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Fgerlandstr. 5, 91058 Erlangen, namely, the Schrédinger equation with Coulomb and harmonic potentials, and the
Slimsatnoyfauthomformanoﬂ is all-electron Kohn-Sham density functional theory. The partition-of-unity method is

available at the end of the article equipped with an a posteriori error estimator, thus enabling implementation of
error-controlled adaptive mesh refinement strategies. To that end, local interpolation
error estimates are derived for the partition-of-unity method enriched with a class of
exponential functions. The efficiency of the h-adaptive partition-of-unity method is
compared to the h- and hp-adaptive finite element method. The latter is implemented
by adopting the analyticity estimate from Legendre coefficients. An extension of this
approach to multiple solution vectors is proposed. Numerical results confirm the
theoretically predicted convergence rates and remarkable accuracy of the h-adaptive
partition-of-unity approach. Implementational details of the partition-of-unity method
related to enforcing continuity with hanging nodes are discussed.

Keywords: Adaptive finite element method, Partition-of-unity method, Error
estimators, Schrédinger equation, Local interpolation error estimates, Density
functional theory

Introduction
Recently there has been an increase of interest in applying finite element (FE) methods to
partial differential equations (PDEs) in quantum mechanics [1-14]. In order to improve
the accuracy of the solution, the basis set can be adaptively expanded through either
refinement of the mesh (%-adaptivity) or the basis functions can be augmented by the
introduction of higher polynomial degree basis functions (p-adaptivity). Since the solution
is not smooth and contains cusp singularities, the application of the k-adaptive FEM
may require very fine meshes and could be computationally inefficient. There are several
approaches to circumvent this problem.

From the physical point of view, for ab initio calculation of molecules often core electrons
(as opposed to valence electrons) behave in a similar way to single atom solutions. Thus
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one possesses an a priori knowledge of a part of the solution vectors to the eigenvalue
problem. One of the approaches used to introduce this into a FE formulation is the
partition-of-unity method (PUM) [15-17], which is a generalization of the classical FE
method. In PUM the enrichment functions are introduced into a basis as products with
standard FE shape functions, thereby enlarging the standard FE space. As the standard
FE functions satisfy the partition-of-unity property (that is, they sum to one in the whole
domain), the resulting basis can reproduce enrichment functions exactly. For an overview
on PUM applied to continuum mechanics we refer the reader to [18—20].

An alternative approach to the above is to combine /- and p-adaptivity resulting in what
is termed as sip-adaptive FEM. For an overview of /sip-adaptive refinement strategies we
refer the reader to [21]. The general idea is that when the exact solution is smooth on the
given element, p-adaptive refinement is more efficient and leads to a faster convergence
with respect to the number of degrees of freedom; whereas if the solution is non-smooth
(singular), si-adaptive refinement is performed. Thus in addition to a reliable error estimate
and the choice of the marking strategy of elements for refinement, sp-adaptive methods
need to decide which type of refinement to perform on a given element. In this work we
use methods based on smoothness estimation [22-27]. As those methods are normally
employed for problems with a single solution vector, we propose an extension to multiple
solution vectors as is required for the here considered eigenvalue problems.

Herein, our main focus is application of -adaptive PUM to PDEs in quantum mechanics,
namely to the Schrodinger equation and the all-electron density functional theory (DFT)
[28,29]. Application of the PUM to the above problems holds a significant promise to
improve on accuracy of a standard (non-enriched) FE approximation. The corresponding
numerical evidence can be found in [9], where convergence studies for PUM solutions
obtained on uniformly refined meshes are performed.

The novelty of our paper is that the PUM will be equipped with an a posteriori error
estimator, thus enabling implementation of error-controlled adaptive mesh refinement
strategies. Derivation and implementation of the PUM in computational solid mechanics
is nowadays very well-acknowledged and established area of research, yet the authors are
not aware of any other work which applies the /#-adaptive PUM to DFT.

We will also compare the PUM to hp-adaptive FEM in terms of the efficiency with
respect to the number of degrees of freedom. Although there are publications on the topic
of hp-adaptive FEM applied to DFT [1], they lack any numerical studies and are limited
to a pre-defined refinement strategy of hexahedra that admit nuclei only at its vertices. In
order to apply the iip-adaptive FEM to DFT, in this paper we propose an extension of the
smoothness estimate approach using Legendre coefficients [22—25] to multiple solutions
vectors.

The outline of this paper is as follows: In the section on “Theory”, we introduce the
eigenvalue problem studied here. The PUM and error estimators are also discussed. We
also explain the strategy employed to decide between /- and p-adaptive refinement for
the hp-adaptive FEM. Results of numerical studies of the chosen systems are presented
in section titled “Results and discussion”, followed by some conclusions. In Appendix A
we rigorously derive the local interpolation error estimates for enrichment with a class of
exponential functions; Appendix B describes the approach applied to solve single atom
DFT in radial coordinates within application of the PUM; Appendix C discusses imple-
mentational details of PUM within the context of the deal. IT [30] library.
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Theory
In quantum mechanics we seek the N lowest eigenpairs (A4, V) of the Schrodinger equa-
tion [31]

[— %vz + V(x>} Yo (X) = haPo(x) on Q,
Ye(x) =0 on 92, (1)

/Q Ve GOV (X)X = S

Here « is the index of the eigenpair, 2 is a Lipschitz domain® in R3 and 8,4 is the Kronecker
delta . In Kohn—Sham all-electron density functional theory [28,29], the potential V'(x)
depends on eigenvectors thus rendering the problem nonlinear. For a molecular system
consisting of N, electrons and M nuclei of charges {Z;} located at the (fixed) positions {R;},
the ground state electron density p(x) := 22[:1 fa |1//a (x)|2 can be obtained by finding the
N lowest eigenpairs of Eq. (1). Here f;, is the partial occupancy number? of the a-orbital
such that 22[:1 fa = Ne, V= Vion + VHartree + Ve is composed of the ionic potential
Vion = — {\il Ixf_kll’ the Hartree potential Vi ygree = fQ p(x')/|1x—x'|dx’, and the (given)
exchange-correlation potential Vi (p). As a result, the potential V depends on the density
p which is given in terms of eigenvectors {4}, making the problem nonlinear. From
practical perspective Ve €lectrostatic potential is obtained by solving the associated
Laplace equation; together with (1) they are solved sequentially untill convergence in
density fields p is attained. For further details on the FE solution of DFT, we refer to our
previous work [2] and literature cited therein.
The weak form of Eq. (1) reads?

