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Abstract

The non-invasive global–local coupling algorithm is revisited and shown to realize a
simple implementation of the optimized non-overlapping Schwarz domain
decomposition method. This connection is used to propose and compare several
acceleration techniques, and to extend the approach to non conforming meshes.
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Introduction
The non-invasive local–global coupling technique proposed by Allix [1] is an iterative
method which aims at making accurate the well known submodeling technique [2–4].
It is strongly related to many reanalysis techniques [5–7] and domain decomposition
methods [8].
The aim of this technique is to evaluate the effect of local modifications inside a compu-

tationalmodel (geometry,material and load)without requiringheavy developments.More
precisely the objective is to use an industrial model with a given commercial software and
to simulate the presence of local alterations by iteratively spawning computations with
only extra traction loads inside the model. Moreover, the alterations can be computed on
any chosen software including dedicated research codes.
This philosophy was successfully applied in many different contexts like: the introduc-

tionof local plasticity andgeometrical refinements [1], the computationof thepropagation
of cracks in a soundmodel [9], the evaluation of stochastic effects with deterministic com-
putations [10], the taking into account of the exact geometry of connectors in an assembly
of plates [11]. In [12] the method was used in order to implement a nonlinear domain
decompositionmethod [13–16] in a non-invasivemannerwithCode_aster. The extension
of the approach to explicit dynamics was proposed in [17], improved in [18] and applied to
the prediction of delamination under impact in [19]. Alternative non-invasive strategies
can be derived from the extended finite element method [20,21].
After a description of the method (“Derivation of the non-invasive algorithm” section),

this paper provides several contributions. First the non-invasive coupling algorithm is
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proved to realize a simple implementation of the optimized non-overlapping Schwarz
domain decomposition method (“Connexion with alternate non-overlapping Schwarz
method” section). Several accelerations techniques are proposed (“Analysis and acceler-
ation of the global/local algorithm” section), some are classical but the linear and non-
linear conjugate gradient is new in this framework. The algorithms are described in a
very programmer-friendly manner. Last, an overlapping version of the method is pro-
posed (“Overlapping version” section) which can be used to handle fully non-conforming
meshes.

Derivation of the non-invasive algorithm
The algorithm we study is very general and applies to the study of many PDEs; in order to
fix the ideas, we consider problems of nonlinear quasi-static structure mechanics under
the small strain hypothesis. We note u the displacement field, ε the symmetric part of the
gradient, σ the Cauchy stress tensor. The domain � is submitted to given body force f ,
Dirichlet condition ud on the part ∂d� of the boundary and Neumann condition g on the
complement part ∂n�. In order to manage viscous materials, the study is conducted over
a time interval T = [0, T ], and the following equations are meant to be satisfied at any
time t ∈ T , which we omit to write except when necessary.
LetV (�) = {

v ∈ H1(�), v = ud on ∂d�
}
be the affine space of admissible displacement

fields and V 0(�) the associated vector space. The conservation of momentum can be
written as:

∫

�

σ (u) : ε(v) dx =
∫

�

f · v dx +
∫

∂n�

g · v dS, ∀v ∈ V 0(�) (1)

The notation σ (u) stands for local or non linear constitutive laws defined under the
following functional expression:

σ (x, t) = B(ε(u(x, τ )), τ < t), x ∈ �, t ∈ T (2)

This modeling of the mechanical behavior is typically suited for elastoviscoplastic mate-
rials. For most models an alternative description by internal variables summarizing the
effect of the past history can be found.
The mechanical problem above takes the following classical form:

Find u ∈ V (�) / a(u, v) = l(v), ∀v ∈ V 0(�) (3)

where l is a continuous linear form, and a is a continuous coercive form, linear in the
second variable, note that amay be nonlinear in the first variable.
In the following we handle several space subdomains and models, when any quantity is

specifically attached to one model, a superscript mentions it. The domains are illustrated
on Fig. 1.
The Reference problem (superscript R) is set on the domain �R which is the assembly

of two non-overlapping subdomains: the zone of interest where a Fine model is required
for a reliable simulation (superscript F ), and a Complement zone (superscript C ) where
a simpler model is sufficient (and which in general covers most of the structure). The
interface is � = ∂�C ∩ ∂�F , it is thus immersed in �R. Note that using several zones of
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Fig. 1 Illustration of the models (with meshes). In practice the Reference and Complement models are not
created. The zone of interest has a Fine and an Auxiliary representation

interest presents no difficulty as long as they do not overlap. The Reference problem is
defined as the assembly of the Fine and Complement subproblems; it is never formed in
practice:

Reference problem
{
Find u ∈ V (�R), such that ∀v ∈ V 0(�R),

aR(u, v) := aC (u, v) + aF (u, v) = lC (v) + lF (v) =: lR(v)
(4)

Note that lF is associatedwith the restriction of body force to�F and ofNeumann traction
to ∂n�R ∩ ∂�F .
We assume that we have another representation of the zone of interest, namedAuxiliary

representation (superscript A) which shares the same characteristics as the Complement
zone, and which is thus coarser than the Fine representation. Typically if �F was a zone
wherematerial coefficients had strong variations, the Fine representationwould follow the
exact distribution whereas the Auxiliary representation could use a homogenized behav-
ior. An application is the case where the Fine model is stochastic whereas the Auxiliary
model is deterministic [10]. The load could also be simplified: lA is associated with body
force applied to�A and traction applied to ∂�A\�.We insert theAuxiliary representation
of the zone of interest in the Reference problem:

