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Abstract

An algorithm for non-intrusively coupling a commercial finite element software with a
research code implementing a hierarchical enrichment of finite element spaces is
presented. Examples of hierarchical methods supported by the algorithm are the
Generalized or eXtended FEM (GFEM), the scale-bridging GFEM with numerically
defined enrichment functions (GFEMgl), and the p-version of the FEM. The proposed
hierarchical non-intrusive algorithm (HNA) combines the vast library of classical
elements available in commercial FEM platforms with the ability of the GFEMgl to
analyze localized phenomena like cracks and spot welds, on coarse meshes. The
algorithm does not require iterations between the standard and Generalized FEM
platforms and is simple to implement. Examples showing the application of the HNA to
the coupling of Abaqus with a 3-D GFEMgl software are presented. They also
demonstrate the benefits of combining finite elements available only in a commercial
platform with a GFEM.

Keywords: Finite element method, Generalized FEM, GFEM, eXtended FEM, XFEM,
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Introduction
The finite element method (FEM) is used in the industry, research laboratories and
academia for the simulation of a broad class of problems and phenomena. Industrial appli-
cations of the method usually rely on implementations provided by commercial software
like Abaqus [1], NASTRAN [2], ANSYS [3], Radioss [4], among many others. These finite
element analysis (FEA) platforms provide vast libraries of elements and solution algo-
rithms. However, they suffer the inherent limitations of the standard FEM. An example is
the analysis of localized phenomena like propagating fractures, spot welds, and localized
material non-linearities in large structures. Highly refined meshes that need to change
in the course of a simulation are often needed for the simulation of these phenomena.
This leads to high computational costs and many times requires user intervention. New
discretization methods able to accurately and efficiently simulate these phenomena are
currently available in research software developed in academia and research laboratories.
However, their implementation in commercial software is often difficult, time-consuming
and therefore expensive. In turn, research software that implement these novel methods
and algorithms are typically limited in scope of applications. One strategy to address this
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issue is to couple commercial and research software and thus provide to the end user
simulation and modeling capabilities not available in any single software.
This paper presents an algorithm for non-intrusively coupling a commercial (or not)

finite element software, with a research code implementing a hierarchical enrichment
of finite element spaces. Examples of hierarchical methods supported by the proposed
algorithm are the Generalized or eXtended FEM (GFEM) [5–9] and the GFEM with
numerically defined enrichment functions [10,11]. The only requirement on the FEM
software is that it outputs the global FEM stiffness matrix K 0 and load vector f 0 in a
format readable by other software. The global FEM stiffness matrix K 0 and load vector
f 0 can be assembled from any finite element available in the FEM solver. This includes
structural elements like beams and shells, as well as continuum elements for 2-D and
3-D problems. The proposed hierarchical non-intrusive algorithm (HNA), like the non-
intrusive algorithm presented in [12,13], exploits the hierarchic structure of the global
matrix and vector in the GFEM: it contains the global FEM stiffness matrix K 0 and load
vector f 0 associated with the underlying FEM mesh. This is demonstrated in “Discrete
system of equations of the enriched global problem and the hierarchic non-intrusive
algorithm” section. The HNA overcomes the memory requirement issues of the static
condensation algorithm presented in [12,13] while not compromising its accuracy and
flexibility. The implementation of theHNA is also simpler than the algorithmpresented in
[12,13]. The hierarchical non-intrusive algorithm is also related to the approach to embed
arbitrary approximation spaces into classical finite element spaces recently proposed by
Schweitzer and Ziegenhagel [14]. A brief review of approaches for the implementation of
the GFEM in commercial FEA software can be found in [12].
The commercial FEM software adopted for all examples presented in this paper is

Abaqus [1] while the research code is the Illinois Scientific and Engineering Toolbox
(ISET). ISET implements the Generalized FEM and the GFEM with global–local enrich-
ments (GFEMgl). This method combines the GFEM with a classical global–local or sub-
modeling analysis [15,16]. The enrichment functions in the GFEMgl are the solution of
local problems discretized with a GFEM enriched with analytically defined functions and
a fine mesh around features of interest like fractures, material interfaces, etc. Further
details on this GFEM are presented in “A scale-bridging GFEM for linear elastic fracture
mechanics” section. The HNA combines the vast library of classical elements available in
commercial FEMplatformswith the ability of theGFEMgl to analyze localized phenomena
like cracks and spot welds, on coarse meshes. Details of the HNA are presented in “Dis-
crete system of equations of the enriched global problem and the hierarchic non-intrusive
algorithm” section.
The proposed Abaqus-ISET coupling is extensively verified in “Numerical experiments

with the hierarchical non-intrusive algorithm”. The accuracy of the solution is also
assessed using reference solutions for three-dimensional fracture problems.

Problem definition
The proposed hierarchical non-intrusive algorithm is not restricted to a particular prob-
lem. However, in this paper, the focus is on linear elastic fracture mechanics problems.
Consider a cracked domain �̄ = � ∪ ∂� in R

d, d = 2 or 3, as illustrated in Fig. 1. The
boundary is decomposed as ∂� = ∂�u ∪ ∂�σ with ∂�u ∩ ∂�σ = ∅. The crack surface
S ⊂ ∂�σ is assumed to be traction-free.
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Fig. 1 Fractured domain �̄ in R
2 or R3. This figure presents a general fractured domain

We consider the linear elasticity problem on this domain. The equilibrium equations
are given by

∇ · σ = 0 in �, (1)

where σ is the Cauchy stress tensor. The following boundary conditions are prescribed
on ∂�

u = ū on ∂�u σ · n = t̄ on ∂�σ , (2)

where n is the outward unit normal vector to ∂�σ and t̄ and ū are prescribed tractions and
displacements, respectively. Without loss of generality, we assume hereafter that ū = 0.
The constitutive relations are given by the generalized Hooke’s law,

σ = C : ε, (3)

where C is Hooke’s tensor. The kinematic relations are given by

ε = ∇su in �, (4)

where ε is the linear strain tensor and ∇s is the symmetric part of the gradient operator.
We seek to find an approximation to the solution u of the problem defined by Eqs. (1)–

(4) using a FEM implemented in a commercial code like Abaqus [1], and a GFEM imple-
mented in a research code.

