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:EESL;:?:T;GJefCShC;TCC; Z:ﬁ In this work, the analogous treatment between coupled temperature-displacement
Industrial Engineering, University problems and material failure models is explored within the context of a commercial

of Porto, Rua Dr. Roberto Frias, software (Abaqus®). The implicit gradient Lemaitre damage and phase field models are
#200-465 Porto, Portugal implemented utilizing the software underlying capabilities for coupled
temperature—displacement problems. The heat conduction equation is made
compatible with the diffusive regularization of such material models and calculations
are carried out at the material point level. This bypasses the need to implement
explicitly the weak form resultant from the coupling between the momentum
conservation and the evolution of the diffusive field. Throughout benchmarking
examples, the proposed methodology is assessed and validated by investigating
typical issues risen from the considered local inelastic-based deformation models, such
as mesh dependency and the difficulties to predict cracked regions.
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Introduction

The emergence of the so-called ‘regularized’ solutions for damage and failure in engi-
neering materials has evolved considerably in recent years. They constitute appealing
simplifications of the microstructural complexity, usually resorting to non-local and gra-
dient theories. To ensure well-posedness of the set of partial differential equations to be
solved, which is affected by the presence of softening at the constitutive level, these solu-
tions abandon the principle of local action by coupling a diffusion equation of non-local
variables with the momentum balance equation. The resultant procedure acts as a spa-
tial regularization of local constitutive relations for failure, usually with the recourse of a
characteristic length associated with the size of the non-local support region definition.
Herein, two types of regularization are explored, namely: the non-local implicit gradient
of the Lemaitre damage model [1] and the phase field model [2] that approximate crack
evolution under inelastic deformations.

Prediction of initiation and propagation of cracks defines a highly crucial task in behav-
ior assessment of ductile metallic structures, which requires the development of accurate
and robust constitutive models that trigger the formation of meso-cracks initiated by the
material internal progressive degradation due to nucleation, growth, and coalescence of
microvoids. Within the context of coupled models, which take into account that degra-
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dation continuously coupled with the evolving deformation, two major methodologies
are commonly adopted: micromechanical or continuous damage mechanics approaches.
The micromechanical-based methodologies include at the constitutive level the effect of
internal degradation through material parameters calibrated with a set of experimental
tests. Many were inspired on the early work of Rice and Tracey [3], that focused primarily
on the microscopic evolution of a spherical void in a rigid perfectly-plastic matrix of the
material, and later on the work of Gurson [4], followed by the work of Tvergaard and
Needleman [5] that represent internal degradation as a volume void fraction (porosity).
Another insight derived from the Continuum Damage Mechanics approach, built over
the concepts defined in the seminal work of Kachanov [6], which defines the internal
thermodynamically-consistent damage field phenomenologically continuously evolving
to a threshold value, was firstly introduced by Lemaitre and Chaboche in [7-9]. Numeri-
cal implementations soon followed, both in the context of small strain [10] and large strain
[11] analyses.

Local continuum description of damage typically may lead to an ill-posed boundary
value problem as under a softening regime the governing partial differential equations
may locally lose their ellipticity or change its hyperbolic character, in static and dynami-
cal problems, respectively. This may result in mesh (geometrical discretization) sensitive
solutions, where the localized zones and internal variables are highly dependent on the
mesh size and discretization alignment. To avoid these inconsistencies and restore mesh
objectivity, non-local approaches may be adopted by adding regularization or averaging
procedures associated with a length scale effect, whether via an integral-based non-local
methodology, as in Pijaudier-Cabot and Bazant [12] or gradient-type non-local meth-
ods, as in Peerlings et al. [13]. The latter has been utilized in many contexts, namely, in
quasi-brittle fracture [14,15], small strain [16] and finite strain elastoplasticity [17], finite
strain elastoplasticity coupled with damage [18] or in ductile damage frameworks [19,20],
referring only to some more recent contributions.

Another type of regularization, known as the phase field method, originally departing
from fracture mechanics concepts, aims to assess the evolution of macrocracks in a diffu-
sive topology using methodologies associated with phase transition. Its implementation
in the context of the finite element method allows for the possibility of tracking the cracks
without any modification in the mesh grid lines which is still an utmost issue in the discrete
crack approaches. The genesis of this concept was founded in the variational description
of brittle fracture by Francfort and Marigo [21] and eliminates the requirement to describe
a well-defined crack path. The concept was extended by the regularization approach of
Bourdin et al. [22] and by the I'-convergent approximations of Mumford and Shah [23].

