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Abstract

We present an immersed finite element technique for boundary-value and interface
problems from nonlinear solid mechanics. Its key features are the implicit
representation of domain boundaries and interfaces, the use of Nitsche’s method for
the incorporation of boundary conditions, accurate numerical integration based on
marching tetrahedrons and cut-element stabilisation by means of extrapolation. For
discretisation structured and unstructured background meshes with Lagrange basis
functions are considered. We show numerically and analytically that the introduced
cut-element stabilisation technique provides an effective bound on the size of the
Nitsche parameters and, in turn, leads to well-conditioned system matrices. In addition,
we introduce a novel approach for representing and analysing geometries with sharp
features (edges and corners) using an implicit geometry representation. This allows the
computation of typical engineering parts composed of solid primitives without the
need of boundary-fitted meshes.

Keywords: Immersed finite elements, Nonlinear solid mechanics, Nitsche’s method,
CSG modelling, Cut-element stabilisation, Implicit geometry

Background
Conventional finite element methods (FEM) are an irreplaceable tool for the numerical
analysis of a variety of physical and engineering problems. They rely on a conforming
meshwhich approximatelymatches the domain boundary andmaterial interfaces. For this
reason, mesh generation is an essential part of the workflow in FEM-based analyses [1].
Although the procedure is well-established, often the use of a boundary-conformingmesh
can be limiting or even prohibitive. Fluid-structure interaction, large elastic deformations
and shape optimisation are some applications wheremesh entanglement can cause severe
difficulties for conventional FEM.
In the last two decades or so, a number of finite element-based numerical methods

have been introduced in order to eliminate the need for boundary-conforming meshes.
Here, we restrict ourselves to immersed methods, also known as embedded of fictitious
domain methods, that operate with a geometry-independent mesh, in the line of [2–6].
Since the mesh of an immersed domain method does not conform with the boundary of
the physical domain, one of thesemethods’ main difficulties is the application of boundary
conditions. Here, we choose Nitsche’s method [7] for the weak enforcement of Dirichlet
boundary conditions because it gives optimal convergence rates without incurring major
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implementation difficulties. Moreover, the use Langrange multipliers together with its
numerical intricacies, such as the fulfilment of the LBB-condition [8], are avoided. For
alternative approaches, see [4,9–14] among others.
A major difficulty of non-body-fitted methods is the accurate integration of the aris-

ing volume and surface integrals. Here, we make use of a tessellation concept which
allows to incorporate standard, Gauß quadrature schemes. In the course of this develop-
ment, a technique is presented which enables the representation of sharp domain features
by performing constructive solid geometry (CSG) modelling directly on the embedding
mesh. This approach poses a clear advantage in comparison to the conventional methods
of geometry resolution because these sharp features are accurately reproduced and not
chamfered even on coarse meshes.
Another pitfall of immersed finite element methods is the loss of numerical stability in

caseswhere the intersectionof a shape function supportwith thephysical domainbecomes
very small. This issue has been successfully addressed in the context of b-spline finite ele-
ments [6,12,15]. In this work, we build up on this concept of constraining critical degrees
of freedom and apply it to Lagrangian basis functions on unstructured meshes. Note that
Burman et al. [16] introduced an alternative approach, the so-called ghost-penalty stabili-
sation method, which is based on an augmented bilinear form. Strongly related to stability
are the method’s parameters and we show how to choose these parameters in the context
of the introduced stabilisation techniques.
The method we present here is based on our previous works [6,17–19] and related

to [2,3,16,20,21]. Although, as shown in the cited works, the method can be transferred
to many physical applications, we focus on the problem class of nonlinear elasticity.

Weak enforcement of boundary and interface conditions
At first, we present the derivation of the proposed immersed finite element method as
applied to boundary value problems from nonlinear solid mechanics. Using a weighted
residual technique, we obtain the weak form of the problem and give its linearisation.
Similarly, the expressions for material interface problems are subsequently derived.

Boundary value problems of nonlinear solid mechanics

Consider the boundary value problem for nonlinear elasticity in the reference domain
� ∈ R

nd , nd = 2 or nd = 3 (Fig. 1)

n

Ω Ω \ Ω

Fig. 1 Embedded boundary value problem. Domain � embedded into the domain �� with background
mesh
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−Div P(u) = f in �

u = ū on �D
t(u) = t̄ on �N ,

(1)

where u denotes the unknown displacement field, P is the first Piola-Kirchhoff stress ten-
sor, Div is the divergencewith respect to reference domain coordinates, and t(u) = P(u)n,
with n the outward unit normal vector to�, is the boundary traction. The prescribed data
are the volume force f , the prescribed displacement ū and the prescribed traction t̄ . The
boundary of �, denoted by �, is composed of disjoint sets, the Dirichlet boundary �D and
the Neumann boundary �N , where the respective data are given.
In order to construct aweak formof the boundary value problem (1), a weighted residual

approach is taken with the test function v. In mathematical terms, we operate with the
Sobolev spaceH1(�), i.e. the vector fields whose components are all inH1(�), see, among
others, [8] for the precise definition. Different from conventional FEM,we do not employ a
constrained subspace with essential boundary conditions. The weighted residual method
thus becomes:

Find u ∈ H1(�)

R(u, v) = a(u, v) −
∫

�

f · vd� −
∫

�N
t̄ · vd� −

∫
�D

t(u) · vd� = 0

∀v ∈ H1(�) , (2)

with

a(u, v) =
∫

�

S(u) : Ė(v)d� . (3)

Here, Ė denotes the variation of the Euler-Green strain tensor (E = 1
2 (F�F − I ) with the

deformation gradient F ) and S = F−1P the second Piola-Kirchhoff stress tensor [22,23].
In the applications section, we work with a compressible Neo-Hooke material with given
energy densityW (E) and for this hyperelastic case, the stress tensor becomes

S = ∂W
∂E . (4)

Using a Newton method to solve the nonlinear Eq. (2), the k th iteration takes the form

DR(u(k), v)[�u] = −R(u(k), v) and u(k+1) = u(k) + �u , (5)

where D(·)[�u] denotes the derivative in direction of the increment �u, which reads

DR(u, v)[�u] = Da(u, v)[�u] −
∫

�D
Dt(u)[�u] · vd� (6)

with

Da(u, v)[�u] =
∫

�

(Grad v) : Ĉ(u) : (Grad�u)d� . (7)

In this expression, Ĉ denotes the effective elasticity tensor [22]. For simplicity, it is assumed
here that the prescribed volume and surface forces, f and t̄ , are independent of the dis-
placement u (dead load case). If these assumptions do not hold, the directional derivative
of R(u, v) contains the derivatives of the applied force and traction terms. So far, expres-
sions (2) and, consequently, (5) do not take into account the displacement boundary
condition u = ū on �D. Therefore, the approach initially introduced by Nitsche [7] is
adapted here and the following two terms are added to (5)

−
∫

�D
Dt(u)[v] · (�u − ũ)d� and γ

∫
�D

(�u − ũ) · vd� (8)
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with the predictor ũ = ū in the first iteration (or the appropriate value in the first iteration
of every load step) and ũ = 0otherwise, corresponding to a displacement-controlledNew-
tonmethod.The scalar γ > 0, necessary for numerical stability, is discussed in “Numerical
stability” section. In summary, the Newton step (5) including Nitsche’s approach to incor-
porate displacement boundary conditions reads