GFEM approximations
A brief review of generalized FEM approximations is given in this section. Further details
can be found in [5,17–21].
TheGFEM test and trial space SGFEM is obtained by hierarchically enriching a low-order

standard finite element approximation space SFEM, with special functions related to the
given problem and belonging to the enrichment space S

ENR. Consider a finite element
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mesh covering the domain of interest �̄. Let ϕα(x), α ∈ Ih = {1, . . . ,NN}, be the standard
linear finite element shape function associated with node xα and with support ωα . The
patch or cloud ωα is given by the union of the finite elements sharing node xα . The test/trial
space of the GFEM is given by

S
GFEM = S

FEM + S
ENR, (5)

where

S
FEM =

∑

α∈Ih
û αϕα , û α ∈ R

d, d = 2, 3,

S
ENR =

∑

α∈Ieh
ϕαχα , and χα(ωα) = span{Eαi}mα

i=1. (6)

The basis function Eαi is called an enrichment function, α ∈ Ieh ⊂ Ih is the index of the
node with this enrichment, and i = {1, . . . , mα} is the index of the enrichment function
at the node withmα being the total number of enrichments associated with node xα . The
functions Eαi ∈ χα(ωα) are chosen such that they approximate the unknown solution u of
the problem locally in ωα . Examples of enrichment functions are polynomials, the Heavi-
side function, and numerically generated functions (cf. “A scale-bridging GFEM for linear
elastic fracture mechanics” section). The spaces χα(ωα) are called patch approximation
spaces, and SENR is referred to as the global enrichment space of the GFEM. The functions
in S

ENR

φαi(x) = ϕα(x)Eαi(x), α ∈ Ieh, i = 1, . . . , mα , (7)

are denoted GFEM shape functions. They are built from the product of Finite Element
shape functions, ϕα(x), α ∈ Ieh , and enrichment functions, Eαi, i = 1, . . . , mα . There are
mα GFEM shape functions at a node xα , α ∈ Ieh , of a finite element mesh. These nodes
also have a standard FE shape function ϕα ∈ S

FEM. Nodes not in the set Ieh have only one
function—the FE shape function ϕα . Figure 2 illustrates the construction of a GFEM shape
function using a step enrichment function.
Based on Eqs. (5)–(7), the GFEM approximation uGFEM of a vector field u (e.g., displace-

ments) can be written as

uGFEM(x) = uFEM(x) + uENR(x)

=
∑

α∈Ih
ûαϕα(x)

︸ ︷︷ ︸
Standard FEM approx.

+
∑

α∈Ieh
ϕα(x)

mα∑

i=1
ũαiEαi(x)

︸ ︷︷ ︸
GFEM enriched approx.

,

ûα , ũαi ∈ R
d, d = 2, 3. (8)

The above equation clearly shows that a GFEM approximation is obtained by hierarchi-
cally enriching a standard finite element approximation. As a consequence, any GFEM
stiffness matrix is given by a FEM matrix augmented with entries associated with GFEM
enrichments. This property of GFEM matrices is the cornerstone of the hierachical non-
intrusive algorithm (HNA) presented in this paper.
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Fig. 2 GFEM Heaviside shape function graphic. This figure presents a partition of unity function ϕα ,
enrichment function Eαi and resulting GFEM shape function φαi

In this work, the polynomial degree of a FEM or GFEM shape function is denoted by p.
In all numerical experiments performed herein, the same polynomial order is adopted for
all coordinate directions. Polynomial order p = 1 at a node xα implies that the node has
only the FEM shape function ϕα .
Available enrichment functions for linear elastic fracture problems [5–9] are based on

the expansion of the elasticity solution in the neighborhood of a straight crack front in
an infinite domain. They also assume a planar fracture surface. These assumptions are
not valid in most practical fracture mechanics problems, in particular for the case of 3-D
problems. As a result, refinement of the FEM mesh is required for acceptable accuracy.
Alternatively, the enrichments can be defined numerically as the solution of auxiliary
boundary value problems [10,11]. This allows the GFEM to use coarse meshes while
delivering accurate solutions. This facilitates the non-intrusive implementation of the
GFEM in a commercial FEM software as demonstrated in the next section. The so-called
GFEM with global–local enrichments (GFEMgl) is reviewed in the next section and used
as a basis of the proposed non-intrusive algorithm.

A scale-bridging GFEM for linear elastic fracture mechanics
TheGFEMwith global–local enrichment functions (GFEMgl) [10,11] combines theGFEM
and the global–local FEM [15,16]. The enrichment functions in the GFEMgl are the
solution of local problems discretized with a GFEM enriched with analytically defined
functions and a fine mesh around features of interest like fractures, material interfaces,
etc. TheGFEMgl has been formulated and applied to various classes of problems including
transient heat transfer [22], linear fracture [23,24], cohesive fracture [25], local plasticity
[26], material heterogeneity [27], and localized thermoplasticity [28]. A GFEMgl for linear
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elastic fracture mechanics problems and suitable for a non-intrusive implementation of
the method is described next.

Initial global problem of the GFEMgl

Letu0 denote the standard FEM solution of the problemdescribed in “Problemdefinition”
section but without cracks. This is hereafter denoted as the initial global problem. The
approximation u0 is the solution of the following problem: Find u0 ∈ S

0(�) such that,
∀ v0 ∈ S

0(�)∫

�

σ(u0) : ε(v0) d� =
∫

∂�σ

t̄ · v0 d∂� (9)

whereS0(�) is standard FEMspace—the spanof shape functions available in a commercial
software likeAbaqus [1].Accurate solutions canbe computedusing a commercial software
and quasi-uniform meshes, like the one shown in Fig. 3, since cracks are not considered
in the initial global problem.

Crack-scale local problem

Let the local domain �̄L = �L ∪ ∂�L where �L ⊂ �, be selected from � as the union of
the support of nodes in the set Igl , to wit,

�L =
⋃

α∈Igl

ωα (10)

a b

Fig. 3 Initial global, local and enriched global steps in a GFEMgl analysis of a 3-D edge fracture—a
disretizations for the initial global, local and enriched global problems—b initial global, local and enriched
global solutions. This figure presents the global–local iterations between enriched global and local problems.
The block arrows between problems represent exchange of information
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Nodes in set Igl are denoted “seed” nodes. They are the only set of nodes from the global
mesh enriched with global–local functions. As an example, seed nodes are shown in red
in Fig. 3a.
LetuL ∈ S

L(�L) denote theGFEMapproximation of the local solution computed on�L.
Fine meshes and GFEM shape functions for fractures [5–9,29] are used in the definition
of SL(�L). These include Heaviside and singular crack front enrichments. Therefore, the
local problem must be solved by a GFEM research code. An example of a local mesh is
shown in Fig. 3a. The weak statement of the local problem is as follows: Find uL ∈ S

L(�L)
such that, ∀vL ∈ S

L(�L)
∫

�L
σ(uL) : ε(vL) d�L + κ

∫

∂�L\(∂�L∩∂�)
uL · vL d∂�L

=
∫

∂�L∩∂�σ

t̄ · vL d∂�L +
∫

∂�L\(∂�L∩∂�)
(t(u0) + κu0) · vL d∂�L (11)