/ |:le Vg + VVl/fa:|dx = Ay / vedx Vv e H&(Q),

f Yo Wgdx = 8up.

We then introduce a FE triangulation " of €2 and the associated FE space of continuous
piecewise elements of a fixed polynomial degree : ¥, € V" C HOI(Q). The FE solution to
the problem is then defined by

1
/ —wh. Vlﬁolf +VhV¢;l dx = )\z/ vhl//é’dx v e vh,

!Note that in the non-periodic case the Schrodinger equation is actually set in R3. Therefore the domain € in Eq. (1)
is assumed to be sufficiently large such that zero Dirichlet boundary conditions make sense and there is no additional
error due to considering a bounded domain. For all example systems that are considered below, the eigenfunctions are

known to have asymptotic exponential decay which allows one to choose moderately sized domains.
2For spin unpolarized systems with an even number of electrons f, = 2 and N = N, /2.
3We use standard notation for Sobolev spaces and norms.



Davydov et al. Adv. Model. and Simul. in Eng. Sci.(2017)4:7 Page 4 of 23

Partition-of-unity method

The classical FEM with piecewise linear ansatz spaces requires very fine meshes for ade-
quate accuracy when the solution is not smooth or is highly oscillatory; this increases the
computational cost of solving the problem. The PUM proposed by Melenk and Babuska
in [15,16] can address this issue. The main feature of the PUM is the inclusion of an a
priori knowledge about the solution properties into the FE space. The PUM enriches the
vector space spanned by standard FE basis functions N;(x) (e.g. polynomials) by products
of these functions with functions f;(x) that contain a-priori knowledge about the solution

Vi =Y N | i+ D v | (4)

iel jes

Here v}, are standard degrees-of-freedom (DoFs) and 1%{ are additional DoFs associated
with the shape functions N;(x) and the enrichment functions f;(x); I is a set of all nodes
and S is the set of enrichment functions. Since (possibly global) enrichment functions f;(x)
are multiplied with N;(x) which has local support, the product also has local support and
therefore matrices arising from the weak form remain sparse. Also, since the standard
shape functions satisfy the partition of unity property ) _; N;(x) = 1, the resulting vector
space can reproduce enrichment functions f;(x) exactly.

Note that (4) is a more general approach than enriching the basis with f; alone (i.e.
without multiplying by Nj, as is employed in [32]). Granted the partition of unity property
of Nj, this case can be obtained from (4) by requiring all DoFs associated with a given
enrichment function f; to have the same value.

Error estimator
A posteriori error estimation analysis for FE approximations of (second-order) eigen-
value problems has been a topic of intensive study within the last several decades, both
from theoretical and implementational standpoints. We refer the interested reader to
[13,14,33-39], where two “conventional” types of error estimators, namely residual- and
averaging-based error estimators, are presented.

In general, a discretization error in approximated eigenfunctions, ¥ — wh, measured in a
suitable norm (e.g. L?-norm and energy norm, induced by the bilinear form of a problem),
as well as in approximated eigenvalues, |A — A |, can be estimated from above. That is,

[v -] < cm, )
and

h =2 < Con?, ©)
where Cj, C; are the so-called stability constants that are independent of the mesh size

and 7 is the explicitly computable* error upper-bound, see e.g. [34,38] for details. These
equations are typically termed (global) error estimators. The bound 1 reads as

“That is, n depends solely on the FE solution.
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ne=| > x|

KePph

where summation is performed over all elements in P" and nx is the (local) error indicator,
a quantity showing a discretization error of {1/”, 1"} element-wise, that is, on every fixed
K. With multiple solutions available (in this case, eigenpairs {Wé‘, )L(hx}), nx will be a sum
of discretization errors of the corresponding eigenpairs on a given element K, that is

1
2
nK = [Z nia] :
o

For a standard (non-enriched) Q1-based finite element solution of (1), a local indicator
Nk« of residual type reads as follows (see [13,14,34,35,38,39] for details):

2
1
Ny = h% /K [ ( - Evz + V(x)) yh ok wt’;} dx

2

+he Y / [[—%wj; . n]] da, )
eCoK v e

where [[—%Vl//lff -nf, ;= [— % VI//(? lx + %VI//Z; |1<r] -n, represents the jump of the gradient

across interface e between two adjacent elements K and K’, n, is the outward unit normal

vector to e and /g := diam(K).

