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Abstract

In the present work, the discontinuous Galerkin (DG) method is applied to linear
elasticity for two-dimensional and three-dimensional settings. A locking-free element
formulation based on reduced integration and physically-based hourglass stabilization
(Q1SP) is coupled for the first time with the DG framework. The incomplete interior
penalty Galerkin method is chosen, being one example of different variations of DG
methods. Several 2D and 3D typical benchmark problems of linear elasticity are
investigated. A selection of numerical integration schemes for the boundary terms is
presented, namely reduced and mixed integration schemes. The treatment of the
surface terms by means of different rules of integration shows a significant influence on
the performance of the resulting DG method in combination with the standard Q1
element. This intelligent treatment of the surface part leads to a DG variant with very
good convergence properties.

Keywords: Discontinuous Galerkin, Reduced integration, Incompressibility, Linear
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Introduction
In the last decades, finite element-based discontinuous Galerkin methods (DG) have been
established as good alternative to standard continuous finite element formulations.
Reed andHill [1] (see also LeSaint and Raviart [2]) were among the first authors to intro-

duce a DGmethod. The method was set up for hyperbolic PDEs—to solve the problem of
neutron transport. It was observed that the discontinuities between the subdomains may
lead to non-uniqueness of the discrete solution. In order to stabilize the solution, a penalty
term due to Nitsche [3] is frequently added on the element boundaries. After its initializa-
tion, there was an increasing interest in DGmethods for hyperbolic and nearly hyperbolic
problems, see for example thework of Johnson and Pitkäranta [4] as well as [5–7]. Douglas
and Dupont [8], Wheeler [9] and Arnold [10] introduced the interior penalty (IP) variant
of the DG method to extend the range of applicability of the method (see also [11–13]).
The first application of DG for a fourth order problem was carried out by Baker [14].
Bassi and Rebay [15] solved the compressible Navier-Stokes equations by a DG method.
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The latter work was further extended to time-dependent convection-diffusion systems
by Cockburn and Shu [16] who introduced the so-called “local” discontinuous Galerkin
method. Another application of a DG method for diffusion problems was presented by
Oden and Bauman [17,18]. An overview of the application of the DG method for elliptic
problems can be found in [19]. Detailed reviews on the development of DG methods can
be found in [20,21].
Applications of DGmethods are predominantly found in fluid/gas dynamics [15,17,22],

compressible [23,24]/incompressible flows [25,26], magneto-hydrodynamics [27], gran-
ular flows [28], viscoplastic crack growth and chemical transport [29]. Recently, there has
been increasing interest in the application of DG methods in solid mechanics. In 2002,
Engel et al. [30] made a comparison between continuous and discontinuous Galerkin
methods to solve fourth-order elliptic problems such as they occur in thin beams and
plates, and strain-gradient elasticity. A further extension of the latter work to strain
gradient-dependent damage was carried out by Wells et al. [31] and Morali et al. [32].
Space-time discretization was applied in linear-elastic DG methods after Huang and
Costanzo [33,34] had introduced it. A discontinuous Galerkin time discretization for
elasto-plasticity was proposed by Alberty and Cartensen [35]. Furthermore, Mergheim et
al. [36] applied a DG method to avoid unphysical use of penalty terms in crack propaga-
tion problems. In addition, Alipour et al. [37] introduced the concept of control points in
hybrid DG methods for problems of geometrically nonlinear crystal plasticity.
DiscontinuousGalerkinmethods turned out to be an alternative to continuous finite ele-

ment technologies to treat locking phenomena. In the case of volumetric locking, Hansbo
and Larson [38,39], Wihler [40] and Di Pietro and Nicaise [41] proved that their DG
methods are locking-free for linear elasticity. Ten Eyck and Lew [42] investigated the
latter problem for nonlinear elasticity as well. Concerning shear locking, the problem of
Timoshenko beams was analyzed and discussed in the work of Celiker et al. [43]. Wulf-
inghoff et al. [44] introduced a low-order hybrid DG method for large deformations and
proved that it is free of shear and volumetric locking. In continuous Galerkin (CG) formu-
lations, Reese et al. [45] introduced a new 2D low-order element with reduced integration
and hourglass stabilization (Q1SP) for nonlinear elasticity (see also [46–48]). The latter
element performs very well and is free of both, shear and volumetric locking. Later, Reese
et al. [49] found an equivalence between the aforementioned element formulation (Q1SP)
and the HDG method of Wulfinghoff et al. [44]. As a result, the penalty scalar parameter
is defined as a matrix and can be determined analytically.
In the present work, different reduced integration techniques are investigated regarding

