xnj ), n = 0, . . . , N and j = 0, . . . , J (see
Fig. 18). The maximum space index J may depend on n.
The dependent variable is discretized into (uni ). As in the case of ODE, a variational

integrator results from a choice of a discretization of the derivatives in the Lagrangian
density and a quadrature of the integral in the action. One of the simpliest choices is
rectangle rules for quadrature:

L �
N∑

n=0

J∑

j=0
(tn+1 − tn)(xnj+1 − xnj ) L

(

tn, xnj , u
n
j ,

∂u
∂t

(xnj , t
n),

∂u
∂x

(xnj , t
n)
)

and forward schemes for derivatives:

∂u
∂t

(xnj , t
n) � un+1

j − unj
tn+1 − tn

,
∂u
∂x

(xnj , t
n) � unj+1 − unj

xnj+1 − xnj
.

We denote

L(nj ) = L
(

tn, xnj , u
n
j ,
un+1
j − unj
tn+1 − tn

,
unj+1 − unj
xnj+1 − xnj

)

,
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and

∂L
∂α

(nj ) = ∂L
∂α

(

tn, xnj , u
n
j ,
un+1
j − unj
tn+1 − tn

,
unj+1 − unj
xnj+1 − xnj

)

, α = t, x, u, ut , ux.

The variation of the action is

δL �
N∑

n=0

J∑

j=0

[
(δtn+1 − δtn)(xnj+1 − xnj ) L(

n
j )

+ (tn+1 − tn)(δxnj+1 − δxnj ) L(
n
j )

+ (tn+1 − tn)(xnj+1 − xnj ) δL(nj )
]

After expliciting δL(nj ), shifting summation indices and imposing Hamilton’s principle, we
get the following discrete variational equations:

�tn�xnj
∂L
∂u

(nj ) −
[

�tn
∂L
∂ux

(nj ) − �tn
∂L
∂ux

(nj−1)
]

−
[

�xnj
∂L
∂ut

(nj ) − �xn−1
j

∂L
∂ut

(n−1
j )

]

= 0,

�tn�xnj
∂L
∂t

(nj ) + �xnj

[
∂L
∂ut

(nj )
un+1
j − unj

�tn
− L(nj )

]

− �xn−1
j

[
∂L
∂ut

(n−1
j )

unj − un−1
j

�tn−1 − L(n−1
j )

]

= 0,

�tn�xnj
∂L
∂x

(nj ) + �tn
[

∂L
∂ux

(nj )
unj+1 − unj

�xnj
− L(nj )

]

− �tn
[

∂L
∂ux

(nj−1)
unj − unj−1

�xnj−1
− L(nj−1)

]

= 0.

(66)

In these equations, the shortcuts

�tn = tn+1 − tn, �xnj = �xnj+1 − �xnj

have been used.
On thewave equation, associated to the Lagrangian (62), the discrete variational Eq. (66)

read

�tn
[
unj+1 − unj

�xnj
− unj − unj−1

�xnj−1

]

+
[

�xnj
un+1
j − unj

�tn
+ �xn−1

j
unj − un−1

j

�tn−1

]

= 0 (67a)

�xnj

⎡

⎣
(
un+1
j − unj

�tn

)2

+
(
unj+1 − unj

�xnj

)2
⎤

⎦

−�xn−1
j

⎡

⎣

(
unj − un−1

j

�tn−1

)2

+
(
un−1
j+1 − un−1

j

�xn−1
j

)2⎤

⎦ = 0 (67b)
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⎡

⎣

(
unj+1 − unj

�xnj

)2

+
(
un+1
j − unj

�tn

)2⎤

⎦

−
⎡

⎣
(
unj − unj−1

�xnj−1

)2

+
(
un+1
j−1 − unj−1

�tn

)2⎤

⎦ = 0 (67c)

At each time iteration n, Eqs. (67a)–(67c) have to be solved for tn+1, xn+1
j (the time and

space grids are then automatically adaptative) and un+1
j .

In this section, we presented geometric integrators for ODEs and PDEs having a sym-
plectic structure, coming from a variational problem. In the next section, we consider
more general equations which may not have any symplectic structure but a Lie symmetry
group. We then show how to construct geometric integrator for such equations.

Invariant integrators
We first set some theoretical background, by defining symmetry of an equation and pre-
cising the notion of invariance.

Symmetry group

Consider again the manifoldM introduced in section and a partial differential equation

E(z,u(z)) = 0 (68)

defined on M (the dependence of the function E on partial derivatives are droped to
lighten notations). We call

E = {(z,u(z)) ∈ M, E(z,u(z)) = 0} (69)

the solution manifold. A transformation

g :
M −→ M

(z,u) �−→ g(z,u) = (ẑ, û)
(70)

is called a symmetry of Eq. (68) if it leaves the solution manifold E unchanged, that is

E(z,u(z)) = 0 =⇒ E(ẑ, û(ẑ)) = 0. (71)

When (71) holds, Eq. (68) is said invariant under g .
A setG of transformations, which has a group (respectively a Lie-group [54,203]) struc-

ture, is called a transformation (resp. Lie transformation) group. And if each element ofG
is a symmetry of an equation, then G is called a symmetry (resp. Lie symmetry) group of
that equation. We are particularly interested in one-parameter Lie groups, i.e. Lie groups
of transformations

ga : (z,u) �→ (ẑ(z,u, a), û(z,u, a)), (72)

which depend continuously on a parameter a.
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As an example, consider the heat equation

∂u
∂t

− ∂2u
∂x2

= 0 (73)

with z = (t, x) and u = u, and the scaling transformations

(t, x, u) �−→ (t̂ = e2at, x̂ = eax, û = u), (74)

where a is a real parameter. It is straightforward to show that transformations (74) form
a Lie symmetry group G of the heat Eq. (73). Indeed,

E(t̂ , x̂, û) = ∂û
∂ t̂

− ∂2û
∂ x̂2

= e−2a
(

∂u
∂t

− ∂2u
∂x2

)

= e−2aE(t, x, u). (75)

So, if u(t, x) is a solution of (73) then u(e2at, eax) is also a solution for any a ∈ R. Moreover,
G has a manifold structure of dimension 1, with local coordinate a. It is also easy to show
that the Lie symmetry group G of scaling transformations (74) acts freely and regularly
on the solution manifoldM of Eq. (73).
Besides the notion of symmetry of an equation, we will also need the concept of sym-

metry of a function. A function F (z,u) is said invariant under a transformation g if

F (g(z,u)) = F (z,u). (76)

Note that if the function E in (68) is invariant under a transformation g , then g is a
symmetry of equation (68), but the converse does not hold. Indeed, a symmetry of Eq. (68)
modifies the function E in a multiplicative way:

E(g(z,u)) = e(z,u) E(z,u)

for some function e depending on g .
Computing the Lie symmetry groups of an equation is often a tremendous task. For-

tunately, it can be made algorithmic with use of infinitesimal generators [54], such that
many computer algebra packages can be used [204–207]. Some of them even compute
conservation laws.
The knowledge of symmetries of an equation gives precious information on the equation

and on the physical phenomenon it modelises. For example, from one known solution,
symmetries enable to find other solutions. Symmetriesmay also be used to lower the order
of the equation and to compute self-similar solutions [54]. More fundamentaly, as stated
by Nœther’s theorem [191–193], symmetries are linked to conservation laws.
As introduced, preserving the symmetry group through the discretization process is

necessary if one wishes not to loose self-similar solutions and conservation laws during
simulations. A way of building integrators that are compatible with, or invariant under,
the symmetry group is to make use of independent differential invariants of the equation
[77]. However, combining these invariants into a numerically stable scheme is rather
complicated. Instead, we follow the idea in [79–81], which consists in modifying classical
schemes so as to make them invariant under the symmetry group. To show how to do
this, we need to formalize the notion of a discretization.