Find u ∈ V (�R), such that ∀v ∈ V 0(�R),

aC (u, v) + aF (u, v) = lC (v) + lF (v)

aC (u, v) + aA(u, v)︸ ︷︷ ︸
aG(u,v)

= lC (v) + lA(v)︸ ︷︷ ︸
lG(v)

+
(
aA(u, v) − lA(v)

)
−

(
aF (u, v) − lF (v)

) (5)

The Global problem, (superscript G), is the assembly of the Complement zone with the
Auxiliary (coarse) representation of the zone of interest, this problem is in practice assem-
bled and dealt with by commercial software.
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From the previous equation, we could derive the following stationary iteration:

aG(un+1, v) = lG(v) +
(
aA(un, v) − lA(v)

)
−

(
aF (un, v) − lF (v)

)
(6)

which would correspond to a fixed point of the Reference problem preconditioned by
the coarse Global system. Not only convergence would be slow but also the right-hand-
side terms would not be easy to compute in practice. Moreover, this iteration needs the
Auxiliary domain �A to be coincident with the Fine domain �F which is a limitation we
want to get rid of. In the following, we only assume that the interface is on the boundary
of the Auxiliary domain � ⊂ ∂�A, so that � is on the boundary of all subdomains.
Note that no condition on � is imposed to the fields belonging to V (�X ) and V 0(�X )
(X ∈ {A, F, C}), the Dirichlet conditions on the subdomains are imposed with Lagrange
multipliers. We note V� the trace space of displacements on � and V ∗

� its dual space
of interface tractions, 〈λ, v〉� is the associated duality bracket with λ ∈ V ∗

� and v ∈
V� .
We thus choose to associate the right hand side of (5) with the evaluation of local

problems. Starting from p0 = 0 (the mathematical space for pn is discussed later), the
basic global/local iteration is then the following:

Global

problem

⎧
⎨

⎩

Find uGn ∈ V (�G), such that ∀v ∈ V 0(�G),

aG
(
uGn , v

)
= lG(v) + 〈pn, v〉

(7a)

Fine

problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find
(
uFn , λ

F
n

)
∈ V (�F )×V ∗

� , s.t. ∀(v,μ) ∈ V 0(�F )×V ∗
� ,

⎧
⎪⎨

⎪⎩

aF
(
uFn , v

)
= lF (v) + 〈λFn , v〉�

〈
μ, uFn − uGn

〉

�
= 0

(7b)

Auxiliary

problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find
(
uAn , λ

A
n

)
∈ V (�A)×V ∗

� , s.t. ∀(v,μ) ∈ V 0(�A)×V ∗
� ,

⎧
⎨

⎩

aA
(
uAn , v

)
= lA(v) + 〈λAn , v〉�

〈μ, uAn − uGn 〉� = 0

(7c)

Update

⎧
⎨

⎩

〈pn+1, v〉 =
(
aA(uAn , vA) − lA(vA)

)
−

(
aF(uFn , vF ) − lF(vF )

)

with vA|� = vF|� = v
(7d)

In words, the Global problem is the coarse problem with extra load p, the Fine and Auxil-
iary systems are resolutions on the domain of interest with imposed Dirichlet conditions
on �. We chose a Lagrangian formulation for these problems in order to make appear the
reaction forces λF and λA. The update is simply the equivalent of (6) with fields issuing
from the local solves instead of the global one.

Remark 1 Of course, the Lagrange multipliers are equal to the normal stress:

λX = σX · nX (8)

where X ∈ {A, F} and nX is the outward normal vector. 	


We have the following properties:
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• Assuming the fine and auxiliary problems were solved exactly, we have:

pn+1 =
(
λAn − λFn

)
∈ V ∗

� (9)

the corrective load p is then an immersed surface traction. In the following, we
always assume the exactness of the computations; note that using inexact solvers
was investigated in [22] where the method is identified with a localized multigrid
iteration.

• Because the Auxiliary problem corresponds to the restriction of the Global problem
on the zone of interest with global displacement imposed, we directly have:

uAn = uGn|�A (10)

The introduction of the Auxiliary problem is thus not mandatory, it is just a
workaround in case of software unable to compute the reaction in an immersed
surface. Of course, the Auxiliary problem can be solved in parallel with the Fine
problem.

• We can also define the reaction from the Complement zone for a given uGn :

〈λCn , v〉� = aC (uGn , v) − lC (v), ∀v ∈ V (�C ) (11)

Then we see that:

λCn + λAn = pn (12)

The surface traction pn generates a discontinuity in the normal stress of the Global
problem.

• If we replace the auxiliary reaction by the complement one, we have:

pn+1 = pn + rn with rn+1 = −
(
λFn + λCn

)
(13)

in words, the correction brought to pn+1 corresponds to the lack of balance between
the Complement zone and the Fine representation of the zone of interest. This lack
of balance is the residual r of the algorithm. The algorithm converges when the two
representations are in equilibrium (r = 0, in which case the extra load p shall not
evolve anymore).