One of the key findings of our work is the proof that indicator (7) also holds (with no
modification due to the enrichment usage) in the PUM with the exponential enrichment
function f(x) = exp(—p Ix/X). In Appendix A, we derive and prove the related local
interpolation error estimates required for the derivation of the error indicator (7).

hp-adaptive solution

There have been numerous works devoted to /p-adaptive refinement [22-25,40-42]
including a comparison of different methods [21]. The main difficulty that a posteriori
hp-adaptive methods aim to address is the following: once an error is estimated and a
certain subset of elements is marked for refinement, one has to choose between /- or
p-refinement for each element. In this work we adopt an /p-refinement method based
on the estimate of the analyticity of the solution® on the reference element via expansion
into Legendre bases [22—-25]. In particular, the FE solution is analytic on element X if, and
only if, there exists constants Cx and ok such that

afy| = Cic exp(—oxcli +) +K]), ®

where a;; are Legendre coefficients; see [25] for further details. We chose to estimate
the decay coefficient ox by performing a least squares fit of Legendre coefficients in
each direction In alj’ Pl In Cfé — Ufé ifor1 < i < pg, and then use the minimum decay
coefficient as the final value ox = ming 01?. When ox value is below a chosen parameter oy,
the solution is considered to be smooth at K and thus p-refinement is performed, otherwise

>That is the measure of how well it is representable by power series.
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h-refinement is executed. For initially linear FEs p-refinement is always performed. We
note that methods based on the decay rate of the expansion coefficients were found in [21]
to be the best choice as a general strategy for the ip-adaptive solution of elliptic problems.
To the best of our knowledge there is, however, very little (numerical) study of those
methods applied to DFT. The only paper we are aware of [1] lacks any numerical results.
We also note that, in the majority of cases, p-adaptive FEM is applied to problems in R!
and R2. Thus we also aim to evaluate how well the smoothness estimators proposed in the
literature work for eigenvalue problems in R? that are relevant to quantum mechanics.
In order to extend this sp-refinement strategy to the eigenvalue problem, that is when
there are multiple vectors represented using the same FE basis, we propose the following
approach. For each element we find an eigenvector which contributes the most to the
total element’s error. The smoothness of this vector is the basis on which we decide
to perform h-refinement or p-refinement. The rationale behind this approach is that
we aim at minimizing the error the most during a single refinement step while being
conservative and avoiding performing both /- and p-refinement on the same element.
We also investigated allowing both /- and p-adaptive refinement of a single cell based on
smoothness estimation of all eigenvectors, but ultimately found that this procedure leads
to qualitatively similar results for the problems studied herein.
Finally, for the error indicator we adopt the following expression [43]

2
h2 1
M =5 | [(— SVi+ vco)wf; -2 wé} dx

Px

he 1_ . TP
# 3 o [ aveton]] e ¥

eCoK

where %, is the face’s diameter, px is the element’s polynomial degree and p,. is the
maximum polynomial degree over two elements K and K’ adjacent to the face e.

The derivation of the error estimators for /ip-FEM usually requires the polynomial
degree of neighbouring elements to be comparable, namely that there exists y and I" such
that ypx < pxr < T'pk for all elements K, K’ that have a non-empty intersection. In
order to reflect this assumption in our numerical scheme, we propose that an additional
step which limits the differences in polynomial degrees among elements be performed.

More precisely, after hp-adaptive refinement is executed, then for each element K, we

max

find the maximum polynomial degree among its neighbouring elements Preig

h and if

max

Preigh > PK + 2 then we set px < pic + 1.

Results and discussion

If not explicitly stated otherwise, the results below are obtained for the following con-
figuration: (i) the initial polynomial degree for non-enriched DoFs is one for sp-adaptive
FEM; (ii) linear shape functions are used in PUM to introduce enrichments, higher order
elements were not employed as the interpolation error estimates are derived only for lin-
ear elements and thus limit the applicability of the error indicator stated in Eq. (7) ; (iii) a
Gaussian quadrature rule with 20% points is used for enriched elements in the eigenvalue
problem; (iv) the Dorfler marking strategy with 6 = 0.6 is used to mark elements for
refinement; (v) Gauss—Legendre—Lobatto supports points are used for the hp-adaptive
FEM basis to improve the condition number; (vi) in case of sp-adaptive refinement the
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highest polynomial degree is limited to 8 for computational efficiency reasons; (vii) the
radius in which enriched FEs are employed is heuristically chosen for each numerical
example; (viii) following [25] we choose op = 1.0 as a parameter in the smoothness esti-
mator.® Implementation details of the partition-of-unity method in deal . IT [30] finite
element library are given in Appendix C.

Schrodinger equation

In this section we consider the Schrodinger equation Eq. (1) with two different (spherical)
potentials V' (x) = V/(|x|).” The first case is the Coulomb potential V' (x) = — 1/ |x|, which
corresponds to a Hydrogen atom. The eigenvalues of this problem are degenerate. In R,
on each energy level # there are n? eigenvalues A, = A1/n%, where Ay = —1/2 [31]. The
eigenfunction corresponding to the lowest eigenvalue reads

09 = = exp (~Ix). (10)
The radial component of the eigenfunctions at the next energy level are Ryp = [1 —
|x| /2] exp(— |x| /2) and Ry = |x| /2 exp(— |x] /2).

The second potential we will consider is a harmonic potential V' (x) = |x|? /2 that leads
to a harmonic oscillator problem. The eigenvalues for this problem are also degenerate; in
RR3 they are given by A,, = 1 + 1/2 for nth energy level. The lowest two have a degeneracy
of 1 and 3, respectively. The (unnormalized) eigenfunction corresponding to the lowest
eigenvalue is

Y1 (x) = exp (— x[* /2). (11)

The radial component of the next eigenfunction is Ry (x) = |x| exp (— x|/ 2). Figure 1
shows radial components of eigenfunctions for the Coulomb and the harmonic potential.
It is clear that in order to have a low interpolation error for a standard Lagrange FE basis,
a very fine mesh will be required near the origin. For such non-smooth solutions we will
see that by introducing enrichment functions the interpolation error of the resulting FE
basis will be greatly reduced.

The initial mesh used to solve the Schrodinger equation is obtained from 3 global mesh
refinements of the single element in Q@ = [—20; 20]3 for the Coulomb potential and
Q = [~ 10; 10]3 for the harmonic potential. For the PUM only 8 elements adjacent to the
singularity that is located at the origin are marked for enrichment.