A key aspect of problem (11) is the use of the GFEM solution of the initial global problem
u0, as boundary conditions on ∂�L\(∂�L ∩ ∂�), the portion of the local boundary that
does not intersect the boundary of the global problem.
The traction vector t(u0) on ∂�L\(∂�L∩∂�) is computed from the initial global solution

using

t(u0) = σ(u0) · n (12)

with n being the outward unit normal vector to ∂�L\(∂�L ∩ ∂�). The parameter κ is
a spring stiffness. When κ = 0, the boundary condition on ∂�L\(∂�L ∩ ∂�) becomes
a Neumann boundary condition. When κ equals to a large value (i.e., a penalty), the
boundary condition becomes a Dirichlet boundary condition. An intermediate value leads
to a spring boundary condition. In all problems solved in this paper, the spring stiffness
is automatically selected using [24]

κ = E
n√V0J

, (13)

where n is the number of the spatial dimensions of the problem and V0 is the volume of
the master element. This choice of κ yields a spring stiffness that is proportional to the
element stiffness. For further details on the choice of spring stiffness, please refer to [24].
It is noted that an in-depth study of the choice of the spring value (or impedance) inmixed
non-intrusive coupling is presented in [30].
The local solutionuL defined in this section is the same solution provided by the classical

global–local or sub-modeling analysis [31] with local solutions computed by a GFEM
instead of the standard FEM. As such, the local solution may have large errors due to the
use of inexact boundary conditions on ∂�L\(∂�L ∩ ∂�). This is addressed in the GFEM
by re-solving the global problem with GFEM shape functions defined using uL. This is
described in the next section.

Enriched global problem of the GFEMgl

The solution uL of the local problem (11) yields the so-called global–local enrichments
for the global problem. They are used to define global–local GFEM shape functions using
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φ
gl
α (x) = ϕα(x)uL(x), α ∈ Igl (14)

These functions are hierarchically added to the seed nodes Igl defined earlier. They enrich
the approximation space S0(�) of the initial global problemwhile keeping the globalmesh
unchanged. The global GFEM space containing these functions is given by

S
E(�) = S

0(�) +
⎧
⎨

⎩
∑

α∈Igl

ϕα(x)ugl
α (x)

⎫
⎬

⎭ , (15)

where for a 3-D problem

ugl
α (x) = {uαuLu(x), vαuLv (x), wαuLw(x)}T (16)

with uα , vα , wα being global dofs and uLu(x), uLv (x), uLw(x) are corresponding components of
the local solution vectoruL(x). Therefore, only three enrichments are added to global (seed
nodes), regardless of the number of dofs of the local problem. The 2-D case is analogous.
Problem (9) with space SE(�) is called the enriched global problem. The solution of this
problem is denoted uE . By definition, it belongs to S

E(�).

Overall GFEMgl algorithm

An example with all the steps of a GFEMgl analysis is illustrated in Fig. 3. It shows the
domain, mesh, and boundary condition of the initial global, local and enriched global
problems on the left side and the solution of each problem on the right side. The domain
is a panel with an edge-crack on the left edge, as shown in the local and enriched global
problems. It is noted that the crack cuts elements in the global problem. The red arrows
represent Neumann boundary conditions, while the blue arrows indicate either face or
point Dirichlet boundary conditions. The latter are used to prevent rigid body motions.
Seed nodes in the global problem are shown in red. They are enriched with the local solu-
tion while blue nodes are not enriched—they have only the standard FEM shape functions
for tetrahedron elements. The initial global problem shows amaroon box outlining where
the local domain �L is located. The crack is discretized in the local domain and is shown
as a dark blue line in the figure. The local domain is subjected to Dirichlet boundary con-
ditions (blue arrows) provided by the solution u0 of the initial global problem. The local
problemmesh is refined so that the characteristic length of the elements intersected by the
crack front is about 5% of the crack size, unless stated otherwise. The polynomial order of
the GFEM shape functions in the local problem is taken as p = 3. Singular crack front and
discontinuous Heaviside enrichments are used as well. The block arrows shown between
problems represent exchange of information: Boundary conditions from global to local
problem and enrichments from local to global problem. Note that the enriched global
problem solution, uE , can also be used as boundary conditions for the local problem, lead-
ing to global–local iterations between these two problems [11,32]. These iterations are
used to improve the quality of the local solutions (global–local enrichments) and in turn,
the accuracy of uE . While the proposed non-intrusive implementation of the GFEMgl

supports global–local iterations, they are not used in the problems solved in this paper.
The above presentation assumes that all the steps in aGFEMgl simulation are performed

by a single GFEM solver. This does not have to be the case. The hierarchical structure of
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the enriched global space SE(�) can be used to split the algorithm between two solvers:
a classical FEM solver that implements the global space S

0(�) and a GFEM solver the
implements the global–local GFEM shape functions. Details are provided in the next
section.

Discrete system of equations of the enriched global problem and the hierarchic
non-intrusive algorithm
The solution uE ∈ S

E of the enriched global problem defined in “Enriched global problem
of the GFEMgl” section can be written in matrix format as [12,13]

uE = u0
︸︷︷︸

std FEM approx.

+ ugl
︸︷︷︸

GFEMgl enriched approx.

= N E u E =
[
N 0 N gl

] [
û 0

ũ gl

]
(17)

where N 0 is a matrix with shape functions used in the FEM discretization of the initial
global problem, N gl has the global–local GFEM shape functions defined in (14), û 0 are
standard FEM degrees of freedom associate with shape functions in N 0, and ũ gl are
degrees of freedom associated with (hierarchical) global–local GFEM shape functions in
N gl. An analogous matrix equation can be written for the GFEM approximation uGFEM ∈
S
GFEM given in (8). Therefore, the derivation that follows can be used for both uE and

uGFEM.
Using decomposition (17) of the displacement field, the strain-displacement matrix of

the enriched global problem can be written as

BE = L
[
N 0 N gl

]
=

[
B0 Bgl

]
(18)

where for a 3-D problem

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂/∂x 0 0
0 ∂/∂y 0
0 0 ∂/∂z
∂/∂y ∂/∂x 0
0 ∂/∂z ∂/∂y
∂/∂z 0 ∂/∂x

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

This leads to the following decomposition of the stiffness matrix and load vector of the
enriched global problem

K E u E =
[
K 0 K 0,gl

K gl,0 K gl

][
û 0

ũ gl

]
=

[
f 0
f gl

]
= f E (19)

where

K 0 =
∫

�

(B0)TCB0 d�

is the global stiffness matrix of the initial global problem (9), and C is the Hooke tensor
C in matrix format. Stiffness matrix K 0 can be computed by a standard FE software like
Abaqus [1]. The matrix

