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Abstract

Form finding is used to optimize the shape of a semi-finished product, i.e. the material
configuration in a forming process. The geometry of the semi-finished product is
adapted so that the computed spatial configuration corresponds to a prescribed target
spatial configuration. Differences between these two configurations are iteratively
minimized. The algorithm works non-invasively, thus there is a strict separation
between the form update and the finite element (FE) forming simulation. This
separation allows the use of arbitrary commercial FE-solvers. In particular, there is no
need for a modification of the FE forming simulation, only the material configuration is
iteratively updated. A new method is introduced to calculate the difference between
the target and the computed spatial configuration. Thereby the target mesh is
separated from the mesh for the FE forming simulation, which enables a more accurate
and independent representation of the target configuration. In addition, the possibility
of taking into account manufacturing constraints in the optimization process is
presented. The procedure is illustrated for the example of the first stage of a novel
two-stage sheet-bulk metal forming process.

Keywords: Form finding, Shape optimization, Metal forming, Non-invasive methods,
Inverse problems

Introduction
Metal forming processes are distinguished into sheet and bulk metal forming. This classi-
fication results from the prevailing stress state of the respective forming operation. Sheet
metal forming is characterized by a two-dimensional stress state, whereas for bulk metal
forming, three-dimensional stress states dominate. The recent sheet-bulk metal form-
ing (SBMF) process, presented in [1], combines these two basic processes into a single
more complex process. The underlying idea is to integrate individual functional elements,
manufactured by bulk forming, into a component created by sheet forming. This novel
technology is currently investigated with much rigor in a DFG1—funded collaborative
research project:Manufacturing of complex functional components with variants by using
a new sheetmetal forming process—Sheet-BulkMetal Forming (TR73).Within this project
in particular tailored blanks are studied, i.e. semi-finished products are a priorly adapted
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to the intended SBMF process. For this purpose, processes for material pre-distribution
are used, see [2].
In this contribution we focus as an example on a two-stage forming process from the

family of SBMF processes. This process is used to illustrate the procedure of form finding
while demonstrating improvements in optimizing more complex geometries and taking
into accountmanufacturing constraints. In general a direct problem is distinguished from
an inverse problem, see Chenot et al. [3]. A forming simulation is a direct problem where
the material configuration is given and the spatial configuration is sought. If the spatial
configuration is prescribed and the material configuration is sought, it represents an
inverse problem. According to this classification, illustrated in Fig. 1, form finding in the
sense of shape optimization is an inverse problem.
Figure 1 illustrates furthermore the concept of the proposed non-invasive form finding.

Accordingly, the optimization cycle starts with an initialmaterial configuration (left, black
color) as input for the FE forming simulation. The FE forming simulation itself is carried
out independently of the optimization and computes the spatial configuration (right, black
color) as a final result. This computed spatial configuration is compared with a target
spatial configuration and a suitably defined spatial difference vector is calculated. The
algorithm projects the spatial difference vector to the material configuration for the form
update. The procedure iteratively minimizes the spatial difference vector. In addition,
the algorithm works on a node-based basis, so that each FE node is taken into account
individually for optimization.
The optimization loop is used to determine an optimal semi-finished product geom-

etry. The resulting optimized geometry ensures that the desired spatial configuration is
achieved for given loading and boundary conditions. During optimization, the FE-solver
for the forming simulation is not affected, indeed it is entirely independent from the form
finding, thus it is in particular possible to incorporate arbitrary commercial FE-solvers,
which is a substantial asset for the industrial application of the algorithm.
The basic approach was first introduced by Landkammer and Steinmann [4]. Various

enhancements to improve the algorithm in terms of both accuracy and versatility have
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Fig. 1 Inverse shape optimization procedure with material configuration, target spatial configuration and
the computed spatial configuration
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been presented in [5,6]. The focus of our current work is on the further improvement
of its stability and robustness. The following developments include two major modifica-
tions of the optimization algorithm in order to enhance its applicability to real processes.
Recent investigations emphasized a strong dependency of the optimized material posi-
tion of individual nodes on the respective nodes in the target spatial configuration. This
dependency is entirely bypassed by releasing the mesh of the target spatial configuration
from that of the FE forming simulation (“Detachment of the target mesh from the mesh
of the forming simulation” section). This does not change the type of optimization, but
the way of computing the differences between the computed spatial configuration and
the target spatial configuration. In addition, a first step is made to consider manufactura-
bility (“Constraining the available design space” section) of the optimization result when
manufacturing constraints must be taken into account. The constraint considered here is
the available design space for the semi-finished product, which is limited by the material
pre-distribution process.
In the following, the basic principles of nonlinear continuum mechanics are briefly