First, we examine the convergence in case when a single eigenpair is required in the
Schrodinger equation with two different potentials. Figure 2 compares the s-adaptive
FEM, hp-adaptive FEM and /-adaptive PUM, whereas Fig. 3 shows the cross-sections of
meshes for the last refinement step.

For both combinations of potentials and enrichment functions, the /-adaptive PUM is
superior to #-adaptive FEM. In particular, for the last refinement step the PUM solution is
about two orders more accurate than the /-adaptive FEM with the same number of DoFs
in the case of the Coulomb potential. For the harmonic potential this value is smaller. The

®Note that in [22] the Legendre coefficients were required to have even slower decay rate of op = 0.69.
“For spherically symmetric potentials one can separate eigenfunctions into radial R,,;(r) and angular Y, (6, ¢) parts,

where the latter are spherical harmonics [31]. Here {n, /, m} are three quantum numbers.
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Fig. 1 Radial components of eigenfunctions for different potentials V(x). The dotted vertical line indicates
the smallest initial mesh size which will be used in our numerical calculations. a Coulomb. b Harmonic
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Fig.2 Error convergence rates for an eigenproblem with a single eigenpair. a Coulomb potential.
b Harmonic potential

asymptotic convergence rate of the /-adaptive PUM with the default enrichment radius
is very similar to that of the /s-adaptive FEM for both problems (compare green and red
lines in Fig. 2), which supports our theoretical findings.

The advantage of the /-adaptive PUM also depends on the enrichment radius with
respect to the underlying exact solution. To examine this effect we employ an initial mesh
obtained only by two global refinements of a single element and mark the 8 elements
adjacent to the origin for enrichment. With this approach we effectively consider a larger
enrichment domain [— 5;5]2 instead of [— 2.5;2.5]3. Importantly, the numerically non-
zero part of the underlying analytical solution will be almost fully contained in those 8
elements (see Fig. 1b). From the numerical results we observe that for the most refined
stage the s-adaptive PUM displays an error which is about 6 orders of magnitude less than
the same method with the smaller enrichment domain (compare purple and green lines
in Fig. 2b).

For the case of a single eigenpair, the sp-adaptive FEM performs remarkably well and,
unless a larger enrichment radius is used in #-PUM, it converges to the higher tolerance
with fewer number of DoFs (compare blue and green lines in Fig. 2).

Now let us turn our attention to a more realistic scenario where one seeks multiple
eigenpairs whereby an a priori knowledge is available only for the first eigenfunction.
Figure 4 plots the convergence of the first 5 eigenvalues for the Coulomb potential and
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Fig.3 Cross-sections of the final adaptive meshes for the Coulomb potential when solving for a single
eigenpair. a h-adaptive FEM (linear). b h-adaptive FEM (quadratic). ¢ hp-adaptive FEM. d h-adaptive PUM
(linear)

the first 4 eigenvalues for the harmonic potential for the different methods. For both
problems the s adaptive PUM again has remarkable convergence properties, superior to
h-adaptive FEM. It is important to note that even though in the PUM the enrichment
function corresponds to the first eigenfunction only, other eigenpairs in the case of the
harmonic potential tend to converge faster than the standard /-adaptive FEM case, as can
be observed in Fig. 4b. The same applies to the spherical orbital at the second energy level
of the Hydrogen atom; see Fig. 4a where the corresponding eigenvalue in the PUM case
displays a faster convergence rate than the others on the same energy level.

For the Hydrogen atom, in the case of the sp-adaptive refinement one observes a supe-
rior convergence rate of the first eigenvalue, whereas eigenvalues from the next energy
level have errors that are comparable to the /i-adaptive linear FEM. A possible issue could
be related to the smoothness estimation on elements with hanging nodes. In particular it
is observed [44] that the smoothness is overestimated when using similar methods, albeit
based on Fourier coefficients. This leads to unnecessarily high order polynomial degrees
in these areas. Clearly, further investigation is required to resolve this problem.

Density functional theory
Finally, we apply the here considered FE approaches to the Kohn—Sham density functional
theory. As a first test problem we consider a single He atom which has a single doubly

Page 9 of 23
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Fig.4 Convergence of eigenvalues from the first two energy levels for the Schrédinger equation in the
course of adaptive refinement. Red lines denote the lowest eigenvalue, whereas blue lines correspond to
degenerate eigenvalues on the next energy level. a Coulomb potential (4 out of 5 eigenvalues are
degenerate). b Harmonic potential (3 out of 4 eigenvalues are degenerate)

occupied state, i.e. N, = 2 and N = 1. The ground state energy from the radial solution is
Ep = — 2.834289. Enrichment functions for PUM are obtained from numerical solution of
single atom Schrodinger equations, depicted in Fig. 5a. The atom is placed at the origin in
the domain = [— 10; 10] with the homogeneous mesh of size /# = 2.5. Eight elements
adjacent to the atom are enriched.

Figure 5b compares the i-adaptive FEM, hp-adaptive FEM and h-adaptive PUM. One
immediately recognizes that the PUM leads to a much faster convergence in terms of
DoFs and gives about an order of magnitude advantage in terms of the absolute value of
the error. The linear s#-adaptive FEM would require ten times more DoFs to achieve the
same accuracy. The ip-adaptive FEM displays an exponential-like decay and approaches
the accuracy of PUM at higher number of DoFs.

In the second test problem we consider a CO molecule in the domain Q = [— 10;10]>
at the (equilibrium) distance 2.1. In order to estimate the ground state energy, we fit the
total energy obtained by /#-FEM at the last 3 mesh refinement steps to In(|E" — Ey|) =
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Fig.5 Finite element solution of He atom. a Scaled radial solution. The dotted vertical line indicates the
enrichment radius. b Convergence of the error in total energy of He atom for various FE methods

C + qIn(DoFs) with constraints C > 0, Ey < E”, g < 0. Using this approach we estimate
the limit of the ground state energy to be Eg = — 112.47107. This renders a bond energy®
of — 0.5775, which compares favourably to the value — 0.578 reported in [45]. This gives us
confidence to use the estimated ground state energy value in convergence studies, which
are presented in Fig. 6.