K 0,gl = (K gl,0)T =
∫

�L
(B0)TCBgl d�L (20)

represents the coupling between standard and GFEM shape function, and
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K gl =
∫

�L
(Bgl)TCBgl d�L (21)

represents the global stiffness associated with GFEM shape functions. The initial global
problem stiffnessmatrix is nested in the enriched global problem stiffnessmatrix since the
global–local GFEM shape functions (14) are hierarchically added to the initial problem
discretization space S0(�).
Static condensation algorithm The hierarchic structure of K E was explored in [12,13] to
solve the system of equations (19) using static condensation of the degrees of freedom ũ gl.
The algorithm was formulated such that it could be implemented non-intrusively using
a commercial software like Abaqus [1] and a GFEM code. It basically involves sending a
set of pseudo loads from the GFEM to the FEM solver which solves, using K 0, for a set of
pseudo solution vectors. These are sent back to the GFEM solver which then computes
solution vectors û 0 and ũ gl. The procedure is repeated in the case of crack propagation.
It provides exactly the same solution as when solving the global system (19) in the GFEM
solver and it does not involve iterations between the two solvers. However, the memory
requirements of the algorithm can be quite high for large problems. One load and one
solution vector is defined for each degree of freedom in ũ gl. The dimension of these
vectors is equal to the dimension of û 0 which is usually high. While the pseudo load
vectors are quite sparse, the pseudo solution vectors in general are not, requiring a dense
rectangular matrix of dimensions dim( û 0)× dim( ũ gl) to store them. Furthermore, when
applying the algorithm to heat conduction problems, Abaqus re-factorizes matrix K 0 for
every right hand side vector [13]. This makes the algorithm more expensive than if the
enriched global problem is solved entirely by a GFEM solver.
Hirearchical non-intrusive algorithm—basic idea The proposed HNA algorithm seeks to
overcome the memory requirement issues of the static condensation algorithm while not
compromising its accuracy and flexibility. TheHNA achieves this by utilizing the ability of
FEM solvers (commercial or not) to output the FEM stiffnessmatrixK 0 and load vector f 0
to files readable by other software. These files store K 0 and f 0 in a sparse format and thus
K 0 and f 0 can be efficiently loaded into a GFEM solver. Furthermore, since K 0 and f 0 do
not change during, for example, the simulation of a fracture propagation problem, they
only need to be read once at the beginning of the simulation. A step-by-step description
of the HNA algorithm is provided in the next section.
The global FEM stiffness matrixK 0 and load vector f 0 can be assembled from any finite

element available in a commercial solver. This includes structural elements like beams
and shells, as well as continuum elements for 2-D and 3-D problems. Thus the HNA
combines the vast library of classical elements available in a commercial code with the
ability of the GFEMgl to analyze localized phenomena like cracks [23,24], spot welds [33],
material heterogeneity [27], high thermal gradients [22], etc., on a coarse mesh provided
by the commercial code. One practical requirement of the HNA is that the finite elements
adopted over the subdomain �L ⊂ � must be available in both solvers. I.e., the FEM
mesh for the global domain � must adopt elements over the subdomain �L ⊂ � that are
also implemented in the GFEM solver. Alternatively, user elements implemented in the
commercial solver can be used in the subdomain. This type of element is supported by
many commercial solvers. This requirement on the type of element is necessary for the
computation of the coupling global matrix K 0,gl which requires knowledge of B0 by the
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GFEM solver when integrating K 0,gl. It is noted that any type of element can be used in
the local domain �L when solving the local problem. They don’t have to match the type
of the element used in the global subdomain �L ⊂ �. One example is presented in [33]
where hexahedron elements are used in the global domain while the local problems adopt
tetrahedron elements.
The commercial FEM software adopted for all examples in this paper is Abaqus [1].

The GFEM code used in this paper is hereafter called the Illinois Scientific and Engineer-
ing Toolbox (ISET). Standard 2-D finite elements implemented in ISET include TRI3,
TRI6, QUAD4, and QUAD8. Three-dimensional elements include TET4, TET10, HEX8,
HEX20, and HEX27. All elements can be used for linear and material non-linear elastic-
ity and heat conduction. Multi-physics problems like thermo-elasticity, thermo-plasticity
and hydraulic fracturing, are also supported.
The HNA algorithm can be used with any method that hierarchically enriches a FEM

space. However, for many classes of problems, in particular fracture mechanics problems,
mesh refinement is required for acceptable accuracy. This is also the case of the GFEM
with analytically defined enrichment functions. While singular crack tip enrichments
significantly improves the accuracyof the solution, a sufficiently finemesh is still necessary,
in particular when solving 3-D problems. In contrast, the GFEMgl can provide accurate
solutions using fairly coarse 3-Dmeshes composed of tetrahedral or hexahedral elements
at the global problem. Thus, the GFEMgl is ideally suitable for the HNA since it enables
the analysis of fractures of a coarse FEM mesh defined in a comercial solver. This allows
the same FEM mesh to be used for the simulation of fractures anywhere in the domain
of interest. ISET implements the GFEMgl described in “A scale-bridging GFEM for linear
elastic fracture mechanics” section and the HNA described next.

Remark While the ability of FEM solvers of dumping K 0 and f 0 is explored here in the
context of theGFEMgl, it can also be applied in the implementationof the IterativeGlobal–
Local FEM [34,35]. This would avoid the potential re-factorization by the commercial
solver of the global matrix K 0 at every global–local iteration. By reading K 0 and f 0 at the
beginning of the iterative process it needs to be factorized only once. This is particularly
appealing when the global problem is assumed to remain linear while still allowing a non-
linear material response in the local problem. It is noted that not all implementations of
the Iterative Global–Local FEM require re-factorization of the global matrix as shown, for
example, in Duval et. al [36].