re-iterated (“Basics of nonlinear continuum mechanics” section). This is followed by the
description of the update step for a single node (“Description of an update step” section).
The entire algorithm is outlined afterwards. Here, the above-mentioned improvements
will also be presented. Finally, the procedure is illustrated by an example in “A two-stage
forming process of a tailored blank” section. The last chapter summarizes the findings.

Basics of nonlinear continuummechanics
Basics of nonlinear continuummechanics are reiterated as a preliminary to the derivation
of the subsequent algorithm for formfinding,whereby the followingpresentation is limited
to some important assumptions. A more detailed description is represented in [7,8].

Kinematics of the continuous setting

In continuum mechanics, a distinction is made between two configurations of a contin-
uous body: the material configuration B0 at time t = 0 and the spatial configuration Bt
at time t > 0. Assuming an Euclidean space E3 with basis vectors Ei ≡ ei and i = 1, 2, 3,
these two configurations are represented as illustrated in Fig. 2.
The kinematic relationships between the two configurations include the deformation

map, the displacement field and the deformation gradient. The deformationmapϕ assigns
to a position vector X in the material (undeformed) configuration B0 a position vector x
in the spatial (deformed) configuration Bt :

E1 ≡ e1

E2 ≡ e2

E3 ≡ e1

u = x − X

x = ϕ(X, t)

X x
B0

Bt

Fig. 2 Material (undeformed) and the spatial (deformed) configuration of a continuous body
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x = ϕ(X , t) : B0 → Bt . (1)

The displacement field u results from the difference of the position vectors in the spatial
and the material configuration:

u(X , t) = ϕ(X , t) − X . (2)

The gradient F of the deformation map with respect to the material coordinates renders
a linear map from the material tangent space TB0 to the spatial tangent space TBt :

F = ∂ϕ(X )
∂X

: TB0 → TBt . (3)

Weak form of balance of forces

Due to the dominance of contact forces involved in metal forming processes, body forces
are here neglected without loss of generality. Equilibrium is formulated as a boundary
value problem:

DivP = 0, (4)

whereby the corresponding boundary conditions decompose the Dirichlet and Neumann
conditions:

ϕ = ϕ̄ on ∂Bϕ
0 and P · N = T on ∂BT

0 . (5)

The equilibrium equation (Eq. 4) is formulated in terms of the Piola stress P and results
from the balance of forces.
These equations yield a system of PDEs, that is solved based on the principle of virtual

power. To this end, virtual displacements δϕ are introduced. Theweak form incorporating
the boundary conditions is formulated as follows:

∫
B0

P : δFdV =
∫

∂BT
0

δϕ · TdA ∀δϕ admissible. (6)

Solving the weak form by applying a FE discretization

In order to solve the weak form in Eq. 6, it is necessary to discretize the continuous body
B into finite elements.
In the following the samediscretization is used for both, the coordinates and thefield val-

ues. Within the finite element computations, integrals are typically computed by numeri-
cal integration, i.e. Gauss quadrature. Finally, efficient iterative solutionmethods are used
to solve the resulting system of nonlinear algebraic equations. For a detailed account on
the FE-method, we refer to [9], among others.
The body B is discretized into nelem elements:

B0 ≈ Bh
0 =

nelem⋃
e=1

Be
0 and Bt ≈ Bh

t =
nelem⋃
e=1

Be
t . (7)

Likewise the coordinates in the material and spatial configuration are discretized as:

X ≈ Xh =
nelem⋃
e=1

X e and x ≈ xh =
nelem⋃
e=1

xe. (8)
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Within the isoparametric concept, all kinematic quantities are approximated by the
same shape functions Ni(ξ) for each element node (i = 1 . . . nen), which are defined on
a reference element B� with isoparametric coordinates ξ ∈ [−1, 1]ndim . The coordinates
X e and xe within an element depend on the nodal positions X i and xi:

X e(ξ) =
nen∑
i=1

X iN i(ξ) and xe(ξ) =
nen∑
i=1

xiN i(ξ). (9)