Razafindralandy et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:16 Page 35 of 67

Numerical scheme

A finite difference discretization of the domain Z is a network

z = (z1, ..., zJ ) ⊂ Z
of discrete points zj linked by a relation

�( z ) = 0. (77)

The mesh is defined by the function �. Similarly, the unknown variable u is discretized
into a sequence

u = (u1, ...uJ ) ⊂ U
where ul is to be understood as an approximate value of u at zl . We denote mj = (zj ,uj)
andm = (m1, ...,mJ ) ⊂ M.
A discretizetion scheme of equation (68), with an accuracy order (q1, ..., qnz ), is a couple

of functions (N,�) such that

N (m) = O
(
(�x1)q1 , ..., (�xnz )qnz

)
(78)

�(m) = 0 (79)

as soon as

uj = u(zj), j = 1, ..., J, (80)

that is, as soon as each mj belongs to the solution manifold. In Eq. (78), �xi is the step
size in the i-th direction, i = 1, ..., nz. In (79), � has been extended tom such that N and
� has the same arguments. This extention is also necessary when the mesh changes with
the values of u (adaptative mesh, ...).
As an example, consider again the heat Eq. (73). The domain is descretized into z =

(tnj , x
n
j )n,j as shown in Fig. 19. An orthogonal (cartesian) mesh on Z is defined by

tnj+1 − tnj = 0,

xn+1
j − xnj = 0.

(81)

This mesh is regular if

tn+1
j − tnj = tnj − tn−1

j ,

xnj+1 − xnj = xnj − xnj−1.
(82)

Relations (81) and (82) define the function � corresponding to an orthogonal and regular
mesh. Note that when the mesh is orthogonal, we can denote tnj = tn and xnj = xj thanks
to (81).
The unknown u is approximated by a discrete sequence (unj )n,j . The Euler explicit

descretization scheme of the heat Eq. (73) on an orthogonal and regular mesh is then
defined by:

un+1
j − unj

k
− unj+1 − 2unj + unj−1

h2
= O(k, h2) (83)
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Fig. 19 Grid points on a non-cartesian grid

along with (81) and (82). The time and space step-sizes are noted respectively k = �t and
h = �x. The function N of the scheme is defined by the left-hand side of (83).
A numerical scheme (N,�) is said invariant under a transformation group G if G is a

symmetry group of both the discretized equation and the mesh equation, i.e.:

N (m) = 0 ⇒ N (g(m)) = 0

�(m) = 0 ⇒ �(g(m)) = 0
∀g ∈ G. (84)

Note that conditions (84) are satisfied if N and � are invariant functions under G, that is

N (g(m)) = N (m) and �(g(m)) = �(m), ∀g ∈ G, (85)

but conditions (85) are not required.
Starting from any existing scheme (N,�), our aim is to derive a new scheme (Ñ , �̃)

which is invariant under the symmetry group of the equation. This will be done using the
concept of moving frame.

Invariantization by moving frame

Consider a Lie group G acting on M. In applications, G is a Lie symmetry group of the
equation.We indicate the group action with a centered dot (·) so that g ·m = g(m) for any
(g,m) ∈ G × M. Assume that the action is regular and free. A (right) moving frame on
M relative to G is a map ρ : M → G verifying the equivariance condition ([135,208]):

ρ[g ·m] = ρ[m]g−1 ∀(m, g) ∈ M × G. (86)

This is a generalization of Cartan’s moving frame (repère mobile) definition [135,209]. If
ρ(m) is seen as the frame atm then condition (86) means that the frame atm and at g ·m
are linked together with a right translation Rg−1 (see Fig. 20).
A direct and important consequence of the equivariance condition (86) is that if ρ is a

moving frame relative to G then

ρ[g ·m]·(g ·m′) = ρ[m]·m′, ∀(m,m′, g) ∈ M2 × G. (87)

Relation (87) is illustrated in Fig. 21.
For example, if Gt is the group of translations, Gt = {ta, ta·m = m + a}, then the map

ρ : m �→ t−m (88)
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M
m

g·m

g

ρ[m]

ρ[g·m]

Rg-1

Fig. 20 Invariance condition (86). R is the right translation

M

m'

g·m'

g

ρ[m]

ρ[g·m]
m

Fig. 21 Illustration of relation (87)

is a moving frame relative to G. Indeed, for anym′ ∈ M and any ta ∈ Gt ,

ρ[ta·m]·m′ = ρ[m + a]·m′ = t−(m+a)·m′ = m′ − m − a = ρ[m]t−1
a ·m′.

Note that the moving frame is not unique. Indeed, ρm0 [m] = t−m+m0 is a moving frame
for any m0 ∈ M. Olver proposed a general way of constructing moving frames via cross
sections [135,208]. In its approach, fixing the arbitrary constant is equivalent to choosing
a cross section.
Another example is the scaling symmetry group

Gs = {sa : (t, x, u) �→ (a2t, ax, u/a), a > 0}
acting on the solution manifold of Burgers’equation

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2

. (89)

For any a > 0, the map:

ρ[(t, x, u)] = sa/x (90)

is a moving frame relative to Gs at any (t, x, u) ∈ M where x = 0.
With amoving frame, an invariant integrator can simply be derived as follows. Consider

a numerical discretization scheme (N,�) of an equation and a transformation group G.
A fundamental theorem [208] shows that if ρ is a moving frame relative to G then the
discretization scheme (Ñ , �̃) defined by

Ñ (m) = N (ρ[m]·m), �̃(m) = �(ρ[m]·m) (91)
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is an invariant (under G) numerical scheme of the same order for the same equation.
Let us illustrate the invariantization process (91) on Burgers’ equation.