Implementation of the hierarchic non-intrusive algorithm

All the steps of the hierarchical non-intrusive algorithm presented in the previous section
are listed inAlgorithm1. The algorithmhas been implemented and testedwithAbaqus [1]
but it does not assume a particular FEM solver. The global matrix and load vector in (19)
are assembled usingK 0 and f 0 provided by the FEM solver andK gl,K 0,gl, and f gl provided
by the GFEM solver. Dirichlet boundary conditions are imposed by the GFEM code once
K E and f E are assembled. A suitable sparse solver is used to factorize K E and solve for
uE . In the computations presented in this paper, the Pardiso solver [37,38] is adopted.
Therefore, the available factorization of submatrixK 0 is not usedwhen solving (19). There
are however several block iterative solvers that have been proposed to solve system (19)
in a more efficient manner. Examples are presented in [39–41].
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Algorithm 1 Hierarchical Non-Intrusive Algorithm
1: procedure HNA
2: FEM code computes K0 and f0

3: FEM code outputs K0 and f0 into files (see A for Abaqus commands)
4: GFEM code reads K0 and f0

5: if using the GFEMgl then
6: GFEM code imposes Dirichlet boundary conditions on K0 and f0

7: GFEM code solves initial global problem K0u0 = f0

8: GFEM code enforces boundary conditions on local problem using u0

9: GFEM code solves local problem
10: GFEM code enriches seed nodes of the FEM mesh and integrates Kgl, K0,gl, and fgl

11: else
12: GFEM code computes analytical enrichment functions (Heaviside and crack tip enrichments for

crack problems), and integrates Kgl, K0,gl, and fgl

13: end if
14: GFEM code imposes Dirichlet boundary conditions on KE and fE

15: GFEM code solves the enriched global problem KEuE = fE

16: GFEM code post-processes solution over subdomain ΩL of problem domain Ω
17: To visualize element-wise quantities in Ω\ΩL, GFEM code outputs to a file Dirichlet boundary

conditions over the boundary of this subdomain
18: FEM code reads file with Dirichlet boundary conditions and post-processes element-wise quantities

in Ω\ΩL

19: end procedure

It is important to state that the HNA supports the any type of enrichment at nodes of a
FEMmesh, derived from a local problem or analytically defined. All that it relies on is the
hierarchical nature of the enrichment and thus of the global stiffness matrix and global
vector.
The post-processing of the problem solution over elements in the subdomain �L ⊂

� poses no problem since these elements and their enrichments are available in the
GFEM solver. Nodal displacement and rotations at nodes in �\�L are available after
the GFEM solver solves for the global vector uE . However, the post-processing of the
problem solution over elements which are available only in the FEM solver must be
addressed. By assumption, these elements are only in the subdomain �\�L. Since the
details of the formulation of elements used in �\�L are in general not known, quantities
like stress and strain in these elements cannot be computed by the GFEM solver even after
it solves for the global vector uE . The following approach is adopted in this work in order
to address this issue. A new job, identical to the original problem, but with additional
Dirichlet boundary conditions along the boundary of �\�L, is submitted to the FEM
solver. Entries from the global solution vector uE are used to setup Dirichlet boundary
conditions on the boundary of �\�L. This FEM solution over �\�L together with the
GFEM solution over �L provides the solution of the original problem over the analysis
domain �.
For the examples in this paper, Abaqus operates as the FEM code in Algorithm 1 while

ISET is the GFEM code. The specific steps where each solver is used are listed in Algo-
rithm 1. A HNA simulation based on these two solvers is denoted hereafter an HNA
Abaqus-ISET simulation. If ISET (only) is used to solve a problem, this is denoted an ISET
simulation. In both cases, the enrichment may be analycally or numerically defined. They
correspond to the GFEM and the GFEMgl, respectively.

Numerical experiments with the hierarchical non-intrusive algorithm
This section presents the solution of 2-D and 3-D fracture mechanics problems
using the proposed hierarchical non-intrusive algorithm. The algorithm is used with
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both the GFEM (analytical enrichments only) and the GFEMgl (numerically defined
enrichments).

Two-dimensional edge crack

Consider the 2-D square domain � ⊂ R
2 with a crack and loaded as shown in Fig. 4. The

dimensions are b = 4, l = 2, and a = 2. A state of plane strain is assumed. The Young’s
modulus E = 1, the Poisson’s ratio ν = 0.3 and the magnitude of the tractions is taken as
σ = 1.
The problem is solved using the hierarchical non-intrusive algorithm implementedwith

Abaqus and ISET solvers. Different FEM discretizations provided by Abaqus are adopted
as described below.Analytical enrichments in formof crack tip functions [5–7] are used by
the GFEM implemented in ISET. The FEM nodes enriched with these functions is shown
in Figs. 5 and 7. Thus, in this section, only analytically defined enrichments are adopted.

Verification of HNAwith TRI3 elements

In this section, the problem is solved with the FEM mesh of linear triangular elements
shown in Fig. 5 and the crack tip enrichments shown in Fig. 5. This triangular element is
denoted by TRI3 in Abaqus. The ISET implementation of TRI3 is identical to the one in
Abaqus. Thus, the setup shown in Fig. 5 can be used to verify the HNA implementation
with Abaqus-ISET against a solution computed with ISET only.
In the case ofAbaqus-ISET solver, themesh shown in Fig. 5 is used byAbaqus to produce

K 0 and f 0. ISET then uploads them and computes the additional matrices K 0,gl , K gl and
vector f gl used in (19). This system is then solved for uE .

Remark The notation K 0,gl , K gl , and f gl is adopted here even though in this section
these quantities are defined using analytical enrichments, not global–local functions. This

σ

b

l

l

a

crack

Fig. 4 Two-dimensional edge crack. This figure presents the geometry for a two-dimensional crack used to
test HNA
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is justified since the difference in the type of enrichment is irrelevant for the proposed
HNA.
Figure 6 shows contour plots of the von Mises stress computed with both solution

strategies. As expected, the two solutions look identical. This confirms that the HNA does
not introduce any approximation beyond the underlyingGFEMorGFEMgl discretizations
adopted. It simply partitions the solution process based on the hierarchical nature of the
GFEMandGFEMgl spaces.Of course there areminor implementationdifferencesbetween
Abaqus and ISET which might lead to some small differences in results even when the
approximation spaces adopted by both solvers are theoretically the same. In the case of
this problem, the strain energy computed using Abaqus-ISET and ISET has a relative
diffence of only 5.6E−14.

Improvement of solution using Abaqus QUAD4 elements

The 2-D edge crack is solved again in this section using the FEM mesh shown in Fig. 7.
This mesh adopts TRI3 and QUAD4 elements. All other parameters are unchanged. All

Fig. 5 TRI3 Mesh and singular enrichment adopted for 2-D edge crack problem—a FEM mesh with TRI3
elements—b nodes enriched by GFEM solver with crack tip functions. This figure presents the TRI3
discretization information for the 2-D edge crack problem used to test HNA