Da(u, v)[�u] −
∫

�D
Dt(u)[�u] · vd� −

∫
�D

Dt(u)[v] · �ud�

+ γ

∫
�D

�u · vd� = −a(u, v) +
∫

�

f · vd� +
∫

�N
t̄ · vd�

+
∫

�D
t(u) · vd� −

∫
�D

Dt(u)[v] · ũd� + γ

∫
�D

ũ · vd� , (9)

where the iteration counter has been omitted for sake of legibility. The added terms (8)
are zero for the exact solution and therefore the method is consistent by construction.
Moreover, for hyperelastic materials expression (9) is symmetric and positive for the right
choice of γ and non-softening material behaviour, see “Numerical stability” section. In
the following, we abbreviate (9) by

A(u;�u, v) = �(u; v) . (10)

Material interfaces

The formalism presented above for the weak incorporation of displacement boundary
conditions can be generalised to interface problems, see also [2,3,13]. For simplicity, let
the reference domain be composed of two subdomains,� = �1∪�2, and let us ignore the
Dirichlet boundary conditions on ∂�. The treatment of such conditions is here essentially
the same as in “Boundary value problems of nonlinear solid mechanics” section.We focus
only on the conditions imposed on the material interface � = ∂�1 ∩ ∂�2, see Fig. 2. In
each subdomain �i the local equilibrium reads

− Div Pi(ui) = f i in �i . (11)

Let u denote the compound displacement field, such that u|�i = ui, and define the
compound test function v similarly. Moreover, for any compound function g , with g|�i =
g i, the jump across � is denoted with

�g� = g1 − g2 . (12)

n

Ω1 Ω2

Γ

Fig. 2 Interface problem. Rectangular domain � composed of two subdomains �1 and �2 with common
interface �
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For later use, also a weighted average {g} is defined on � as

{g} = βg1 + (1 − β)g2 , (13)

where 0 ≤ β ≤ 1 is some weighting parameter yet to be discussed. On the interface � the
conditions are

�u� = u� and �t(u)� = t� , (14)

with prescribed jump functions u� and t� . These conditions represent the jump in the
solid displacements and the traction equilibrium across the interface. In more complex
situations, such as soft interfaces, a cohesive law can be imposed relating the interface
traction t� to the displacement gap �u�, see [24]. Here, we assume that u� and t� are
prescribed and that they are independent of thedisplacementu.Note that in the evaluation
of the tractions t i the unique normal vector n = n1 = −n2 as shown in Fig. 2 is used,
where this choice is arbitrary.
Repetition of the steps as in the single-domain problem above yields the weighted

residual method for interface problems

Find ui ∈ H1(�i) i = 1, 2, such that

R(u, v) =
∑
i=1,2

(
ai(ui, vi) −

∫
�i

f i · vid�

)
−

∫
�

�t(u) · v�d� = 0

∀vi ∈ H1(�i). (15)

Now the integrand of the interface term is rewritten as follows

�t(u) · v� = [βt1(u1) + (1 − β)t2(u2)] · �v� + [(1 − β)v1 + βv2] · �t(u)�
= {t(u)}�v� + [(1 − β)v1 + βv2] · t� (16)

employing the average term (13) and the interface conditions (14)2. Using a Newton
method to solve the nonlinear problem (15) with (16) requires the directional derivative

DR(u, v)[�u] =
∑
i=1,2

Da(ui, vi)[�ui] −
∫

�

{Dt(u)[�u]} · �v�d� . (17)

The interface condition (14)1 is now incorporated by adding terms akin to (8), namely

−
∫

�

{Dt(u)[v]} · (��u� − ũ�)d� and γ

∫
�

(��u� − ũ�) · �v�d� , (18)

to expression (17). Again, the parameter γ > 0 is yet to be discussed in the Appendix A
and we use the predictor ũ� = u� in the first iteration and zero afterwards. In summary,
a step in a Newton iteration to solve the coupled interface problem reads

∑
i=1,2

Dai(ui, vi)[�ui] −
∫

�

{Dt(u)[�u]} · �v�d� −
∫

�

{Dt(u)[v]} · ��u�d�

+ γ

∫
�

��u� · �v�d� =
∑
i=1,2

(∫
�i

f i · vid� − ai(ui, vi)
)

+
∫

�

{t(u)} · �v�d�

−
∫

�

{Dt(u)[v]} · ũ�d� +
∫

�

{
(1 − β)v1 + βv2

} · t�d� + γ

∫
�

ũ� · �v�d� . (19)

Only the first two terms on the right hand side remain in the case of u� = 0 and t� = 0.
As before, this expression is represented by the equation A(u;�u, v) = �(u; v), see (10),
and we postpone the discussion of the parameters β and γ to Appendix A.



Rüberg et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:22 Page 6 of 28

Immersed finite element method
Finite element discretisation

The linearised weighted residual Eqs. (9) and (19) form the basis of a finite element dis-
cretisation. To this end, a domain �� of a simple shape, typically rectangular, is defined
such that it fully contains the reference domain �. The following finite element discreti-
sation is based on a triangulation of �� instead of a geometry-conforming mesh of �

itself (see Fig. 3). We use piece-wise polynomial basis functions ϕI (x) and write for the
approximated displacement field

uh(x) =
∑
I

uIϕI (x) . (20)

There is no constraint on the chosen finite element space, but if the surface� overlapswith
the boundary of the embedding domain (that is if�� = �∩∂�� �= ∅), it can bemore con-
venient to use an essential treatment of displacement boundary conditions [8] along this
boundary. On the other hand, if non-nodal basis functions (like, for instance, higher-order
b-splines) are used as the finite element basis, the above presented weak incorporation of
the boundary conditions works perfectly well on this boundary part �� too.
Let the support of the basis function ϕI be denoted by supp(ϕI ). Now all coefficients

uI from the approximation (20) are discarded a priori if supp(ϕI ) ∩ � = ∅. By S we
denote the set of the indices of the remaining coefficients and thus {ϕI }I∈S forms the
full basis of the immersed finite element method. This basis is in general not stable [25]
and requires further attention, which is given in “Numerical stability” section. Using the
approximation (20), we reach the final system of equations

Ax = b (21)

with the matrix and vector coefficients

A[I nd + a, J nd + b] = A(u; ebϕJ , eaϕI )

x[J nd + b] = (�uJ ) · eb (22)

b[I nd + a] = �(u; eaϕI )

for the zero-based indices I, J ∈ S, and using the coordinate directions 0 ≤ a, b < nd
(nd being the spatial dimension of the problem) and Cartesian unit vectors ea. Although
this immersed finite element method seemingly leads to the same type of linear system
as a conventional, geometry-conforming FEM, there are technical differences which will
be discussed in the following: the representation of the boundary or interface �, the
quadrature of elements traversed by this boundary, and the stabilisation of the basis for

Fig. 3 FE discretisation. Geometry-conforming (left) and immersed (right)
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such elements. The choice of the Nitsche parameters γ and β is analysed in the Appendix
A.
Above expressions hold analogously for interface problems. The main difference is that

the two fields u1 and u2 are approximated in fashion of (20) independently on the same
backgroundmesh of�� which encompasses both sub-domains�1 and�2. Consequently,
the elements which are traversed by the material interface approximate both fields since
the FE shape functions of the entire element are used even though the fields are only
defined up to the interface on their respective side of the domain. Using two sets of shape
functions on these elements allows us to represent a discontinuous derivative of the FE
solution and can thus be compared to the element enrichment of XFEM [11]. A good
illustration of this implementation detail can be found in [2].

Signed distance functions

The weak forms introduced in “Weak enforcement of boundary and interface conditions”
section allow us to work with a finite element discretisation which is independent of the
geometry, but still the volume and surface integrals,

∫
�
(·)d� and

∫
�
(·)d�, need geometry

information. To this end, we classify the elements (for instance the quadrilaterals in the
right picture of Fig. 3) by their locationwith respect to the physical domain�. If τI denotes
any such element, we have the three cases:

1 τI ∩ � = ∅, the element is completely outside of � and can be ignored,
2 τI ∩ � = τI , the element is completely inside and its treatment is straightforward as

in any geometry-conforming FEM,
3 τI ∩ � �= ∅, the element is traversed by the domain’s boundary and requires special

consideration.