The discretized deformation map and deformation gradient follow as:

xh = ϕ(Xh, t) : Bh
0 → Bh

t and Fh = ∂ϕ(Xh)
∂Xh : TBh

0 → TBh
t . (10)

The material and spatial Jacobian

J e(ξ) =
nen∑
i=1

X i ⊗ ∂Ni(ξ)
∂ξ

and je(ξ) =
nen∑
i=1

xi ⊗ ∂Ni(ξ)
∂ξ

(11)

are used for the mapping from the reference element to the element in the material or the
spatial configuration, respectively, the deformation gradient F e is thus evaluated by:

F e(ξ) = je(ξ) · J e(ξ)−1 =
[ nen∑
i=1

xi ⊗ ∂Ni(ξ)
∂ξ

]
·
[ nen∑
i=1

X i ⊗ ∂Ni(ξ)
∂ξ

]−1

. (12)

Figure 3 show cases a finite element in the material, spatial and reference configuration,
respectively.

Description of an update step
The proposed optimization approach is based on the following concept:

Each discretization node on the external boundary of the continuous body has an optimal
material position, which leads to the target spatial configuration after applying the forming
simulation.

The objective of the optimization is to determine this optimal material position by
means of an iteratively repeated optimization step. The mathematical derivation of a
single update step is explained below.
The difference between the current spatial position of a design node xD = ϕ(XD) with

global node index D and its target spatial position xDtg defines the spatial difference vector
or rather the error of the nodal spatial position:

B

Be
0 Be

t

ξ1

ξ2
e1

e2

E1

E2

F e(ξ)

ϕe(X)

Xe(ξ),Je(ξ) xe(ξ), je(ξ)

Fig. 3 Discretized setting with the reference element B� , material element Be
0 and the spatial element Be

t
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dD = xDtg − ϕ(XD). (13)

These differences, calculated for each design node D, are merged into a global objective
function:

δ(XD, xDtg) =
ndsgn∑
D=1

δD
(
xDtg ,ϕ(XD)

)
, (14)

where by δD is denoted the nodal objective function defined by the squared error of a
nodal spatial position:

δD = 1
2
dDT · dD. (15)

Design nodes contain at least one design coordinate and are located on the external
boundary of the geometry. The global objective function contains only the differences
of design coordinates. Further coordinates are fixed coordinates, which are restricted
by boundary conditions and are therefore not relocated during the update step and the
controlled coordinates which are updated by a fictitious elastic problem. Nodes on the
external boundary can have both design and fixed coordinates, whereas nodes in the
interior of the geometry only contain controlled coordinates. This kind of distinction is
commonly used for parameter free (node-based) optimization procedures and is outlined
in more detail in [10].
The column vectors on the left hand side of Eq. 14, XD and xD, store all material and

spatial positions of the ndsgn design nodes. The optimization approach is summarized in
Table 1.
For determining the optimal material positions XD

opt of all design nodes (and so the
corresponding optimal material configuration) the global objective function is minimized
with respect to the material coordinates. Thus, the optimal material configuration XD

opt
has to satisfy the stationarity condition:

∂δ(XD, xDtg)
∂XD

∣∣∣∣
XD
opt

!= 0. (16)

The iterative update step follows from the approximation of Eq. 16 using a Taylor expan-
sion truncated after the first term. This results in an iteration step as:

XD
k+1 = XD

k − ∂2δ
(XD, xDtg

)
∂XD∂XD

−1

· ∂δ
(XD, xDtg

)
∂XD . (17)

Equation 17 represents a global treatment, however we decide to only locally perform
the update step of the optimization procedure, so that the new material position of each

Table1 The node-based optimization problem for inverse form finding [5]

Objective function δ
(
XD ,xD

tg

)
= ∑ndsgn

D=1
1
2‖dD‖22

Design variables Material positions XD of the design nodes

State equation Deformation map ϕ : XD ∈ Bh
0 → xD ∈ Bh

t
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design node is calculated individually. The update step for each design node is thuswritten
as (note the different fonts for the global XD and the node-wise XD):

XD
k+1 = XD

k − α
∂2δD

(
XD, xhtg

)
∂XD∂XD

−1

· ∂δD
(
XD, xhtg

)
∂XD . (18)