The enrichment functions for PUM are obtained from the numerical solution of single
atom Schrddinger equations; see Appendix B for details. The scaling of those functions are
not important for PUM, so Fig. 6a depicts radial solutions normalized so that the value of
the 1s and 2s orbitals are unity at the origin. It is generally possible to use all eigenfunctions
from the radial solution as enrichments around each atom in the radius of a few atomic
units. However, extra care must be taken not to render the resulting FE space to have
linearly dependent basis functions. Figure 6a clearly indicates that given small enough
elements (on the order 0.1 a.u.), enriching with both 1s and 2s single atom radial core
electrons solutions would make the FE space degenerate. Our current implementation of
PUM DFT only supports enrichment in non-overlapping domains. Therefore for the CO
molecule we have to start from a relatively fine mesh, which in the course of 4#-adaptive
refinement may render the basis enriched with multiple functions linearly dependent. To
avoid this, the PUM results for the CO molecule are obtained by enriching 8 elements
adjacent to each atom with its 1s orbital only. Scaling of the 1s function to unity at
the origin of the enrichment spherical function improves the condition number of the
resulting matrices.

Figure 6b compares the convergence characteristics using the /-adaptive FEM, hp-
adaptive FEM and /i-adaptive PUM. The energy error convergence rate from s-adaptive
FEM compares favourably to the expected rate of O(h?), which can be approximated
by O(DoFs~2/3). Remarkably, the chosen smoothness estimate used in the sip-adaptive
FEM and its extension to multiple vectors do not lead to an increase in efficiency in terms
of the number of DoFs as compared to /s-adaptive quadratic FEM. The h-adaptive PUM
displays the same convergence rate as s-adaptive FEM and is, as expected, more accurate.
This, however, comes at the expense of having a worse condition number for the resulting
matrices and the necessity to use higher quadrature order to perform sufficiently accurate
numerical integration. For this example and the chosen enrichment radius, the differ-

8Single-atom energies of C and O atoms are — 37.42426 and — 74.46933, respectively.
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Fig.6 Finite element solution of CO molecule. a Scaled radial solution of single atoms. The dotted vertical
line at 0.5 indicates the enrichment radius. b Convergence of the error in total energy of CO molecule for
various FE methods

ence in energy error between the two approaches is less than one order of magnitude. By
comparing these results to those presented earlier for H and He atoms, we hypothetize
that a larger enrichment radius is required to make the PUM advantageous compared
to the h-adaptive FEM. Our current implementation of PUM DFT, however, only allows
enrichment in non-overlapping domains, which limited the enrichment radius for the CO

example.

Conclusions

In this contribution we have applied and critically compared the /- and hp-adaptive
FEM, and the h-adaptive PUM to the relevant PDEs in quantum mechanics, namely the
Schrodinger equation and the Kohn—Sham all-electron density functional theory. The

main findings are summarized below.

+ The PUM renders several orders of magnitude more accurate eigenvalues than the
standard FEM when solving the Schrodinger equation for the lowest eigenpair with
Coulomb and harmonic potential. For the case when more eigenpairs are sought
but only the lowest eigenvector is introduced as an enrichment, the PUM is still
more accurate, especially for the lowest eigenvalue. Remarkably other eigenvalues
also exhibit a faster convergence. The results from DFT calculations indicate that in
order to keep this advantage, a reasonably large enrichment radius is needed.

« For problems where a single eigenpair is being sought, the sp-adaptive FEM with the
here considered smoothness and residual error estimators results in a more accurate
solution with fewer number of DoFs as compared to /s-adaptive PUM and FEM.
However, for the case of multiple eigenpairs this approach did not lead to satisfactory
results. Overall we find s-adaptive PUM to be a more robust solution method to reach
the required accuracy even with relatively small enrichment domains.

« Local interpolation error estimates are derived for the PUM enriched with the class
of exponential functions. In this case the results are the same as for the standard FEM
and thereby admit the usage of the error indicator (7).

+ For the PUM DFT calculations the convergence rate of energy error and the residual
error estimator are the same for all studied examples. Thus our numerical results
confirm that Eq. (7) can be considered as a reliable error indicator for problems in

quantum mechanics.
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+ An element view to the implementation of PUM in FEM codes based on hexahedra
is proposed (see Appendix C). As a result, continuity of the enriched field along the
edges with hanging nodes is enforced by treating FE spaces produced by each func-
tion in the local approximation space separately. The resulting algebraic constraints
are independent on the enrichment functions. This allows one to directly reuse algo-
rithms written for enforcing continuity of vector-valued FE spaces constructed from
a list of scalar-valued FEs.
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Appendix A: Local interpolation error estimates

In this appendix, the local interpolation error estimates required for the derivation of the
error indicator (7) in the case of PUM are obtained for linear finite element approximations
enriched with f(x) = exp (—u |x|?), where 0 < u € Rand 1 < p € N. These are

HV - qh"‘ L2(K) < ekhi Wi () » "
1

< Cehig IVIk1 o) (13)

h
HV —1 V‘ 2(e)
where, as usual, v : © — R is a scalar-valued function, which is assumed to be at least
in H(2), 4" is a quasi-interpolation operator (of the averaging type), K is an element
of the discretization P” of Q, e C 3K is an edge of K. Also, ix measures the size of K,
wk is the patch of elements neighboring K including K itself. Finally, ¢k, c. € R are the
interpolation constants independent of the mesh size.
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We fix the notations to be used throughout the appendix and make assumptions that
are conventional for this kind of analysis. For the sake of simplicity and without loss of
generality, we elaborate here for the two-dimensional setting. The obtained results are
valid in three dimensions as well.