Note that elements adjacent to the boundary of the embedding mesh (for instance the left
or bottom boundaries in the right picture of Fig. 3) technically fall into the third category,
but do not pose any difficulty apart from the identification of the element faces which lie
on that boundary.
For above classification it is sufficient to have an oriented representation of the surface

� = ∂�. Therefore, the surface is either closed or assumed to be extended beyond the
boundaries of ��. Here, we assume that � is either given analytically or is approximated
by means of a surface mesh composed of surface elements σJ ,

� ≈ �h =
⋃
J

σJ . (23)

In order to avoid the tedious task of intersecting volume elements τI with surface elements
σJ , an implicit geometry representation is introduced. Therefore, the signed distance
function [26] is used which is defined as

dist�(x) = s(x)min
y∈�

|x − y| , with s(x) =
⎧⎨
⎩

1 if x ∈ �

−1 if x /∈ � .
(24)

In case of interface problems as introduced in “Material interfaces” section, the above
definition of s(x) refers to �1 and �2 instead of � and its complement �� \ �. If � is
represented by a mesh �h, the signed distance function dist�h with respect to this mesh
is used instead. Moreover, only a piece-wise polynomial approximation of this function is
used
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disth�(x) =
∑
K

dKϕK (x) with dK = dist�(xK ) , (25)

where ϕK are the nodal finite element shape functions (not necessarily the same as in the
approximation (20)) and the coefficients dK represent the value of the signed distance at
the finite element nodes xK .
The representation (23) can be of higher polynomial degree, given by NURBS patches

[1,14,27] or subdivision surfaces [28,29]. But the computationof the coefficientsdK in (25)
and the quadrature described below are non-trivial tasks if the σJ have a degree higher
than linear simplex elements (straight lines in two or flat triangles in three dimensions).
In that case, the computation of the distances dK requires the solution of nonlinear
equations, see, for instance, [30]. In the rest of this work, the σJ are always linear (nd − 1)-
simplex elements.Moreover, once only piece-wise linear elements are used for the surface
representation (23), the optimal convergence rate of any higher-order method is impeded
by this geometry approximation error, see [8].
Figure 4 shows a two-dimensional example where the boundary is composed of three

parts: �0 is the part of the boundary of � that coincides with the box boundary ∂�� and
does not require any special attention; �1 and �2 are separated parts which are immersed
in the background grid. For the computation of the distance function dist� , it is convenient
to treat �1 and �2 separately as shown in the figure. The final distance function is then
composed as the minimal value of these distances,

dist�(x) = min
(
dist�1 (x), dist�2 (x)

)
. (26)

Ω \ ΩΩ

Γ0 = ∂Ω ∩ ∂Ω

Γ1

Γ2

Fig. 4 Distance functions of a composite boundary. Geometric constellation (top left), distance functions of
the boundary parts �1 (top right) and �2 (bottom right), composite distance function dist� (bottom left)
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See also [31] for arithmetic with distance functions. Figure 4 shows the iso-curves of
the individual distance functions dist�i as well as of the composite function dist� . The
extension of this approach to a larger number of immersed surfaces is straightforward.
Once the function dist� has been determined, the above classification of volume ele-

ments τI is carried out by means of the nodal values dK of the distance function: if all
dK of the element τI are strictly positive (negative), the element is inside (outside) of the
domain. If a change in sign of the dK occurs, τI is traversed by the immersed boundary �.
It remains to outline how the coefficients dK for a given surface are computed. In case of

an analytic surface representation by an implicit function, these coefficients are calculated
directly. In case of an immersed surface mesh, one needs to find the surface element σ ∗

K
which contains the point x∗

K closest to xK , see for instance [32] for such basic primitive
tests as the closest point on a triangle to a point.With the knowledge of the closest element
σ ∗
K , it can be decided if xK lies on the positive or the negative side of this element in order

to determine the sign s(xK ) as defined in (24). This decision is based on the premise that
the surface mesh is well oriented. Note that, when the closest point falls on an edge or
a vertex, ambiguities can arise for the decision if a point is inside or outside the surface
mesh [26], see the case shown in Fig. 5.
At the acute corner in the figure, the region of points whose closest point is the vertex B,

is delimited by the outer cone. For all points in this cone, σ1 and σ2 are possible choices as
closest surface element. The cone contains the region ‘a’ in which the points are all outside
with respect to both elements. The points in region ’b’ are outside with respect to one of
the possible closest surface elements and inside with respect to the other. Hence, for this
region the mentioned ambiguity can occur. One solution to this problem is to introduce
angle-weighted vertex normal vectors [26], but this requires extra data structures. Here
we choose the simpler approach shown in Fig. 5: the point xK has a larger distance to the
extension plane of σ2 than to the extension plane of σ1. This distance is given by the inner
product of the element normal vector and the distance vector between the considered
grid point and the closest surface point (here, B). Choosing the element with a larger value
of this distance resolves the ambiguity. The method is also used in three dimensions with
the only difference being a larger set of candidates as closest elements.
Finally, we consider the numerical complexity of the distance function computation. If

there are N� elements in the surface mesh and N� nodes in the volume mesh, a brute-

xK

σ1

σ2

B

A

C
b

a

b

Ω

Fig. 5 Signed distance computation in the region of an acute corner. The grid point xK has the vertex B as
closest point on the surface, but it lies on opposing sides with respect to the adjacent surface elements σ1
and σ2; based on the larger distance to the tangent planes of the surface elements σi , the element σ2 is
chosen to determine the outside position of the point xK
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force approach requiresN� ×N� closest point computations. In many cases, this number
can be substantially reduced by precomputing a bounding box [32] of the surface �h

and assigning a default value for the dK of nodes outside of this box, but the essential
complexity remains of order O(N� × N�). Complexity reduction is possible by gener-
ation of a hierarchy of bounding boxes [32] or using so-called marching methods, see
e.g. [33].

Constructive solid geometry modelling

Now,we consider a different approach for integrating finite element analysis with geomet-
ric design, similar to the ideas presented in [34]. Specifically, we consider the construction
of a three-dimensional geometry by means of CSG, see, for instance, [35,36]. An example
of such a modelling process is given in Fig. 6, where one begins with a cube as a workpiece
and performs set operations with other geometric primitives until the desired geometry is
obtained. These operations are commonly union ∪, intersection ∩, subtraction\and the
set complement ()�. Based onDeMorgan’s laws [36], it suffices to work with the canonical
operations intersection and complement, and represent the other two as compositions
thereof, more precisely A ∪ B = (A� ∩ B

�)� and A\B = A ∩ B
�.