This diffusive fracture description was further elaborated in the context of brittle frac-
ture by, among others, Karma et al. [24], Miehe et al. [25,26], Kuhn and Muller [27],
Pham et al. [28] and Borden et al. [29,30] (readers may refer to a concise overview of the
main phase field brittle fracture methods by Ambeati et al. [31]). The thermodynamically-
consistent model addressed by Miehe et al. [25] was later applied to a cohesive fracture
approach [32] and to crack propagation in heterogeneous microstructures [33]. Follow-
ing the study of stress fields around holes in specimens via a coupled elastoplastic phase
field framework by Guo et al. [34], this approach has evolved to the context of inelastic
deformations, in which a considerable amount of research activities in this area can be
found. To name a few, the non-local gradient damage phase field based model by Voyiadjis
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et al. [35], the phase field elastoplastic models by Duda et al. [36] and Ambati et al. [37],
the crystal plasticity phase field coupled model of Padilla et al. [38], the phase field based
anisotropic damage model of Mozaffari et al. [39] and the variational based, large defor-
mation plasticity-phase field model by Miehe et al. [40,41] and rate-dependent plasticity
phase field model of Badnava et al. [42] mostly concentrated on approximating the post-
peak material behavior via a phase field methodology. Also in [43], de Borst et al. studied
several similar and different aspects of gradient enhanced damage-based approaches and
the phase field framework and a discussion has made over the solution of the broadening
of the damaged zone in the wake of the crack tip with these methods.

The present study addresses a methodology for solving the diffusion equation of the
phase field model and gradient-enhanced non-local damage model, in the context of an
existing commercial software. It takes the advantage of built-in heat equation solver in
an existing software code, Abaqus/Standard in the present case, bypassing the need to
establish explicitly the weak form of the governing equations containing the momentum
balance and the diffusion equation to solve separately for displacement and non-local or
phase field variables. In fact, this procedure could be used with other commercial softwares
with similar capabilities. This work is organized as follows: “Formulation” section builds
the relation between the heat conduction problem and diffusion equation of gradient
problems, and explains the gradient non-local model based on Lemaitre phenomeno-
logical ductile damage model and the phase field model. Numerical implementation and
results of some illustrative examples are presented in “Results and discussion” section, and
finally conclusions are drawn in “Concluding remarks” section and a shortened version of
routine to implement the non-local gradient damage model is provided.

Formulation

In both gradient damage and phase field models, the mechanical equilibrium is performed
for the coupling between displacements u and a field variable . In a body €2, the strong
form of the boundary value problem can be written, in general, as

{dlva—i—b:O o 1)

V(I (a) V{) = hs

where o is the stress tensor and b is the body force per unit of volume, with the following
boundary conditions:

u=uy on 98, (2)

{O’.I’l:tn on 082
Viy.m=0 ondQ

being 32 = 9, U 992 the body surface boundary, n outward unit normal vector to
the boundary surface at 9€2, £, the traction force, u; prescribed displacements at the
boundary surface 92, and  a set of possible material and numerical parameters. Second
part of Eq. (1) depends on a “diffusion” coefficient I" (@), on the “flux”, or gradient, term
Vi, and on a “source” term /i, (u, ¥, a), and is similar to steady-state heat conduction
equation in solids. The identification of the different parameters of the two models with
those in the heat conduction equation can be found in Table 1 and will be clarified in the
following sections. The fact that almost always this equation is implemented in common
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Table 1 Diffusion equation forms for coupled temperature displacement, gradient-
damage, and phase-field models

Name Field variable “Diffusion” coefficient I' “Flux” term V¢  “Source” term hg
Temperature T K \2 q

Gradient-damage D 20 VD D-D

Phase-field d Gl vd (Ge/ly)d —2H (1 —d)

k Thermal conductivity, &, heat source, [, characteristic length for gradient damage model, G. fracture energy, H elastic
energy density, /; characteristic length for phase field-model

commercial software packages in the computational mechanics field hints that it may
be used in establishing gradient and phase field models within these frameworks, taking
advantage of the software built-in implementations. In Table 1, the parameters [, and
l; are respectively length parameters associated to the gradient damage and phase field
approaches, commonly denoted as the characteristic length scale of the material and are
mostly considered as numerical parameters. Since its meaning with the microstructure is
inherently complex, its precise determination usually relies on inverse methods [44].

Lemaitre damage model coupled with plasticity
The constitutive modeling of the fully-coupled damage-plasticity model in [1] is recov-
ered in this section, considering its extensive application in describing ductile damage
in metallic materials. This model is often categorized within the Continuous Damage
Mechanics material behavior description as the damage is phenomenologically intro-
duced at the macroscopic constitutive level by internal variables whose evolution mimic
the nucleation, growth and coalescence of internal micro-voids. Mostly it is based on the
hypothesis of strain equivalence and the associated concept of effective stress. Herein, the
simplified version of the Lemaitre thermodynamically-consistent damage model proposed
by De Souza Neto et al. [45], in the context of small strains, is adopted for simplicity.
The decomposition of total strain tensor into elastic (¢°) and plastic (¢”) contributions
yields:

e=¢e°+¢€f 3)

Accordingly, the free energy can be stated as the sum of the elastic damage (wed) and
plastic (¥7) potentials:

¥ =y (¢ D) + ¥ () (4)

where « is an isotropic hardening (internal) variable and D is the damage (internal) variable
defined as a scalar, 0 < D < 1, evolving continuously from zero (virgin material) to one
(fully damaged material). Assuming the elastic damage contribution as:

1
v (% D) = Eee :(1-D)D°: & (5)
the constitutive law reads:
0 =0 (Y)=(1—D)D°: &° (6)

where o is the Cauchy stress tensor and D® is the isotropic fourth order elasticity tensor,
which may be defined as:

D¢ =2GI; +KI®I (7)
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where G and K are respectively shear and bulk modulj, I is the second order identity
tensor, I; = I, — %I ® I is the fourth order deviatoric projection tensor and I is the
symmetric identity tensor, given by:

1 0 0
I = 1 0 (8)
sym %
The yield condition to define the plastically admissible stress states is defined as:
o (s)
fyzl_D—Uy(a)fo )

where & (s) = 1/3/2 (s) is the von Mises equivalent stress with /; (s) as the second invariant
of the deviatoric stress tensor, s. The yield stress oy () is a function of the internal hard-
ening variable, o, which is considered herein as the equivalent plastic strain, &”, written

S:
L J9
éf’zf J21era (10)
, V3

where &7 is the rate of the plastic strain. The associative plastic flow rule is assumed and
then:

a

&’ = yN (11)

where y is the plastic multiplier and N is the flow vector, defined as:

3 s
"= "

These relations are supplemented by the definition of damage-related energy derived from
the total potential as:

1
Y=0p W)= —Eae ;D gt (13)
where Y is the damage energy release rate which can be alternatively written as:

yo_ 1 (__02 _ i) (14)
1-D?\6G 2K

being p = %tr (o) the hydrostatic pressure. The evolution of the internal variables reads:
o=y

b " y\/2 ! (15)
T (1-D)(1+r) (‘Z)

where 1 and r, are material parameters which can be calibrated by experimental observa-
tions. Finally, the usual loading/unloading conditions of rate-independent plasticity follow
as:

<0 y2>20 yf,=0 (16)
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Gradient regularization of the local damage model
The non-local implicit gradient formulation is here recovered. Based on this approach,
a non-local field f is related to the corresponding local field f, as in Eq. (1), through the

equation:
f=uVf=f (17)

This approach bypasses the calculation of second order gradients of the local field of
explicit nonlocal models, and establishes a more robust solution. Here, we focus on the
gradient regularization of Lemaitre based local damage field, resorting to an alternative
numerical treatment in the context of the treatment of multi-field problem within a
commercial finite element code Abaqus/Standard.

As a point of departure, the following set of governing equations defines the implicit
gradient elastoplastic framework coupled with the internal damage:

di b=0
_1va—;— B} on Q (18)
D—-[AD=D
which includes the stress equilibrium and the additional partial differential equation cor-
responds to the implicit gradient regularization of the local damage field, D. In Eq. (18)3,
A(D) = V2 (D) denotes the Laplacian of the nonlocal damage field. With this strong

form at hand, the following homogenous Neumann boundary conditions are prescribed:
VD.n=0 on 3 (19)

Unlike the explicit gradient formulation, this boundary condition is homogenous and does
not require the gradient of the local field as an additional nodal degree of freedom.
Following the constitutive relations of the previous section, the yield function of Eq. (9)
can be rewritten based on the nonlocal field:
a (s)

fy=m— y (@) (20)

Accordingly, the flow vector may be modified as:

_ \ﬁ; 1)
- 2(1-D) sl

This is followed by the rate forms of the internal hardening variable and damage parameter:

@ =y (22)

Sy —_Y’Z
D_l—[)<r1) (23)

together with the damage driving force written as:

Y = ; (__(72 _ ﬁ) (24)
(1 — D)2 6G 2K

Integration algorithm of the non-local resolution

The integration procedure of the explained non-local gradient model is based on the
conventional elastic predictor-plastic corrector, which is implemented via an operator-
split scheme. The solution of the multi-field problem of Eq. (18) consists of the solution
of mechanical problem based on the updated stresses and the local damage field, and the
calculation of the nonlocal field from the gradient equation. The plastic correction in the
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mechanical problem is performed via the known iterative Newton Raphson algorithm to
solve the return mapping equation, as is proved to have quadratic convergence rates.

Given Ae and nonlocal damage variable from the previous increment (D,,) and consid-
ering the pseudo time interval At € (t,, t,+1), elastic predictor stage gives the following
elastic trial states:

equf’f’l =&l + Ae
trial __ r etrial
by = (1 - DVI) I<8vn+1

trial __ r etrial
st = 2 (1= Dy) Gegl'ty

(25)
N A
81;“ = &n
=~ trial __ trial
Our1 =4/32 (Sn+1)
etrial etrial ; : . . .
where 7' and €} 7"") are, respectively, the trial values of elastic volumetric strain and

elastic deviatoric strain tensor:

. 1 ,
etrial __ e trial
v+l — gt}” <€n+1 )

’ (26)
s = it et
The plastic admissibility is evaluated by the following incremental yield function:
A
b= -0y (En1) =0 @7)

If this condition is satisfied, the elastic stage proceeds by taking the trial predictor states

as the updated values:

(g1 = ()t (28)

Otherwise, the single equation return mapping algorithm is activated and triggers the
solution of the following equation to obtain the plastic multiplier, Ay:

Ay (—_Y(A”)Y —0 (29)
ri -

Wpt1 — Wy +
Wy+1

considering the so-called material integrity in the previous and current increments as:

wy=1—-D,
3GAy

Wny1 =1 —=Dyp1 = — (30)
’ e oy (el + Ay)
The damage energy release rate is given by:
2 trial 2
b
oy (&n + A <P +1)

6G 2K

The Newton Raphson solution strategy is utilized to solve the Eq. (29) iteratively, taking
the following initial value for the plastic multiplier rate:
wnfy (0, D)

Ay = 277 32
Y 3G (32)

Page 7 of 24
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By achieving the prescribed tolerance, the state variables are updated based on the new
material integrity:
Bl = En + Ay

trial

Pn+1 = Wn41 (pn+1)

= i
Ont1 = Wp410y <8n+1>
_ Ontl trial (33)
Sn+l = —par Sntl
n+1

Oyt1 = Sp+1 + pnt1d

1 .
e _ etrial
Ent1 = 55 SmH1 + i1l

Using Abaqus/Standard as a support software, the above integration algorithm is coded
into a UMAT subroutine to reach the updated stress and local damage fields. This is
processed based on the nonlocal damage fields obtained from the solution of diffusion Eq.
(18), in each increment. Solution of this equation is achieved via the HETVAL subroutine,
taking into consideration the similarity of this gradient regularization with the steady
state heat conduction equation in solids. In fact, for convenience, in each increment the
transient heat equation is used

pepde T — kT =g (34)

with “thermal” constants (specific heat ¢, and density p), “pseudo time” and time incre-
ment so that the steady-state conditions are closely attained in each load increment. Given
the local damage field, the nonlocal solution is achieved by the following assumptions (see
Table 1):
-2

k=1 - (35)

g=D-D
The layout of the multifield algorithm is represented in Fig. 1. Accordingly, the mechanical
problem consisting of calculation of stresses and Jacobian is performed with the UMAT
code and the solution dependent variables (SDVs) are stored in array STATEV (including
temperature). In the subsequent increment, this data is used in the HETVAL routine,
whereas the flux is defined within the FLUX array based on the values of local damage and
nonlocal damage (temperature) to compute the updated nonlocal field. In “Appendix”, a
brief version of UMAT and HETVAL routines to implement the above gradient damage
model are provided with concentration on the definition of nonlocality in the algorithm
definition.

Phase field approximation in fracture

Recently, in the context of fracture analysis of structures, the phase field approach
appeared as an alternative to classical discrete crack approaches due to their intrinsic
difficulty in dealing with more complex crack topologies such as kinking or branching
patterns. This methodology utilizes an order parameter called phase field, which dis-
tinguishes between the intact and fully-damaged regions of the deformed body, using
physical phase transformation concepts and conceptually it may be more closely related
to continuous evolution of internal degradation in damage mechanics.

Page 8 of 24



Azinpour et al. Adv. Model. and Simul. in Eng. 5¢i.(2018)5:15 Page 9 of 24

i .
! !
i UMAT :
| H
ey | g 1
i Ao i
_— i
: Ag o } !
i ! *
i ?
v | SDVs | !
N i y . 1
RIl < to i I i
: ; HETVAL | ! [
i h !
i !
O J. ________________________ i
KAu =R
Fig. 1 The global resolution of the proposed methodology

In its implementation, this method avoids the necessity to deal with displacement jumps
due to a sharp description of cracks in discrete-based approaches, as all the calculations
are performed on the original mesh without any ad hoc criteria. Adding to these the
straightforward extensibility of the problem to higher dimensions in the same manner of
lower dimensions, this approach has been widely used in the fracture analyses and more
recently in prediction of evolution of inelastic material imperfections. As for the numerical
implementation, the standard finite element shape functions can be utilized to interpolate
the displacement and the diffusive field which, comparatively, bypasses the complexities
of employment of enriched shape functions in methods such as XFEM. Also the treatment
of the diffusion equation can be closely related to non-local gradient approach as both
models use spatial gradients of the regularizing field.

Phase field model of brittle fracture

Let Q C R” be the reference configuration of an arbitrary body with # as the space
dimensions, 3Q = 3, U 3Q; C R"! be its boundary and I" C R"! as the sharp crack
discontinuity as is schematically depicted in Fig. 2. According to the classical Griffith
theory of brittle fracture and assuming small and quasi-static deformations, the total
potential may be expressed as the sum of the elastic strain energy, external work and

fracture energy given by
Ypor (0, I') = / Ve (€ (1)) dQ2 — / budQ + / GedI (36)
Q Q r

where v, is the elastic energy density function of the second order infinitesimal strain
tensor, € (1) = % (Vu + VTu), and G, is the threshold value of energy releasing from the
formation of meso-cracks. The elastic energy density can be written as:
1, 1
Ve (€) = is :Df:e = 5)»8,-,-8/,- + pegis (37)
with the elastic stiffness tensor D¢ and without loss of generality of Eq. (7), and A and u
as the Lamé constants, which are defined in terms of the elastic (E) and shear () moduli:

vE E

S e T Y
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Fig.2 a Sharp crack path, I" b approximated crack path, I';,(d)

