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Abstract

We devise a finite element methodology to trace quasi-static through-thickness crack
paths in nonlinear elastic solids. The main feature of the proposed method is that it can
be directly implemented into existing large scale finite element solvers with minimal
effort. The mesh topology modifications that are essential in propagating a crack
through the finite element mesh are accomplished by utilizing a combination of a
mesh refitting procedure and a nodal releasing approach. The mesh refitting procedure
consists of two steps: in the first step, the nodes are moved by solving the elastostatic
equations without touching the connectivity between the elements; in the next step, if
necessary, quadrilateral elements attached to crack tip nodes are split into triangular
elements. This splitting of elements allows the straightforward modification of element
connectivity locally, and is a key step to preserve the quality of the mesh throughout
the simulation. All the geometry related operations required for crack propagation are
addressed in detail with full emphasis on computer implementation. Solving several
examples involving single and multiple cracks, and comparing them with experimental
or other numerical approaches indicate that the proposed method captures crack
paths accurately.

Keywords: Mesh refitting method, Crack propagation in nonlinear materials,
J-integral, Nodal releasing technique, Fracture of nonlinear solids

Background
Objective andmotivation

One of the main reasons why devising a computational methodology to deal with fracture
mechanics is challenging, is the fact that cracks propagate in arbitrary directions through
the material. If the dynamics of the crack were known apriori, one can design an optimal
mesh that allows the propagation of a crack through the pre-existingmesh at each instant.
Since this is not the usual case, the mesh has to be repeatedly modified to accommodate
the advancement of cracks within the finite element (FE) mesh. The objective of this
work is to devise a simple procedure to achieve the required mesh modifications, which
enables us to model complex crack paths through nonlinear elastic solids. The present
work is motivated by our interest in developing computational methodologies for fluid-
structure-fracture interaction (FSFI) [1] that model the following phenomenon: when a
flexible structure interactswith the fluid flow, the fluid loading induces elastic deformation
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aswell as fracture failure of the structure, and the fluidmediumfills the crack opening. The
first step of extending fluid-structure-interaction (FSI) methods to handle FSFI is to equip
the structural analysis with a fracture mechanics solver. This is achieved in this work by
developing a crack propagation approach which facilitates, with minimal implementation
efforts,

• to update the existing large scale structural mechanics solver into a robust tool to
handle single and multiple quasi-static cracks

• to couple the crack propagation method with existing FSI approach to model FSFI.

The method devised in this paper is implemented in BACI, a large scale parallel multi-
physics solver developed at our institute. It is to be mentioned that the objective of the
present work is not to devise a method which is competitive to the available class of meth-
ods in terms of computational efficiency or accuracy. Rather, the focus is on devising a
simple crack propagation approach, which circumvents the complexities associated with
them (as discussed below) to aid the development of an FSFI solver.

Brief overview of relevant methods

The presentwork is based on fracturemechanics [2–12] framework rather than on contin-
uum damage mechanics [13,14] because we model the propagation of sharp cracks in the
material. Majority of the existing computational methods employing fracture mechanics
principles utilize either one of the following frameworks:

• Adaptive remeshing
• Enriched partition of unity

These methods are very successful and find plethora of applications but implementing
them in an existing (large scale) FE package pose several challenges.

Adaptive remeshingmethods

These methods, as the name implies, adaptively refine the mesh in the crack tip vicinity
where the solution dictates the dynamics of crack propagation, and coarsen themesh away
from the crack tip. Theymake use of special data structures [2,3,15], togetherwith either a
globally adaptive remeshing procedure [4–6] or a localmeshmodification algorithm [7] to
accommodate crack propagation at arbitrary directionswithin the computational domain.
Each time when a crack extends, these methods introduce several new nodes into the
mesh. As a result, they require mesh generation related algorithms to modify the mesh
appropriately. Usually in a large scale FE code which is generalized to address multiscale
and multiphysics problems, such fracture-specific and mesh-modification routines are
neither available nor easy to implement in a generalized way.