The conventional finite element approach is to work through such a CSG pipeline,
export a geometry representation and use a mesh generation software to create a body-
fitted volume mesh for the numerical analysis. The direct modification for an immersed
finite elementmethod is to export a surface representation of the geometry and embed this
into the mesh by the methods described in “Immersed finite element method” section.
Here, a third way is suggested in which the set operations are directly applied to the
embedding (non-conforming) volume mesh. As outlined above, it suffice to provide the
complement and intersection operations only. The former is trivially achieved: the use of
a signed distance function generates an in- and an outside partition of themesh, reversing
these partitions gives the complement. For this reason, all that need be explained is the
intersection operation.
A simple two-dimensional example in Fig. 7 demonstrates the intersection operation:

first the intermediate domain �1 is given via the distance function of a straight line �1,
afterwards a second distance function to the line �2 yields the final domain � = {x ∈
�� : dist�1 (x) > 0 and dist�2 (x) > 0}. For sake of clarity, let us discuss the individual
steps in this picture. First the line �1 is embedded into the shown 3 × 3-grid which fills
out the square domain ��. The elements τi0 are strictly inside the intermediate domain
�1 = {x ∈ �� : dist�1 (x) > 0} and form the set I1. The elements τi2 are strictly outside
and form the set O1. Now, the remaining elements form the set C1 and are triangulated
such that the embedded boundary is approximated by triangle edges. The squares are first

Fig. 6 Pipeline of a CSG process. Intersection of a cube with a sphere and removal of three intersecting
cylinders
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Γ1

distΓ1
< 0

distΓ1
> 0

τ00

τ01

τ02

τ10

τ11

τ12

τ20

τ21

τ22

I1 = {τi0}, O1 = {τi2}, C1 = {τi1}

Γ1

Γ2

distΓ2
< 0

distΓ1
< 0

distΓ1
> 0

distΓ2
> 0

distΓ1
< 0

distΓ2
< 0

τ00 τ10

τ01 τ11

τ02 τ12 τ22

τ20

τ21

I1 = {τ2i}, O1 = {τ0i}, C1 = {τ1i}

Γ12

I = I1 ∩ I2, O = O1 ∪ O2,

C = (C1 ∩ I2) ∪ (I1 ∩ C2) ∪ (C1 ∪ C2)

Fig. 7 Intersection process. Domain partitioning and element tessellation for a straight boundary �1 (left),
resulting constellation for intersection with another line �2 (middle); for comparison see the result of the
immersion based on the composite distance function (right)

subdivided into two triangles each and then every such triangle is intersected by means
of the nodal values of the signed distance function dist�1 [37]. The resulting outcome is
the left picture in Fig. 7 where the red square-shaped marks indicate the location of the
intersection points.
In the second embedding step, the distance function dist�2 is used which gives rise to

the element sets I2, O2 and C2. All elements which belong to the outside are directly
assigned to the complementary domain ��\�, that is O = O1 ∪ O2. On the other
hand, all elements of I1, which also belong to I2, are inside the final domain �, hence
I = I1 ∩ I2 = {τ20}. Finally, there are the intersection cases. Elements belonging toC1 and
I2 (τ21) keep their status and sub-division. Elements from I1 andC2 (τ10) are subject to the
same decomposition methods as C1. It remains to discuss the situation of the elements
which belong to C1 ∩ C2; the ones which are intersected by both boundaries, and in our
example of Fig. 7 this is the element τ11. In this case, simply the composing triangles are
intersected with �2 as if they were elements of their own. Proper categorisation of these
simplex shapes defines the final domain � and its complement ��\�, see the middle
picture of Fig. 7.
The advantage of this approach becomes clear when looking at the right picture of

Fig. 7. Shown is the result for the same target domain �, but first the composition of
the individual distance functions dist�i is computed according to expression (26) and
then the element intersections are constructed. Clearly, in the right picture the corner is
chamfered whereas in the above outlined approach this geometric feature is preserved.
This is the distinctive characteristic of the presented idea: by successively embedding the
geometry primitives into the mesh, the sharp features at the primitive intersections are
preserved. It is important to remark that the boundaries �i have been represented exactly
in this example, but this is solely owed to the fact that they are straight lines. In the more
general situation of curved boundaries, they are again represented on the finite element
mesh by piece-wise linear simplex elements. But, even though these surrogate boundaries
do not exactly reproduce the given geometry, the here presented approach still allows to
represent corners or edges at the intersection locations of the original primitives which
lie inside of the finite elements.
The presented method for CSG modelling based on finite element meshes is straight-

forward to extent to three dimensions. In the plane case outlined so far, the rectangular
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elements are subdivided into two triangles which themselves are triangulated in order
to recover the implicit surface in the form of triangle edges. This approach is akin to a
two-dimensional version of marching cubes and in three dimensions we make use of a
similar technique. The used three-dimensional element shapes are either tetrahedrons
or hexahedrons. Figure 8 shows how a hexahedron is decomposed into six tetrahedrons
such that it remains to consider this shape only. Given a tetrahedron with values of the
signed distance function at its vertices we can classify the cases shown in the right part of
the figure. Based on linear interpolation along the edges the zeros of the distance function
are recovered and give rise to two volume tessellations τ−

I and τ+
I whose common faces

form the triangulated surface σI . Using these decompositions, the above outlined inter-
section operations of two geometry primitives can be carried out analogously in three
dimensions.
Alternative approaches for increasing the quality of implicit geometry representations

in the vicinity of sharp features (such as edges and corners) exist. In [38] the operations
of surface reconstruction by means of marching cubes and the distance function com-
putation are combined in order to generate a so-called directed distance field allowing
for a better resolution of surface features. On the other hand, enriched distance func-
tions are presented in [39] where additional edge and vertex descriptors augment the
distance geometry representation. Although both approaches are promising concepts in
the context of immersed finite element methods, they are not further considered in this
work.
We conclude this paragraph by noting that the here used tessellation techniques also

help to construct numerical integration schemes for the elements that are traversed by
the boundary or interface. The cut elements are general polytopes for which quadrature
rules are not easily obtained. There are many techniques that address this problem, such
as moment-fitting [40], surface-only integration [41], and adaptive decomposition of the
integration region [14,42]. But since we have a tessellation in simplex shapes already
available, we use composite Gauß type quadrature rules, see e.g., [11].

Numerical stability

Up to now, it has been shown how to derive an immersed finite element method for
boundary value and interface problems, see (9) and (19), and how to compute the matrix
coefficients of the linear system of equations. But the stable solution of this final system
of Eq. (21) remains to be discussed, especially in view of the method’s parameters γ (for
boundary value and interface problems) and β (for interface problems only).

−
−

+

−

−
+

+

−

−
+

+

+

τ−
I

τ+
I

σI

Fig. 8 Element subdivision. Decomposition of a hexahedron into six tetrahedrons (left) and the fundamental
cases of distance function values
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Sources of instability

As an illustrative example, consider a one-dimensional problem

− αu′′ = f x ∈ (0, xε)

u = 0 x = 0 (27)

αu′ = 0 or u = 0 x = xε

for the domain� = (0, xε) and a constantmaterial parameter α. The boundary conditions
are a prescribed value of u = 0 at the left end and either a zero derivative (homogeneous
Neumann) or a zero function value (homogeneous Dirichlet) at the right end. Let �� =
(0, 2h) be the embedding domain and two linear finite elements of size h are used for
the discretisation, see Fig. 9. First, we consider the case with a homogeneous Neumann
boundary condition at the right end. The left-side boundary condition is going to be
incorporated essentially and the system matrix becomes

KN = α

h

(
1 + ε − ε

−ε ε

)
. (28)

Obviously, for ε → 1 this matrix recovers the standard finite element matrix for this
problem with its known properties. The eigenvalues of this matrix have the values

λ1,2 = α

2h
[
1 + 2ε ±

√
4ε2 + 1

]
. (29)

Clearly, the smaller eigevalue goes to zero for the limit ε → 0, that is the case of a vanishing
cut element. As expected, the matrix KN is ill-conditioned for this limit.
We now turn to the Dirichlet case and evaluate the left-hand-side of expression (7) for

this simple test problem. The resulting stiffness matrix has the form (replacing the surface
integrals by point evaluation at xε)

h
α
KD =

(
1 + ε − ε

−ε ε

)
−

(
ε − 1 1 − ε

−ε ε

)
−

(
ε − 1 − ε

1 − ε ε

)

+ γ
h
α

(
(1 − ε)2 ε(1 − ε)

ε(1 − ε) ε2

)
. (30)

Note that the expression for the system matrix has been multiplied by the factor h
α
.