Application

Consider again Burgers’equation (89). The symmetry transformations of (89) are:

• time translations:

g1 : (t, x, u) �−→ (t + a1, x, u), (92)

• space translations:

g2 : (t, x, u) �−→ (t, x + a2, u), (93)

• scaling transformations:

g3 : (t, x, u) �−→ (te2a3 , xea3 , ue−a3 ), (94)

• projections:

g4 : (t, x, u) �−→
(

t
1 − a4t

,
x

1 − a4t
, (1 − a4t)u + a4x

)
, (95)

• and Galilean boosts:

g5 : (t, x, u) �−→ (t, x + a5t, u + a5). (96)

Consider the usual Euler forward-time centered-space (FTCS) scheme:

un+1
j − unj

�t
+ unj

unj+1 − unj−1

2�x
= ν

unj+1 − 2unj + unj−1

�x2
(97)

on the orthogonal and regular mesh (81), (82). The scheme (N,�) defined by relations
(97), (81) and (82) is invariant under time translation, space translation and scaling trans-
formation groups, like most of standard schemes on Burgers’ equation. But (N,�) is not
invariant under the Galilean boost and projection groups. We need to apply the invari-
antization process only under these two groups. However, for convenience, we take also
into account the time and space translation groups. These groups can be gathered into
the four-parameter group G0 which generic element is defined by:

g0 = g5 ◦ g4 ◦ g2 ◦ g1 : (t, x, u) �→ (t̂ , x̂, û)

with

t̂ = t + a1
1 − a4(t + a1)

x̂ = (x + a2) + a5(t + a1)
1 − a4(t + a1)

û = (1 − a4(t + a1))u + (x + a2)a4 + a5.

(98)
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Each transformation gi is obtained from g0 by setting aj = 0 for all j = i.
A moving frame ρ associated to g0 is an element of G0. This means that ρ[m]·m is of

the form (98), with particular values of the parameters ai, depending onm. Determining
ρ[m] is then equivalent to deciding the values of the ai ’s.

Transformation of the grid

A basic stencil for the FTCS scheme is represented by:

(zn+1
j , znj , znj+1, znj−1) (99)

where znj = (tnj , x
n
j ). At each pointmn

j , we choose the moving frame such that

a1 = −tnj and a2 = −xnj . (100)

In this way, the transformed scheme does not depend explicitly on xmi ’s and tmi ’s but on
the step sizes:

knj = tn+1
j − tnj , hnj = xnj+1 − xnj , (101)

σ n
j = xn+1

j − xnj , tnj−1 − tnj . (102)

Indeed, if we denote ẑmi = ρ[mn
j ]·zmi the transformed stencil, the choice (100) of a1 and

a2 leads to:

ẑn+1
j =

⎛

⎝
tn+1
j − tnj

1 − a4(tn+1
j − tnj )

,
(xn+1

j − xnj ) + a5(tn+1
j − tnj )

1 − a4(tn+1
j − tnj )

⎞

⎠ ,

ẑnj = (0, 0) ,

ẑnj+1 =
⎛

⎝
tnj+1 − tnj

1 − a4(tnj+1 − tnj )
,
(xnj+1 − xnj ) + a5(tnj+1 − tnj )

1 − a4(tnj+1 − tnj )

⎞

⎠ ,

ẑnj−1 =
⎛

⎝
tnj−1 − tnj

1 − a4(tnj−1 − tnj )
,
(xnj−1 − xnj ) + a5(tnj−1 − tnj )

1 − a4(tnj−1 − tnj )

⎞

⎠ .

(103)

With an orthogonal and regular mesh, defined by (81), (82), we have:

ẑn+1
j =

(
k

1 − a4k
,

a5k
1 − a4k

)
,

ẑnj = (0, 0) , ẑnj+1 = (0, h) , ẑnj−1 = (0,−h) .

(104)

The transformed grid stays regular in space because

x̂nj+1 − x̂nj = x̂nj − x̂nj−1. (105)

In fact, ĥ = h. Moreover, time layers stay flat as for the original mesh grid since

t̂nj+1 − t̂nj = 0. (106)
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Fig. 22 Transformation of the grid under the moving frame relative to g1 ◦ g2

But the time step size is modified:

t̂n+1
j − t̂nj = k

(1 − a4k)
= k̂nj . (107)

This induces a translation σ̂ n
j = x̂n+1

j − x̂nj of the spatial layers at each time increment,
with:

σ̂ n
j = x̂n+1

j − x̂nj = a5
k

1 − a4k
, (108)

as seen in Fig. 22. The new grid �̃ is defined by (105)–(108).
The next step is to define Ñ .

Invariantization of the scheme

To apply the invariantization process (91), we need to calculate the image ûmk = ρ[mn
j ]·umk ,

for all ûmk appearing in the stencil. We have:

û = (1 − a4(t + a1))u + (x + a2)a4 + a5. (109)

With the previous choice of a1 and a2 and the regularity of the mesh, it follows:

ûn+1
j = (1 − a4k)un+1

j + a5,

ûnj = unj + a5,

ûnj+1 = unj+1 + a4h + a5,

ûnj−1 = unj−1 − a4h + a5.

(110)

The new scheme Ñ is then defined by

(1 − a4k)un+1
j − unj

k
(1 − a4k) + (unj + a5)

⎛

⎝
unj+1 − unj−1

2h
+ a4

⎞

⎠

= ν
unj+1 − 2unj + unj−1

h2
.

(111)

We now have to specify the values of a4 and a5 to make the transformed scheme invariant
under the group G0.
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Fig. 23 Equivariance condition applied to the grid

Determination of a4 and a5
With the previous choices a1 = −tnj and a2 = −xnj , the group element g0 reduces to:

g(t, x, u) =
( t − tnj
1 − a4(t − tnj )

,
(x − xnj ) + a5(t − tnj )

1 − a4(t − tnj )
,

(
1 − a4(t − tnj )

)
u + (x − xnj )a4 + a5

)
.

(112)

Themoving frame ρ[mn
j ] has the same form as g0 in (112) but with different values a4 and

a5 of a4 and a5. The scheme is invariant only if a4 and a5 are such that the equivariance
condition (87) is satisfied at each descrete point, that is

ρ[mn
j ]·mm

i = ρ[g ·mn
j ]g ·mm

i (113)

for anymm
i belonging to the stencil. Condition (113) is illustrated in Fig. 23. This figure is

an application of Fig. 21 to the stencil. u is not represented.
Since g , ρ[mn

j ] and ρ[g ·mn
j ] all have the same form (112) but with different values of

the parameters a4 and a5, we have to call the parameters of each of them differently in
order to avoid confusion. To this aim, we keep a4 and a5 for ρ[mn

j ]; we denote μ and η

the parameters of g , and a4 and a5 those of ρ[g ·mn
j ].