Enriched partition of unitymethods (EPUM)

These methods represent the recent developments in computational fracture mechanics.
They include extended finite elementmethods (XFEM) [16–19] and generalized finite ele-
ment methods (GFEM) [20,21], and these class of methods are originally developed with
an objective to eliminate the adaptive remeshing and its associated complex and time-
consuming operations. The fundamental idea behind this method is to enrich the finite
element solution space with additional problem-specific enrichment functions. The crack
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can propagate within the interior of an element, and hence it is possible to simulate crack
propagation without modifying the underlying discretization. Though these methods are
demonstrated to be powerful, the following points hamper their easier implementation
into an existing structuralmechanics solver. The numerical integration of singular enrich-
ment functions is still an active area of research in EPUM [22–28]. Moreover, these meth-
ods require the implementation of complicated geometry-mesh intersections for which
robustness is always an issue, especially in 3D. Also, the number of degrees of freedom
attached to a few nodes changes each time when the crack advances. Most importantly,
except a few (e.g. [29–31]), all studies are focused on crack propagation through linear
elastic materials mainly because the formulation of enrichment functions in nonlinear
regime is still an active area of research.
Owing to the aforementioned implementation issues, neither EPUM nor adaptive

remeshing methods are ideal for developing fluid-structure-fracture interaction meth-
ods. This is because FSFI methods have to handle the combination of challenges from
two sources: those arising from crack propagation besides another big challenge from FSI.
The aim of this work is to devise a simple crack propagation approach that is suitable
specifically for developing FSFI.
The method developed in this work, as will be explained later, shares a similarity with

arbitrary Lagrangian Eulerian (ALE) based methods that it involves a mesh-deformation
step. Therefore, ALE basedmethods for fracturemechanics are briefly recalled. The use of
ALE in computational fracture mechanics is not widespread. Only few studies employed
ALE to address crack propagation problems, and a brief account of majority of such works
is provided below.

Existing ALE based crack propagationmethods

Though ALE formulations are widely used in several solid mechanics applications (refer
to [32] for an overview), less than a handful of researchers used them to handle fracture
mechanics problems. The first use of ALE is described in [33,34] to model dynamic crack
propagation. The capability of thesemethods are demonstrated by simulating a fewmode-
I dynamic crack propagation problems, and comparing them with analytical relations.
In this work, the material separation is not explicitly modeled. Moreover an existing
Lagrangian FE code framework cannot be directly extended to include this model. In
order to achieve this, an improved method has been developed in [35], which is applied to
simulate mixed-mode dynamic crack propagation examples. Another method that uses a
mesh motion algorithm based on an isoparametric mapping is presented in [36], in which
a self-similar dynamic crack propagation problem in double cantilever beam is solved.
They conclude that ALE methods are more robust, and can be a powerful alternative to
remeshing. For a better understanding of dynamic crack growth in Fibre-reinforced plastic
(FRP) composites, an ALE based method together with a contact mechanics approach is
developed in [37]. A very fine mesh in the neighborhood of the crack tip is maintained
throughout the simulation with the help of a remeshing procedure. This method is then
used to study the interfacial debonding phenomenon in FRP strengthened reinforced
concrete beams. Another attractive method that combines the advantages of element free
Galerkin (EFG)method andALE is presented in [38]. Thismethodmoves a cloud of nodes
alongwith the crack tip, so that the vicinity of the crack tip is always adequately resolved.As
EFG is ameshlessmethod that does not require nodal connectivities, such implementation
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of ALE to maintain high nodal density in the preferred region is accomplished effectively
without resorting to remeshing strategies (refer to [39] for complications involved in
implementing such a method in mesh-based FEM). The method is successfully applied to
simulate wave propagation and dynamic crack propagation.
To summarize, to our knowledge neither a complex trajectory of a single crack nor

simple propagation of multiple cracks within a material is modeled until now using ALE
based methods. This is predominantly due to the fact that the mesh modification method
used in ALE, in its classical sense, cannot handle the mesh topology changes that are
introduced by advancing a crack through the FE mesh. Continuous remeshing is manda-
tory to eliminate the associated mesh tangling problems. In this work, this is avoided by
using an additional step in the mesh refitting procedure that allows tomodify the element
connectivity locally to preserve the quality ofmesh, as will be explained in the later section.

Structure of the paper

The remainder of the paper is structured as follows. The next section briefs the govern-
ing equations and the boundary conditions for the problem. Then the complete crack
propagation algorithm together with all the details necessary for computer implementa-
tion are presented. Finally several numerical examples to demonstrate the accuracy of the
proposed method are described.

Governing equations
At reference time t = t0, let the structure occupy the domain �s

0, with �s denoting the
boundary of the structure (Fig. 1). �s is divided into three non-overlapping portions such
that �s = �s

D ∪ �s
N ∪ �s

c in which �s
D and �s

N are Dirichlet and Neumann portions of
the boundary respectively, and �s

c denotes the crack surfaces which contain always two
physical crack faces�s

c = �s
c+ ∪�s

c−. The balance of linearmomentum equation is written
as,

ρsd̈s − Div (FS) = ρsbs in �s
0 × (0, T ) (1)