• The algorithm makes no use of domain integrals to communicate between sub-
domains; only interface data (on �) are exchanged, namely the displacement uG

and the reactions λF and λA (or λC ). As long as the interface � is well repre-
sented in all models, it is not necessary to use the exact Fine domain �F in the
Auxiliary problem, any coarser representation is possible (�A). Typically micro-
perforations or micro cracks need not be represented in the Auxiliary problem. Of
course modifying the representation of the zone of interest may have consequences
on the convergence of the algorithm (but not on its limit which is the reference
solution).
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Connexion with alternate non-overlapping Schwarz method
The question of linking the non-invasive global–local coupling method to the many vari-
ants of domain decomposition and associated algorithms, like chimera, was studied in
other publications like [8]. Here we propose to connect the method with the iterations
of a non-overlapping optimized Schwarz method. The theoretical framework of Schwarz
method will allow us natural extensions to the method, in particular the use of overlaps
to treat mesh incompatibilities.
We consider two non-overlapping subdomains, �C and �F , connected by the interface

�. The decomposed problem to solve can be written as:

Fine

equilibrium

{
(uF , λF ) ∈ V (�F ) × V ∗

� , s.t. ∀v ∈ V 0(�F ),

aF (uF , v) = lF (v) + 〈λF , v〉�
(14a)

Complement

equilibrium

{
(uC, λC ) ∈ V (�C ) × V ∗

� , s.t. ∀v ∈ V 0(�C ),

aC (uC, v) = lC (v) + 〈λC , v〉�
(14b)

Interface

conditions

{ 〈λF + λC , v〉� = 0, ∀v ∈ V�

〈μ, uF − uC〉� = 0, ∀μ ∈ V ∗
�

(14c)

In words, subdomains must be in mechanical equilibrium while displacements shall be
equal on the interface and force fluxes shall be balanced. The optimized Schwarz method
consists in using Robin conditions at the interface. The Robin conditions are materialized
by operators called interface impedances (or interface stiffnesses):QC andQF from V� to
V ∗

� . The interface conditions are rewritten as:

(λF + λC ) − QC (uF ) + QC (uC ) = 0

(λF + λC ) + QF (uF ) − QF (uC ) = 0
(15)

where we need in particular (QC + QF ) to be injective for the equivalence with initial
conditions to hold. In generalQC andQF are chosen to be such that each associated form
V 2

� � (u, v) �→ 〈QX (u), v〉� is bilinear symmetric continuous coercive.
The new conditions can be combined with the equilibrium:

aF (uF , v) + 〈QF (uF ), v〉� = lF (v) + 〈QF (uC ) − λC , v〉� , ∀v ∈ V (�F )

aC (uC, v) + 〈QC (uC ), v〉� = lC (v) + 〈QC (uF ) − λF , v〉� , ∀v ∈ V (�C )
(16)

Hence the alternate optimized Schwarz stationary iterations (λF0 = 0, uF0 = 0):

Find uCn+ 1
2

∈ V (�C ) s.t. ∀v ∈ V 0(�C ),

aC
(
uCn+ 1

2
, v

)
+

〈
QC

(
uCn+ 1

2

)
, v

〉

�
= lC (v) +

〈
QC

(
uFn

)
− λFn , v

〉

�

Compute λCn+ 1
2

∈ V ∗
� s.t. ∀v ∈ V� , aC

(
uCn+ 1

2
, v

)
= lC (v) +

〈
λCn+ 1

2
, v

〉

�

Find uFn+1 ∈ V (�F ) s.t. ∀v ∈ V 0(�F ),
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aF
(
uFn+1, v

)
+

〈
QF

(
uFn+1

)
, v

〉

�
= lC (v) +

〈
QF

(
uCn+ 1

2

)
− λCn+ 1

2
, v

〉

�

Compute λFn+1 ∈ V ∗
� s.t. ∀v ∈ V� , aF

(
uFn+1, v

)
= lF (v) +

〈
λFn+1, v

〉

�
(17)

It is well known that the optimal value for one subdomain’s impedance is the Dirichlet-
to-Neumann operator of the other subdomain which we note SX . Typically for �C , we
have:

QC
opt = SF : V� � u� �→ SF (u�) = λF ∈ V ∗

� , where

(uF , λF ) ∈ V (�F ) × V ∗
� are such that ∀(v,μ) ∈ V 0(�F ) × V ∗

� ,

aF (uF , v) = lF (v) + 〈λF , v〉� and 〈μ, uF − u�〉� = 0

(18)

Note that for linear problems, SX is an affine operator (and not just a linear operator)
since it also takes into account the effect of the load. The existence of this operator
is conditioned to the well-posedness of the Dirichlet problem over subdomains. There
are many contexts where this well-posedness can be proved, at least locally, see [23]
for details. The global existence of the operator can be proved in the case of coercive
continuous monotone operators; see [24,25] for an analysis at the level of the variational
formulation and [26] for the analysis of the finite element approximation. Mechanically
this case is associated with positive hardening behaviors and certain contact laws, in
small strains [27,28]. Moreover, the Dirichlet-to-Neumann operator inherits properties
from the initial problem (typically monotonicity, coercivity and continuity; see [29] and
associated bibliography).
The global–local algorithm corresponds to the choice QC = SA and formally QF = ∞

(theDirichlet conditionbeing seen as the limit case of an infinite interface impedance).The
choiceQC = SA is extremely strong becausewe can expectSA to be a good approximation
of SF , not only in term of stiffness (aA vs aF ) but also in term of load (lA vs lF ) which
corresponds to providing a good initialization to the algorithm.
The framework of Schwarz method enables us to recover the following features:

• Krylov acceleration: replacing stationary iterations by Krylov solvers is classical in
Schwarz methods [30]. The Dirichlet condition QF = ∞ preserves some symmetry
so thatwe canderive a conjugate gradient algorithm, see “Conjugate gradient” section.