We have, on the one hand, from (104) and (110):

ρ[mn
j ]·mn

j = (
0, 0, unj + a5

)
,

ρ[mn
j ]·mn+1

j =
(

k
1 − a4k

,
a5k

1 − a4k
, (1 − a4k)un+1

j + a5
)
,

ρ[mn
j ]·mn

j±1 = (
0, h, unj±1 + a4h + a5

)
,

(114)

and, on the other hand:

ρ[g ·mn
j ]g ·mn

j = (
0, 0, unj + (η + ā5)

)
,

ρ[g ·mn+1
j ]g ·mn+1

j =
(

k
1 − (μ + ā4)k

,
(η + ā5)k

1 − (μ + ā4)k
, [1 − (μ + ā4)k]un+1

j + (η + ā5)
)
,

ρ[g ·mn
j±1]g ·mn

j = (
0, h, unj±1 ± (μ + ā4)h + (η + ā5)

)
. (115)
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The discrete invariance condition (113) is verified when

ā4 = a4 − μ,

ā5 = a5 − η.
(116)

To simplify, an algebraic expression is assumed for a4. And in order to preserve the
explicit form of the numerical scheme, we assume that a4 does not depend on un+1.
Moreover, to keep the order of the convective term as in the initial scheme, a4 must be at
most of degree one. Next, the invariance of the scheme under g4 requires that there are
no term in h and k alone. Finally, as a4 is homogeneous to the inverse of a time scale, we
choose:

a4 = aunj+1 + bunj + cunj−1

h
(117)

where a, b, and c are real constants. Similar arguments for a5, which is homogeneous to
a velocity, allow to take a general form:

a5 = dunj+1 + eunj + funj−1 (118)

where d, e and f are real constants. Since a4 and a5 must satisfy (116), these constants
verify:

c − a = 1,

a + b + c = 0,

d − f = 0,

d + e + f = −1.

(119)

More information on these constants can be obtained by optimizing the order of accuracy.

Order of accuracy

A fundamental result guarantees that the invariantization of a numerical scheme using
themoving frame technique preserves the consistency. However, the order of consistency
may change.
As the invariantization process does not affect the diffusion term, we only need to

consider the unsteady term Tt and the convective Tc term:

Tt = un+1
j − unj

k
, Tc = unj

unj+1 − unj−1

2h
(120)

corresponding to the non-viscous Burgers’ equation:

∂u
∂t

+ u
∂u
∂x

= 0

The consistency condition for the symmetrized scheme is:

lim
h,k �→0

T̃t + T̃c = ∂u
∂t

+ u
∂u
∂x

(121)
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where T̃t and T̃c are the invariantized unsteady and convection terms. A Taylor develop-
ment gives:

T̃t + T̃c = ∂u
∂t

+ u
∂u
∂x

− (a + c)
h
2
u

∂2u
∂2x

+ dx
dt

(
∂u
∂x

+ . . .

)
+ O(k, h2)

The invariantized scheme has the same order of consistency if

a + c = 0. (122)

This condition determines a4, which takes the expression:

a3 = −unj+1 − unj−1

2h
, (123)

but gives no additional constraint on a5. In fact, with (123), the Taylor expansion of T̃c is:

T̃c = 0. (124)

Thismeans that the invariantized convective term vanishes, and, therefore, the convective
phenomenon are produced by the symmetrized unsteady term.
Notice that a5 does not appear when the invariantized numerical scheme is expressed

in the regular and orthogonal original mesh. It is no longer the case if the mesh grid is
not orthogonal, nor if the numerical solution is expressed in the transformed frame of
reference.
We end up with some numerical results.

Numerical tests

Thefirst test aims to check if the solutions givenby various standard and invariant schemes
are Galilean invariant.
Consider the Burgers’equation on the domain {(t, x) ∈ [0, 1] × [−2, 2]}. Boundary con-

ditions are such that the exact solution is

u(t, x) =
− sinh

(
x
2ν

)

cosh
(

x
2ν

)

+ exp
(

− t
4ν

) (125)

with ν = 5.10−3. We consider the standard Euler FTCS, the Lax–Wendroff and the
Crank–Nicolson schemes, and their invariantized versions. The space step size is h =
2.10−2 and the CFL number is 1/2 in the original referential.
At each time step, the frame of reference is shifted by a Galilean translation

(t, x) �→ (t, x + λt). (126)

It is expected that u follows this shifting according to (96). Figure 24 presents, in the
original frame of reference, how the standard schemes react to this shifting. It clearly
shows that when λ is high, the standard schemes produce locally important errors. In
particular, a blow-up arises with the FTCS scheme when λ = 1. With Lax-Wendroff
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a b

c

Fig. 24 Profiles of u versus x , with λ = 0, λ = 0.5 and λ = 1, at t = 1s. a FTCS scheme. b Lax–Wendroff
scheme. c Crank–Nicolson scheme

and Crank-Nicholson schemes, oscillations appear just before the sharp slope. On the
contrary, the invariantized version of these schemes present no oscillation, as can be
observed on Fig. 25.
Consistency analysis shows that the original schemes are no longer consistent with the

equation when λ = 0. This inconsistency introduces a numerical error which grows with
λ, independently of the step sizes. As for them, the invariantized schemes respect the
physical property of the equation and provide quasi-identical solutions when λ changes.
Another numerical test was carried out with the FTCS scheme. The exact solution is a

self-similar solution under projections (95):

u(t, x) = 1
t

(
x − tanh

( x
2ν

))
. (127)

It corresponds to a viscous shock. The shock tends to be entropic when ν becomes closer
to 0. Figure 26 shows the numerical solutions obtained with the standard and the invari-
antized FTCS schemes at t = 2 s, with ν = 10−2, k = 5.10−2 and h = 5.10−2. It can be
observed on it that the solution given by the invariantized scheme remains close to the
exact solution whereas the original FTCS scheme presents a poor performance close to
the shock location.
Since the invariant scheme has the same invariance property as the analytical solution

under projections, it does not produce an artificial error like the non-invariant FTCS. This
shows the ability of invariantized scheme to respect the physics of the equation and the
importance of preserving symmetries at discrete scales.
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a b

c

Fig. 25 Velocity profiles with λ = 0, λ = 1, λ = 2 and λ = 3, at t = 1s. a Invariantized FTCS scheme. b
Invariantized Lax–Wendroff scheme. c Invariantized Crank–Nicolson scheme

a b

Fig. 26 Numerical solutions with ν = 10−2, �t = 5.10−2, �x = 5.10−2, t = 2s. Self-similar case. a Standard
FTCS scheme. b Invariant FTCS scheme

Other numerical tests are presented in [74,81,170].
The last geometric integrator that we shall present is the discrete exterior calculus.