The expressions of the eigenvalues of KD are not easily determined, but the condition
det(KD) > 0 is more workable. Note that since the trace of the matrix is positive and
equals λ1+λ2, the condition of a positive determinant (recall det(KD) = λ1λ2) is sufficient
for positive definiteness. One gets

det(KD) = 1
h2

(
εγ h
α

− 1
)
(1 + ε) > 0 ⇒ γ >

α

hε . (31)

0 h 2h(1+ε)h

x0 x1 x2xε

ϕ0 ϕ1 ϕ2

Fig. 9 One-dimensional test example. Two linear finite elements with the right boundary inside the second
element
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Fulfilment of this condition guarantees that the matrix is positive definite for a fixedmesh
size h, but unfortunately it implies γ → ∞ for ε → 0. The use of a very large value for γ

can lead to undesired numerical problems.
In the case of the interface problems and formulation (19), the situation is slightly better.

The extra parameter β can be adjusted in a smart way such that a finite value of γ is always
achievable. Such a choice is proposed in [43] where β depends on thematerial parameters
of the subdomains and the sizes of the cut elements, |τI ∩ �i|. Using this approach, the
system matrix has always positive eigenvalues (for the considered problem class) with a
finite value of γ . Nevertheless, the minimal eigenvalue goes to zero for vanishing sizes of
the cut elements. Even though the parameter choices by [43] show a good performance
in terms of the quality of the numerical results, the matrix condition number still cannot
be bounded for a fixed mesh and arbitrary interface locations.

Stabilisation

The above indicated sources of numerical instability all stem from the same situation that
for some degrees of freedom, the intersection of the support of their associated shape
functions with the physical domain becomes very small,

sI = | supp(ϕI ) ∩ �| � h , (32)

where supp(ϕI ) denotes the support of shape function ϕI and h is a measure of the mesh
size on ��. In all above cases, Neumann, Dirichlet, or interface problem, this leads to
severe ill-conditioning of the final system matrix. To solve this problem, the following
approaches have been proposed, among others,

S-1 Discarding all degrees of freedom with support intersection below a certain thresh-
old, sI < εh;

S-2 Adding a face-based stabilisation term [16];
S-3 Constraining degenerate degrees of freedom [6,12].

As reported, among others, in [12], the approach S-1 leads to a loss of approximation
order. Although appealing due to its simplicity, this drawback can be prohibitive in some
applications. An ad-hoc approach to remedy the stability problem is to locally adapt the
finite element mesh in order to avoid the problem of too small values of sI . Even though
simple at first sight, a robust realisation of this idea in three dimensions is not straight-
forward and mesh entanglement needs to be avoided. The support size sI is increased if
specific nodes are moved away from the surface �, but there is an interesting alternative
in which the points are snapped to the surface thereby generating a conforming mesh,
see [44] for two-dimensional analysis of this idea.
Another approach, S-2, is proposed in [16] where the jump of the function gradients

across certain element faces is added to the weak form in order to guarantee stability
of the method. Other than the result (31), the system matrix stays well-conditioned for
small values of γ in the limit ε → 0. This approach requires to evaluate surface integrals
over interior mesh faces, a technicality which requires additional data structures in many
codes, but does not addmuch to the overall difficulty of implementing an immersed finite
element method. Nevertheless there is a drawback with this approach, since it introduces
another weighting factor whose adjustment is not straightforward: for too small values of
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this factor the stabilisation effect disappears and for too large values themethod’s accuracy
is affected [16].
Finally, we consider S-3 which relies on the concept of coupling degrees of freedomwith

too small supports to other degrees of freedom from the interior of the domain. In order
to outline this approach, the degrees of freedom shall first be classified according to the
size sI of the intersection of their support with the domain, as defined in (32). In “Finite
element discretisation” section, the set S has been introduced which contains all indices
of shape functions for which sI is larger than zero. Introducing a threshold ŝ, the set S is
now decomposed into the disjoint index sets, A and B with definition

A = {I ∈ S : sI ≥ ŝ} and B = {I ∈ S : sI < ŝ} . (33)

The threshold ŝ used in this classification has to depend on themesh size h and should not
be larger than one typical element size. The basic idea of Höllig et al. [12] is to constrain
degrees of freedom from the set B to suitably chosen degrees of freedom from A(J ), a
subset of A,

∀J ∈ B : uJ =
∑

I∈A(J )⊂A

cIJuI (34)

where the coefficients cIJ will be discussed further below. These constraints give rise to
the modified shape function basis

uh(x) =
∑
I∈A

uIϕI (x) +
∑
J∈B

uJϕJ (x)

=
∑
I∈A

uIϕI (x) +
∑
J∈B

⎛
⎝ ∑

K∈A(J )
cKJuK

⎞
⎠ϕJ (x)

=
∑
I∈A

uI

⎛
⎝ϕI (x) +

∑
J∈B(I)

cIJϕJ (x)
⎞
⎠ =

∑
I∈A

uI ϕ̃I (x) . (35)

In this reordering of the finite element approximation (20) a new set B(I) is used which
contains all indices J from B, such that I ∈ A(J ). For the implementation of this sta-
bilisation method, it is sufficient to work with expression (34), but the result of (35)
demonstrates that effectively a modified shape function basis {ϕ̃I }I∈A is generated and
illustrates the notion of extended splines as given in [12]. Note also that B(I) = ∅ for all
degrees of freedom that are not in the vicinity of the boundary and in that case ϕ̃I = ϕI ,
so that most shape functions are not affected. Since the support size of the basis functions
ϕ̃I is larger, the bandwidth increases for these degrees of freedom. Therefore, it has to
be remarked that only degrees of freedom in the vicinity of the boundary are affected.
Moreover, the storage requirement of the final system matrix is of course not larger than
it would be for the original (unstable) basis functions ϕI .
There are two open questions when using this approach: (i) the choice of the index set

A(J ) associated to J and (ii) the values of the constraint weights cIJ . The origin of this
approach, as introduced in [12], is to stabilise b-spline discretisations. In this particular
situation, the underlying mesh is logically Cartesian and an explicit expression of the
coefficients cIJ can be given as a function of the multi-indices used to label that grid.
See also [6] for a more intuitive interpretation of the arising extrapolation of Lagrange
polynomials and its efficient implementation. The aim of this stabilisation procedure is to
maintain the convergence order of the method and therefore to not lose the polynomial
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approximation quality of the approximation (20) due to the constraints (34). In other
words, the modified basis functions ϕ̃I introduced in (35) have to represent the same
polynomials as the ϕI themselves.
In order to outline the procedure for obtaining A(J ) and the corresponding coefficients

cIJ , consider the situation depicted in Fig. 10. The degree of freedom uJ , J ∈ B, resides
at node xJ and the size of the intersection of the support (hatched in the picture) with
the domain � is below the threshold ŝ. Searching through the elements in the vicinity of
xJ , one finds the element τK (J ) whose connected degrees of freedom all belong to A. Any
element entirely inside the domain� fulfils this condition. Normally, many such elements
can be found and the closest is selected, where the distance between the element middle
point and xJ is a possible way to measure the proximity. The selected element τK (J ) gives
rise to the index set A(J ) ⊂ A associated with uJ . Formally, we can write

A(J ) = {I ∈ A : supp(ϕI ) ∩ τK (J ) �= ∅} . (36)

Once this set is defined, the weights cIJ are calculated by evaluation of the basis of τK (J ) at
the node xI ,

∀I ∈ A(J ) : cIJ = ϕI (xJ ). (37)

This choice of weights is an extension of the idea given in [15] where the weights are
defined for non-uniform b-splines as dual functionals applied to the polynomials in a
chosen grid element.Here thepoint evaluationof (37) is the correspondingdual functional
of Lagrange polynomials [8]. Note that xJ /∈ τK (J ) and thus cIJ represents an extrapolation
of the polynomial basis spanned in τK (J ) to the outside point xJ , see also Fig. 10. The
stabilisation procedure can be summarised as follows

1 categorise A and B using a threshold ŝ, see (32) and (33)
2 for all J ∈ B

• find τK (J ) with all degrees of freedom from A that is close to xJ ,
• define the constraint coefficients as cIJ = ϕI (xJ ) for all I ∈ A(J )

3 assemble the final system of equations using the constraint equations (34) applied to
test and trial spaces

4 after solving the global system, calculate the constrained degree of freedom uJ with
J ∈ B according to (34).