their potential to reduce volumetric and shear locking phenomena for the case of linear
elasticity. In addition to that, a locking free formulation of Reese (see [48,50]) that has
originally been proposed for the continuous FE method, is combined for the first time
with the discontinuous setting.
The structure of the paper is as follows. First, the formulation of the DGmethod includ-

ing its strong and weak form and its discretization is explained. Further emphasis is put
on the integration schemes and the motivation to apply them in this work. “Examples”
gives different 2D and 3D examples for cases, in which shear and volumetric locking phe-
nomena are highly pronounced. Finally, the application of DG elements with Q1/Q1SP
elements and their performance in locking problems are discussed.
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Fig. 1 Discontinuities within the body

DG formulations
The various DG methods differ in the terms included in the discrete weak form [19].
Accordingly, also different properties are found. Here, the unsymmetric incomplete inte-
rior penalty Galerkin method (IIPG) is used as basis and discussed later. In the following,
the strong form of the linear momentum balance will be introduced, followed by the
weak form. Next, the discretization method and the numerical integration schemes will
be explained and discussed.

Strong form

A body B with boundary ∂B is considered, as illustrated in Fig. 1. The prescribed dis-
placement up and the prescribed traction tp act on the Dirichlet boundary ∂Bu and the
Neumann boundary ∂Bt , respectively. Additionally, the conditions ∂Bu

⋃
∂Bt = ∂B and

∂Bu
⋂

∂Bt = 0 hold.
Thus, the strong form of the quasi-static linear momentum balance and the related

boundary conditions are given by

div(σ) + f = 0, (1)

u = up on ∂Bu,

σ n = tp on ∂Bt , (2)

where σ is the Cauchy stress tensor and f represents the body force vector. Since the
material is linear elastic, Hooke’s law

σ = C : ε, (3)

is applied, where C represents the fourth order elasticity tensor. The quantity ε is the
infinitesimal strain tensor being defined by

ε(x) = sym(grad(u)). (4)

In contrast to continuous Galerkin approaches, DG methods allow discontinuities on
the internal boundaries Γ as depicted in Fig. 1.
In this simple example (Fig. 1), these discontinuities divide the body B into several

subdomains. On each side of Γ , the body is denoted by − and + with respect to the
direction of the normal vector n which points from − to +. There may be discontinuities
in the displacement field u, the strain tensor ε and the stress tensor σ as well. In general,
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the body B can contain a finite number of discontinuities Γ that divide the body B into
large number of subdomains. Please note that the surface Γ is not related to any physical
interface. Accordingly, we define jump [[·]] and average {·} values as shown below:

[[u]] = (u+|Γ − u−|Γ ),
{u} = 1

2
(u+|Γ + u−|Γ ).

(5)

Finally, it is noted that the continuous solution satisfies the following equations:

[[u]] = 0 on Γ ,

[[σ]] n = 0 on Γ .
(6)

Weak form

Having the equilibrium equation and boundary conditions (BCs) at hand, one derives the
weak form by firstmultiplying the strong formwith a test function δu and then integrating
over the considered domain. In the spirit of Nitsche’s method [3], a penalty term is added
to assure stability of the solution (third term on the left hand side of Eq. 7). One should
bear in mind that the addition of this term does not alter the continuous solution since
according to Eq. 6, the jump in the displacement field vanishes. As a result, one obtains:

∫

B
σ : δε dV +

∫

Γ

[[δu]] · {σ} n dΓ + β

∫

Γ

[[u]] · {δσ} n dΓ +
∫

Γ

θ [[δu]] · [[u]] dΓ

=
∫

B
f · δu dV +

∫

∂Bt

tp · δu dA, (7)

where θ = ηE/h [N/m3] is a penalty parameter which depends on the Young’s mod-
ulus (E), the mesh size of the structure (h) and a sufficiently large positive number (η)
([36,38,51]). The scalar value β can vary between 0, −1 and 1, leading to different inte-
rior penalty Galerkin methods, namely incomplete (IIPG), non-symmetric (NIPG) and
symmetric (SIPG), respectively. A detailed overview of the DG methods can be found
in [19]. In the present work, the incomplete interior penalty Galerkin method is applied
which is non-symmetric due to the missing dual consistency term. On the other hand,
the implementation of the method is less elaborate. In addition, due to the consistency
error resulting from the omitted term, super-penalization of thismethod can be applied to
obtain optimal error estimates [19]. The super-penalty technique can lead DG to perform
like conforming methods. Nonetheless, in this work, the super-penalty approach com-
pensates for the reduced integration schemes and delivers a locking-free behavior unlike
continuous Galerkin formulations.

Discretization

After transferring the strong form into the weak form, the next step is to discretize the
body B into finite elements. Using standard isoparametric elements Be, the discretization
is given by

B =
⋃

e
Be. (8)



Bayat et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:10 Page 5 of 16

Theposition vector xh, the displacement fielduh and the test function δuh are interpolated
within each element. In the 2D settings, quadrilateral elements are applied using bilinear
shape functions, while in 3D case, hexahedral elements with trilinear shape functions are
used:

xh(ξ , η) =
nen∑

I=1
NI (ξ , η)xI ,

uh(ξ , η) =
nen∑

I=1
NI (ξ , η)uI ,

δuh(ξ , η) =
nen∑

I=1
NI (ξ , η)δuI ,

(9)

where (ξ , η) are the coordinates in the reference element and nen is the element node
number. The latter can vary between 4 and 8 for the 2D and 3D elements, respectively .
As the degrees of freedom of the individual elements in DG discretization are decoupled,
each uI is related only to one element at a time. Accordingly, the jump and the average of
the displacement must be discretized as follows:

[[uh]]|Γe =
nen+
∑

I=1
NI |Γe (ξ , η)uI

+ −
nen−
∑

I=1
NI |Γe (ξ , η)uI

−,

{uh}|Γe = 1
2

[ nen+
∑

I=1
NI |Γe (ξ , η)uI

+ +
nen−
∑

I=1
NI |Γe (ξ , η)uI

−
]

,

(10)

where n+
en (n−

en) represents the number of element nodes on the “positive” (“negative”) side
of the interface Γe. The jump and average of the virtual displacement δuh is derived in the
same manner. The strain tensor εh is computed according to Eq. 4, using the derivatives
of the shape functions. In this variant of the DG method, we also need to introduce the
average stress {σh} along Γ :

{σh} := 1
2
[σh+|Γe − σh−|Γe ]. (11)

For the sake of simplicity, we avoid writing the approximation superscript “h” from here
onward. Recalling Hooke’s law (Eq. 3) and introducing the B-operator to interpolate the
linearized strain tensor ε, we can rewrite the average Cauchy stress as:

{σ}|Γe = 1
2

⎡

⎣
n+
en∑

I=1
C+BI |Γe u+

I +
n−
en∑

I=1
C−BI |Γe u−

I

⎤

⎦ (12)

Introducing the same quantities in matrix notation for the formation of the residual
vectors and stiffness matrices, one rewrites the jump and average values as follows:
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[[u]] =
[
N+ − N−

]
[
u+
d

u−
d

]

{u} = 1
2

[
N+ N−

]
[
u+
d

u−
d

]

{σ} = 1
2

[
C+B+ C−B−

]
[
u+
d

u−
d

]

(13)

where the subscript d refers to terms evaluated on the discontinuity Γe. Substituting the
average and jump terms in (7), one can obtain the discontinuous part of the discretized
weak formulation at element level:

[
δu+T

d δu−T
d

] ∫

Γe

1
2

(
N+T

−N−T

)

n
[
C+B+ C−B−

]
dΓe

[
u+
d

u−
d

]

+
[
δu+T

d δu−T
d

] ∫

Γe
θ

(
N+T

−N−T

)
[
N+ − N−

]
dΓe

[
u+
d

u−
d

] (14)

Deriving this relation with respect to δu, once can get the residual Rdisc
e for the discon-

tinuous part:

Rdisc
e =

∫

Γe

1
2

(
N+T

−N−T

)

n
[
C+B+ C−B−

]
dΓe

[
u+
d

u−
d

]

+
∫

Γe
θ

(
N+T

−N−T

)
[
N+ − N−

]
dΓe

[
u+
d

u−
d

]

. (15)

A successive derivation with respect to u yields the dG element stiffness matrix K disc
e ,

which is given by the sum of two integrals K disc
e1 and K disc

e2 , where:

K disc
e1 =

∫

Γe

1
2

(
N+T

−N−T

)

n
[
C+B+ C−B−

]
dΓe

K disc
e2 =

∫

Γe
θ

(
N+T

−N−T

)
[
N+ − N−

]
dΓe.