Γs
N

Γs
D

Γs
c

nc

ns

Ωs
0

h̄s

Fig. 1 A schematic representation of a structural domain containing a crack
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where ρs is the density of the structure, F is the deformation gradient, S is the second
Piola-Kirchhoff stress tensor, bs represents externally applied body force per unit mass,
ds is the structural displacement and d̈s = d2ds

dt2 . T is the end time of the considered
time interval, and Div(·) is the divergence operator defined with respect to the material
reference frame.
Since this is an evolutionary problem involving second order time derivative, initial

conditions must be specified on ds and its first derivative ḋs = dds
dt

ds|t=0 = ds0 on �s
0 ; ḋs|t=0 = ḋs0 on �s

0 (2)

Over the boundary of the domain, Dirichlet conditions are specified on �s
D, Neumann

conditions are prescribed on �s
N , and the crack surfaces are assumed to be traction-free.

ds = d̄s on �s
D × (0, T ) ; (FS) · ns = h̄s on �s

N × (0, T ) (3a)

(FS) · nc+ = 0 on �s
c+ × (0, T ) ; (FS) · nc− = 0 on �s

c− × (0, T ) (3b)

Wedealwith hyperelasticNeo-Hookeanmaterials in thiswork. The strain energy function
for such material is given as

�NH = μs

2
(tr C − 3) − μsln J + λs

2
(ln J )2 (4)

where C is the Cauchy–Green tensor, J is the determinant of deformation gradient J =
det F, λs and μs are Lame’s constants.

Themesh refitting approach
The complete numerical methodology, together with the computer implementation
aspects, of the present approach are presented in this section. It is assumed that the
fracture behavior of the material is completely characterized by the J -integral.
The focus of the present work is to simulate through-thicknessmixed-mode quasi-static

crack propagation within a structure. The current work can be considered as an extension
of Tabiei andWu [40] which describes the implementation of a crackmodule in DYNA3D
FE package, and shares similarities with the method of Miehe and Gürses [3]. Both works
address crack propagation through linear elastic materials only. Moreover the complex
geometry related operations, like deciding the new crack tip nodes, are not addressed in
depth.These details are crucial for implementationof themethod.The approachproposed
in [3] was called an r-adaptive method, but in order to avoid confusion with complex r-
adaptive mesh redistribution methods [41,42], the present method is labelled as mesh
refitting approach. The following section presents the complete implementation details
of the present method. Though we simulate through-thickness cracks, for simplicity we
explain the geometry-related operations in 2D.
At each time step, the governing equations are solved by freezing the location of the

crack. Then, the solution obtained is used to perform crack propagation related operations
as described in Algorithm 1.
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Algorithm 1 Computational crack propagation procedure at each time step
1: Construct local coordinate system at crack tip
2: Compute vector J-integral
3: Check whether crack propagates or not, from crack propagation criterion
4: if Crack propagation criterion is not satisfied then
5: continue to the next time step
6: end if
7: Obtain the direction of crack propagation from crack kinking criterion
8: Find the new crack tip nodes
9: Apply mesh refitting procedure

10: Propagate the crack using nodal releasing technique

Solve the governing equations

The first step is to solve the structural dynamic equations by freezing the location of the
crack. The strong form given in Eq. (1) is multiplied by appropriate test functions (δds)
and are integrated over the structural domain to obtain the weak form which is stated as,
Find ds ∈ Wd such that for all δds ∈ Vd , the following holds

(δds, ρsd̈s)�s
0
+ (Grad δds,FS)�s

0
= (δds, ρsbs)�s

0
+ 〈δds, h̄s〉�s

N
(5)

where (., .)�s
0
and 〈., .〉�s

N
mean the standard L2-inner product over the reference domain

and Neumann part of the boundary, respectively.
The solution space and the test function space are defined as

Wd = {ds ∈ H1(�s
0) | ds = d̄s on �s

D} (6)

Vd = {δds ∈ H1(�s
0) | δds = 0 on �s

D} (7)

The above integral equations are dealt with nonlinear FEM for spatial discretization
and Generalized-α method for time discretization. The resulting nonlinear system of
algebraic equations are solved using Newton–Raphson method to obtain the solution of
displacement field (ds). For amore elaborate discussion of this well established procedure,
the reader can refer to the literature (e.g. [43,44]).

Perform computational crack propagation procedure

The displacement solution obtained from the previous step is used to perform crack
propagation procedure by computing vector J-integral. It involves seven discrete steps,
each of which are detailed below.

Step 1: Construct local coordinate system at crack tip

To compute fracture mechanics quantities from the FE solution, and to decompose these
quantities into their corresponding modes in a mixed-mode problem, it is essential to
construct a local coordinate system (ξ , η) at the crack tip (xc) as shown in Fig. 2. The base
vectors (e1, e2) associated with (ξ , η) can be easily constructed because e1 is the symmetry
line of the crack; e2 can be obtained by computing the normal to e1 in a right hand
coordinate system.