Discrete exterior calculus
Discrete exterior calculus (DEC) can be seen as a differential geometry and exterior cal-
culus theory upon a discrete manifold. The primary calculus tools of DEC are (discrete)
differential forms. As we shall see, they are built by duality with the grid elements. Discrete
operators on differential forms (exterior derivative, Hodge star, …) are then defined in a
way which mimics their continuous counterpart.
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Thefirst step to discretizing an equationwithDEC is to define a grid,which plays the role
of a discretemanifold. Then, each piece of the equation is replaced by its discrete versions.
But since equations ofmechanics are usually formulatedwith vector and tensor fields, they
must beforehand rewritten in exterior calculus language, that is with differential forms.
One advantage of discretizing with DEC is that, by construction, Stokes’theorem is

always verified exactly (up to machine precision). Another advantage is the following.
Vector calculus tells us that, in a 3-dimensional manifold,

curl grad f = 0 and div curl u = 0 (128)

for any vector field u and any function f . However, with classical discretization schemes,
there is no guarantee that these relations are verified numerically, since each differential
operator is generally discretized individually. This may lead to numerical artefacts.
In exterior calculus, relations such as (128) are simply particular cases of the relation

d2 = 0 (129)

where d is the exterior derivative. And, by construction of DEC, relation (129) is always
verified exactly. Hence, DEC ensures that relations (128) hold exactly after discretization,
even on an arbitrary coarse mesh. Some other advantages of using differential forms over
tensors are discussed in [89–92,99–103,210–212].
Note that property (129) is much more general than (128). Indeed, equations (128)

are meaningful only in a three-dimensional space. Moreover, equations (128) are metric
dependent whereas (129) is not.
In fluid mechanics, Elcott et al. [110] used DEC to solve Euler equation on a flat and a

curved surface, with exact verification of Kelvin’s theorem on the preservation of circula-
tion along a closed curve. Works on Darcy and Navier–Stokes equations were carried out
in [111] and [112,213].
In the next subsections, we recall the basis of DEC and present some test cases.

Background

We present here briefly a DEC theory which follows the approach of Hirani and his co-
authors [111,112,214]. More details can be found in the literature on algebraic topology
[215–219] and on DEC [89–92,99–103,214,220–222]. Works on other related structure-
preserving discretization can be found, for example, in [129,223–225] and references
therein.

Domain discretization and elements of algebraic topology

Consider a differential equation defined on a nx-dimensional spatial domain M in R
n,

n ≥ nx , written within the exterior calculus framework. In order to solve this equation
numerically, the domain is meshed into an oriented simplicial complex K that we recall
hereafter the definition and the associated algebraic topology elements (chain, cochain
and boundary operator). Next, we shall see how to discretize differential forms and the
exterior calculus operators.
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Fig. 27 Example of oriented mesh. An arrow represents the orientation of each edge and each face. The
oriented face f1 = [v1 , v2 , v3] is the equivalence class of (v1 , v2 , v3) with respect to relation (130), the oriented
face f2 is the equivalence class of (v2 , v4 , v3). The oriented edge e1 is the equivalence class of (v1 , v2), etc.

Oriented simplicial simplex

A k-simplex of Rn is the convex hull of k + 1 affinely independent points v0, . . . , vk of Rn,
often denoted (v0, . . . , vk ). It is the subset of Rn determined by

(v0, . . . , vk ) =
⎧
⎨

⎩

k∑

i=0
λivi ∈ R

n | λi ≥ 0 for i = 0, . . . , k and
k∑

i=0
λi = 1

⎫
⎬

⎭
.

The domain is discretized into a simplicial complex K , that is a finite set composed of 0-,
1-, …and nx-simplices such that

• for any simplex σ ∈ K , any face of σ belongs to K ,
• and the intersection of two simplices σ1, σ2 ∈ K is either empty or a common face of

σ1 and σ2.

Moreover, K is assumed to be manifold-like. This means that the union of the simplices
of K , treated as a subset of Rn, is a C0 manifold, with or without boundary.
If nx = 3, K is a set composed of tetrahedrons (3-simplices), triangles (2-simplices),

edges (1-simplices) and vertices (0-simplices). In 2D, the top-dimensional simplices are
triangles.
Each element of K is assigned an orientation, defined as a choice of an equivalence class

under the relation

(v0, . . . , vk ) ∼ (vτ (0), . . . , vτ (k)),

if τ is an even permutation of {0, . . . , k} (130)

For k ≥ 1, this definition confers two possible orientations to any k−simplex, which
can be understood as a choice of ordering of its vertices. So, to each geometric simplex
(v0, . . . , vk ) corresponds two oriented simplices

[v0, . . . , vk ] = {(vτ (0), . . . , vτ (k)) | τ even permutation}
and

−[v0, . . . , vk ] = {(vτ (0), . . . , vτ (k)) | τ odd permutation}.
For 0-simplices (vertices), definition (130) confers only one trivial orientation. However,
it is common to give also two possible orientations to vertices by assigning to each of them
a sign (+ or −). Using the trivial orientation from definition (130) corresponds then to
assigning the same sign + to every vertex. For simplicity, we use the trivial orientation for
vertices. Figure 27 represents a sample oriented 2D mesh.
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Chain and cochain

For k = 0, . . . , nx , we denoteKk the set of oriented k-simplices ofK and�k (K ) = spanKk
the vector space6 of formal linear combinations of elements of Kk , with coefficients in Z.
An element of �k (K ) is called a k-chain. For example, the 1-chain

e1 + e4 + e5 − e3 ∈ �1(K ) (131)

in Fig. 27 constitutes a closed loop.
For k = 0, . . . , nx , we denote �k (K ) the algebraic dual of �k (K ), that is, the space of

linear maps from �k (K ) to R. An element of �k (K ) is called a k-cochain. Since the k-
simplices of Kk form a basis of �k (K ), a k-cochain can simply be viewed as a map which,
to each oriented k-simplex, assigns a real number:

ω ∈ �k (K ) : c ∈ Kk �−→ 〈〈ω, c〉〉 ∈ R. (132)

It can be represented by an array of dimension

dim(�k (K )) = cardKk.

We set �k (K ) = {0} when k < 0 or k > nx .

Boundary operator

The boundary of an oriented k-simplex is the chain of �k−1 defined as the sum of the
oriented (k−1)-simplices directly surrounding it. In this sum, each (k−1)-simplex is given
a sign, depending on whether its orientation is consistent with that of the considered k-
simplex. For example, the boundary of the oriented triangle f1 in the example represented
in Fig. 27 is

∂f1 = e1 + e2 − e3. (133)

More formally, the boundary of an oriented k-simplex [v0, . . . , vk ] is

∂[v0, . . . , vk ] =
k∑

i=0
(−1)i[v0, . . . , vi−1, vi+1, . . . , vk ].

The boundary operator ∂ defines a linearmap from the vector space of the chains ofK into
itself. We denote ∂k its restriction to �k (K ), that is ∂k : �k (K ) → �k−1(K ). As a linear
map, it can be represented by a matrix. For instance, the non-zero boundary operators on
the mesh in Fig. 27 are

6More precisely, �k (K ) is a Z-module.
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∂2 =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

1 0
1 −1

−1 0
0 1
0 1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

, ∂1 =

⎛

⎜⎜⎜
⎝

−1 0 −1 0 0
1 −1 0 −1 0
0 1 1 0 1
0 0 0 1 −1

⎞

⎟⎟⎟
⎠
. (134)

The first column of ∂1 contains the components of the boundary ∂1e1 = v2 − v1 of
the oriented edge e1 in the basis (v1, v2, v3, v4) of �0(K ). The i-th column contains the
components of ∂1ei. In the same way, the entry of ∂2 at row i and column j is 0 if the edge
ei does not belong to the boundary of the face fj . It is 1 (respectively −1) when ei belongs
to the boundary of fj and their orientations are compatible (respectively, opposite).
An important homological property of the boundary operator is:

∂2 = 0 or ∂k−1 ◦ ∂k = 0 (135)

[(check on ∂2 and ∂1 in example (134)]. Indeed, the boundary of a boundary is the empty
set.