The phase field methodology may be regarded as a specific case of non-local gradient
model, in which the regularization is performed on sharp crack interfaces with a pure
geometrical representation (Fig. 2b), as the sharp discontinuity of Fig. 2a) is smoothened
by an auxiliary phase field variable d € [0, 1], discriminates between the intact (4 = 0) and
fully-broken (d = 1) phases. The width of the regularized region is driven by a length scale
l;, which may be determined based on the micromechanical observations such as particle
shape, size or strength. The sharp discontinuity pattern is recovered for the vanishing
length scale. This crack treatment was emerged based on the variational formulation of
Francfort and Marigo [21], subsequently complemented by the regularization of Bourdin
etal. [22], whereas the classical surface integral of Eq. (36) is replaced by a volume integral,
reads the following potential:
a 2
Ypor (& T) = / 2 (d) Ve (e (u))dQ—/ b.ud52+gcf (— + = |vd| ) dr (39)
Q Q r\2lg 2

One commonly used form of the stress degrading function g (d) is the following mono-
tonically decreasing function:

gd)=01-d’+n (40)

where n < 1 is a dimensionless residual stiffness at the total failure to avoid numerical
difficulties. This function should satisfy the following properties [25]:

g0)=1, g)=0 g1)=0 (41)

Based on the work of Miehe et al. [26], the strain tensor can be additively decomposed to
the positive (tensile) and negative (compressive) parts in order to avoid cracking under

compression:

n
e=et+e; &= Z(ga)i”a ® ny (42)

a=1

= =

with ¢, and n, as the eigenvalues and eigenvectors of & in n dimensions, and (g,
% (¢a £ 1€al)-
Accordingly, the degraded isotropic elastic energy function can be decomposed to pos-

itive and negative parts:

Ve (&5) =g (d) V. (&) + ¥, (e) (43)
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with ¥ F (e) = %(tr (ei))2 + utr [(ei)Z], where the negative part remains undegraded.
This leads to the following constitutive law:

0" = Ve (e d) = g(d)og +07 (44)

where 6" = [k(tr (et + 2M(8a)i] n, ® n, and 9,(.) is the derivative of function (.) with

respect to x. Applying Egs. (40) and (43) to the potential in Eq. (39), the modified functional
may be written as:

Vpor (6, T) = fg ([(1 a2+ n] v (&) + v (e)) s — /Q bu dQ

2L
—_— = |Vd a2 45
+@A(%+2||) (45)

According to the history-field-based formulation in [26], the crack irreversibility condition
(d < 0) is applied to the model at time ¢ on each point «:

H = max 1//2r (e (x, 7)) (46)
t€[0,¢]

the strong form of the initial boundary value problem can be obtained based on the
minimization principles by taking the variation of the functional of Eq. (45),

di b=0
{ o+ on Q (47)

%c(d—z;Ad) =2(1—-d)H

with the following boundary conditions on the displacement field and the phase field:

{u:it on d d=1 onTl (48)

omn=t, ondSy’ Vdn=0 on o2

Phase field model in a ductile failure context

Ductile failure occurs in conjunction with extensive plastic deformation. The above phase
field approach is applied herein to the plasticity model based on the von Mises hardening
criterion. To achieve a thermodynamically-consistent model, the inclusion of the inelastic
deformations into the total potential should be considered. This necessitates adding the
plastic potential, ¥, to the functional in Eq. (45), which yields the following relation:

Yot (& ') = / ([(1 —d)’ + n] v (€) + v, (se)> dQ — f b.u dQ
Q Q
a 2
+ G, — + 2 |Vd|" ) daQ+ | ¥p(a)dQ (49)
r\2lg 2 Q
This introduces a modified elastoplastic history field:

Hep = Be Trg[%)g] I/f: (e 1))+ By (¥p (o) — Wo) (50)

where 8. and B, are the constants that are regulating the contribution rate of the elastic
and plastic works respectively and the Macaulay bracket of an arbitrary variable x is defined
as:

x ifx>0

b = 0 ifx<O 6D
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The second term in Eq. (50) is the part of total energy dissipated by the plastic mechanisms,
represented by the following rate form [42,46]:

Vp = 7lisll (52)

whereas the constitutive law expressed in Eq. (44) is adopted. The strong form of Eq. (47)
may be replaced by the following relation:
Ge 2

" (d—0Ad)=2(1—d)Hep (53)
Integration algorithm
The integration procedure of this phase field modelling is constructed upon the elas-
tic predictor-plastic corrector algorithm in an analogous way to the presented nonlocal
damage model. The calculation of the stress field is carried out based on the von Mises rate-
independent plasticity model that may be closely related to the isotropically-hardening
plasticity model in [45]. The coupled plasticity model is implemented with UMAT and
HETVAL subroutines in Abaqus/Standard (in the same manner that is explained earlier
and in “Appendix” for the gradient damage model). In each increment, the phase field value
is frozen and retrieved in routine as a temperature field. Given the flux value based on the
updated history field from the previous increment in the UMAT code, the updated phase
field value is computed through the HETVAL subroutine. This staggered-type solution
procedure bypasses the need to calculate the coupled phase-field-displacement tangent
terms as is presented in the UEL monotonic scheme in [47].