Fig. 6 Contour plot of von Mises stress computed using—a GFEM solver ISET—b HNA Abaqus-ISET solver.
This figure presents von Mises results for the TRI3 2-D edge crack problem
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Fig. 7 TRI3 and QUAD4 mesh and singular enrichment adopted for 2-D edge crack problem—a FEM mesh
with TRI3 and QUAD4 elements—b nodes enriched with crack tip functions. This figure presents the
discretization information for a 2-D edge crack problem with both TRI3 and QUAD4 elements

elements that are enriched with singular crack tip functions are TRI3 elements as in the
previous section (cf. Fig. 7). The Abaqus QUAD4 element adopts reduced integration
when computing the element stiffness matrix. This leads to more accurate solutions than
the standard bi-linear quadrilateral element with full integration. They are used when
solving the problem with the Abaqus-ISET solver.
It is noted that theQUAD4Abaqus element is not available in ISET. Thus, when solving

the problemwith ISETonly, standard bi-linear quadrilateral elementswith full integration
are used. Therefore, the ISET and the Abaqus-ISET solutions are different.
The strain energy of the solution computed by ISET (only) is equal to 28.63 while in the

case of the Abaqus-ISET solver it is equal to 29.24. As expected there is a clear difference
between these values because of the difference in quadrilateral elements.
A reference strain energy equal to 36.97 was computed using a much refined mesh of

triangles, GFEM shape functions of degree three, and the same crack tip enrichments
shown in Fig. 5. Using this reference value, the Abaqus-ISET strain energy has a relative
error of 20.9%, while the ISET strain energy has an a relative error of 22.6%, attesting the
benefit of using the improved QUAD4 elements available in Abaqus.
TheMode I stress intensity factor extracted from the reference, Abaqus-ISET, and ISET

only solutions are K ref
I = 7.542, KAbaqus-ISET

I = 6.573, and K ISET
I = 6.534, respectively.

The relative error of KAbaqus-ISET
I and K ISET

I are 12.85 and 13.37%, respectively.
The above results illustrate one of the benefits of the HNA which combines the library

of elements available in Abaqus with the GFEM and GFEMgl provided by ISET or another
software that implements these methods.
Post-processing of solution Here the post-processing strategy described in “Implemen-
tation of the hierarchic non-intrusive algorithm” section is necessary since the solution
cannot be post-processed by ISET over the QUAD4 elements implemented in Abaqus.
Figure 8a shows the post-processing in Abaqus of the displacement field computed

by Abaqus-ISET. Dirichlet boundary conditions provided by the Abaqus-ISET solution
are prescribed at the edges between triangular and quadrilateral elements. This allows
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Fig. 8 Visualizations for Abaqus-ISET results—a Displacement post-processed by Abaqus—b displacement
post-processed by ISET—c von Mises stress post-processed by Abaqus—d von Mises stress post-processed
by ISET. This figure presents Abaqus-ISET results on a mesh with elements available only in Abaqus.
Post-processing over those elements must be done by Abaqus while over elements enriched with crack tip
functions it must be done by ISET

Abaqus to correctly post-process the solution over all QUAD4 elements. The displace-
ment over triangular elements shown in Fig. 8a are obviously incorrect since Abaqus can
not post-process the solution over elements that have GFEM enrichments. The correct
displacement is shown in Fig. 8b which was post-processed by ISET. The discontinu-
ous displacement field can be properly visualized. It is noted that the contour plots over
quadrilateral elements shown in Fig. 8b are only approximate since they were performed
using the quadrilateral elements available in ISET, which as discussed earlier, are not the
same as those used by Abaqus in the computation on K 0. However, for this problem and
type of elements used in Abaqus and ISET, the difference in the post-processed values are
visually identical. This is not always the case. Figure 8c, d show contour plots of vonMises
stress computed from the HNA Abaqus-ISET solution. They are analogous to Fig. 8a, b.
The only difference is the quantity being post-processed.

Three-dimensional edge crack

The 3-D edge crack shown in Fig. 9 is solved in this section using the hierarchical non-
intrusive algorithm implemented with Abaqus-ISET and with ISET only for verification
purposes. The dimensions shown in Fig. 9 are b = 4, l = 2, t = 1, and a = 1. The Young’s
modulus E = 200,000, the Poisson’s ratio ν = 0.3 and the magnitude of the tractions is
taken as σ = 1. Point displacement boundary conditions are assigned to selected nodes of
the FEM mesh to prevent rigid body motions. The GFEMgl is used to numerically define



Fillmore and Duarte Adv. Model. and Simul. in Eng. Sci. (2018) 5:2 Page 17 of 28

σ

t
b

l

l

a

crack

Fig. 9 Three-dimensional edge crack. This figure presents the geometry for a three-dimensional edge crack
that is used to test HNA

the enrichment functions adoped in the global problem. The accuracy of theAbaqus-ISET
solution is also assessed using a reference solution. The three steps of the GFEMgl analysis
of this problem are illustrated in Fig. 10.
This problem has also been solved in Section 7.1 of [12] using a non-intrusive GFEMgl

algorithm based on static condensation of the global–local enrichments as briefly dis-
cussed in “Discrete system of equations of the enriched global problem and the hierarchic
non-intrusive algorithm” section. The problem and discretization parameters adopted
here are the same as in [12].
Three element types provided by Abaqus are adopted for the global problem. They are

linear and quadratic tetrahedron elements (TET4 and TET10) and quadratic serendipity
hexahedral element (HEX20). The globalmeshes with these elements are shown in Fig. 11.
Uniformand fairly coarsemeshes are adopted for theglobal problem.Thefigure also shows
the mesh adopted for the local problem. The same local discretization is used regardless
of the element type adopted in the global problem. The mesh is locally refined to capture
the singularity at the crack front. The characteristic length of the elements near the crack
front is taken as 5% of the crack length. Cubic GFEM shape functions are adopted in
the local problem. Singular crack tip and Heaviside enrichment are also used in the local
problem. These discretization parameters for the local problem are the same as in Section
7.1 of [12]. The local solution is the only enrichment adopted in the global problem.
The global nodes enriched with the local solution are shown in red in Fig. 11. There are
three G-L enrichments in each one of those nodes while no enrichment is used at other
nodes of the global meshes. Spring boundary conditions are adopted at the local boundary
∂�L\(∂�L ∩ ∂�). Details on this choice of boundary condition can be found in [24].

Verification of hierarchical non-intrusive algorithmwith 3-D elements

The ISET and Abaqus formulations for TET4, TET10, and HEX20 elements are identical.
Therefore the solutions computed using the hierarchical non-intrusive algorithm imple-
mented with Abaqus-ISET and with ISET only should be nearly identical. The only differ-
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Fig. 10 GFEMgl steps for a 3-D edge crack—a initial global problem—b local problem—c enriched global
problem. a Presents an initial global step that does not model the crack. b and c Present the local and
enriched global steps that do model the crack.

ence between the two solution strategies is that in one case the global matrix K 0 and the
global vector f 0 are provided by Abaqus while in the other case they are provided by ISET.
Thus, this section provides a verification of the HNA in the case of 3-D fracture problems.
This is analogous to the results presented in “Verification of HNA with TRI3 elements”
section but here the GFEMgl is adopted instead of the GFEM used in that section.
Two quantities are used to verify the HNA Abaqus-ISET solution: The strain energy

of the solution and KI , the Mode I Stress Intensity Factor (SIF) extracted at the cen-
ter of the crack front. Table 1 presents the results. The relative difference between the
values provided by the Abaqus-ISET and by ISET is also listed in the table. The agree-
ment between the HNA Abaqus-ISET and the ISET only solutions is clear. The relative
difference between the strain energy is at most of O(10−6). This is likely due to minor
differences between the implementation of the 3-D elements in Abaqus and ISET.