Discretization of differential forms and operators

Discrete differential form

We will denote �k (M) the space of differential k−forms of M. A differential k-form on
M defines naturally a k-cochain on K through integration over the k-chains of K . This
enables to define the discretization (or reduction) of differential forms via the de Rham
map:

R :
�k (M) −→ �k (K )

ω �−→ Rω

(136)

whereRω is the k-cochain defined on the basis Kk of �k (K ) by

Rω : c ∈ Kk �−→ 〈〈Rω, c〉〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

c
ω if k ≥ 1

ω(c) if k = 0

(137)

Definition (137) extends by linearity to �k (K ).

Discrete exterior derivative

Thediscrete exterior derivative operator (thatwedenote d like its continuous counterpart)
is defined as the coboundary operator, that is the adjoint of the boundary operator ∂

relatively to the pairing 〈〈·, ·〉〉:

〈〈dω, c〉〉 = 〈〈ω, ∂c〉〉, for any ω ∈ �k (K ) and any c ∈ �k+1(K ). (138)

As canbe remarked, relation (138) is simply the expressionof Stokes’ theorem if thepairing
〈〈·, ·〉〉 is an integration. The discrete d is a linear map from �k (K ) to �k+1(K ). Computa-
tionally, the restriction dk of d on the space �k (K ) of discrete k-forms is represented by
the transpose of the matrix of ∂k+1.
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Fig. 28 An arbitrary discrete differential 0-form ω with 〈〈ω, vi〉〉 = ωi , and its first and second exterior
derivatives dω and d2ω

For instance, if a discrete 0-form ω ∈ �0(K ) takes values ω1 and ω2 at vertices v1 and
v2 in Fig. 27, then

〈〈dω, e1〉〉 = 〈〈ω, v2 − v1〉〉 = ω2 − ω1. (139)

And if ω is a 1-form, then

〈〈dω, f1〉〉 = 〈〈ω, e1〉〉 + 〈〈ω, e2〉〉 − 〈〈ω, e3〉〉. (140)

Figure 28 presents an arbitrary discrete 0-form ω, its exterior derivatives dω and d2ω.
On this example,

d2ω = 0. (141)

In fact, this relation holds for any discrete k-form. This is due to the homological property
(135) of the boundary operator which induces property (141) by duality.

Wedge product

The above defined discrete operators and the discrete Hodge star which will be dealt
with in section . already enable to solve some interesting linear problems such as Poisson,
Helmholtz or Stokes equations. However, other tools such as the discrete wedge product
are also necessary in general. The definition of the discrete wedge product depends on the
ranks of the involved forms and their locations (primal or dual mesh) (see [214]). As an
example, the wedge product of a primal 1-form ω and a primal 0-form θ may be defined
as follows at an oriented edge [vi, vj]:

〈〈ω ∧ θ , [vi, vj]〉〉 = 〈〈ω, [vi, vj]〉〉
〈〈θ , vi〉〉 + 〈〈θ , vj〉〉

2
. (142)

If the duality 〈〈·, ·〉〉 is though as an integration, then the right-hand side of Eq. (142) is a
linear approximation of the integral of ω ∧ θ over the edge [vi, vj]. Another possibility of
defining a discrete wedge product is to interpolate the cochain into piecewise continuous
differential form (see next section), apply the continuous definition of the wedge product,
and finally, discretize the result.
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From cochain to differential form

We saw in “Discrete differential form” section how to discretize a differential form
into a cochain. Conversely, one can reconstruct a cochain into a piecewise continuous
differential form using an interpolation technique. The lowest interpolation commonly
used in DEC is the Whitney map

W :

�k (K ) −→ �k (M)

ω �−→ Wω =
∑

c∈Kk

〈〈ω, c〉〉ϕc.
(143)

The Whitney k-form ϕc is defined on a k-simplex c as follows. For a vertex vi, ϕvi is the
barycentric coordinate function. It verifies ϕvi (vj) = δij for any vertex vj . For k ≥ 1, the
Whitney k-form corresponding to a k-simplex [v0 . . . , vk ] is (see [226–228]):

ϕ[v0...,vk ] = k !
k∑

i=0
(−1)iϕvidϕv0 ∧ . . . ∧ dϕvi−1 ∧ dϕvi+1 ∧ . . . dϕvk .

One has ϕci (cj) = δij for two arbitrary k-simplices ci and cj ∈ Kk . On a 3D mesh, the
Whitney0-, 1- and2-formsarepiecewise linear,whereas theWhitney3-formsare constant
on each tetrahedron.
The discretization and the interpolation operators verify

RWω = ω for any cochain ω.

The de Rham and theWhitneymaps are essential to convergence analysis (see for example
[101,120,229]).
Higher order Whitney forms are proposed, for example, in [230,231].
As said, Whitney maps provide a single interpolation within each tetrahedron (if the

mesh is three-dimensional). One can also interpolate a cochain differently, for example
by dividing each tetrahedron in many subregions and piecewisely construct an interpo-
lated form in each subregion. This approach is used in covolume method and mimetic
reconstruction [116].
Discrete Hodge star and codifferential operators

In exterior calculus framework, the expression of constitutive laws generally makes use of
the Hodge star operator �. Recall that the Hodge star maps a continuous k−form into its
“volume complement” (nx − k)-form. It is metric dependant and verifies, at each point of
M,

�ω(uk+1, . . . , unx ) = ω(u1, . . . , uk ) (144)

for any orthonormal frame (u1, . . . , unx ) of the tangent space. The Hodge operator is an
isomorphism between �k (M) and �nx−k (M). These two vector spaces have the same
dimension

(
nx
k

)

=
(

nx
nx − k

)

. (145)

The discrete Hodge star operator has to realise an isomorphism between �k (K ) and
�nx−k (K ). This is not possible on the same grid because generally

dim�k (K ) = dim�nx−k (K ).
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Fig. 29 Examples of primal simplices (in blue) and their duals (in red)

For example, with the mesh on Fig. 27, nx = 2 and

dim�0(K ) = 4, dim�2(K ) = 2.