Having Ae and the phase field variable from the previous increment (d,,), the predicted
elastic trial states are given by:

el =t A e
trial __ d) K etrial
Put1 = g( €y n+l

S;t'trfll — 2g (d) Ge® trial

d n+1 (54)
s _gP
85+1 =&n
- trial __ trial
Opt1 =4/32 (Sn+l>

The yield condition to check the plastic admissiblity is written as:
f=61% —g(doy(8,,) <0 (55)

If the yield condition is not satisfied, the following return mapping equation is solved
iteratively for Ay:

glrial _3¢(d)GAy —g(d)oy (Eh +Ay) =0 (56)

By having the solution at hand, the update procedure followed as:

éft+1 =& + Ay
trial

Prt1 = g(d) p,
_ Opn+1 trial
Sntl = - trial *n+1

n+1
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Ont1 = Spy1 + purid

1 ,
€1 = S Yehias i EeT (57)

The implementation of this algorithm is performed by the same strategy in dealing with
the nonlocal gradient damage model discussed before, using steady state heat problem
analogy referring to Eq. (34) and assuming the following associations:

K= lfl
ly , (58)
2—(1—-d)Hp—-d=gq
Ge
Results and discussion
The capability of the presented diffusive strategy is assessed herein, through the analysis
of two common benchmarks and by observation of force-deflection diagrams, damage

evolution, and crack propagation prediction.

Notched specimen tensile test

First benchmark is a notched specimen under tension, with the geometry and boundary
conditions depicted in Fig. 3. This example aims to observe the propagation of the damage
and assess the nonlocal gradient damage framework robustness and applicability of the
proposed methodology in the post-peak regime to circumvent mesh sensitivity. Due to
the symmetry, only one quarter of the specimen is modelled and discretized, assuming
distinct mesh discretizations (identically adopted from [48]) and using 4-noded plane
strain quadrilateral elements. The material properties used for analysis are represented in
Table 2, considering that the same length scale is used and treated as a material parameter
for all mesh topologies.

Assuming the imposed displacement of #; = 0.2 mm, the propagation of the local
and non-local damage fields are illustrated in Figs. 4 and 5 in a same time increment
and for three mesh sizes. Expectedly the localization of the damage is at the center of
the specimen and, as it proceeds, a 45° localization band is revealed. The local damage
contours show different values by varying the mesh density (denoted by /), whereas the
non-local model shows less discrepancy between different meshes at the same chosen
time increment. The more sparse damage propagation in non-local case is attributed to
the lower values obtained with the non-local model, and it is in a close agreement with the
non-local integral-type Lemaitre damage model results presented in [48] (therein stated
by L-D).

This can be more plainly observed in the force-deflection diagrams, by comparing the
curve discrepancies in Fig. 6a, b for the local and non-local damage frameworks respec-
tively, where it is visible that mesh sensitivity is attenuated in the case of the non-local
model. The results are compared with the results obtained in [48] for local and non-local
integral type Lemaitre damage models, showing some discrepancy in the non-local case
in which the gradient model predicts less softening than the integral type.

Attenuation of mesh dependency also is observable in Fig. 7a, b showing the evolution
of the local and non-local damage fields at the center of the specimen and the effect of the
non-local model in restoring mesh objectivity. It is also worth noting the smoother evo-
lution of the non-local damage field compared to the local one for the more refined mesh
(Fig. 8). More importantly, these diagrams prove the applicability of parallel treatment of
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T u=ul

—1.5mm

10.1 mm

5mm

Fig.3 Geometry and boundary conditions of the notched specimen

Table 2 Material parameters for the notched specimen

Name Value

Young's modulus (£) 210 GPa

Poisson’s ratio (v) 03

Hardening law oy (e) = 700 4 300 (@)®3 MPa
Lemaitre damage denominator (r1) 3.0 MPa

Lemaitre damage exponent () 1.0

Non-local model length scale (/) 0.15mm

the non-local field with the heat equation solver and therefore the proposed methodology
may be utilized with reliability, for this purpose, with this commercial software in the

conditions described.

Single edged notched shear test

The proposed methodology for the phase field model is analyzed via a single edged notched
test (SENT) specimen as can be found in [40,43], among other brittle fracture based
articles. The geometric setup of the 2D specimen is adopted from [37] with L = 5 mm and
a horizontal displacement-controlled loading applied on the top edge of the specimen, as
is depicted in Fig. 9a. Notice that the notch is considered as a geometrical entity with its
tip located at the center of the specimen where, based on experimental evidence, the crack
begins to propagate. The aim here is to observe the ability of the proposed algorithm that
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Fig.4 Contour plots of the local damage propagation for mesh size ofa h = 0.25mm, b h = 0.125 mm and

ch =0.094 mm
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Fig.5 Contour plots of the nonlocal damage propagation for mesh size ofa h = 0.25mm, b h = 0.125 mm
and ch = 0.094 mm
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Fig.6 Force variation with the applied displacement for a the local model and b the nonlocal model

uses the built-in heat equation solver, by making quantitative comparisons with existing
data in literature.