Γ

Ω

xJτK(J)

Fig. 10 Cut-element stabilisation on a triangular mesh. Node xJ is the location a degree of freedom uJ ,
J ∈ B and the element τK (J) is used for constraining uJ
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With respect to the implementation a few remarks have to be made. The code has to
be able to search the elements in the neighbourhood of a given node. For instance, the
element τK (J ) in Fig. 10 does not lie in the support of ϕJ but in the ring of elements around
that support. Theoretically, for very extreme shapes of � the nearest τK (J ) to xJ could lie
far away, but here we assume that the mesh is fine enough such that there is always an
element nearby. Cusp-shaped domains are excluded from the onset. In addition, one has
to evaluate the shape functions of τK (J ) at xJ and this requires to find first the reference
coordinate ξJ (outside of the reference element) such that the geometry representation of
the chosen element represents xJ when evaluated at this coordinate, that is xK (J )(ξJ ) = xJ .
Here we restrict ourselves to meshes in which all elements are an affine transformation
of the reference element. Higher-order geometry representations of the volume mesh
are excluded, but they are also not necessary since the mesh, by design of the immersed
method, need not conform to the geometry of �.

Numerical examples
At last, a few numerical examples are presented in order to study and demonstrate the per-
formance of the immersed finite elementmethod as presented here. Unless indicated oth-
erwise, the spatial discretisation of all problems is carried out with linear finite elements.
As shown in the appendix, the Nitsche parameter is chosen as γ = γ0

α
h with the mesh

widthh, the representativematerial parameterα and adimensionless scalar γ0. Thedefault
choices for this parameter is γ0 = 10 and for interface problems the additional parameter
is chosen as β = 0.5. The threshold ŝ used to distinguish between the degree of freedom
sets A and B in the stabilisation of “Stabilisation” section is set to the size of one element.

Convergence and robustness analysis

At first, the method’s performance under variation of various parameters is assessed.
For this purpose, an essentially one-dimensional Poisson problem is used as depicted in
Fig. 11, left, with a forcing function f (x) = α2 sin(αx1) and α = 3π

2xδ
. The resulting exact

solution is then u(x) = sin(αx1). The signed distance function is dist�(x) = xδ − x1 and
the boundary is represented exactly. At first, this problem is analysed using a structured
mesh as shown in the figure. Figure 11, on the right, shows the analytic solution (solid

x1 = 0
xδ

x1 = 1

∂2u = 0

∂2u = 0

−∂11u = f(x1)
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Fig. 11 One-dimensional problem. Setup (left) and a comparison of exact with approximate solution and its
derivative for xδ = 6

7 (right)



Rüberg et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:22 Page 18 of 28

black line) along the x1-axis and its derivative (dashed line) for a boundary location at
xδ = 6

7 . The approximations uh and ∂1uh for a mesh with 5 × 5 elements (red) and a
10× 10 element (blue) are also displayed. One can see that the numerical approximation
uh coincides with the analytic solution at the finite element nodes and, moreover, at the
boundary location at xδ .
The convergence of the method is shown in the left of Fig. 12, where the numerical

errors in L2-norm and H1-seminorm are shown for an approximation with linear and a
quadratic Lagrange polynomials. These results exhibit the expected optimal convergence
rates [8]. In this graph, the boundary location is held fixed at xδ = 6

7 and the mesh width
h is decreased. On the other hand, the right side of Fig. 12 shows the smallest and largest
eigenvalues of the system matrix in dependence of the boundary location for a non-
stabilised implementation and for the stabilisation presented in “Stabilisation” section.
Here, a fixed 40 × 40 mesh is used and the location of the boundary is at xδ = (34 + ε)h
with the parameter 0 ≤ ε ≤ 1. A Neumann boundary condition at xδ is considered and,
hence, one has always a(uh, uh) > 0 and λmin > 0. One can clearly see that λmin ∈ O(ε) for
small ε and for the non-stabilised case (note that the figure shows in fact the inverse 1

λmin
).

Clearly, the matrix condition number grows without bound. The stabilisation as outlined
in “Stabilisation” section, however, guarantees a constant value of λmin well above zero.
The largest eigenvalues coincide for both cases.
Now we turn to the problem with a Dirichlet boundary condition at xδ . Using the same

variation of the location of this boundary as above, Fig. 13 shows the smallest eigenvalue
λmin for the stabilised method and for the non-stabilised method for various values of
γ0 (recall that γ = γ0

h ). One can see that without stabilisation the considered minimal
eigenvalue changes sign for decreasing values of ε rendering the system matrix indefinite
(and singular when the zero is crossed). In order to force λmin > 0 one can increase
the value of γ0, but for ε → 0 this value grows without bound and one gets effectively
λmax → ∞ which likewise deteriorates the condition number of the matrix, as already
discussed in “Sources of instability” section.
Next, the stabilisation technique is applied to an unstructuredmesh as shown in Fig. 14.

Note that this case is not covered by the original idea of this technique as given by [12]
which was only designed for b-spline basis functions on structured meshes. The left of
Fig. 15 shows the convergence of the stabilised method for linear triangle elements and
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Fig. 12 Neumann problem. Convergence for xδ = 6
7 (left) and smallest and largest matrix eigenvalues for a

fixed mesh width h = 0.025 and various boundary locations xδ = (34 + ε)h
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Fig. 13 Dirichlet problem. Smallest eigenvalue for various boundary locations (h = 0.025 and
xδ = (34 + ε)h)
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Fig. 14 Unstructured mesh. Varying location of the right boundary at xδ

a fixed boundary location. Finally, the location of the boundary is varied again and the
condition number for a Neumann problem is considered in the right of Fig. 15. Whereas
in the non-stabilised case this value shows a very erratic behaviour with large peaks, the
condition number for the stabilised method is almost constant at a low value.
Now, an interface problem is considered. Figure 16 shows the computational domain

that is composed of a circular domain �1 embedded in a square domain �2. On this
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Fig. 15 Results for unstructured mesh. Convergence of the Neumann problem on the unstructured mesh
for fixed xδ = 6