In order to define a discrete Hodge star operator, a “dual mesh” �K is needed [97]. This
dualmesh is such that there is a one-to-one correspondance between k-simplices ofK and
(nx−k)-simplices of �K . One of the simplest dualmeshes used inDEC is the circumcentric
dual. In a circumcentric dual of a 2D mesh, the dual of a triangle is its circumcenter; the
dual of a primal edge is the orthogonal edge connecting the two triangles which share this
primal edge; and the dual of a vertex is the 2-cell formed by connecting the circumcenters
of the primal triangles which share this vertex (see Fig. 29 for an example).
The orientation on the primal mesh induces an orientation on its dual [220,221]. The

boundary operator and discrete exterior derivative can also be transposed to the dual
mesh. As pointed out in [112], some care has to be taken when computing the exterior
derivative of a form on the dual mesh. Indeed, the dual cells situated at the boundary of
the domain are not closed. So, a boundary complement to the discrete exterior derivative
has to be added. This complement can be obtained from boundary conditions for many
problems.
There are many ways to design a discrete Hodge star operator, each of them leading to a

different scheme. One definition, coming from the finite-difference time-domain method
[232], is

� : �k (K ) → �nx−k (�K )

with

〈〈�ω, �c〉〉
| � c| = 〈〈ω, c〉〉

|c| , for any c ∈ Kk. (146)

In Eq. (146), �c ∈ �Knx−k is the dual of the k-simplex c. For a k-dimensional cell σ , |σ | is
the Euclidean measure of σ if k ≥ 1 and |σ | = 1 if k = 0. Definition (146) can be seen
as a consequence of relation (144) with a low order approximation, knowing that, with a
circumcentric dual mesh, a simplex c and its dual �c are orthogonal. The matrix of the
discrete � resulting from (146) is diagonal and positive defined.
As said, relation (146) is not the uniqueway to define theHodge operator. In particular, it

has the drawback that, like in covolumemethod [117], it does not handle non-acute trian-
gulation. Amelioration and alternatives can be found in literature [116,221,227,233–236].
For example, as presented in [221], on can choose a dual mesh based on the barycenter
or on the incenter, instead of the circumcenter, to remove the angle condition. In [116],
a discrete Hodge star operator is built from relation (148). A discrete Hodge, seen as a
mass matrix of a Galerkin method, was also introduced in [103,237]. The construction of
efficient discrete Hodge star operators is still an open question.
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In the following, as wework exclusively on acute triangulated domains, we use definition
(146) of the discrete Hodge operator for our numerical experiments.
The continuous codifferential operator is defined as

δω = (−1)nx(k−1)+1 � d � ω, (147)

for any differential k-form ω ∈ �k (M). Relatively to the inner product

(ω, θ )�k (M) =
∫

M
ω ∧ �θ , ω, θ ∈ �k (M), (148)

the codifferential can be viewed as the adjoint of the differential operator d when M has
an empty boundary, due to Stokes’ theorem, since

(dω, θ )�k (M) = (ω, δθ )�k (M), for all ω, θ ∈ �k (M). (149)

When M has a non empty boundary, Eq. (149) holds provided that ω or θ has a compact
support in the interior ofM.More generaly, Eq. (149) holds ifω or θ belongs to the Sobolev
space H1

0 (�k (M)) of forms having finite norm [(relatively to the inner product (148)] and
vanishing at the boundary ofM (see [124,125]).
With the previously built discrete exterior derivative and discrete Hodge star, Eq. (147)

enables to define the discrete codifferential operator. In fact, applying δ on the primalmesh
boils down to applying d on the dual mesh, and vice-versa, up to a sign andmultiplications
by measures of simplices.

Interior product and Lie derivative

To deal with some problems such as the Navier–Stokes equations, a discrete interior
product or a discrete Lie derivative is needed. One possibility to define a discrete interior
product is to use the discrete Hodge star operator and apply the following property of the
interior product (see [214]):

u¬
ω = (−1)k(nx−k) � (�ω ∧ u�) (150)

for any vector field u and any k-form ω. And Lie derivative L can be broken down to
wedge products and interior products using Cartan’s magic formula.
A remark has to be done on formula (150). It necessitates a metric to define the discrete

Hodge star and then the interior product. In many applications, a metric is available (for
instance, a metric is required to build constitutive laws). So, formula (150) can be used
in these applications. However, it has the serious drawback that it defines the discrete
interior product and Lie derivative, which are metric independent in the continuous case,
from the metric dependant Hodge operator. Alternatives can be found in literature. For
instance, a discrete Lie derivative can be built from extrusion, as developed in [238,239].
As already noted, a finite element approach of exterior calculus exists [124–126].

Inspired by works in [233,240–242], it makes use of the inner product (148) to build
finite element approximation spaces.
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Applications to fluid mechanics

Consider an incompressible fluid flow, alongwith amass transfer, governedby theNavier–
Stokes equations

∂u
∂t

+ (u· grad)u + 1
ρ
grad p − ν�u = 0, (151a)

div u = 0, (151b)

∂θ

∂t
+ div(uθ ) − κ�θ = 0. (151c)

In these equations, u and p are respectively the fluid velocity and pressure, ρ and ν

are the density and the kinematic viscosity. θ is a passive scalar, and κ is its diffusivity
coefficient. Let us reformulate equations (151) in exterior calculus language by applying
the flat operator � on them.

Exterior calculus formulation

Reformulations of the (inviscid and non-inviscid) Navier–Stokes equations can be found
in [147,243]. We denote ω = u�. Since (div u)� = δω, the incompressibility condition
becomes

δω = 0.

We have (see [147]):

(�u)� = (δd + dδ)ω = δdω, (grad p)� = dp,

[(u· grad)u]� = Luω − 1
2
d(‖u‖2) = u¬dω + 1

2
d(‖u‖2),

(div uθ )� = δ(ω ∧ θ ), (�θ )� = δdθ .

With these relations, we get the following formulation of equations (151):

∂ω

∂t
+ u¬dω + 1

ρ
d
(
p + 1

2ρ||u||2)− νδdω = 0, (152a)

δω = 0, (152b)

∂θ

∂t
+ δ(ω ∧ θ ) − κδdθ = 0. (152c)

Numerical scheme

For Eqs. (152a), (152b), we use the same scheme as in [112]. To remove the pressure term,
we apply d to Eq. (152a):

∂dω
∂t

+ d(u¬dω) − νdδdω = 0.

In time, a fractional step method is used.
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• First, ω at time tn+ 1
2 is evaluated with an explicit scheme:

dωn+ 1
2 − dωn

�t/2
+ d(un¬dωn) − νdδdωn = 0. (153)

• Next, ωn+1 is computed with a semi-implicit scheme:

dωn+1 − dωn

�t
+ d(un+ 1

2
¬dωn+1) − νdδdωn+1 = 0. (154)

• Equation (152c) is solved with an implicit scheme

θn+1 − θn

�t
− δ(ωn+ 1

2 ∧ θn+1) + κδdθn+1 = 0. (155)

Equations (153) and (154) are not solved directy for ωn+ 1
2 and ωn+1 but for the stream

functionψn+ 1
2 andψn+1. Indeed, since δω = 0, the form �ω is exact. By Poincaré’s lemma,

there is a 0-form ψ , the usual stream function, such that

�ω = dψ . (156)

Boundary conditions have to be provided for ψ .
Whenever needed, the dynamic pressure p = p+ 1

2ρ||u||2 can be computed by applying
the operator δ on Eq. (152a):

1
ρ

[
δd
]
pn+1 = −δ(v�n+1¬dvn+1) + νδδdvn+1 − βgδ(θn+1dy). (157)

Note that applying δ on (152a) is the counterpart, in tensor calculus, of the application
of the divergence operator to the momentum equation in (151). So, if div curl were not
exactly zero, then the resolution of (157) would introduce an additional spurious pressure.
In DEC, since d2 is exactly zero, there is no such spurious pressure.
In space, a discretization with DEC is used. ψ and θ are placed on primal vertices (the

velocity form ω is then on dual edges). The pressure is placed on the dual vertices.