(16)

Numerical integration

We divide the left hand side of Eq. 7 into two parts. The first one being related to the area
integral is evaluated using integration points in the interior of the elements (first integral).
The second part being associated to the boundary integrals is evaluated at integration
points on the element edges (second and forth integrals). The latter one consists of two
integrals, namely the DG and the penalty terms. Please note that the third term of Eq. 7 is
not considered in this work since we are applying the IIPG method.
For the evaluation of the first part, Q1 and Q1SP [46,48] elements are used. In the 2D

setting, the Q1 element is a standard four-node quadrilateral (Q) element with four inte-
gration points and shape functions of polynomial order one (1), whereas theQ1SP element
possesses only one integration point in the element center combined with a special hour-
glass stabilization (S) technique which applies the equivalent parallelogram (P) concept
and is thus free of volumetric and shear locking (see [50] for more information). In the 3D
case, the Q1 and Q1SP elements are hexahedrals with trilinear shape functions.While Q1
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Fig. 2 DG interface with full (left), reduced (middle) and mixed (right) integration schemes for 2D elements

elements possess eight integration points, Q1SP benefits from reduced integration (only
one in the middle) and an hourglass stabilization approach as well.
The evaluation of the second part is performed by applying theDGdiscretization for the

DG and penalty terms. The standard Gaussian quadrature implies full integration (two
Gauss points in 2D and 4 Gauss points in 3D) on the interior element boundaries for both
DG and penalty terms (see Fig. 2 (left)). From now on, we illustrate the numerical schemes
only for the 2D case. In analogy, the same concepts are applied in the 3D setting.
However, having two integration points on the interior element boundaries for both

DG and penalty terms results in a high total number of quadrature points. This implies
that an element surrounded by four other elements will have four quadrature points in
the area integral and eight for each of the DG and penalty terms on the entire element
boundaries. It is well-known that this may lead to an artificial stiffening of the element
behavior known as “locking phenomenon”.
To remedy this problem (locking), the first concept (mixed integration) is to evaluate

the DG term only in the middle of the discontinuity (reduced integration) but the penalty
term still on two Gauss points (full integration). The latter results in a penalization of the
relative rotation between two adjacent elements. Mixed integration is illustrated in Fig. 2
(right).
In the second approach, only one integration point in the middle of the discontinuity

is introduced for both, DG and penalty terms of the Eq. 7 (see Fig. 2 (middle)). This will
reduce not only the number of the constraints, but also the calculation costs.

Examples
In this section, we investigate five well-known examples, namely Cook’s membrane, the
bending of a thin beam/a thin plate (3D) and a block (2D/3D) under compression, where
volumetric and shear locking can be observed for conventional Q1 elements. The sim-
ulations are done using the finite element analysis program FEAP [52] and the mesh
generation is carried out by MATLAB® and FEAP.

Cook’s membrane

Cook’s membrane is commonly investigated to explore the element behavior in a mixed
situation where both bending and near-incompressibility occur [48]. Figure 3 depicts
the geometry and the boundary conditions of the problem. The body is fixed on the
left hand side. A vertical load is applied on the right hand side. Poisson’s ratio is set to
ν = 0.4999, modeling near-incompressibility. Additionally, Young’s modulus is given by
E = 240.565 MPa.
The aim of this example is to investigate the locking behavior and tomake a comparison

between the standard continuous finite element and DG methods. Consequently, the
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Fig. 3 Cook’s membrane, geometry, boundary conditions, loading and discretization