The update step is necessarily complemented by a linesearch parameter α which is con-
trolled by Armijo-Backtracking [5] and that ensures a suited update without severe dis-
tortion of a single element.
Equation 18 includes the first derivative (Jacobian) and the inverse of the second deriva-

tive (Hessian), JDk = ∂δD
(
XD,xhtg

)
∂XD = −FD

k

 · dD

k and HD
k = ∂2δD

(
XD,xhtg

)
∂XD∂XD , respectively, of

the local objective function δD with respect to the nodal material position XD. Further
transformations result in the update step for the k-th iteration:

XD
k+1 = XD

k + αH̃D
k

−1 · F̃D
k


 · dD
k . (19)

Here, the first deformation gradient and the Hessian are represented as smoothed quan-
tities F̃ and H̃ . According to Eq. 12, the gradients are calculated based on the ansatz-
functions evaluated at the Gauss points. However, the update requires values at the design
nodes, so that smoothing is required. The values at the Gauss points of the adjoining
elements of a design node are smoothed to the corresponding nodal value. Various possi-
bilities for this procedure were also examined in [5]. As suggested by a detailed analysis,
the superconvergent patch recovery technique as proposed in [11] is eventually used.
Equation 19 is further converted by approximation of the Hessian matrix. Different

Quasi–Newton methods, outlined in [5], serve this purpose. Therein, numerical investi-
gations suggest that the use of the Gauss–Newton approximation works most efficient
and sufficiently accurate. With the Gauss–Newton approximation the update step finally
reads as:

XD
k+1 = XD

k + αF̃D
k

−1 · dD
k . (20)

A non-invasive form finding approach
The special feature of the proposed non-invasive approach is the separation of the form-
ing simulation and the optimization of the material configuration. It enables us to use
arbitrary FE-solvers and to apply the optimization approach entirely independent. All
required information is transferred by means of subroutines between the FE-solver and
the optimization tool. At the end of the update step the newmaterial configuration B0k+1
is transferred back to the FE-solver. Finally, the forming simulation is restarted. The only
information to be exchanged are the material positions of the design, fixed, and con-
trolled nodes, other quantities such as plastic strains and stresses are not exchanged. If
by way of example Abaqus is applied as FE-solver, Python and Fortran scripts are used
for data exchange, for Marc/Mentat subroutines are usually Fortran as well. The data
are transferred in text files individually adapted to the solver. In order to enable the use
of additional solvers, the possibilities for data exchange of the respective solver must be
taken into consideration. Once the updated material configuration Xk+1 is passed to the
solver, the FE-problem is solved without any interference of the optimization algorithm.
This kind of separation is denoted the non-invasive approach.
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As already mentioned, we distinguish between design, fixed and controlled nodal coor-
dinates. Fixed coordinates belong to a node that is restricted by a Dirichlet boundary con-
dition and therefore remain unchanged during the optimization. The design coordinates
are updated by Eq. 20. Independently updating the controlled nodes is firstly proposed
in [5]. The update of the design coordinates is specified by the nodal material difference
vectorDD

k = αF̃D
k

−1 ·dD
k (withD = 1, . . . , ndsgn) for theDth design node and kth iteration.

These nodal material difference vectors are used as prescribed Dirichlet boundary data of
a fictitious elastic problem, which is solved once again with the selected FE-solver. The
prescribed displacement of the design nodes lead to a relocation and thus update themate-
rial positions of the controlled nodes. The fictitious elastic problem has no mechanical
relevance regarding the deformation of the material, it is only used to update the con-
trolled coordinates of the FE-mesh to the previously determined relocation of the design
coordinates. The non-invasive approach with the outlined procedure is pictured in Fig. 4.

Remark Note that the simulation of the forming process is much more time consuming
than the computation of an updated material configuration. For the later introduced
example, which is illustrated in Fig. 11b, in combination with the target mesh in Fig. 13b,
the computational time decomposes into:

• Structure analysis 305 s.
• Elastic update 4 s.
• Update computation 10 s.

Therefore, the computational cost of the update calculation is negligible and efficiency of
the algorithm is not an issue and therefore not considered in detail.