7 (left) and the matrix condition number for various boundary locations 0.8 ≤ xδ ≤ 0.9 (right)
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Fig. 16 Interface problem. Computational setup of a square with a circular inclusion (left), convergence
behaviour for different interface weights β (right); note that these curves are not distinguishable

domain, the Poisson problem −αi�u = 4 with material parameters α1 = 1 and α2 =
1000 is solved, subject to Dirichlet boundary conditions on the outer boundary ∂�2. The
geometric parameters are chosen as R = 0.75 and L = 2, respectively. This problem
together with its analytic solution is taken from [2]. In the right graph of Fig. 16 the
convergence behaviour is shown for different values of the interface weight factor β . For
the three considered valuesβ = 0, 0.5 and 1, the curves are indistinguishable. Also optimal
convergence rates are achieved for mesh sizes smaller than h ≈ 0.02.
At last, we consider the influence of the geometry representation. As outlined in “Con-

structive solid geometry modelling” section, we have to approaches available: the use of
a signed distance function representing the entire embedded surface and the successive
embedding of the geometry primitives that form the final model. For simplicity, consider
a square that coincides on two of its edges with the mesh boundary whereas the other two
are represented implicitly. Figure 17 shows the effect of the introduced two approaches in
the left and middle images, respectively. Clearly, the upper right corner is chamfered off
in the first approach, but represented exactly in the second. As a numerical problem we
have chosen −�u = 1 on a unit square subject to u = 0 on the lower and left boundaries
and ∂u/∂n = 0 on the other two boundaries. An analytic solution to this problem is
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Fig. 17 Influence of geometry representation. Implicit representations of a square (left : fully implicit,middle:
mesh-based CSG) together with the contour colours of the solution to a Poisson equation, convergence of L2
error (right)
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available, for instance in [45] in the context of Poiseuille flow in a rectangular channel.
The right graph in Fig. 17 shows the convergence rates for the two types of geometry
modelling. Clearly, optimal convergence rates are obtained for both cases. Nevertheless
the exact representation of the corner leads to a much smoother outcome with lower
approximation errors for coarse mesh sizes.

Mesh-embedded CSG

Here the domain as obtained by the CSG process of Fig. 6 is reconsidered, see also the left
of Fig. 18. The embeddingdomain is�� = (0, 1)3 and equippedwith a uniformhexahedral
mesh. Following the mesh-based Boolean operations as introduced in “Constructive solid
geometry modelling” section, the immersed geometry is obtained by

1 intersection with a sphere of radius 0.65 and centred at (0.5, 0.5, 0.5), and
2 successive subtraction of cylinders around the same centre with radius 0.3 and in the

directions of the xi-coordinate axes.

Thus the domain � is obtained as shown in Fig. 18 and we assume that it is occupied by a
hyperelastic solid. In a first analysis, linearised elasticity is assumed and the convergence
is studied by using fundamental solution of elasticityU (x, y) (see, for instance, [46]) as an
imposed analytic solution with a source point y located outside of the domain. Therefore,
on the bottom (x3 = 0) the boundary displacements ū(x) = U (x, y) are prescribed and
the remaining boundaries are subject to the Neumann condition t̄ = t(U )(x, y). For
simplicity, the material parameters are chosen as λ = 28.85 and μ = 19.23. The right of
Fig. 18 shows the convergence of the displacement solution and of the computed volume
and surface area of the embedded domain. Quadratic convergence is observed for all
considered quantities.
Next, a compressible Neo-Hookean material model [22,23] with large deformations is

used, based on the strain energy density

W (F ) = λ

2
(log J )2 − μ log J + μ

2
(trC − 3) , J = det F and C = F�F , (38)

with the deformation gradient F = I + Grad u. The material parameters are the same
as in the linearised case above. For the example, the bottom boundary is held fixed and a
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Fig. 18 CSG modelling. Embedded domain (left) and convergence behaviour of the displacement u, the
domain’s volume V and surface area A
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twisting traction field is applied to the top surface with value t̄ = 10(x2 − 0.5, 0.5− x1, 0).
The load is applied in 4 steps and within each step a Newton method is used to obtain
the equilibrium state. The deformed geometry for these four load steps is shown in the
images of Fig. 19 for a 403 grid of linear hexahedron elements.

Composite material

As a last example, the elastic deformation of a fibre-reinforced block of elastic material is
considered. A block of dimension L × 2

5L × L is reinforced by inclined fibres placed with
a main axis separation of L

3 . The fibres are represented by cylinders with radius L
15 . The

three-dimensional setup is shown in the left of Fig. 20 and on the right a two-dimensional
view of the problem is depicted. The bottom surface is held fixed and the top surface
is constrained in normal direction. The left and right surfaces are subject to a constant
traction field t̄ in normal direction. The discretisation is carried out by a fixed mesh of
dimension 50× 20× 50 as indicated on the back faces of the three-dimensional view. For
comparison, we monitor the average horizontal displacement

U1 = 1
|�|

∫
�

u1(x)d� (39)

throughout the composite body for a variety of fibre angles −35◦ ≤ α ≤ 35◦. Both
domains �1 and �2 have the hyperelastic material law according to the energy (38) and

Fig. 19 Large elastic deformation. Load steps 1–4; the surface is coloured by the stress component S33
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Fig. 20 Fibre-reinforced material. Three-dimensional view (left) and front view (right); in this drawing
α = 10◦
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Fig. 21 Computational analysis of fibre-reinforced material. Deformed geometry with fibres coloured by S33
for α = −35◦ (top left), α = 0◦ (top right), and α = +35◦ (bottom left); average horizontal displacement U1
for various fibre angles (bottom right)

the computations are carried out with large deformations. For comparison, a linearised
situation is also considered.
The model parameters are chosen as L = 1 and t̄ = (1, 0, 0). The materials are repre-

sented by the Lamé parameters λ1 = 5.769, μ1 = 3.846, λ2 = 10λ1 and μ2 = 10μ1. Fig-
ure 21 shows the deformed configuration for fibre anglesα = −35◦,α = 0◦ andα = +35◦.
In addition, the analysis of the average horizontal displacement U1 as a function of the
considered fibre angles α is shown for the Neo-Hooke material and linearised elasticity.
Although there are similarities between the large-deformation analysis and the linearised
version, striking differences can be observed too. Most of all, the linear variant is com-
pletely symmetric with respect to the sign of α and has its largest value for α = 0◦. In the
large-deformationvariant, on theotherhand the result is a largerdeformation for thenega-
tive fibre angles and smaller for positive angles.Overall, the bodybehaves less flexibly in the
nonlinear analysis, butwith a strongbias to an increasedflexibility for negative fibre angles.

Conclusions
Immersed finite element methods, that do not rely on a body-fitted mesh, are a promising
alternative to conventional FEM for many applications. Especially in the case of complex
three-dimensional geometries, moving interfaces, or design optimisation such methods
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allow for more flexible geometry processing and remove the repeated interaction with
mesh generation software. Here, we present an immersed FEM for the problem class
of nonlinear elasticity, based on a weak incorporation of Dirichlet boundary conditions
and interface conditions with Nitsche’s method, an implicit geometry representation and
accurate integration of the arising cut elements. We place emphasis on the implementa-
tion details such as the robust computation of the signed distance function and quadrature
by means of tessellation. A common pitfall of non-body-fitted FEM, the loss of numerical
stability in situations with degenerate function support, is analysed and we provide a sta-
bilisation technique that is robustwithout affecting the convergence behaviour.Moreover,
the choice of the parameters in the context of Nitsche’s method are thoroughly discussed.
We demonstrate a way to incorporate sharp features such as edges and vertices in our

method by means of successively embedding the geometry primitives into the analysis
mesh in a similar way as in constructive solid geometry modelling. Based on this idea,
geometry modelling is directly integrated in the finite element analysis and there is no
need for a mesh generation tool. The presented applications emphasise the potential of
this approach,where large deformation analyses are carried out basedon a trivialCartesian
background mesh.
A present shortcoming of the introduced approach is the restriction to linear approx-

imation orders. Although the field approximation used in this FEM can be of arbitrary
order, a gain in convergence order would be impeded by the geometry representation
based on linear facets. In principle, the use of more accurate signed distance functions
and the subsequent adaptation on the quadrature level to account for embedded higher-
order surface representations is feasible.
Finally, we note that the presented method is ideally suited for the incorporation of h-

adaptivity. A combination of this immersed FEMwith hierarchical refinement techniques
as shown, for instance, in [47] would render a powerful analysis toolbox, which yields
accurate numerical predictions based only on the input of geometry primitives.
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Appendix A: method parameters γ and β