Fig. 4 Vertical displacement of the point P as a function of the number of elements in each direction for Q1,
Q1SP, DG and their combinations

simulations are carried out for different elements, namely the continuous Q1 and Q1SP
elements as well as the related discontinuous Galerkin counterparts. The “mixture” of DG
and the locking-free elementQ1SP is used to investigate whether there is an improvement
in the convergence with respect to element size. This convergence is checked by dividing
each side of the geometry into equal numbers of elements to make the mesh finer (see
Fig. 3 for 2 by 2 elements). The vertical displacement uP of the point P is studied for every
mesh refinement.
According to Fig. 4, the standard Q1 element exhibits severe volumetric locking. On

the other hand, application of DG with full integration does not have any influence on
its convergence. On the contrary, the Q1SP element is already close to the converged
solution with 16 elements in each direction. The use of the reduced DGmethod improves
the convergence of the Q1 element significantly being even faster than continuous Q1SP.
This improvement is pronounced particularly in case of the discontinuous version of the
Q1SP element (reduced DG + Q1SP). Besides, mixed DG in combination with the Q1
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Fig. 5 Vertical displacement of the point P as a function of the total number of degrees of freedom for Q1,
Q1SP, DG and their combinations

element shows also a very good convergence in comparison to Q1 and its discontinuous
version with full integration. However, it should be kept in mind, that for a given number
of elements, the number of degrees of freedom is significantly larger than that of the
continuous discretization.
In spite of this fact, the discontinuous variants still converge better in comparison

to the continuous elements with respect to the total number of degrees of freedom as
illustrated in Fig. 5. The figure shows that the combination of DG and Q1SP results
in the best convergence. Moreover, Q1SP shows a slightly better convergence than the
discontinuous Q1 element with reduced integration. The worst convergence belongs to
the discontinuous Q1 with fully integrated DG due to the increase of degrees of freedom.
In order to find the appropriate penalty value θ = ηE/h [N/m3], one needs to choose

the η value sufficiently large to ensure a sufficient stabilization [19]. However, a too large θ

value leads to an over-penalization of the displacement jumps. This causes locking again
since the DGmethod will behave like the continuous Galerkinmethod. It should be noted
that the high value of η = 8×103 in the combination of reducedDGand theQ1SP element
is due to the fact that both aforementioned elements have reduced integration points and
thus need a higher penalization value to get stabilized. Nevertheless, the determination of
the penalty parameter is still an elaborate task.

Thin beam under shear loading

In this example, a thin beam [47] as depicted in Fig. 6 is loaded by a vertical upward force
on its right upper corner. Young’s modulus is set to E = 16800MPa and Poisson’s ratio is
chosen tobe ν = 0.4.Thebeam isfixed at the left hand side and the vertical displacementof
the pointA,uA, is investigated in order to evaluate themesh convergence behavior. To this
end, the following differentmesh resolutions are considered: 1 ∗ 10, 2 ∗ 20, 4 ∗ 40, 8 ∗ 80,
and 16 ∗ 160.
As can be seen in Fig. 7, the Q1 element suffers from shear locking as expected due

to the high ratio of the element lengths. Similar to Cook’s membrane, the Q1 element
with full integration DG has the slowest convergence. On the contrary, Q1SP and its dis-
continuous variation with mixed integration show the best convergence behavior, giving
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Fig. 6 Thin beam, geometry, boundary conditions, loading and discretization

Fig. 7 Vertical displacement of the point P as a function of the total number of degrees of freedom for Q1,
Q1SP, DG and their combinations

very good results already with a very small number of degrees of freedom. in this case
the discontinuous Q1SP with reduced DG is still very good, however not the best. Unlike
Cook’smembrane, the discontinuousQ1 elementwith reducedDGoutperforms the latter
combination.
The choice of the positive constant η plays a crucial role in the convergence rate. Having

chosen the best value, one can reach converged solution irrespective of the mesh size.

2D block under compression

The third example examines the behavior of the DG method in compression problems.
Consequently, a block under compression from [45] is considered. Figure 8 illustrates
the geometry, boundary conditions and the loading. It is fixed in vertical direction at the
bottom and in the horizontal direction on the top. a distributed load of p0 = 0.02MPa acts
on the top as depicted in Fig. 8. The material parameters are the same as those of Cook’s
membrane. Thus near-incompressible material is considered in this example as well. The
vertical displacement of the point A, uA is investigated. Due to the symmetry condition,
half of the block is divided into 2, 4, 8, 16,... elements on each of its sides simultaneously.
In this example (Fig. 9), the same as the previous examples, the discontinuous Q1 with