Step 2: Compute vector J -integral
The J -integral quantifies the strength of singularity at the crack tip in nonlinear elastic
materials [45]. Moreover, it is a single parameter that dictates whether the crack propa-
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Fig. 2 Construction of local coordinate system at crack tip. The shaded Quads represent finite elements

gates or not, and if at all it propagates in which direction it advances. Hence, it is essential
to accurately evaluate the J -integral.
With respect to the spatial configuration, the energy release rate along the direction of

a crack is defined as,

J =
∮

γj

(
wnξ − n · σ · ∂d

∂ξ

)
dγ (8)

where γj is the integration contour,w is the strain energy stored per unit deformed volume,
n is the normal to contour γj and σ is the Cauchy stress tensor. All these quantities are
defined in the current spatial configuration as shown in Fig. 3a. Since the current work

a b

Fig. 3 J-integral: a notation, b distribution of support function
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employs a total Lagrangian formulation, it is convenient to express the J -integral in the
reference configuration using pull-back operations. As shown in [30], it reads as

J =
∮

�j

(
WN
 − N · P · ∂d

∂


)
d� (9)

where �j ,W,N are the corresponding quantities in reference configuration, P is the first
Piola-Kirchhoff stress tensor and (
, H ) denote the crack tip coordinate system in the
reference configuration, which is given by its base vectors (E1,E2) in Fig. 3a.
In FEM, the contour integrals are cumbersome to implement because the material

variables are available only at the Gauss points. Interpolating these variables over the
desired contour presents complications, in addition to introducing interpolation errors.
Hence, several studies [46,47] have proposed the idea of converting the contour integral
into an integral evaluated over a finite domain around the crack tip by applying the
divergence theorem. This procedure is straightforward to implement, as it requires only
the quantities atGauss points of elementswithin the finite domain. The equivalent domain
form of J-integral for large deformation problems is given as [29,30],

J =
∫
S

(
∂d�

∂X
· P − W I

)
· ∇0(q) dS (10)

where S is the domain enclosed by�j , and∇0(q) is the gradient of support function q with
respect to the reference configuration.
In order to construct q, using nodal connectivity information, all the elements that are

located on n−layers around the crack tip (see Fig. 3b with n = 4) are considered. From
this, the elements connected to the crack tip are deleted. Then, all the nodes that are on
the outer boundary of this element set are located, and among these nodes, the one which
has the shortest distance (rmin) from the crack tip is chosen. Then the support function is
initialized to take a value of unity at the inner layer of nodes, and drops smoothly to zero
when the distance of a node from crack tip is more than or equal to rmin. The distribution
of q within the integration domain is given in Fig. 3b.

Note In this work, we assume that the crack surfaces are traction-free. However, in FSFI
applications, fluid loads are acting on the crack faces, and as a result an additional term
appear in the computation of J -integral. This is explained further in [1].

Step 3: Check crack propagation criterion

The crack propagation criterion determines whether the existing crack propagates
through the structure under the current stress state. Crack propagation occurs when
the driving force reaches or exceeds the material resistance. The J -integral provides a
measure of driving force, and its critical value (Jc) is assumed to be a material property,
which quantifies the material’s resistance to crack propagation.
The present work makes use of the vector J-integral based crack propagation criterion

proposed by Ma and Korsunsky [48]. This criterion requires, first, the calculation of
maximum strain energy release rate, which is given by the magnitude of J.

Gmax =
√
J21 + J22 (11)
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where J1 and J2 are the strain energy release rates along the direction of e1 and e2 respec-
tively, which are given by simple dot products J1 = J · e1 and J2 = J · e2.
The crack extension under the given loading conditions occurs, whenGmax reaches the

fracture toughness of the material (Jc),

Gmax ≥ Jc (12)

If the crack propagation criterion is not satisfied, then there is no need to perform the
remaining operations; the algorithm moves to the next time step to solve the governing
equations of the structure.

Step 4: Obtain the direction of crack propagation

After confirming that the crack propagates, the next logical step is to determine along
which direction it is going to advance through the material, which is provided by the
crack kinking criterion.
There are several methods put forward to determine the crack kinking direction, and

the most important methods are

• Maximum circumferential stress criterion [49],
• Minimum strain energy density criterion [50],
• Maximum energy release rate criterion (MERR)[48,51].