Detachment of the target mesh from themesh of the forming simulation

The update step outlined in “Description of an update step” section is determined by the
nodal differences dD between the target spatial position of the particular design node
xDtg and its computed spatial position ϕ(XD). A challenge arises from the dependence of
the spatial position of a design node on its target spatial position that restricts the final
material position of the design node. This problem becomes obvious by comparing the
optimal material configuration of a simulation of the notch stamping process, outlined in
[6,12], for using two differently discretized target spatial configurations.
The target configurations to which the respective optimization was aimed are depicted

in Fig. 5. It turns out to have a significant influence on the optimal material shape whether
the target discretizations Fig. 5a or b is used. Figure 6 shows the setting of a structural

Preprocessing Form Finding

Postprocessing

FE-Solver

Forming Simulation

Geometry
Loads + B.C.

Friction + Contact

Target Mesh

Available Design Space

Compute

Material Difference

Vector DD
k

Elastic

Update

Fig. 4 Schematic representation of the optimization procedure
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a b

design nodes
design boundary
fixed boundary

Fig. 5 Two identical target shapes with differing positions of the design nodes. Configuration a as used in [6]
and b with two modified nodal positions

a b

diverging design nodes
boundary condition
rigid body
design border

Fig. 6 Structural analysis setting with two optimized material configurations. Configuration a is based on the
discretized target configuration in Fig. 5a. Configuration b is based on the discretized target configuration in
Fig. 5b

analysis with two optimized material configurations. Although both optimizations are
based on the target shape, the results differ for the two marked design nodes. This effect
occurs despite of both target discretizations render the same shape but varied nodal
positions.
The mismatch goes back to the computation of the difference vectors with its depen-

dency on the nodal target positions. The aim is to introduce a novel way of computing the
difference vector independently from the position of one particular target node. Indeed,
the computation of the update for eachdesignnodehas only to dependent on the geometry
of the target. This offers the opportunity to design a targetmeshwith a different number of
nodes and connectivity compared to that of the forming simulation. The target geometry
is discretized by an independent FE-mesh with the positions xjtg−sf (for j = 1, . . . , ntg−sf )
for its surface nodes.
The computation of the difference vector is performed in three steps.

I. Projection step

First, the projection step, outlined in Fig. 7b, performs a projection:

spatial nodes xik → surface of the target configuration
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k
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I: projection step II: reverse check

spatial configuration

target configuration
difference vector
updated spatial configuration

Fig. 7 (a) Starting scenario of the comparison between spatial and target configuraiton. Computation of the

difference vector d̂ i
k in the projection step (b) and the difference vector d̃ i−1

k for the reverse check (c)

Adesign node of the spatial configuration xik is projected onto the target mesh. Therefore,
the two closest target design nodes are determined. The line between these two nodes
is part of the target surface. For the difference vector d̂i

k of the i-th design node the
orthogonal projection onto this line is computed as described in Algorithm 1.

II. Reverse check

Second, the reverse check projects:

target surface node xjtg−sf → updated spatial design surface

Data: Positions of spatial deformed design nodes xi (for i = 1, ..., ndsgn), Positions of spatial
target design nodes xj

tg (for i = j, ..., ntg−sf)
for i ← 1 to ndsgn do

a[a1, a2] ← find minimum of
∣
∣
∣x

j
tg−sf − xi

∣
∣
∣;

b[b1, b2] ← find second minimum of
∣
∣
∣x

j
tg−sf − xi

∣
∣
∣;

// Vector v between Point a and b
v = b − a;

// Direction of d̂
i
k as a perpendicular vector vs to v

vs · v = 0;
// Components of vectors
[v1, v2] = v;
[vs1, vs2] = vs;
[x1, x2] = xi;
// A multiplier λ for the direction vs to apply the projection of xi onto

the straight line ab
λ = [[a2 − x2] · v1 − [a1 − x1] · v2]/[vs2 · v1 − vs1 · v2];

// Compute distance vector d̂
i
k for the i-th spatial deformed node position

d̂
i
k = λ · vs

end

Result: Difference vector d̂
i
k (for i = 1, ..., ndsgn) for the projection step

Algorithm 1: Computation of the difference vector d̂
i

k within a two-dimensional
setting
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By using the computed difference vector d̂i
k it is ensured that the updated spatial config-

uration fits to the target surface. However, it is not ensured that every node of the target
surface, especially nodes corresponding to a corner, fit to the updated shape of the spatial
configuration. This case is illustrated in Fig. 7b for the nodal positions xjtg−sf of the tar-
get configuration. The reverse check is performed by using the updated spatial geometry
from the projection step and calculating the projection of every target node xjtg−sf (for
j = 1 . . . ntg−sf ) onto this updated geometry.
The projection is performed similarly to the projection in Algorithm 1. However, the

target nodes are projected reverse onto the updated spatial configuration. If themagnitude
of the projection is bigger than a certain threshold, the difference vector for the reverse
step d̃i

k is computed by using the closest updated design node x̂ik and calculating the
difference accordingly. Eventually, the used closest spatial design node is updated again.