• Mixed approach: the condition QF = ∞ is a poor approximation of the optimal
choice. In [31] a two-scale approximation of SC was proposed for the global–local
coupling.

• Parallel processing: the global–local method corresponds to the alternate version of
the optimized Schwarzmethod.Theparallel version could be tried in thenon-invasive
context. Note that this would only make sense in the presence of multiple Fine zones
with finite Fine impedance QF < ∞.

• Nonlinearity: stationary iterations can directly be transferred to nonlinear problems,
in particular the ones with monotone operators (positive hardening) [32,33]. The
local–global method was successfully applied in many nonlinear problems like plas-
ticity or fracture [1,22]

• Overlapping version: optimized Schwarz methods also exist with overlaps. In [34],
the overlap was used as a buffer zone to dampen edge effects in plate/3D coupling.
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In “Overlapping version” section, we present another application, the handling of
non-matching meshes.

Analysis and acceleration of the global/local algorithm
Notations

In order to further analyze the algorithm and be more practical, we now consider the
finite element discretization of the problem. We use the following notations: f for the
generalized forces, u for the nodal displacement and λ for the nodal reactions and p for
the nodal component on the immersed surface effort.When indexing degrees of freedom,
F, A, C stand for the internal degrees of freedom whereas � stands for nodes on the
interface (whose description is identical in all models).We tried to useminimal notations,
but sometimes a quantity defined on the interface is issued from one side specifically, in
which case we make it clear by an extra superscript. In the linear(ized) case notation K is
used for the stiffness matrices.

Remark 2 We recall that the nodal reaction is not the discretization of the Lagrange
multiplier. Indeed for a boundary degree of freedom i associated with shape function φi,
we have:

λX
i =

∫

�X

(σh : ε(φi) − f · φi) dx −
∫

∂n�X

g · φi dS

=
∫

�

(σX
h · nX ) · φi dS −

∫

�X

(div(σh) + f ) · φi dx +
∫

∂n�

(
σh · nX − g

) · φi dS

(19)

where X ∈ {C,A, F}, nX is the outward normal vector and σh is the stress tensor obtained
from the finite element computation. Thus the nodal reactions λX can be computed either
by using a Lagrangian formulation for the Dirichlet condition (which is fairly common
in commercial software) or by using the formula above to post-process it from the finite
element stress (which may be complex to implement in legacy software); hence the use of
the Auxiliary model to compute reactions on the immersed interface. 	


If we assume that the Reference and the Global problems are well-posed, then Dirichlet
problems are well posed on all subdomains, at least locally near the solution.We can then
define the following nonlinear discrete Dirichlet-to-Neumann operators SX (we use the
same notation as in the continuous case) which compute the reactions λX from a given
interface displacement u� :

Fine problem (7b) :λF = SF (u� ; fF )

Auxiliary problem (7c) :λA = SA(u� ; fA)

Complement problem :λC = SC (u� ; fC )

(20)

Because of the nonlinearity, the effects of given loads appear as parameter of the method,
they will be omitted in the absence of ambiguity.
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Remark 3 In the case of linear problems, it is possible to give an explicit formula for the
Dirichlet-to-Neumann operators. As an illustration, the equilibrium of the Fine problem
can be written as:

(
K��

F K�F
KF� KFF

) (
u�

uF

)

=
(
f�F

fF

)

+
(

λF

0

)

(21)

which can be condensed as:

λF = SF (u� ; fF ) = SFu� − bF with
{
SF = K��

F − K�FK−1
FF KF�

bF = f�F − K�FK−1
FF f

F (22)

In that case, SF is an affine operator: SF is the well known Schur complement of the Fine
domain on the interface. Linearity allows to set apart the contrition of the given load, with
bF the condensed right-hand side. Note that the internal displacement in the Fine domain
was implicitly computed as:

uF = K−1
FF

(
fF − KF�u�

)
(23)

	


Because of the additivity of integral with respect to the domain, the Global operator
verifies the following decomposition SG = SC + SA and the Reference operator writes
SR = SC + SF , and we can rephrase the Global and Reference problems in a condensed
manner:

Reference problem (4), u� s.t. SR(u� ; fR) := SC (u� ; fC ) + SF (u� ; fF ) = 0

Global problem (7a), u� s.t. SG(u� ; fG) := SC (u� ; fC ) + SA(u� ; fA) = p
(24)

Note that each time one of the condensed operators is employed, the displacement
inside the subdomains is implicitly computed: for instance, uG is a by-product of (24) and
uF in a by-product of (20). To make it clearer, we will use notations SX when analyzing
the methods, whereas we will use the following functional notations when describing the
algorithms:

• [uG] = SolveGlobal(p; fG), uG is defined on the whole Global model and in particular
we have uG� = SG−1 (p; fG).

• [uF ,λF ] = SolveFine(uG ; fF ), uF is defined in the Fine model and we have λF =
SF (uG� ; fF ).