It is concluded in a comparative study [52] that the minimum strain energy density
criterion is less accurate, and the accuracy of maximum circumferential stress criterion
and maximum energy release rate criterion are equivalent in all the tests considered.
This work incorporates the maximum energy release rate criterion, proposed in [48],

which is consistent with the crack propagation criterion given in the last section. It is
stated that the crack propagates whenGmax reaches or exceeds the characteristic fracture
toughness of the material. MERR predicts the crack propagation direction (θp) to be the
direction of J, which is simply given as

θp = tan−1
(
J2
J1

)
(13)

It is to be remembered that θp is measured with respect to the crack normal, as indicated
in Fig. 2. Moreover, in this work, the extent of crack propagation is always set to be the
length of one complete edge of an element.

Step 5: Find new crack tip nodes

Having computed the crack propagation direction from J , the next essential step is to
determine the new crack tip nodes i.e, nodes in the FE mesh through which the crack
must be propagated. A geometry-based method is used in this work to identify the new
tip nodes.
The first step is to identify all the elements that are connected to the current tip node

(Fig. 4). Among the edges of these elements, the edge that is intersected by the propagation
vector is found. This intersecting edge is drawnwith a thick continuous line in Fig. 4. Then
the angles formed by the line joining the current tip node to the edge nodes, and the crack
propagation direction are calculated (φ1 and φ2 in figure).
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Fig. 4 Procedure to find new crack tip nodes

After getting the required intersecting edge, the next step is to check whether the crack
propagates along the diagonal. This is realized by the condition, φ1 ≤diag-tol (=0.25
radians in all the simulations). In this case, the diagonal node corresponding to φ1 is
marked as new tip node. Since the crack propagates through a diagonal of the element,
this elementmust be split along this diagonal to accommodate crack propagation through
the mesh, as explained in the next step.
If φ1 >diag-tol, then the non-diagonal node of the intersecting edge will be the next

new tip node. In either cases, all the new tip nodes (if there are multiple cracks, each crack
tip will have its own new tip node) are stored inRale. Moreover, the distance between the
intersection point and the new tip nodes, marked as δale in the figure, are computed and
will be used in the next step.

Step 6: Mesh refitting procedure

In this step, we refit the existing mesh in such a way that the modified mesh contains
an edge along which the crack can propagate. The mesh refitting procedure used in the
present work involves two discrete operations listed as follows:

1. Nodal repositioning
2. Splitting quadrilateral (Quad) elements into triangular (Tri) elements

In thefirst step, thenodes are repositionedwithout touching the elements.Thismeans that
the element topology (shape and total number of elements, or the connectivity between
elements) remains unchanged. The elements only deform due to the movement of the
nodes.
Nodal repositioning in this work is achieved by solving elastostatic equations but obvi-

ously any other mesh moving approach could be used as well. In this approach, the mesh
is treated as a linear elastic body, and the governing equations of the mesh movement
together with the boundary conditions are
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∇ · σm = 0 on �s (14a)

dm = 0 on ∂�ale (14b)

dm = δale onRale (14c)

where σm is the fictitious Cauchy stress tensor, dm denotes the displacements at each
node within the mesh, �s represents the whole structural domain, and ∂�ale denotes the
boundary for ALE computations: ∂�ale = �s

D ∪ �s
N ∪ �s

c. Displacements at the new crack
tip nodes are set to be δale that is computed in the previous step.
The above equations are solved to obtain the mesh displacement dm, which is used to

move each node in the mesh to its new location. After this mesh movement operation,
the new crack tip node is moved to the intersection point along the intersection edge (see
Fig. 4).
In the next step of the mesh refitting procedure, the Quad elements that are marked

to be split are cut into two Tri elements. This happens when the crack propa-
gates very close to the diagonal of a Quad element (Fig. 5a). This process does not
involve introducing new nodes into the mesh. By comparing Figs. 4 and 5a, the effect
of the mesh refitting procedure is clear: the new tip nodes are first moved to the
desired location using the nodal repositioning step, and then the Quad element is
appropriately split into Tri elements to enable crack propagation along the diago-
nal. In short, the combination of nodal repositioning and element splitting ensure that
after the mesh modifications, the crack propagates along an existing edge in the new
mesh.
One of the main reasons for the failure of ALE based methods in handling large defor-

mation or topology change is that such methods maintain their nodal connectivity during
the entire simulation. The element splitting operations used in the present work allevi-
ates this problem by enabling us to modify the connectivity between the elements locally.
This is an essential step without which the nodal repositioning method cannot handle
the change in mesh topology that is inherent to crack propagation problems, without
resorting to complicated and time-consuming remeshing procedures.