III. 90◦-corner check
The last part is called the 90◦-corner check. Within the first two steps a rectangular
projection between one node and a straight line between two other nodes is performed.
Figure 8 shows a special case of an updated spatial design node which does not fit to the
target shape despite the projection- and reverse step being already performed. In the case
of a rectangular projection onto a straight line corresponding to a 90◦-corner, the update
is placed close to the corner, however not onto the corner. Also the reverse check is not
able to identify the improper update since the corner is part of the updated geometry. For
this case all 90◦-corners of the target shape are identified by a third update whereby d̄D

k is
calculated for the node closest to the corner.
At the end, the final difference vector for each spatial position of a design node for the

k-th iteration step is composed by summation:

dD
k = d̄D

k + d̂D
k + d̃D

k . (21)

Update of the material configuration with a limited available design space

Shape optimization often results in a contradiction between a theoretically optimal mate-
rial configuration and manufacturing constraints. The updated material configuration is
computed with Eq. 20, whereby the material difference vector is identified as:

DD
k = αF̃D

k
−1 · dD

k . (22)

xj
tgd̄

i
k

target configuration
difference vector
updated spatial configuration

Fig. 8 A 90◦-corner case for computing a difference vector d̃ i
k
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This vector describes the relocation of one design node of the material configuration
for the k-th iteration step. The vector originates in the spatial configuration and therefore
contains only information about the spatial configuration and does not involve informa-
tion about manufacturing constraints, which potentially limit the external shape of the
material configuration. The following approach is the first step to involve manufacturing
constraints into the optimization.
Here, the available design space is described by an area (2D). Initially, there is no need

to approximate the available design space by nodes and elements. However, we deal with
a node-based optimization approach. Furthermore, a comparison between an updated
material configuration and an available design space has analogies to the projection-step
outlined in the previous section. Figure 9 highlights the way of constraining the update
to an available design space. The available design space is approximated by an arbitrary
number of nodes. Amaterial nodal positionX i

k is supposed to be updatedwith thematerial
difference vector Di

k . Due to the constraint every updated material nodal position X i
k+1

is enforced to be inside the available design space. In the case of being outside of the
available design space, the node is projected onto the available design space boundary.
For this projection, the vector D̂i

k is calculated and used to updated the node X i
k+1 to

X̂ i
k+1. In the case a node inside the available design space no further update is calculated.

A two-stage forming process of a tailored blank
Process description

The optimization process including the independence of the update on one particular
nodal position (“Detachment of the target mesh from the mesh of the forming simula-
tion” section) and the constraint by an available design space (“Update of the material
configuration with a limited available design space” section) is demonstrated by an exam-
ple belonging to the collaborative research project TR73. A two-stage forming process is
performed to a circular blank of 2 mm thickness. Figure 10a shows a cut through the part

Xi
k+1

X̂
i

k+1Xi
k

Di
k

D̂
i

k
original material configuration

available space
difference vector

updated material configuration
restricted material configuration

Fig. 9 Restriction of an updated material configuration (dashed blue) to the available space (green)

Fig. 10 Demonstrator of the collaborative research project TR73. A cut out a after the first, b after the second
stage of the forming process
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after the first stage of the combined deep drawing and stamping process. The final shape
of the part is displayed in Fig. 10b. The example is a demonstrator that serves for different
investigations regarding sheet-bulk metal forming operations [1].
In the following, the forming simulation is reduced to a two dimensional axisymmetric

analysis. This dimensional reduction drastically decreases the computational cost. The
forming simulation is illustrated in Fig. 11a. The blank measures an internal radius of
7 mm and an external radius of 50 mm. Combined with the already mentioned thickness,
it ends up with a 43 mm × 2 mm axisymmetric plane. This is approximated by 480 four-
noded, isoparametric, quadrilateral elements with a four-point Gaussian integration. The
material data of the deep drawing steel DC04 published in [13] is used. The high hardening
capacity and low initial yield strengthof theDC04are typical for cold rolled sheetmetal and
are working well for large deformations. The used material data belong to the Hockett–
Sherby model with isotropic hardening Material details are listed in Table 2.
The forming simulation is based on three tools: the upsetting punch p1, the deep-