Accuracy of the HNA Abaqus-ISET solution

The accuracy of the Abaqus-ISET solution against a reference solution is assessed in this
section. A comparisonwith solutions computedwith the non-intrusiveGFEMgl algorithm
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Fig. 11 Meshes used for the GFEMgl analysis of a 3-D edge crack—a TET4/TET10 initial global mesh—b
HEX20 initial global mesh—c local mesh—d TET4 enriched global mesh—e TET10 enriched global mesh—f
HEX20 enriched global mesh. The analysis is performed with the HNA Abaqus-ISET solver and with ISET only
for verification purposes. The same local discretization is used regardless of the element type adopted in the
global problem

Table 1 Strain energy (U) andmode I stress intensity factor (KI) computed with HNA
Abaqus-ISET and ISET only

Solver Element type KI KI rel. diff. U(E − 5) U rel. diff.

ISET only TET4 2.229905 – 5.108473 –

HNA Abaqus-ISET TET4 2.229903 8.97E − 7 5.108471 3.32E − 7

ISET only TET10 2.87537 – 5.3423454250874 –

HNA Abaqus-ISET TET10 2.87537 0 5.3423454250871 4.97E − 14

ISET only HEX20 3.05214 – 5.37984 –

HNA Abaqus-ISET HEX20 3.05217 7.536E − 6 5.37986 3.604E − 6

The GFEMgl is adopted in both cases

proposed in [12] is also presented. The parameters adopted in this section are the same
as Section 7.1 of [12]. Thus, the HNA Abaqus-ISET solution should be very close to the
results presented in [12].
The reference value for the strain energy andMode I SIF are taken asU = 5.55154E−5

and KI = 3.0796, respectively. The relative errors are computed using

er(KI ) = K ref
I − K̃I

K ref
I

and er(U ) = U ref − Ũ
U ref
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where Ũ and K̃I are approximations provided by either the HNA proposed here or the
non-intrusive static condensation method of [12]. The results are presented in Table 2.
The HNA and the static condensation solutions are very close as expected. This serves
as another verification for the proposed non-intrusive algorithm. The errors with linear
tetrahedrons are quite large. Significant improvement is observed when TET10 elements
are adopted. The most accurate results are obtained with HEX20 elements, in particular
for KI which has an error of less than 1% when these elements are adopted in the global
problem. It is noted that the G-L enrichments are exactly the same in all cases since the
solution of the initial global problem, which does not have a crack, is the same for all three
element types.
Figure 12 shows contour plots of the vonMises stress computed with Abaqus-ISET and

HEX20 elements in the global problems. The plots are shown on the deformed configu-
ration of each problem. The initial global problem shows a constant stress field since the
crack is ignored when solving the problem.

Three-dimensional surface crack

The surface crack shown in Fig. 13 is solved in this section using the HNA Abaqus-ISET
and with ISET only for verification purposes. The HNA Abaqus-ISET solution is also
verified against the non-intrusive algorithm of Gupta et al. [12]. The accuracy of the stress
intensity factor along the crack front is assessed using the reference values fromWalters
et al. [42].
The dimensions shown in Fig. 13 are 2b = 2h = 2.0, domain thickness t = 1, and the

crack radius r = 0.2. Adopted material properties are Young’s modulus E = 1 and Pois-
son’s ratio ν = 0.25. Themagnitude of the tractions is taken as σ = 1. Point displacement
boundary conditions are assigned to selected nodes of the FEMmesh to prevent rigid body
motions. The GFEMgl is used to numerically define the enrichment functions adopted at
the global problem. The initial global problem and the local problem are illustrated in Fig.
14.
Like in the previous section, three element types provided by Abaqus are adopted for

the global problem: TET4, TET10 and HEX20. The global meshes with these elements
are shown in Fig. 15. The stiffness matrices associated with these meshes are computed
by Abaqus when solving the problem with the hierarchical non-intrusive algorithm. The
figure also shows the mesh adopted for the local problem. The characteristic length of
the elements near the crack front is taken as 2% of the crack radius. The same local
discretization is used regardless of the element type adopted in the global problem. The

Table 2 Strain energy (U) andmode I stress intensity Factor (KI) computed with HNA
Abaqus-ISET and the non-intrusive static condensation algorithm presented in [12]

Method Element type KI U (E − 5) er (KI )(%) er (U )(%)
Reference – 3.0796 5.55154 – –

Static Cond. TET4 2.244 5.114 27.143 7.8729

HNA Abaqus-ISET TET4 2.230 5.108 27.59 7.981

Static Cond. TET10 2.885 5.348 6.3266 3.6659

HNA Abaqus-ISET TET10 2.875 5.342 6.632 3.77

HNA Abaqus-ISET HEX20 3.052 5.380 0.891 3.093

The element type used in the global problems of the GFEMgl is also listed
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Fig. 12 Contour plots of the von Mises stress for 3-D edge crack—a initial global problem—b local
problem—c enriched global problem. This is computed with Abaqus-ISET and HEX20 elements in the global
problems

same discretization parameters as in previous section are adopted for the local problem:
Cubic GFEM shape functions, singular crack tip and Heaviside enrichment, and spring
boundary conditions at the local boundary ∂�L\(∂�L ∩ ∂�). The global nodes enriched
with the local solution are shown in red in Fig. 15.