• [λA] = SolveAux(uG ; fA), which in corresponds to λA = SA(uG� ; fA). When autho-
rized by the software, it can be replaced by the post-processing of the stress (19).

The Fine andAuxiliary solves are in general gathered in one line because the computations
can be run in parallel.
In order to keep notations simple, we assume that the coarse and fine meshes are

conforming at the interface. In most cases the zone of interest is deduced from an initial



Gosselet et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:4 Page 10 of 23

coarse computation and it is defined as a subset of coarse elements. Then the interface �

lies on faces of coarse elements and it defines the boundary of the Fine domain. In that
context, even if the Fine discretization is chosen to be finer than the Global one on �, a
simpleGlobal-master–Fine-slave strategymay give satisfying results: a transfermatrixT is
computed (for instance using interpolation or Mortar techniques) such that the interface
conditions can be written as:

Tu�
C − u�

F = 0 and λC + TTλF = 0 (25)

so that themechanical work is preserved. The algorithms presented below are unchanged,
one just need to consider the Global interface as the master interface. Note that “Over-
lapping version” section presents a technique to handle non-coincident interfaces.

Stationary iterations

The global/local coupling iterations of Eq. (7) can formally be written as:

pn+1 = (SA − SF ) ◦ SG−1
(pn)

= pn − SR ◦ SG−1
(pn) (26)

One recognizes fixed point iterations. The convergence is controlled by the contraction
property of the operator I − SR ◦ SG−1 = (SA − SF ) ◦ (SA + SC )−1.

Remark 4 In the linear case, the convergence condition can be written in term of spectral
radius as:

ρ
(
(SA − SF )(SA + SC )−1

)
< 1 ⇐⇒ SF − SC

2
< SA (27)

where we use the ordering of the quadratic form associated with the (symmetric non-
negative) Schur complements. A trivial sufficient condition for the operator to be a con-
traction is thus SA � SF . Mechanically speaking this means that the Auxiliary model shall
be stiffer than the Fine one; this is usually the case when the Fine model has a refined
mesh or holes, but this might not be the case if Fine reinforcements are omitted in the
Auxiliary model (as in loaded rubbers). Moreover, we can expect the Auxiliary model to
be a good approximation of the Fine model leading to (SA � SF ) and fast convergence.

	


A classical tweak for fixed point iterations is to use relaxation. This enables to grant
contraction property or to improve the convergence rate. In that case, the iteration writes:

pn+1 = pn − ωn SR ◦ SG−1
(pn), |ω| > ε > 0 (28)

For linear problems, it is well known that convergence is ensured for 0 < ω <

2/ρ
(
SG−1SR

)
and the optimal value is ω = 2/(μmin + μmax) where the μs’ stand for

the minimal and maximal eigenvalues of SG−1SR. In [10] a technique to approximate
the optimal relaxation was proposed. Anyhow dynamic tweaking of the coefficient using
Aitken’s formula or, in the linear case, using Krylov solvers seem to be more pragmatic
choices (see below). An alternative, when the area to be reanalyzed is known a priori,
would be to choose the global model in order for the Auxiliary model to be slightly stiffer
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than the Fine one; this can be done by adding matter (filling holes), by using a homoge-
nized model with Voigt bound (in case of heterogeneity in the Fine model) and by using
a coarse mesh.
The results of the existence of sufficient and of optimal relaxations can be extended to

the case of a monotone problem. Indeed in that case, the method can be interpreted as
an operator splitting technique [35] on the condensed problem which inherits the useful
properties of the original system (in particular monotonicity and coercivity). Reader may
refer to [36] for detailed proof with weak assumptions.
In practice, it is convenient to have ω adapted at each step. A good heuristic for the

sequence (ωn) is provided by Aitken’s 
2. It was first tried in the global/local framework
in [37]. The strategy is summed-up in Algorithm 1.

Quasi-Newton’s approaches for linear Global model

The system to solve associated with the fixed point iterations (26) writes:

Find p / SR ◦ SG−1
(p) = 0 (29)

which mechanically means that we seek the surface traction to impose inside the Global
coarse model (ie the stress discontinuity) such that the Fine model with Dirichlet condi-
tions issued from the Global solve is in balance with the Complement zone.
Applying a Newton iteration to system (29) leads to the sequence:

(
DSR

) (
DSG

)−1
(pn+1 − pn) = −SR ◦ SG−1

(pn) (30)

which was investigated in nonlinear relocalization techniques [14–16,38], but which is in
general not possible in the non-invasive framework. Anyhow, in the case of a linear Global
model, it is possible to derive a quasi-Newton approach.
If the Global problem is linear then the differential of the Global problem is constant

and it is equal to the Schur complement DSG = SG . Regarding the nonlinear part, we
have:

DSR = SC + DSF = SC + SA︸ ︷︷ ︸
SG

+ DSF − SA︸ ︷︷ ︸
X

(31)
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of course X is not computable in a non-invasive manner, but a low rank approximation is
possible using quasi-Newton formulas. In particular, SR1 formula was tried with success
in [1]. In practice, line search is not applied which makes the low rank update slightly
lighter than usual, we note δuj = (uj − uj−1)|� and δ

p
j = (pj − pj−1), the increment of the

interface quantities:

DSR,0 = SG

DSR,i = DSR,i−1 + ri−1rTi−1
rTi−1δ

u
i−1

= SG + Ri�
−1
i RT

i

(32)

with, for i > 0, Ri = [r1 . . . ri] and �i = diag(rTi δui ). Sherman–Morrison formula leads
to:

DS−1
R,i = SG

−1 − SG
−1
Ri

(
�i + RT

i S
G−1

Ri
)−1

RT
i S

G−1 (33)

It makes sense to first evaluate SG−1ri then apply corrections. For efficiency reasons, we
also store the matrix Wi := SG−1Ri. The factorization of Matrix

(
�i + RT

i S
G−1Ri

)
is

reused from one iteration to another, only one row and column must be computed. The
method is recapitulated in Algorithm 2. Note that this algorithm is written in a way which
makes no use of the linearity of the Global problem, so that it will be also tested in the full
nonlinear case.

Conjugate gradient

Full linear case

This case occurs when all models are linear. Non-invasive global/local coupling can still
be of interest in order to introduce complex local heterogeneities, stochastic behaviors or
complex geometries in the Fine model.
For linear problems, it is rather classical to use Krylov accelerators on stationary itera-

tions. In our case, the problem to solve (29) is governed by the operator SRSG−1 which is
symmetric in the SG−1 inner-product. We then can derive a right-preconditioned conju-
gate gradient. The algorithm being not so standard, it is given in Algorithm 3.
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Beside the improved convergence compared to stationary iterations, using conjugate
gradient allows an unconditional convergence (without necessity for the Auxiliary model
to be sufficiently stiff).

Nonlinear case

Conjugate gradient can be extended to nonlinear cases using two ingredients:

• A line search algorithm tooptimize the length of the steps. For a given searchdirection
p, one tries to find the optimal length α in term of the minimization of some norm
of the residual. This can be done in a non-invasive manner by a sampling technique
with several lengths (αi) being tested in parallel. Classically these samples are used
to interpolate the objective function and decide the final α. Because of the cost of
the estimation of one configuration (one global solve followed by one local solve), we
prefer to use directly the best sample already computed (except if the interpolated
minimal let us expect a significantly better configuration).

• A “conjugation” technique for the new search direction pj+1 = −rj+1 +βjpj given by
a heuristic (using the notations of Algorithm 4) like:

Fletcher-Reeves: βj = rTj+1rj+1

rTj rj
Polac-Ribière: βj = rTj+1(rj+1 − rj)

rTj rj

Dai-Yuan: βj = rTj+1rj+1

pTj (rj+1 − rj)
Hestenes-Stiefel: βj = rTj+1(rj+1 − rj)

pTj (rj+1 − rj)

(34)

Moreover it is often chosen to avoid negative steps by using βj ← max(0,βj). The
readermay refer to [39] and associated bibliography formore details. In our examples,
the Polac–Ribière formula appeared to be more stable.
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Non-invasive implementation

The algorithms above are non-invasive in the sense that they can be implemented as
a script driving commercial software with classical input and output instructions. The
global/local process is represented in a flow chart on Fig. 2, where the different fields
exchanged through the interface � are highlighted. In the one hand, the Global and
Auxiliarymodels can be solved by a commercial software, the displacements and tractions
are extracted as standard outputs by the script. In the other hand, Fine models can be
solved by a research code or by commercial software. The script only needs to be able
to transfer interface fields from one numbering to the other (and to compute and apply
Matrix T in case of non-matching interface discretizations), and to apply basic algebraic
operations in case of acceleration.

Fig. 2 Flow chart of global/local process
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Fig. 3 2D test case

Table 1 Material parameters for IN100 at 800◦ from [44]

E [MPa] ν C [MPa] D R nf , Kf ns, Ks
154,000 0.28 615,000 1870 80 14, 630 17.2, 1300

Numerical illustration

The method is illustrated on an academic 2D test case modeling a high pressure turbine
blade of a plane engine (see Fig. 3)with an approximate size of 10 cm.TheReferencemodel
possesses local perforationswith adaptedmeshwhich are not present in theGlobalmodel.
Note that, the Fine model is naturally more flexible than the Auxiliary model (because of
theholes andof the refinedmesh).Themechanical behavior is either isotropic linear elastic
(Young’s modulus E and Poisson’s coefficient ν are given in Table 1) or elastoviscoplastic
of the form of [40] modeling a realistic IN100 material at hot temperature (� 800 ◦C,
parameters are reported in Table 1 using the notations of [40]).
The Fine model is granted an elastoviscoplastic behavior. We consider two configu-

rations: in the first case all models are linear elastic, in the second case all models are
elastoviscoplastic. In both cases, the structure is loaded by the body force f which models
centrifugal forces due the rotation of the blade, and the traction g on the leading edge
which represents the pressure brought by the air flux on the blade.