Numerical tests

The first numerical example is a 2D channel flow. The length of the channel is L = 2π
and its height is H = 1. The viscosity is set to ν = 1 and the diffusivity to κ = 1.
A zero flow is given as initial condition. The value of θ at the top wall is set to 20 and

at the bottom wall and the inlet to 0. The grid is composed of 2744 triangles. The mean
length of the edges is �xmean = 2.989·10−2. The time step is �t = 10−2.
The computed velocity at t = 5s is presented in Fig. 30, left. As can be observed, the

computed profile is matches the exact one. The average absolute error is about 2.4·10−4.
Figure 31 presents the magnitude of θ and some iso-contours. It shows the evolution of

θ along the flow. In particular, it can be observed that θ has a linear profile, like the exact
solution, in the fully developped region downstream the flow. It is confirmed by Fig. 30,
right.
For the numerical analysis of convergence, Couette and Poiseuille flows were simulated,

with�xmean·102 = 8.408, 4.917, 2.091, 1.393, 1.044, 0.8354 and0.6961, in a squaredomain.
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Fig. 30 Velocity (left) and θ (right) profile at x = 3L/4

Fig. 31 Repartition of the passive scalar

For primal 0-cochain ω (stream function and temperature), the discrete norm is defined
as

‖ω‖2K0 :=
∑

v∈K0

〈ω, v〉2| � v|.

It corresponds to the usual L2 norm for a 0-form which is constant inside each dual cell.
This definition is used instead of the usual L2 norm of the reconstructed form ω̂ because
it is easier to compute.
For dual 0-forms (such as the pressure), the following norm is used for the error analysis:

‖ω‖2�K2 :=
∑

f ∈K2

〈ω, �f 〉2|f |.

For dual 1-forms (like the flux v), we use the edge-based norm:

‖ω‖2�K1 :=
∑

e∈K1

〈ω, �e〉2|e|.

Figure 32 shows the evolution of the error with the grid size. As can be observed, the rate
of convergence of the stream function ψ is about 1.84. The temperature converges with a
second order rate. The flux and the velocity are first order while the pressure convergence
rate is 1.65.
For the Poiseuille flow, the convergence rate of the stream function is 1.37, as shown on

Fig. 33. For the temperature, it is about 1.95. The flux and the velocity are first order as in
[112]. Figure 34 shows the evolution of the discrete norm of δv with time. As can be seen,
δv remains below the machine precision (about 2·10−16), as well for the Couette flow as
for the Poiseuille flow. This is due to the fact that, with DEC, d2 = 0 at machine precision.
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Fig. 33 Poiseuille flow: Relative error on vorticity ψ , temperature θ , flux v , dynamical pressure and velocity u

As a consequence, the incompressibility condition (152b) is verified exactly, as well localy
as globally.
To show the potential of DEC in predicting more realistic problems, we deal, in what

follows, with the convection of a polluant in a ventilated room. The room geometry is
presented in Fig. 35. The aspect ratio is set to L/H = 1. The height of the inlet and outlet
is h = H/5.
A polluted air flow, with a parabolic profile, is injected at the inlet. The Reynolds number

based on centerline velocity and h is 100. The polluant is carbon dioxyde, with θ = 1000
at the inlet. At walls, θ = 0 (polluant particles which stick to the wall are extracted).
The grid, composed of 3436 vertices and 6670 acute triangles, is presented in Fig. 36.

The return period τ , that is the time needed to cross a distance equal to the perimeter of
the room with the inlet centerline velocity, is taken as time unit. The time step is set to
2.10−3τ . Some velocity streamlines and the repartition of the passive scalar are plotted in
Fig. 37. This figure shows the evolution of the velocity and θ at t = 0.5, 1 and 2τ .
DEC, as presented here, is used only as a spatial discretization method. The canonical

metric of the space is used to define the discrete Hodge operator. This can easily be
extended to a discretization on a Riemanian surface [213]. Extension to space-time is
possible. For example, for the exterior calculus discretization of problems in gauge theory,
the Hodge operator has been defined in [244] relatively to the Minkowski metric. An
application to general relativity is presented in [245].
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Conclusion
With this article, we aimed at raising the awarness among the readers, and particularly
among high-performance computing specialists, about the importance of the geometric
structure of their equations. This structure traduces fundamental physical properties and
its preservation at the discrete level leads to robust numerical schemes.
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Fig. 36 Room grid

Without being exhaustive, we tried to give an overview of the most popular geometric
structures met in mechanics. For each of them, we presented a way to build a correspond-
ing structure-preserving integrator.
Firstly, for Hamiltonian problems, we showed that symplectic integrators are particu-

larly robust for long-time evolution problems. Their error on the energy of the system is
bounded over an exponentially large time interval. More generally, symplectic integrators
present generally good properties towards the preservation of conservation laws.
In the case of Hamiltonian PDEs, we presented a way of constructing multisymplectic

integrators. It was shown that these multisymplectic schemes are more robust regarding
the grid, in the sense that they allow more freedom in the choice of time and space steps,
compared to classical schemes.
When the equations derive from a variational principle, we showed in section that

with total variation approach, discrete energy and momentum evolution equations are
obtained naturally, along with the Euler–Lagrange equation. We then presented a way to
build variational integrators for ODEs and PDEs. We observed that, when the Lagrangian
is time independent, these schemes preserve exactly the energy.
For more general equations, with or without symplectic or variational structure, we

presented invariant schemes which preserve the Lie symmetry group of the equation. We
saw that, contrarily to classical schemes, they do not introduce unphysical oscillations in
presence of a pseudo-shock solution. They also do not give rise to spurious solution when
the grid undergoes a Galilean transformation.
At last, we presented DEC which is a space integrator based on exterior calculus and

which reproduces exactly Stokes theorem and the relation d2 = 0 at the discrete scale. The
second property enables, for example, to verify exactly the incompressibility condition.
This also ensures the exact preservation of circulation in an ideal incompressible fluid
flow. The use of DEC in mechanics being very recent, we presented some applications in
fluid mechanics with passive scalar convection.
Other geometry-based integrators exist. We can cite, for instance, algorithms built to

preserve a Lie–Poisson structure on a discrete manifold [246,247]. Other examples are
schemes based on a port-Hamiltonian, or more generally, on a Dirac structure, which
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Fig. 37 Velocity streamlines (left) and repartition of polluant (right), at, from top to bottom, t = 0.5τ , t = τ

and t = 2τ

aim at correctly handling the interconnection between subsystems [248]. Note that a
combination of port Hamiltonian structure and DEC has been considered in [249]. Lie-
group integrators can also be cited [250].
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