drawing punch p2 and the deep-drawing ring p3, which are represented as rigid bodies.
During the simulation the upsetting punch moves downwards followed by the deep-
drawing ring which bends the circular blank. Between the tools and the blank Coulomb
friction with an arctangent approximation is used with a friction coefficient of 0.07. The
end of the simulation is highlighted in Fig. 11b, whereby the deep-drawing punch is in
the lower position. The green pictured area in Fig. 11c is the area which has to be filled by
material after deep-drawing. A 100% form filling would be the best starting position for

p1

p2

p3

a

b c

Fig. 11 Two stage deep-drawing and stamping process before (a) and after (b) deep-drawing. The depicted
tools are the upsetting punch p1, the deep-drawing punch p2 and the deep-drawing ring p3. The green area
in the detailed view (c) covers the target space with a 100% material filling

Table 2 Material data published by [13] for DC04 steel including elasticity parameters and
isotropic hardening parameters for the Hockett–Sherbymaterial model

Elastic parameters

Young’s modulus E = 210,000 [MPa]

Poisson’s ratio ν = 0.3 [–]

Parameters for the Hockett–Sherby hardening function

σ (εp) = σ∞ + [σ0 − σ∞]exp
(
a εp

b
)

Initial yield stress σ0 = 185.2 [MPa]

Infinite yield stress σ∞ = 577.1 [MPa]

Hardening parameters a = − 2.1771 [–]

b = 0.6667 [–]
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Fig. 12 Experimental observed grain structure of a bended blank after upsetting with the detailed views of
two cavity defects [2]

the second stage of the forming process, the upsetting. During the upsetting the teeth are
getting impressed into the deep-drawing ring to end up with the demonstrator displayed
in Fig. 10. Figure 11b shows the deformed configuration of the forming simulation. The
blank is bended by 90◦ and the deep-drawing ring is in the lowest position. The detailed
view in Fig. 11c shows the challenge of formfilling, since the edge is not filledwithmaterial.
However, for the subsequent second step, the upsetting, it would be useful to have a low
material flow towards the edge, which is achieved by already completely filling the edge
in the first stage. During the upsetting the material flow has to be concentrated to fill the
cavities for the teeth, otherwise those will not be completely filled. The experimentally
obtained final configuration in Fig. 12 highlights this form filling defect.
The aim of the optimization is thus to adapt the material configuration, so that the

deformed configuration ends up with a better form filling at the corner. For the manu-
facturing process this optimization is realized by a material pre-distribution step which
is part of the overall manufacturing chain. Material pre-distribution is applied either by
a rolling operation or an orbital forming operation. Both operations produce an adapted
semi-finished product to reach a better form filling. However, the additional height which
is generated by the use of pre-distribution is limited and therefore the maximum available
design space is restricted. A detailed description of the manufacturing of tailored blanks
in sheet-bulk metal forming and the material flow is outlined in [2].

Application of the detached target mesh

Due to the introduced approach to compute the difference vector (“Detachment of the
target mesh from the mesh of the forming simulation” section) it is possible to create a
target mesh independently of the mesh for the forming simulation, even though the opti-
mization is node-based. This offers the opportunity to determine the optimal shape and
mesh this shape with an arbitrary number of nodes and elements. The applicability of the
method is demonstrated by the following example. Figure 13 shows two different target
meshes, both represent the same shape. In order to demonstrate the independence of the
optimization and the individual positions of a target mesh, the optimal material config-
uration for the different target meshes is determined. In the case of an equal optimized
material configuration the independence from the target mesh is proved. The first target
mesh in Fig. 13a consists of 506 nodes and 409 elements, the second (Fig. 13b) of 747 nodes
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a

b

c d

Fig. 13 The two different target configurations (a) and (b) with corresponding detailed views (c) and (d)
which are used to evaluate the detachment of the target mesh form the mesh of the forming simulation in
“Detachment of the target mesh from the mesh of the forming simulation” section

and 647 elements. The detailed views (Fig. 13c, d) show the significant differences in the
area of interest. A further benefit of an independent target mesh is the opportunity to use
a high resolution for a complex shape even though the mesh for the forming simulation
itself is more coarse.
The optimizedmaterial configurations depicted in Fig. 14 result fromanoptimization by