Linearmodels

We study the various acceleration strategies presented above in the case where all models
are linear elastic. Figure 4a presents the evolution of the Euclidean norm of the residual on
the interface. As expected conjugate gradient is faster than other acceleration techniques.
Figure 4b presents the evolution of the error measured by the Mises stress on the most
loaded element with respect to the Reference model (which should not be available in
production cases). We observe an important practical difficulty: Abaqus’ truncation of
Gauss point data makes it impossible to observe convergence beyond a relative precision
of 10−6. This problem would appear much later on the residual which only involves nodal
computations (which can be manipulated in double precision). Note that this problem
was encountered in other studies based on Abaqus software [37] but not in studies which
used Code_Aster for example [41].
Table 2 compares the duration of the computation. In that simple case all accelerations

have close performance, but we observe that CG is faster than Aitken which is faster than
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Fig. 4 Convergence in the full linear case. a Evolution of the residual. bMises stress error wrt Reference on
the loaded element

Table 2 CPU time for various methods in the full linear
case

Method Stat. SR1 Aitken CG

CPU time 2.55 2.11 1.57 1.47

SR1 which is 25% faster than Stationary iteration. The reported CPU time values concern
the complete analysis reaching a global/local relative residual norm below 10−5. Themain
contribution to the CPU time comes from the finite element solves (proportional to the
number of iterations). The remaining difference for a identical number of iterations is
due to the complexity of the algorithm (typically SR1 and Aitken converged in the same
number of iterations but SR1 involved more complex computations).

Nonlinearmodels

In that case, all models are granted the same nonlinear elastoviscoplastic behavior. As a
consequence, plasticity may spread in the Complement zone. In that case the Fine and
Auxiliary models only differ by their topology and their mesh.
Before comparing the acceleration techniques, we specifically study the choice of

the parameters of the nonlinear conjugate gradient. Regarding the line search, the sta-
tionary iteration corresponds to α = 1 (at least at the first iteration), and it behaves
rather well (thanks to SA � SF ), so it is not absurd to take samples near 1. Of
course the size of the sampled interval is also a question of experience for a given
class of problems. In the studied case, prior experiments showed that, the optimal line-
search always belonged to the interval [.8, 1.4], we thus use either 4 sampling points
{.8, 1., 1.2, 1.4}, 9 sampling points {.8, 1., 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4} or 13 sampling
points {.8, 1., 1.1, 1.15, 1.2, 1.22, 1.24, 1.25, 1.26, 1.28, 1.3, 1.35, 1.4}.
Figure 5 presents the performance of conjugate gradient for various conjugation tech-

niques and various samplings for the line search.We observe that, in that case, the Polac–
Ribière conjugation gives best results, and testing 9 lengths seems to be significantly
superior to only testing 4, whereas using a finer sampling discretization is not mak-
ing improvements in this case. We recall that the line search is conducted in parallel so
that oversampling does not take more wallclock time, it only “wastes” machine time and
software licenses.
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Fig. 5 Study of variants of nonlinear conjugate gradient. a Performance of conjugation formulas. b Influence
of the linesearch sampling

Fig. 6 Influence of the line search sampling iteration 0 (a) and iteration 3 (b). 9 sampling points achieve best
results

Figure 6 illustrates more precisely the effects of the sampling of the line search: the
sampled values of the residual to be minimized are plotted for various lengths, for the
initial and the third iterations.We observe that when using 9 or 13 samples, there is always
a sample close to the interpolated optimal. One unfortunate effect of nonlinearity is that
the finest sampling may lead conjugate gradient to follow a suboptimal solution path: in
our case the 9-sample lead almost always to a better residual than the 14-sample. Another
regrettable effect of nonlinearity is that the search direction may lead to an increase of the
residual (see the 13-sample case after the 8th iteration on Fig. 5b); in that case safeguards
should be implemented and the algorithm should switch back to stationary iterations
(without conjugation).
We compare, in Fig. 7, the conjugate gradient (in its best configuration, that is to say

Polac–Ribière conjugation and 9 sampling points) to other acceleration techniques. We
observe that nonlinear conjugate gradient also behaves better than the other techniques.
Note that since the sampling of linesearch can be conducted in parallel, one iteration of
CG is equivalent (in CPU time) to one iteration of the very cheap Aitken’s method.

Overlapping version
In previous sections, we had assumed that the interface was described as the boundary
of elements for all models. In practice this hypothesis is not so restrictive because most
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Fig. 7 Convergence in the full nonlinear case. a Evolution of the residual. bMises stress error wrt Reference
on the most loaded element

often the zone of interest is detected after an initial computation on the coarse Global
model, and it is constituted as a set of coarse elements satisfying a certain criterion. Even
after remeshing, the boundary of the Fine description of the zone of interest matches
a set of coarse faces (edges in 2D). Then a “simple” transfer matrix T can be sufficient
to communicate between models on the interface (25). In particular, the easy choice of
T being the interpolation matrix of the coarse kinematics in the fine kinematics can be
implemented in most software. More evolved choices like mortar connections can also be
employed in certain software [12].
We propose an alternative strategywhichmakes use of the possibility to have themodels

overlap. In that case, there is no restriction on the definition of the meshes. This idea
can directly be connected to overlapping optimized Schwarz methods, yet we propose a
mechanical interpretation of it.
Note that the use of the overlap can be advantageous in the situations where edge effects

may affect the Fine model, even if meshes are conforming at the interfaces [34].