In the following, estimates for the parameters γ (Penaltyweighting parameter first appear-
ing in (8)) and β (interface weighting parameter first appearing in (13)) are derived. These
parameters onlymake sense with the Finite Element discretisation as the final goal.With a
slight abuse of notation, the functions used in the following have to be understood as dis-
crete FE solutions, but for simplicity the superscripts, for instanceofuh, havebeenomitted.
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Dirichlet boundary conditions

We develop an estimate for the parameter γ appearing in the linearised weighted residual
equation (9). Thematerial behaviour is assumed to be such that Da(u, v)[�u] is an elliptic
bilinear form. The aim is to show thatA(u;w,w) > 0 for anyw �= 0, where u is the current
displacement solution. This gives

A(u;w,w) = Da(u,w)[w] − 2
∫

�D
Dt(u)[w] · wd� + γ

∫
�D

w · wd�

≥ Da(u,w)[w] − 2‖Dt(u)[w]‖�D‖w‖�D + γ ‖w‖2�D

≥ Da(u,w)[w] − 2C
√
Da(u,w)[w]‖w‖�D + γ ‖w‖2�D

=
(√

Da(u,w)[w] − C‖w‖�D

)2 + (γ − C2)‖w‖2�D . (40)

Here, ‖w‖�D is the L2-norm over the Dirichlet boundary �D. The Cauchy-Schwarz
inequality has been used from the first to the second line and, most importantly, the
third line is based on the inverse inequality

C2Da(u,w)[w] ≥ ‖Dt(u)[w]‖2�D . (41)

This type of estimate is also presented in [3] for the case of Poisson’s equation. Knowledge
of the constant C gives rise to the choice γ > C2 which renders the last line in (40)
positive. Inserting the finite element trial functions (20) into (41) leads to the condition

C2Da(u, eaϕI )[ebϕJ ] ≥
∫

�D
Dt(u)[eaϕI ] · Dt(u)[ebϕJ ]d� (42)

for all coordinate directions ea, 0 ≤ a < nd , and all shape functions ϕI . Obviously, this
condition is only non-trivial if the supports of ϕI and ϕJ overlap each other and intersect
with the Dirichlet boundary �D. Therefore, we use the following abbreviations for these
domain and boundary intersections

�IJ = � ∩ (supp(ϕI ) ∩ supp(ϕJ )) and �IJ = �D ∩ (supp(ϕI ) ∩ supp(ϕJ )). (43)

The left-hand side of (42) can be re-written as

Da(u, eaϕI )[ebϕJ ] =
∫

�IJ
Grad(ebϕJ ) : Ĉ(u) : Grad(eaϕI )d� , (44)

and the right-hand side becomes∫
�IJ

[(Ĉ(u) : Grad(eaϕI )
)n] · [(Ĉ(u) : Grad(ebϕJ )

)n]
d�

=
∫

�IJ

(Ĉ(u) : Grad(eaϕI )
)
(n ⊗ n) :

(Ĉ(u) : Grad(ebϕJ )
)� d�

≤
∫

�IJ

(Ĉ(u) : Grad(eaϕI )
)
:

(Ĉ(u) : Grad(ebϕJ )
)
d� . (45)

Abbreviating the integrands in (44) and (45) with f �
aIbJ and f �

aIbJ , we obtain for the inverse
inequality

C2
∫

�IJ
f �
aIbJd� ≥

∫
�IJ

f �
aIbJd� . (46)

Assuming continuity of the integrands, the mean value theorem of integration states that
two points ξ ∈ �IJ and η ∈ �IJ exist such that the estimate becomes

C2 ≥ f �
aIbJ (η)
f �
aIbJ (ξ)

|�IJ |
|�IJ | . (47)



Rüberg et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:22 Page 26 of 28

Without assumptions on the shape functions ϕI and the material behaviour, we cannot
further reduce the ratio of the evaluated integrands. Nevertheless, if α denotes a charac-
teristic material behaviour (for instance the bulk modulus), it is clear from (44) and (45)
that this ratio scales like α2

α
= α. Here, we focus on controlling the second part of the

right hand side of the estimate (47). Using a standard finite element basis, there are con-
stellations in which �IJ → 0, whereas �IJ does not decrease: see, for instance the sliver
test case in [16].
Employing the proposed stabilisation technique from “Stabilisation” section, where

critical shape functions are essentially joined with neighbouring ones that have a non-
degenerate support, the above geometric ratio can be safely estimated as

|�IJ |
|�IJ | ≈ hnd−1

hnd = 1
h , (48)

because the support sizes of the stabilised basis functions ϕ̃I never fall below the stabil-
isation threshold ŝ which is of order hnd . In conclusion, we can state that there exists a
constant γ0 independent of the material and the mesh size h, such that

γ = γ0
α

h > C2 (49)

and, in turn, A(u;w,w) > 0, see estimate (40).

Interface conditions

Next, we assess the choice of parameters in the linearised weighted residual equation (19)
for the interface problems. To this end, the steps of (40) are repeated in an analogous
manner with the function w = (w1,w2) and yield the estimate

A(u;w,w)
≥

(√
Da1(u1,w1)[w1] + Da2(u2,w2)[w2] − D‖�w�‖�

)2 + (γ − D2)‖�w�‖2� ,
(50)

which is positive for wi �= 0 and γ > D2. Here, D is the constant of the inverse estimate

D2 (Da1(u1,w1)[w1] + Da2(u2,w2)[w2])

≥
∫

�

{
βDt(u1)[w1] + (1 − β)Dt(u2)[w2]

}2 d� . (51)

Using the “Peter-Paul inequality”with some δ > 0 (that is, the estimate 2ab ≤ δa2+δ−1b2)
one gets

D2 (Da1(u1,w1)[w1] + Da2(u2,w2)[w2])

≥ (1 + δ)β2
∫

�

(Dt(u1)[w1])2d� + (1 + δ−1)(1 − β)2
∫

�

(Dt(u1)[w1])2d� . (52)

LetCi denote the constant of (41) for the subdomain�i, choose δ = ((1−β)2C2
2 )/(β2C2

1 ),
and insert the inverse inequality (41) into the last expression in order to get

D2 ≥ β2C2
1 + (1 − β)2C2

2 . (53)

Based on the discussion abovewe know that the stabilisation technique given in “Stabilisa-
tion” section keeps the values ofCi bounded: thereforeD according to (53) iswell-behaved,
independent of the choice of 0 ≤ β ≤ 1. Nevertheless, in [43] a parameter choice for β

is presented which keeps the value of D bounded even for a non-stabilised finite element
basis. Their choice is, adapted to the notation used here, β = C−1

1 /(C−1
1 + C−1

2 ) and this



Rüberg et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:22 Page 27 of 28

value controls nicely the right-hand-side of expression (53) for unbounded values of Ci
(note that in case of geometric constellations for which C1 is large the counterpart C2 is
small, and vice versa). But it has to be remarked that in certain types of applications (e.g.
fluid-structure interaction [48]) it is convenient to freely choose the parameter β without
stability restrictions. Moreover, this special choice of β maintains A(u;w,w) > 0 for a
finite value of γ , but does not prevent unbounded values of the condition number of the
system matrix. With the here presented stabilisation technique, the choice of β does not
affect stability and γ = γ0(α1+α2)/h provides a safe choice for the characteristic material
parameters αi.
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