Fig. 5 Nodal release technique a splitting an element to allow crack propagation along diagonal, bmodify
connectivity locally near crack tip; the crack opening is shown only for visualization
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Step 7: Nodal releasing technique

The two previous steps have enabled us to identify new tip nodes, and to move these
nodes to match the computed propagation angle. However, the material separation is not
yet included within the FE procedure. In order to achieve this, and to form physical crack
surfaces, the nodal releasing technique is used.
In order to represent the material separation, the element connectivity at the current

tip node must be modified; a duplicate node is created at the same location where the
current tip resides. Few elements are released from the current tip node, and are assigned
with a new duplicate node. This, in turn, generates new crack surfaces. In order not to
destroy the FE mesh during this process, a consistent way of determining which elements
get duplicate nodes is used.
In this procedure, two angles are defined: one is φp already defined in Fig. 4, and the

other is the angle formed by the negative normal at crack tip to the propagation vector (φnn
in Fig. 5a). Then, for each element, the angle (φg ) formed by the line connecting current
tip to the centroid of the element and the normal is computed. The element is released
and gets the duplicate node, if φg /∈ [φp,φnn]. The elements that retain the current tip
node are shaded in Fig. 5a. After nodal releasing and modifying element connectivity, the
mesh close to the crack tip is plotted in Fig. 5b. At this point, the material separation is
introduced and all the crack propagation operation are completed.

Numerical examples
Several examples of varying complexity are solved to demonstrate the effectiveness of
the proposed method. These examples exhibit single and mixed-mode behavior, involv-
ing mono- and multimaterials. In order to closely examine the accuracy of the method,
crack paths obtained from the present method are compared with experiments or results
obtained from other methods in literature.
The first two examples consider stationary cracks, and the quantities calculated are

compared with XFEM studies [30,31]. These examples consider highly nonlinear effects
evident from the crack tip blunting observed in the results. All the other examples involve
complex crack propagation through the structure.

Crack tip blunting

Consider a single edge notched specimen with dimensions 2 mm × 6 mm. The crack
occupies half-width as shown inFig. 6a.The top surface is subjected to afixeddisplacement
of 4 mm. All these details are taken from [30]. The strain energy function of the material
is given by,

�NH = μs

2
(tr C − 3) (15)

The Lame parameters are set such thatμs = 0.4225MPa and the equivalent Poisson ratio
in the linear regime ν = 0.49.
When the material deforms, the crack surfaces move apart, and the initially sharp crack

will blunt significantly due to the material nonlinearity. The deformed configuration of
the structure is shown in Fig. 6b. The vertical displacement of crack surface nodes are
plotted against their horizontal position in the reference state in Fig. 6c; for comparison,
XFEMsimulation results are taken from [30]. It is directly evident that the results obtained
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Fig. 6 Crack tip blunting. a Geometry. All dimensions are in mm. b Deformed configuration. c Plot of vertical
displacement of crack surface nodes against their horizontal position in reference state. XFEM results for
comparison are taken from [30]

from our simulations are matching well with the reported results. Moreover, the simu-
lations using coarse and fine mesh yield identical values, which shows that the reported
results are converged withmesh density. The coarse and finemesh contain 1200 and 4800
uniform Cartesian elements respectively. It is to be mentioned that the XFEM study [30]
was focused on incompressible materials, and the present results closely resembles the
incompressible condition by taking ν = 0.49.

J-integral computation

J -integral is a crucial parameter in our work because both the crack propagation and crack
kinking criterion are entirely based on this single parameter. In order to study the accuracy
of J -integral evaluation, we consider an edge crack specimen under simple extension. A
2 mm × 2 mm plate with μs = 0.4425MPa and the equivalent Poisson ratio in the linear
regime ν = 0.49 is taken, and the crack occupies half-width of the specimen. The strain
energy function and boundary conditions are same as that of the previous example. These
details are taken from an XFEM study [31], which reports the value of J -integral for large
stretch ratios (λ). λ is defined as the ratio of deformed length to the original length. We
intentionally chose [31] as the reference for our validation because comparing J -integral
values at high λ could be challenging.
It can be seen from Fig. 7a that the J -integral values computed from our method are

in excellent agreement with the XFEM results [31] even at large λ. The coarse and fine
mesh indicated in Fig. 7a contain 728 and 1600 uniform Cartesian elements respectively.
At λ = 2.5, the difference between J -integral values computed using the coarse and fine