First, we assume that the partition P of @ C R? consisting of open and convex quadri-
laterals K is shape-regular (or non-degenerate), as well as locally quasi-uniform in the
sense of [46,47]. For every K and its edge e we define hg := diam(K) and /4, := |e| is the
length of e. For every node i in P” we denote by w; the union of quadrilaterals connected
to node i and set /,, := diam(w;). Furthermore, for every K, wx represents the patch
containing K and the first row of its neighbors; it is then set /4, := diam(wg).

Also, in what follows, by the notation a < b we imply the existence of a positive constant
C independent of & and b such that a < Cb. Then a ~ b means thata < banda 2 b
hold simultaneously. The symbol | - | will be used to denote either the H!-seminorm (as
e.g.in (12) and (13)) or the length of a linear segment in R? or the area of a plane domain
in R2. With these notations at hand, one can show that |[K |% ~ hg, |a)i|% ~ hg, and
|w1<|% ~ Mgy . Furthermore, the shape regularity of the mesh P’ ensures that ki, ~ hg,
whereas its local quasi-uniformity implies that /g ~ Fo), ~ hey .

Finally, we also recall useful inequalities, which are

« the Poincaré-type inequality (see e.g. [48]):

1
Hv—— vdx

He 1
< —1v , YveH 3 14
ol /., =7 | |1-11(w) (w) (14)

L2(w)

where w C R” (n = 2, 3) is a Lipschitz domain and 4, := diam(w);
« the scaled trace inequality (e.g. in [49], Lemma 3.2):

_1 1
Vllz2) S e * WVllz2) + Hé Wiy, Vv € HY(K). (15)

Quasi-interpolation operator
Herein, we construct an interpolation operator for obtaining the local error estimates (12)
and (13).

Let V := HY(Q) be an admissible space and V" be its (enriched) finite element coun-
terpart

V=1V e C(Q) v (x) =) aiNi(x) +f(x) ) biNi(x)

iel* iel*

+ Z ¢iNi(x), ap,b,cie Ry CV, (16)

jegstd

where I* is the set of all enriched nodes of P” and I*¢ is the set of standard, i.e. non-
enriched nodes of P#; I* N Is'd = (. Recall also that N; in our case is the Qs -shape
function associated with node i and supported on w;.

Explicit construction of the operator ¢ : V — V' implies the explicit pattern of
assignments of a;, b;, ¢; € R through a function v € V. In the case of the enriched FE
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approximation (16), the major challenge in deriving ¢” is imposition of the constant-
preserving property on ¢”, which should be fulfilled on every element K € P” regardless
the element type (see Fig. 7).

The operator g : V' — V" with the desired property reads as follows:

[ ol L :
o= 3|y [ vy | 100 32 [ [ vy oo

iel*

. [| a v(ydy]N(x) 17)

jestrd.

with all notations as in (16) and where x;, entering the second term, denotes the coordinate
of a node i. Below, for the proposed quasi-interpolation operator of the averaging type
q" we establish that ¢”"c|x = ¢ on a standard element (note this is a classical result for a
non-enriched FEM) and, more importantly, that qclx = c+ O(h’;) on a fully-enriched
and a blended element.

Estimates

Preliminaries

The three estimates that we start with are basic for the following local interpolation error
analysis. On every K € PX and its node i it holds that

1
||Ni(x) ”LZ(K) S hio HNI(X) ”Lz(e) S h12<: (18)
1 _
‘m/ V(Y)dY‘ <t IVl z2(0k) + IV H wg) - (19)
and
S (x)
2 =14+ 0. (20)
S (i) K

Results (18) rigorously follow from the isoparametric concept and related properties, see

e.g. [50] for details. We note that they may be also derived in a less rigorous manner owing
1 1

to a boundedness of the basis function N; on K along with | K| 2~ hy and |e| = hZ ~ h?(.

| D fully enriched
A y

|
|
I
I > partly enriched
|
|
|
|

(blended)
|
| | standard

Fig.7 Types of elements in mesh P with respect to the imposed enrichment
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The inequality (19) is obtained as follows:

1
f viy)dy
|w;] w;

<l ™ [ vy dy < loil 2 Wl 2w
wj

S e W2y + VI )
Here we used the Cauchy—Schwarz inequality, |wi|% ~ hgy, ~ hi and also the extension-
related result IVIz2(0) < IVI22(0k)-

Finally, to show (20) we explicitly use the properties of f (x). For any fixed K, x € K and
x; € K being one of its nodes, we have the following upper bound estimate:

00 _ expluixil?) _ exp (u[max, g xI]") _ exp (u [miny g x| + hic])
fxi) eXP(/HXV”) exp (u [ming g xI]") = exp (u[min, g IxI])

p—1
=1+ up |:min |x|j| hig + h.o.t. in {min x|, hK}
xekK xekK

p—1
=140 ([min |x|] hK) . (21)
xekK

Notice that due to boundedness of min, _z |x| for a given fixed K, there always exists€ > 0
such that min gz |x| = e/g. Using this in (21), we obtain

p—1
[min |XI] hg = P iy,
xekK

yielding, as a result, % <1+ O(hﬁ).

The lower bound estimate can be found similarly:

00 _ expluixil) _ exp (u[ming g IX|]")  exp (u[min, g xI])
f&x:)  exp(ulxlP) ~ exp (u[max, |x|]p) ~ exp (u [min g x| + hK]p)

p—1
=1—pup |:min |x|:| hx + hoot. in {min x|, hK}
xeK xeK

p—1
=140 ([min |x|] h]() )
xeK
and, eventually, f ) >1+4+ O(hi). The result (20) then follows.