thedescribedprocess in “Process description” section.The configuration inFig. 14a results
from the first target mesh in Fig. 13a, whereas configuration Fig. 14b is computed with
the second target mesh in Fig. 13b. Identical results for both material configurations are
obtained, obviously there is no difference between the nodes of the shape which has been
updated. The identical result is determined by comparing both deformed configurations in
Fig. 15 to their respectivematerial configurations and targetmeshes.There is no significant
difference neither in their total equivalent plastic strains nor in the positions of their nodes.
The optimization results in two identically optimized material configurations and

deformed configurations for two different and arbitrarily meshed target configurations.

Constraining the available design space

The optimization depicted in Fig. 14 is computed without any constraint related to the
available design space. The design nodes are updated by usage of Eq. 20 with its nodal
difference vector Eq. 21. The constraint of an available design space is outlined in the
following. The pre-distribution is applied by using orbital forming or rolling. Due to lim-
its of this forming operations a constraint on the maximum additional blank thickness

a

b

Fig. 14 Optimized material configurations. Configuration a corresponds to the discretized target
configuration Fig. 13a, and b to the discretized target configuration Fig. 13b
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Fig. 15 Spatial (deformed) configurations according to the optimized material configurations. Figure 13a →
(a), Fig. 13b → (b)

a

b

Fig. 16 Optimized material configurations with a constraint of the available design space: configuration a
corresponds to the discretized target configuration in Fig. 13a, and b to the discretized target configuration
Fig. 13b

produced by an update step is needed. The space is approximated with an arbitrary num-
ber of nodes, elements and outlines the shape of the blank with an additional height of
1 mm. The optimization is performed with the same boundary conditions as outlined in
the previous chapter. Figure 16 shows the optimized material configurations. Both con-
figurations belong to the same initial material configuration. However, they have different
target meshes as already mentioned previously, which does not cause any differences to
the optimization result. Constraining the available design space causes a reduced maxi-
mum peak of the material pre-distribution. Due to the elastic procedure for updating the
interior nodes, also the interior nodes are rearranged in a different way compared to the
unconstrained optimization. Limiting the optimization result also causes a limit of the
accuracy of the computed spatial configuration. Due to the reduced peak, the form filling
in the 90◦-corner is reduced compared to the unconstrained results. This side effect is
unavoidable, see Fig. 17. However, taking into account the constraint, an optimal shape is
still computed by using the advocated form finding approach. The optimization involves
a constraint motivated by taking into consideration themanufacturability. The constraint
of the available design space is here not specifically adjusted to any realistic conditions. It
is a first step towards optimization with forming constraints.
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Fig. 17 Spatial (deformed) configurations according to the optimized material configurations with
constraint of the available design space. Figure 13a → (a), Fig. 13b → (b)

Conclusion
A form finding approach has been introduced for different forming simulations and is
demonstrated to be suited and accurate for a variety of sheet-bulk metal forming appli-
cations. Based on the non-invasive character of the optimization approach it is possible
to optimize structures of high complexity with nonlinear material behavior, contact con-
straints and large deformations. The forward simulation is treatedwithin the optimization
as a black box. Only input and output files are transferred. Thus, optimization and simu-
lation codes work independently of one another, i.e. in a non-invasive fashion.
Two further innovations are presented.On the one hand a possibility to define the target

mesh independently of the mesh for the forming simulation is proposed. One and the
same target mesh can be used to optimize discretized structures of different connectivity
and element numbers. It is therefore possible to compare different discretizations directly
against eachother. In addition, it is guaranteed that the result of theoptimization, thenodal
positions of the material configuration and the corresponding shape, are independent of
the position of a single node of the target configuration and are optimized only with
regard to its relevant shape. This procedure is verified by comparing the optimization
result obtained with two different target discretizations of the same structural analysis.
Furthermore, a first step is presented to perform optimization with regard to the man-

ufacturability of a product. The final material shape may in some cases meet the require-
ments of the target shape, but there are often shapes that cause production problems. This
problem is circumvented if manufacturing constraints are already considered during the
optimization. The result of the optimization is therefore already adapted to the production
conditions. The presented limitation of the available design space proves to be practicable,
although this innovation is only a small step towards production-oriented optimization.
The adaption of this procedure to real processes is part of our ongoing investigations.
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