Sudhakar and Wall Adv. Model. and Simul. in Eng. Sci. (2017) 4:2 Page 14 of 23

0

0.5

1

1.5

2

1 1.5 2 2.5

J
-i
nt
eg

ra
l

λ

coarse
fine

Rashetnia, Mohammadi (2015)

a

0.7

0.8

0.9

1

1.1

1.2

1.3

2 3 4 5 6 7 8 9 10

J
J
r
e
f

No. of layers

coarse λ = 2
fine λ = 2

coarse λ = 2.5
fine λ = 2.5

b 

Fig. 7 Computation of J-integral: a Variation with respect to λ. b Domain independency

mesh is only 1.3%. At the same λ, the difference between the value reported in [31] and
the present simulation using the finemesh is as low as 3.4%. This quantitative comparison
shows that the J -integrals computed in our work are very accurate even at large λ.
The variation of J with respect to the number of layers chosen around the crack tip as

the integration domain is given in Fig. 7b. It can be seen that after initial changes, the
value of J is stable after 5 layers, after which only minute variations exist in J . In all the
simulations presented in this work, 5 layers of elements around the crack tip are chosen
to compute the J -integral.
Having simulated a stationary crack, the remaining examples consider complex crack

propagation through the structure. The comparison between the present results and the
results obtained from the literature demonstrates the accuracy of the method. For all the
following examples, the strain energy function is given by Eq. 4.

Single edge cracked plate under mixed-mode loading

In this example, as shown in Fig. 8a, the platewhich is fixed at the bottomedge, is subjected
to shear stress τ = 1 on the top. The initial edge crack length is half of the plate width. The
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Fig. 8 Single edge crack plate under mixed mode loading: a Geometry, material parameters and loading
conditions; all dimensions are in mm. b Contours of displacement in vertical direction. c Crack tip trajectory

Lame parameters are set such that E = 30MPa and ν = 0.25. The computational domain
is discretized with 2736 elements with the whole area of crack propagation discretized
with a fine mesh.
In this simulation, upon loading the crack propagates along a slightly curved path until

it reaches the other end of the plate. In order to provide a detailed comparison, a zoomed
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view of crack path is plotted in Fig. 8c, and the result obtained from the present simulation
is compared with two other studies: one utilizes a meshless method [53], and the other
study is based on adaptive FEM [6]. It can be seen that the predicted crack tip trajectory
matches very well with the results obtained from the other two studies.

Crack in a drilled plate

To demonstrate further the accuracy of the proposed method to simulate the crack path,
the example given in [7] is considered. It reported the propagation of a crack froman initial
notch in a beam which has three drilled holes. The study carried out both experimental
and numerical tests, and observed a curvilinear crack propagation within the drilled plate.
The geometrical configuration, material properties, and the loading conditions are given
in Fig. 9a.The Lame parameters are set such that E = 3 GPa and ν = 0.35. In this
example, the stress/strain fields are influenced by the presence of holes in the beam, and
this provides interesting curvilinear crack tip trajectories. There are two simulation cases
considered based on the location of the initial notch. These are dictated by the choice of
a and b in Fig. 9a whose values are given in Table 1 for simulation-1 and simulation-2.
As reported in [7], the crack path follows different trajectories based on the choice of a

and b, which are described as follows.

Simulation-1

The location of the initial notch is given by a = 5 and b = 1.5 mm. The crack is initially
attracted towards the bottomhole, propagates near this hole, and got deflected away to end
in the middle hole as shown in Fig. 9b. This is in accordance with the experimental results
of [7], and other numerical studies [3,6,54]. Comparison with the experimental results
show that the present simulation produces very good results; even the crack deflection
near the bottom hole is predicted well in the simulation as can be directly seen from
Fig. 9b. This is one of the very challenging validation test cases, owing to the complex
crack tip trajectory involved. The developed methodology can be said to be accurate as
it produces results that are matching very well with the experimental values even for this
complex configuration.

Simulation-2

In this example, for which a = 6 and b = 1 mm, the crack is attracted towards the middle
hole, and directly ends in it (Fig. 9c). There are no crack deflections observed, and for this
example as well, the results match excellently with the experiment (Fig. 9c).

Four point beamwith two notches

In order to test the performance of the present method to simulate multiple cracks in a
structure, the four point bending beam with two pre-existing notches, shown in Fig. 10a,
is simulated. The beam is supported from below at two points, and is loaded at two other
points. The material properties are also given in Fig. 10a. The computational domain
is discretized with 7400 elements. This example is proposed by Bocca et. al. [55] who
performed experiments on the structure, and also simulated them numerically.
The crack paths through the FE mesh is given in Fig. 10b. To demonstrate the accuracy

of the simulation, the crack paths obtained from the present method are compared with
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Fig. 9 Bittencourt’s drilled plate problem. a Geometry, b Simulation-1, c Simulation-2. Experimental values
for comparison are taken from [7]

the results reported using a meshless method that incorporates crack tip singular fields as
enrichments [56]; results presented for the finest meshless node distribution is used for
the comparison. The comparison of crack paths is plotted in Fig. 10c. It can be seen that
for both crack tips, the tip trajectory obtained from the present simulations matches very
well with the reported value.
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Table 1 Geometric parameters defining notch location for Bittencourt’s drilled plate
problem shown in Fig. 9a

Simulation a b
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Fig. 10 Four point bending beam with two notches: a Geometry, material parameters and loading
conditions (not to scale). All dimensions are in mm, b crack path, c comparison of crack tip trajectories
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Though our method can handle multiple cracks, care must be taken to make sure that
the domains used to evaluate J -integral do not intersect with each other. However, this is
not a specific drawback associated with our method alone. This is a common issue with
other available approaches as well.