The spatial discretization is performed with 11125 elements with an approximate size
of 0.06 mm in the vicinity of propagating crack Fig. 9b, but with a sparser mesh away
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Fig.8 Evolution of damage fields at the central node obtained from the refined mesh

from the undamaged zones. The material properties, mainly, taken from reference [37],
are summarized in Table 3 while the same contribution rates of elastic and plastic works
are considered herein, 8, = 8, = 1.0.

The contour plots of equivalent plastic strain and phase field at various displacement
loading states are depicted in Fig. 10. The crack initiation, as expected, occurs at the initial
crack tip in the center of the specimen, and proceeds horizontally to the right edge of
the specimen. The pattern of the “regularized crack” in Fig. 10b is obtained resorting to
the embedded solution of the heat conduction equation in Abaqus solver package for
thermomechanical problems. Performing a denser mesh discretization with an effective
element size of 0.04 mm, the mesh sensitivity of the model is indicated via the force
deflection diagram in Fig. 11 and it is in a close agreement with the result reported in [37].
Also notable that no delayed softening is visible due to the chosen null value of plastic
work threshold.
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Fig.9 Single edge notched test a geometry and boundary conditions b mesh discretization

Table3 Material parameters for the single edge notched test

Name Value
Young's modulus (E) 180 GPa
Poisson’s ratio (v) 0.28

Yield stress (ay) 443 MPa
Hardening modulus 300 MPa
Phase field model length scale (/d) 0.06
Critical energy release rate (G,) 15 N/mm
Residual stiffness 1.0e7
Beand By 10

Plastic work threshold (W) 1.0

bl b2 b3

Fig. 10 Contour plots of equivalent plastic strain a (1-3) and the regularized crack b (1-3) at u; = 0.1 mm,
U, =05mmandus = 1mm
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Fig. 11 Mesh sensitivity of the proposed phase field model and comparison with the results in [37]

Concluding remarks

In this study, the evolution of damage and failure, via non-local gradient damage and
phase field models, respectively, was simulated resorting to an analogy to heat diffusion in
solids, using the built-in thermo-mechanically coupled finite-element solution procedure
in Abaqus. The developed procedure was justified and assessed in terms of qualitative
verification of crack propagation patterns and its capability of avoiding mesh dependence
pathologies.

The utilization of this approach may be viewed as a simple alternative to include the regu-
larization procedures associated with both gradient and phase field models in commercial
codes with no need of cumbersome implementations of explicit weak form derivations
within required lengthy user files.
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Appendix

! User material ABAQUS coupled temperature-displacement problems.
! Temperature field is treated as nonlocal damage field.

Following keywords must be defined at INP file
*Element, type=***T,
*Initial Conditions, type=TEMPERATURE
*HEAT GENERATION
*Depvar
*Coupled Temperature-displacement
0.01, 100., le-06, 1.0
<inc_intial>, <total time>, <inc min>, <inc_ max>

Subroutine HETVAL:

Gradient damage equation: D-D BAR=L N""2*GRAD2 (D BAR)
STATEV (6) : Local damage variable

STATEV (7) : Nonlocal damage variable (TEMP)

SUBROUTINE HETVAL (CMNAME, TEMP, TIME, DTIME, STATEV, FLUX,
1 PREDEF, DPRED)

INCLUDE 'ABA PARAM.INC'
CHARACTER*80 CMNAME

DIMENSION TEMP (2),STATEV (*), PREDEF (*),TIME (2),FLUX (2),
1 DPRED (*)

! HEAT FLUX = LOCAL DMG - NONLOCAL DMG
FLUX (1) =STATEV (6) —~STATEV (7)
FLUX (2) =ZERO

! Subroutine UMAT

! User coding to treat displacement field, update stresses,
! strains and damage fields

! STATEV (1-4) : Elastic strains

! STATEV (5) : Equivalent plastic strain

! STATEV (6) : Local damage variable
! (

STATEV (7) : Nonlocal damage variable (TEMP)

SUBROUTINE UMAT (STRESS, STATEV, DDSDDE, SSE, SPD, SCD, RPL,
DDSDDT, DRPLDE, DRPLDT, STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP,
PREDEF, DPRED, CMNAME, NDI, NSHR, NTENS, NSTATV, PROPS, NPROPS,
COORDS, DROT, PNEWDT, CELENT, DFGRDO, DFGRD1, NOEL, NPT, LAYER,
KSPT, KSTEP, KINC)

Sw N

INCLUDE 'ABA PARAM.INC'
CHARACTER*8 CMNAME

Argument lists and routine inputs ..