Stability of g" in L2-norm
The next step towards (12) and (13) implies obtaining the so-called stability result for the
constructed qh . Using (18)—(20) one straightforwardly shows that

"] , S Wiz + i Wl (22)

L2(K)
and

_1 1
h1(2 ”V”Lz(w[() + h12< |V|H1(w1<) . (23)

h <
Hq Y 12(e) ™
These estimates indeed hold for every K regardless of its type (standard, blended,
enriched). Note that for a standard non-enriched FEM and the resulting interpolation
operators, the estimates (22) and (23) are classical. We have obtained and proved them
for our specific operator g” adopted for the current enriched FEM setting.
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Constant-preserving property of qh
The final ingredient required for obtaining (12) and (13) is the determination of how “well”
the constructed ¢’ reproduces the constant on an element K, depending on its type. This
constant-preserving property of the operator is of major importance particularly in the
case of enriched FEM.

The required result on a standard (non-enriched) element K follows immediately.
Indeed, in this case

4

vl = ; [ﬁ /w | V(y)dy] N/

and the partition of unity Zl | Ni(x) = 1 on K yields g"c|x = ¢, ¢ = const.
The situation on a fully-enriched and partly-enriched (blended) element is more delicate.
In the case of a fully enriched element we have

4

1
=3 [ st || vy i
Z |:2f (x))|wil /a) Y)dy] Nifx)

i=1 ¢

that, owing to (20), results in

4
el = —c+ 5 Z—N( = %c+ %c[l + O(H)] Y Ni(x) = ¢+ O(Hk).
i=1

Now, let K be a blended element, implying the representation:

14

h _ 1 .
7"Vl = ; [mi' /w | v(y)dy} Ni(x)
- 1
+ /() Z [m f V(Y)dY] Ni(x)

+ Z L ,|/ V(de}N(x)

={+1

where £ € {1, 2, 3} is the number of enriched nodes of K. Adding and subtracting the first
sum in the above expression, enables us to rewrite it as follows:

14

ool =~ 3 [1 |
q"vix)|x = ; [leil A V(y)dy] N;(x)
‘ 1
X)ZI: [m fw i V(Y)dy] N;(x)

- 1
’ ; [m /a)i V(Y)dy] N;(x).

Note that the last term contains the summation over all four nodes and is the standard
(non-enriched) FE contribution which will automatically reproduce a constant. We then
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need to estimate, in this context, the remaining part constituting of the first and the second
sums. We obtain,

d'elx = cz I8 1 N z

=1

@—1’ i(x)+¢

L
X;)

1’Ni(x) teo= %CO(M;;);N,-(X) +o=c+O(y),

where (20) was also used.

Proof of local error estimates (12), (13)

The derivation of the estimates for Hv — qhv“ 12(K) and || v— qth 12(e) is based on a com-
bined use of the above stability results for ¢”, the Poincaré and the scaled trace inequalities
(14) and (15), respectively, as well as the constant-preserving property results. First, due
to linearity of 4", we have

Hv—qhv :Hv—c—qh(v—c)—i—c—th

L2(o) 12(0)

+Hc—

< v = el + " v =) (4)

2(0) T ooy

where ¢ = const and where, for the sake of brevity, we set 0 = {K, e}. We are now in a
position to dissect every term in (24) in either case of o.

When o = K in (24):

By the Poincaré inequality (14), it holds that

v —clliz@y < v —=cllize) S M IV IEL o) » (25)

where one can choose ¢ = |wx |~} fwK vdx and use k1, ~ hi.
By the stability estimate (22) and the Poincaré inequality, it holds similarly to the above

that
=), s S IV = €l A ¥ =l S i Wlan o (26)
Furthermore, using the results of “Constant-preserving property of g section we obtain
Hc — th 200 =0, if K isstandard, (27)

and
Hc — th 200 = O(hf(ﬂ), if K is fully enriched or blended. (28)

In the former case we also use that ||1]|;2x) = |K|% ~ hg.

Using (25)—(28) in (24), the resulting local interpolation error of type (12) follows. Note
that in the case of fully enriched and blended elements the term O(hI;<+1) that appears
in the corresponding upper bound can be neglected, being the higher order term with
respect to the leading one /g |v|1

When o = e in (24):

(wK)*
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By the scaled trace inequality (15), it holds

_1 1 1
||V — C||L2(e) 5 he 2 ||V — C||L2(K) + heZ |V — C|H1(K) 5 h12< |V|H1(w1<)’ (29)

where we also use /1, ~ hy along with result in (25).
By the stability estimate (23) and the Poincaré inequality (14), we obtain the result that

_1 1 1
th(v —¢) 20 S v =l + i 1V = €l we) S Bic VI o) - (30)
Finally, using the results of “Constant-preserving property of ¢"” section we derive
Hc - th =0, ifK isstandard, (31)
L2(e)
and
h +% . . .
Hc —q'c 200 = (9(hf< ), if K is fully enriched or blended. (32)

1 1
In the former case we also use the fact that [|1(|2(,) = Iel% =hi ~ hi.
Using (29)—(32) in (24), the resulting local interpolation error estimate of type (13)
3

follows as well. Again, in the case of fully enriched and blended elements the term O(h})
that appears in the corresponding upper bound can be neglected, being the higher order
1

term with respect to the leading one 42 V|51, )-

Appendix B: Single atom radial solution
The radial solution of a single atom with charge Z is obtained by solving the following
coupled problem

1d(,d
a5 )R = .
11d d I+1]1
[‘5725(’2&)*[ o ”‘p”)]kfl:e“’[{f’ ey

20 +1 2
P=20 SRy, (35)
n ]

where n and [ are the main and azimuthal quantum numbers, f,;; are occupation numbers,
V is the effective potential and RZ and R? are respectively radial components of the
eigenfunctions and electrostatic potential. The radial component of the eigenfunctions
are normalized by fooo rZ(R:fl)zdr = 1. On the change of variables L[:l/; = rR:fl and
U® .= rR?, the system takes the form
2
%u"’ =d7rp (36)

1d>  [I+1]1
[—-— Vo r)} Ul = e}, (37)

2 dr? 272
p=22 Gty (38)
w1
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which together with the following Dirichlet boundary conditions

u'©0) =0 (39)
U’ (00) =0 (40)
u?©0)=0 (41)
u?(co0) =z (42)

can be solved using the standard finite element method in a sufficiently large but finite
domain. The eigenfunctions are then given by v, = R:fl Y}, where Yy, are spherical
harmonics.