Crack deflection due to inclusion

Crack growth in the presence of an inclusion is studied in this example.Geometry, loading,
and boundary conditions are given in Fig. 11a; they are taken from [57]. The configuration
consists of a rectangular plate which contains an off-centre circular inclusion. The Lame
parameters of the plate are set such that Eplate = 20MPa and ν = 0.3. The objective of this
study is to check whether the method is capable of accurately predicting the influence of
this inclusion on crack propagation, which is already reported in [52,57].
The inclusion is characterized by the ratio of Young’s modulus of the plate to that of

the inclusion (r = Eplate/Eincl.). Two values are considered; r = 10 which means that the
Young’s modulus of the inclusion is 10 times lower than that of the plate which is referred
to as “soft” inclusion, and r = 0.1 that is referred to as “hard” inclusion. The Poisson ratio

Fig. 11 Crack deflection due to inclusion a Geometry and loading conditions, b crack path
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is assumed to be the same as that of the plate. The whole structural domain is discretized
with 3213 elements.
The effect of the inclusion on the crack tip trajectory is shown in Fig. 11b. For soft

inclusion, the crack is attracted towards the side of the inclusion; however, the crack does
not end in it. In case of a hard inclusion, the crack deflects away from it. These observations
are consistent with the already reported results [52,57].

Nonlinear elastic plate with a hole

The above examples considered crack propagationwith littlematerial nonlinearity. This is
evident from the fact that the crack remains sharp even after several propagation steps.The
following example considers crack propagation involving highmaterial nonlinearity under
large deformation. A small off-centre hole is introduced in the geometric configuration
considered for the first example, and this simulation allows the crack to propagate through
thematerial. The Lame parameters are set to yield E = 10GPa, ν = 0.3; critical J -integral,
Jc = 50 kJm−2. The top surface is subjected to a displacement of 0.5 mm. The geometric
configuration of this example is presented in Fig. 12a.
Aswith the linear elastic examples, the loading (or the correspondingDirichlet boundary

condition here) is increased very smoothly from the zero initial value so that the influence
of inertia is neglected. When the material starts deforming, as expected, the crack starts
to blunt, and the J -integral value starts to increase. When J reaches Jc, then the crack
starts to propagate; the deformed configuration of the structure at which the crack starts
propagating is depicted in Fig. 12b. Due to the presence of the hole, the crack slightly
deflects upwards, as can be seen from Fig. 12b, c. From all these plots, one can infer that
the crack tip is always blunt owing to the material nonlinearity, and the present method
is able to model fracture behavior in such scenarios.

Fig. 12 Plate with a hole. a Geometry (not to scale). All dimensions are in mm. b The configuration at which
the crack starts propagating. c An intermediate configuration. d Final configuration
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Conclusion
A finite element methodology to model mixed-mode crack propagation through non-
linear elastic materials is proposed in this work. The striking feature of this method is
that it facilitates, with minimal implementation efforts, to update an existing large scale
structural mechanics solver into a robust tool to handle single and multiple cracks. The
method involves two steps: in the first step, the governing equations of the structure are
solved using nonlinear FEM by freezing the crack in the structure; in the next step, the
solution obtained from the FEM is used to propagate the crack based on the maximum
energy release rate criterion. Advancing the crack through a FEmesh requires a continual
change in topology of the mesh, which is achieved in this work by utilizing a mesh refit-
ting approach. This method, as the name suggests, refits the mesh at each instant of crack
advancement in such away that the crack propagates through an existing edge in themod-
ified mesh. The mesh deformation strategies (for example used in ALE based methods)
usually result in mesh tangling issues when attempting to handle topology changes in the
mesh. This problem is circumvented in this work by splitting the quadrilateral elements
into triangular elements in the crack tip neighborhood, which allows the possibility of
local mesh connectivity to be modified. This step is crucial to preserve the quality of the
mesh throughout the simulation, without which the mesh movement methods will fail.
Examples involving single- and multi-materials with one or multiple cracks are reported.
The obtained results are compared with experimental and other available computational
methods. The comparison demonstrated that the present method accurately predicted
the fracture behavior of all the examples considered.
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