Verification of hierarchical non-intrusive algorithmwith 3-D elements

As discussed earlier, the HNA Abaqus-ISET solution and the ISET only solutions should
be nearly identical if TET4, TET10, or HEX20 elements are used in the global problem.
This is verified for the case of the surface crack problem. Two quantities are used to verify
the HNA Abaqus-ISET solution: The strain energy U of the solution, and KI , the mode I
stress intensity factor (SIF) extracted along the curved crack front. The relative difference
between Abaqus-ISET and ISET only KI and U are computed using

er(KI ) =

√
∑Next

j=1

(
K ref
I,j − K̃I,j

)2

√
∑Next

j=1

(
K ref
I,j

)2
(22)

er(U ) = U ref − Ũ
U ref (23)
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Fig. 13 Three-dimensional surface crack. This figure presents the geometry for a three-dimensional surface
crack that is used to test HNA

Fig. 14 Initial global and local problem used in the GFEMgl analysis of a surface crack—a initial global
problem with subdomain �L shown—b local problem with boundary conditions on ∂�L\(∂�L ∩ ∂�). a
shows that the initial global step does not model the surface crack. b Shows that the crack is introduced in
the local step

where Next is the number of extraction points along the crack front, K ref
I,j and K̃I,j are the

reference and computed stress intensity factor values at crack front point j, respectively. In
this section, the reference values are taken as those computed with ISET only. Table 3 lists
the relative difference between strain energy (er(U )) and stress intensity factor (er(KI ))
computed with HNA Abaqus-ISET and ISET only. Like in the previous problem, the
agreement between the HNAAbaqus-ISET and the ISET only quantities is excellent. The
relative difference between the strain energy is at most ofO(10−7).
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Fig. 15 Meshes used for the GFEMgl analysis of a 3-D surface crack—a TET4 initial global mesh—b TET10
initial global mesh—c HEX20 initial global mesh—d local mesh—e TET4 enriched global mesh—f TET10
enriched global mesh—g HEX20 enriched global mesh. The analysis is performed with the HNA Abaqus-ISET
solver and with ISET only. The same local discretization is used regardless of the element type adopted in the
global problem

Table 3 Relative difference between strain energy (U) and stress intensity factor (KI)
computed with HNA Abaqus-ISET and ISET only

Element type er (KI ) er (U )
TET4 0 4.71E − 14

TET10 1.37E − 4 1.17E − 7

HEX20 9.34E − 5 1.93E − 9

The GFEMgl is adopted in both cases

Table 4 Relative error of stress intensity factor KI extracted from the HNA Abaqus-ISET
solution of the surface crack problem

Element type er (KI ) (%)
TET4 15.5

TET10 0.445

HEX20 0.505

The element type used in the initial and enriched global problems is indicated

Accuracy of the HNA Abaqus-ISET solution

The accuracy of the stress intensity factor KI extracted from the HNA Abaqus-ISET
solution is assessed in this section. The cut-off function method (CFM) [43] is used to
extract KI at several points along the circular crack front. The reference values for KI are
fromWalters et al. [42]. The relative error of theHNAAbaqus-ISET stress intensity factor
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Fig. 16 Mode I stress intensity factor KI extracted from HNA Abaqus-ISET solutions for the surface-crack
problem—a TET elements in the global problem—b TET elements in the global problem. The reference
values are from Walters et al. [42]

KI is computed using (22). The relative error for each element type used in the initial and
enriched global problems are listed in Table 4. Quadratic elements provide significantly
more accurate KI than linear tetrahedron elements. The relative error for both quadratic
elements listed in the table is close to 0.5% even though a very coarse mesh is used in the
global problem, attesting the good performance of the GFEMgl. The results for TET4 and
TET10 elements are very similar to corresponding ones listed in Table 3 of [12].
Figure 16 shows the normalized Mode I SIF extracted from the HNA Abaqus-ISET

solutions computedwith different element types in the global problem. The position along
the crack front is defined by the polar angle φ where φ = 0 and φ = π/2 correspond to a
crack front point on the domain boundary and to the center of the crack front, respectively.
The SIF at each extraction point is normalized using [42]
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Fig. 17 Von Mises stress at each step of a non-intrusive Abaqus-ISET analysis of a surface crack—a initial
global von Mises—b local von Mises—c enriched global von Mises. a Presents the simple stress field without
fracture. b Introduces the stress singularity from the surface crack. c Presents (GFEMgl) transfer of the singular
stress state back to the enriched global problem

K̄I = K̃I

σ
√

πr
Q

where Q = 2.464 for a circular crack, σ is the tensile stress applied to the specimen, and
r is the radius of the crack. The SIF extracted from solutions computed with quadratic
elements agrees very well with the reference values.
Figure 17 shows contour plots of the vonMises stress computed with Abaqus-ISET and

HEX20 elements in the global problems. The plots are shown on the deformed configu-
ration of each problem. The initial global problem shows a constant stress field since the
crack is ignored when solving the problem.

Conclusions
Anon-intrusive algorithm for coupling standard andGeneralized FEMplatformswas pre-
sented. The proposed algorithm can be used with anymethod that hierarchically enriches
a finite element space. Examples are the Generalized FEM [5,17–21] and the GFEMgl

[10,11]. The advantage of using the latter is that it can deliver accurate solutions using
coarse meshes. The proposed hierarchical non-intrusive algorithm (HNA) overcomes the
memory requirement issues of the static condensation algorithm presented in [12,13]
while not compromising its accuracy and flexibility. The implementation of the HNA is
also simpler than the algorithm presented in [12,13].
The HNA combines the vast library of classical elements available in commercial FEM

platforms with the ability of the GFEMgl to analyze localized phenomena, like cracks and
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spot welds, on coarse meshes. Examples demonstrating the application of the hierarchical
non-intrusive algorithm to 2- and 3-D fracturemechanics problemswere presented. They
show that the HNA provides the same solution as the GFEM or the GFEMgl implemented
in a single software. Furthermore, it does not require iterations between the standard and
Generalized FEM platforms. The examples also demonstrate the benefits of combining
finite elements available only in a commercial platform with the GFEM.
While the commercial FEM software adopted for the examples presented in this paper

is Abaqus, the proposed HNA can be used with other commercial software. The only
requirement is that the FEM platform outputs the global matrix and load vector for a
problem. Furthermore, while this capability of FEM platforms was explored here in the
context of the GFEM and the GFEMgl, it can also be applied to the implementation
of other non-intrusive algorithms like the Iterative Global–Local FEM [34,35] and the
method proposed by Schweitzer and Ziegenhagel [14].
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Appendix A: Abaqus commands to output the global matrix and load vector
Abaqus can generate and output a global stiffness matrix using the following keywords in
*.inp files

*MATRIX GENERATE, STIFFNESS

and
*MATRIX OUTPUT, STIFFNESS

These keywords must be located within a loading “*STEP” that is not “*STATIC”. The
matrix is stored in a file that reflects the name of the job.
While multiple keywords can be used in the same “*STEP”, it is generally advisable to

use different steps to output different things. For example, a second step uses
*MATRIX GENERATE, LOAD

and
*MATRIX OUTPUT, LOAD

to output the global load vector. The rest of an .inp file can be understood by creating
Abaqus models using their graphical user interface. When a job is submitted for analysis,
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Abaquswill create a .inp file that includes all needed keywords to run that specific example.
In a Linux system, an .inp file can be run using the syntax

./(executable name) job=(job name) inp=(input file name)

Further details can be found in the Abaqus keyword user manual [44].
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