Appendic C: PUM implementational details

An enriched finite element class has been implemented for the general purpose object-
oriented C++ finite element library deal . IT [30]. The implementation is based on the
FESystemn class, which is used to build finite elements for vector valued problems from
a list of base (scalar) elements. What differs from that class is that the developed FE
implementation is scalar, but built from a collection of base elements and enrichment

functions®

w(¥) = Y Ni¥ui + Y fied) | Y N |, (43)

i . _rpum
iel keS jely

where [ is the set of all DoFs with standard shape functions (see Fig. 8a), Ilfum is the set
of all DoFs corresponding to shape functions enriched with f; (x) (see Fig.8b) and S is the
set of enrichment functions.

As distribution of DoFs in deal.IT is element based, we always enrich all DoFs on
the element. To restore C° continuity between enriched and non-enriched elements,
additional algebraic constraints are added to force DoFs 7 associated with Njzf; on the
face between the enriched and non-enriched elements to be zero. This is equivalent to
enriching only those shape functions whose support is contained within the enriched
elements.

The h-refinement in deal . IT is implemented using hanging nodes. In this case, extra
algebraic constraints have to be added to make the resulting field conforming. We build
these constraints separately for the non-enriched FE shape functions and enriched shape
functions; that is, the following spaces are separately made conforming: {N;(x)}, {Njo(x)},
{Nj1(x)}, etc. To illustrate this idea consider two separate FE spaces shown in Fig.8.
We assume that functions in the first space are non-zero everywhere in the domain,
whereas functions in the second space are non-zero only in the left part, marked by
the blue shading. Therefore we do not have to introduce any DoFs in the right part,
the underlying elements are denoted by Qero. The standard procedure implemented
in deal.IT [27] will enforce continuity of the vector field by introducing algebraic
constraints for DoFs associated with hanging nodes'® (3, 5,17, 19), plus constraints for

°This is a generalization of (4) which allows to use different FE spaces for each enrichment function. In practice one

uses linear shape functions for enriched DoFs and possibly higher order shape functions for non-enriched DoFs.
OFor linear FEs, the value at the hanging node is the average of the values at adjacent vertices, for example us =

1/2[ug + us].
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a b
1 0 11 15 14
Q1 Q1 Q1 Qzero
4 8 2 12 18 17 16
(O Q1 Q1 Q1
7 6 5 21 20 19
Q: Qzero
(O} Q1 Q1 Q1
10 9 8 13 24 23 22
Fig. 8 Treatment of hanging nodes for the h-adaptive PUM. Q; denotes (bi)linear FE, whereas Quero denotes
elements on which functions in the FE space associated with the enrichment function f; (x) are zero and thus
no DoFs need to be introduced. a First FE space (standard). b Second FE space (enrichment)

DoFs 14, 16, 22 to make functions in the second FE space zero at the interface between
Q1 and Qero. We can observe now that if we take the constrained scalar field from
the first FE space and add a scalar field from the second FE space multiplied by the
enrichment functions f(x) (continuous in space), the resulting scalar FE field will also
be continuous. Thus we arrive at a conforming /-adaptive PUM space where only some
elements are enriched. With reference to Fig. 8, the resulting PUM field will have enrich-
ment associated with DoFs 23, 24, 20, 21, 17, 18, 15 whereas DoFs 22, 19, 16, 14, 17 will be
constrained.

In this procedure the algebraic constraints do not depend on the enrichment func-
tions and are equivalent to those one would have for the vector-value bases build upon
the same list of scalar FEs. Therefore, no extension of the existing functionality to build
algebraic constraints was necessary. This allows us to reuse the code written for the
FESystem class, which can be used in deal.ITI to build a vector-valued FE from
a collection of scalar-valued elements. Another remarkable benefit of this approach is
that existing code can be used to transfer the solution during % -adaptive refinement
from a coarse to a fine mesh. The reason is that prolongation matrices for enriched
elements are equal to their vector-valued counterparts under the condition that all
child elements are also enriched. Yet another advantage of implementing a dedicated
enriched finite element in deal . IT library relates to the numerical integration of jump
terms in the Kelly error indicator (see “Error estimator” section). Here, care needs to
be taken in computing contributions to cell errors from faces with hanging nodes. Had
the authors pursued an implementation of PUM where values and gradients of addi-
tional basis functions are evaluated manually via the product rule in the course of
numerical integration, a completely separate function would have to be implemented
to integrate the jump terms in error indicators, which is not a straight-forward task. We
believe that the implementation outlined above is general enough to allow PUM to be
applied using deal.IT to other partial differential equations such as crack propaga-
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Fig.9 h-adaptive mesh refinement and shape functions associated with the central node on the domain
[0, 112 for the standard and enriched element. a Mesh. b Bilinear. ¢ Bilinear enriched with exp(— |x|)

tion in continuum mechanics. Figure 9 depicts an example of enriched and non-enriched
shape functions for the case of s-adaptive refinement with hanging nodes in two dimen-

sions.
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