DG full integration and the continuous Q1 are the slowest and second slowest converg-
ing elements, respectively. Continuous Q1SP element converges very fast. However, the
combination of Q1SP with DG elements (both reduced and mixed) results in the fastest
convergence and improves the performance of Q1SP. On the other hand, the mixed
and reduced discontinuous Q1 elements also show very good convergence. In this com-
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Fig. 8 Thin beam, geometry, boundary conditions, loading and discretization

Fig. 9 Vertical displacement of the point A as a function of the total number of degrees of freedom for Q1,
Q1SP, DG and their combinations

pression example the constant η must be set to a high value to guarantee a converged
solution.

3D block under compression

The extension of the 2D block to the 3D setting is investigated here. The material param-
eters E and ν are set to 4.82926 MPa and 0.499 (nearly incompressible), respectively. The
horizontal degrees of freedom are constrained at the top whereas only the vertical degrees
of freedom are fixed at the bottom of the block. In addition, a compressive distributed
load of 0.003 MPa is applied on the middle surface of the upper face of the block. The
discretization of the block is established similar to the 2D block by considering the quarter
symmetry and simultaneous division of block in all three directions. Figure 10 illustrates
the geometry, boundary conditions, discretization and the loading in this example. Even-
tually, we investigate the vertical displacement of the point P.
As it is depicted in Fig. 11, DG elements in combination with Q1 elements reduce the

locking effects provided that reduced integration on the boundary terms is applied. Oth-
erwise, severe locking is observed in presence of full integration. Applying discontinuous
elements in 2D cases resulted already in a considerable increase in the number of degrees
of freedom. This problem is highly pronounced in 3D examples. This is illustrated in
Fig. 11, where a comparison between the convergence rate once with respect to the num-
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Fig. 10 3D block, geometry, boundary conditions, loading and discretization

Fig. 11 Normalized vertical displacement of the point P in the 3D block as a function of the number of
elements in each direction (left) and total degrees of freedom (right) for Q1, Q1SP, DG and their combinations
with η = 107

ber of elements (left) and once with respect to the number of degrees of freedom (right)
is made.

3D thin plate

To investigate shear locking in the 3D setting, a thin plate is considered in this section.
Young’smodulus andPoisson’s ratio are set to 250MPa and 0.3, respectively. A distributed
load acts on the upper surface of the plate while it is fixed on its surrounding sides. The
number of the elements in thickness direction is set to 4, whereas the number of elements
in other directions are doubled in each mesh refinement. The geometry, boundary condi-
tions, discretization and loading are depicted in Fig. 12. The vertical displacement of the
point P is investigated.
Due to the thin geometry of the structure and the loading, shear locking is observed in the

continuous Q1 and its discontinuous counterpart with full integration (see Fig. 13). The
best convergence in this example belongs to the Q1SP element, however. It is noticeable
that, in analogy to the previous example, application of DG in 3D settings brings about a
huge increase in the number of degrees of freedom, which is computationally inefficient.
Nonetheless, discontinuous Q1 elements with reduced integration on interfaces perform
still considerably better than the continuous Q1 elements in terms of total number of
degrees of freedom.
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Fig. 12 Thin plate, geometry, boundary conditions, loading and discretization

Fig. 13 Normalized vertical displacement of the point P in the thin plate as a function of the number of
elements in each planar direction (left) and the total number of the degrees of freedom (right) for Q1, Q1SP,
DG and their combinations with η = 107

Conclusions
A formulation of the discontinuous Galerkin method (IIPG) was introduced and later
applied in five different 2D and 3D examples with a semi-analytical penalty parameter
θ = ηE/h [N/m3]. This paper aimed at the investigation and comparison of the locking
behavior of various continuous and discontinuous element types in both, volumetric
(near incompressibility) and shear locking. Cook’s membrane, a thin beam/plate bending,
a 2D/3D block under compression were studied with the use of different elements, namely
Q1, Q1SP, DG and their combinations. Discontinuous Galerkin elements neither showed
significant volumetric nor shear locking. In all cases, the convergence of the discontinuous
version of Q1 with either mixed or reduced integration improved significantly. However
full integration of DG with Q1 element showed extreme locking. Eventually, the already
satisfying performance of the continuous Q1SP could be improved by application of its
discontinuous version.
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