Handling of incompatible patches

The starting point is the observation that themethod can be formulated as the search for p
which is the stress discontinuity on the Global model between the Complement zone and
the Auxiliary description of the zone of interest. This discontinuity must be such that the
Complement zone is in equilibrium with the Fine description of zone of interest loaded
with Dirichlet conditions (29).
Since p is a discontinuity, in order it to be well described in the coarse finite element

model, it must be supported by the boundary of coarse elements. But there is no need for
the support of p to match the boundary of the zone of interest.
We thus propose to follow Fig. 8. The Fine subdomain �F is positioned where needed

in the zone of interest, its mesh is independent from the coarse mesh.We note �F = ∂�F

the boundary of the Fine subdomain. The Auxiliary subdomain is the largest set of coarse
elements fully contained in the zone of interest. We note �A = ∂�A the boundary of the
Auxiliary zone. The two interfaces �F and �A thus do not coincide. �C is defined as the
Complement to �A in the Global model �C = �G \ �A.
The Fine and Global models’ displacements are connected on �F ; p is applied to the

Global model on �A with the aim to reach balance between the nodal reaction from
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Fig. 8 Technique with overlap for non-conforming meshes

Complement model and the normal from the Fine model projected on �A. In the end, the
coupled solution is uF in �A and uG in �G \ �F . In the overlap, also called buffer zone
�B = �F \ �A, the Complement and the Fine model coexist.
Algorithm 5 gives the basic stationary iteration in the presence of overlap, all accelera-

tion techniques could be considered. In order to distinguish between the interfaces, the
Auxiliary and the Fine problems are written on separate lines even if they can be solved
in parallel.

The main practical difficulty of this algorithm is the computation of the Fine reaction
on �A with �F not exactly represented on the coarse grid. This computation mixes the
Fine stress σh

F and the coarse shape functions φG
i . Even if complex, this computation

is feasible in certain software. Anyhow in the nonlinear case, σhF is only known at Fine
Gauss points and the integral can only be approximated.
Note that the conceptual difficulty caused by the coexistence of two models in the

overlap is common to other coupling methods [42]. It seems wise not to introduce
strong dissimilarities between the Fine and the Global models in the buffer zone, so that
only the non-conformity of meshes lead to (hopefully only slightly) different solutions in
it.
Usually enlarging the overlap leads to improved converge rate in Schwarz methods.

This is not as clear in our method where the Fine and Global models may differ in the
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Fig. 9 Plate/3D coupling: use of overlap to avoid edge effects

buffer zone. Since a good convergence rate is already ensured by the good approximation
of the Fine model provided by the Auxiliary model, and because of the ambiguity of the
model in the overlap, we see no interest in considering large overlaps (unless it also plays
a role from a mechanical point of view, see the discussion on the decay of edge effects
below).

Illustration of the coupling with overlap

Fornow, the versionwithoverlaphasonly been implemented in the context of the coupling
between a Global heterogeneous plate model and a Fine 3Dmodel, for the study of bolted
assemblies of thin structures [43], in Code_aster.
Despite the definition of smart transfer techniques between the 3D and the platemodels

[34], it appeared that 3D edge effects were impossible to avoid completely. Figure 9 shows
the variationof thepeeling stress in theFine3Dmodel directionorthogonal to the interface
for various lifting of the plate displacement (named “Lagrangian” and “warping” in the
figure). We see that edge effects are important on the boundary of the Fine domain (�F )
but they fade quickly so that the boundary of the Auxiliary domain (�A) can be positioned
not too far inside the zone of interest. The buffer zone�B between�F and�A was granted
a width of two times the thickness, due to the exponential decay property of edge effects
in plates. Note that in that case, the overlap was useful even with matching meshes (plate
and 3D nodes were coincident on �A and �F ).
As said earlier, in the case of non-matching meshes, the difficulty for the coupling with

overlap is the computation of the fine reaction on �A written λF
j,i in Algorithm 5. In [43],

it was proposed to extract a band of Auxiliary elements connected to �A and project on
it the Fine stress (defined at the Gauss point of the Fine mesh). This was implemented in
Code_Aster using existing routines (PROJ_CHAMP() with keyword ECLA_PG).
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Fig. 10 Exploded view of the plate/3D coupling with non-matching meshes. The interior of the Auxiliary
model is not drawn in order to better see the intermediate mesh used for the stress projection

Figure 10, from [43], presents the converged solution of the simple application of an
isotropic plate in flexion where the Global model is a solid plate with unstructured mesh
with triangular elements and the 3DFinemodel bears a hole and ismeshedwith structured
hexahedral elements. For now the code for the non-conforming coupling with overlap is
just a proof of concept. During our limited number of experiments, the convergence
rate was quite comparable with the conforming case. A more extensive numerical cam-
paign should be conducted with varying position for the interfaces and different element
sizes (so that situations where the transfers behave poorly may be encountered). More-
over, the method shall also be assessed in term of discretization error in the spirit of
[41].

Conclusion
The global/local non-invasive coupling technique is a convenient way to enrich a global
coarse model, handled by a commercial software, with local features, handled by the
most adapted software. In this paper we proposed to interpret the method as an alternate
optimized non-overlapping Schwarz domain decomposition method. In this framework
the coarse representation of the zone of interest is a clever way to build an approximation
of the Dirichlet-to-Neumann operator of the Finemodel, which includes the effects of the
imposed load. Belonging to the Schwarz family of domain decomposition method allows
to benefit many theoretical results and practical shrewdness. We then derive a conjugate
gradient solver in the linear and nonlinear cases, in that later case the line search is realized
by a sampling which can be conducted in parallel in order not to penalize the wallclock
time. Finally we show that an overlapping version can also be applied which enables to
connect non-matching meshes.
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