Material Properties
EMOD=PROPS (1)
ENU=PROPS (2)
DAMDEN=PROPS (3)
DAMEXP=PROPS (4)
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MU=EMOD/ (TWO* (ONE+ENU) )
TWOMU=TWO*MU

THREEMU=0P5 * TWOMU

SIXMU=SIX*MU
ALAMBDA=TWOMU*ENU/ (ONE-TWO*ENU)
E3BULK=EMOD/ (ONE-TWO*ENU)
EBULK=E3BULK*THIRD
E2BULK=TWO*EBULK

Initialization of the tangent matrix

DO K1=1, NDI

DO K2=1, NDI

DDSDDE (K2, K1)=ALAMBDA

END DO

DDSDDE (K1, K1)=TWOMU+ALAMBDA
END DO
DO K1=NDI+1,NTENS

DDSDDE (K1, KI1)=MU
END DO
Recover elastic strains, plastic strain,
equivalent plastic strain and damage variable

DO K1=1,NTENS

EELAS (K1) =STATEV (K1)
ENDDO
EQPLASN=STATEV (5)
DAMAGEN=STATEV (6)
DAMAGENL=STATEV (7)
OMEGAN=ONE-DAMAGEN
OMEGANL=ONE-DAMAGENL

Elastic Step

DO K1=1,NTENS
DO K2=1,NTENS
STRESS (K2) =STRESS (K2) +OMEGAN*DDSDDE (K2, K1) *DSTRAN (K1)
ENDDO
EELAS (K1) =EELAS (K1) +DSTRAN (K1)
ENDDO
User coding to define volumetric and deviatoric strain
components, equivalent stress and the current yield stress

QTRIAL=SQRT (THREE*J2T) /OMEGAN ! local model equivalent stress

QTRIALNL=SQRT (THREE*J2T) /OMEGANL ! Nonlocal model equivalent stress

Call to the hardening routine to obtain yield stress
and hardening data

Calculate the yield function and check for plastic admissibility

FYIELD=QTRIAL-SYIELO

IF (FYIELD.GT.TOLER*SYIELO) THEN

Begin the return mapping algorithm based on Lemaitre ductile

damage model simplified version as presented by de Souza Neto et al.

Initialization of variables

Page 20 of 24
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DGAMMA=OMEGAN*FYIELD/THREEMU
EQPLAS=EQPLASN+DGAMMA

DO 50 IITER=1,NITER
! Call to the hardening routine
yield2=SYIELD*SYIELD

! ITnitialize OMEGA and some other variables

! Damage Energy Release Rate
Y=(-yield2/SIXMU)-PTRIA2/E2BULK
RES=OMEGA-OMEGAN+DGAMMA /OMEGA* (-Y/DAMDEN) ** DAMEXP

! Update the local damage field
DAMAGE=ONE-OMEGA

! Nonlocal damage of the previous converged increment is used
! to stablish current STRESS and DDSDDE

OMEGA=ONE-DAMAGENL

IF (DAMAGE.GT.ONE) THEN
DAMAGE=DAMAGEN
ENDIF
IF (DAMAGENL.GT.ONE) CALL XIT

P=OMEGA*PTRIAL
Q=OMEGA*SYIELD
FACTOR=TWOMU*Q/QTRIALNL

! Update strains
FACTOR2=ONE-THREEMU*DGAMMA/ (OMEGA*QTRIAL)
STATEV (1) =FACTOR2*EED (1) +EEVD3

STATEV (2) =FACTOR2*EED (2) +EEVD3
STATEV (3) =FACTOR2*EED (3) +EEVD3
STATEV (4) =FACTOR2*EED (4) *TWO

! Update stresses
DO K1=1,NDI
STRESS (K1) =FACTOR*EED (K1) +P
ENDDO
DO K1=NDI+1,NTENS
STRESS (K1) =FACTOR*EED (K1)
ENDDO

! UPDATE INTERNAL VARIABLES
NONLOCAL VARIABLE VALUE IS THE CURRENT ‘TEMPERATURE’ VALUE

STATEV (5) =EQPLAS
STATEV (6) =DAMAGE
STATEV (7) =TEMP
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! Call to a routine to calculate the Lemaitre damage consistent tangent operator

ENDIF
! User coding to define the derivatives

! End loop over Newton iterations
50 CONTINUE

! Newton-Raphson Convergence Error
WRITE(7,*) '*ERROR* THE N-R ALGORITHM FAILED TO BE CONVERGED AFTER'
1 IITER, 'ITERATIONS'
CALL XIT

FACTORO=TWOMU*OMEGAN
P=OMEGAN*PTRIAL

DO K1=1,NDI
STRESS (K1) = FACTORO*EED (K1) +P
ENDDO
DO K1=NDI+1,NTENS
STRESS (K1) = FACTORO*EED (K1)
ENDDO
ENDIF

DO K1=1,NTENS
STATEV (K1) =EELAS (K1)
ENDDO

! UPDATE INTERNAL VARIABLES
NONLOCAL VARIABLE VALUE IS THE CURRENT ‘TEMPERATURE’ VALUE

STATEV (5) =EQPLAS

STATEV (6) =DAMAGE
STATEV (7) =TEMP
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