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Abstract

The paper deals with the constitutive relation error (CRE) concept which has been
widely used over the last 40 years for verification and validation of computational
mechanics models. It more specifically focuses on the beneficial use of model
reduction based on proper generalized decomposition (PGD) into this CRE concept.
Indeed, it is shown that a PGD formulation can facilitate the construction of so-called
admissible fields which is a technical key-point of CRE. Numerical illustrations,
addressing both model verification and model updating, are presented to assess the
performances of the proposed approach.

Keywords: Error estimation, Model updating, Model reduction, Constitutive relation
error (CRE), Proper generalized decomposition (PGD)

Background
Mathematical models and their solutions, either analytical or numerical, are fundamental
in science and engineering activities as they constitute the basic ingredient of simulations
that enable to predict the behavior of physical phenomena. Consequently, a permanent
issue is the verification and validation of these models, which nowadays can attain very
high levels of complexity, in order to certify the quality of numerical simulations. On the
one hand, verification deals with the assessment of the numerical (FE) model with respect
to initial mathematical model, and implies the estimation of discretization error in order
to control the quality of the approximate numerical solution. In this context, a large set of a
posteriori error estimateshas appearedover the last thirty years (see [1–3] for anoverview).
On theotherhand, validationaddresses the capability ofmathematicalmodels to represent
a faithful abstraction of the real (physical) world. It aims at identifying or updating model
parameters in order to minimize the discrepancy between numerical predictions and
experimental measurements, and leads to the solution of inverse problems [4].
In the context of model verification and validation, and particularly for computational
mechanics models in which the constitutive relation is a major component, the consti-
tutive relation error (CRE) concept is a convenient and powerful tool. The idea of CRE
is rather simple: so-called admissible fields verifying all equations of the model except
the constitutive relation are constructed, then the residual associated with the constitu-
tive relation is measured. The CRE concept was first introduced as a robust a posteriori
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error estimator in FE computations [5], enabling to compute both strict and effective
discretization error bounds for linear and more generally convex structural mechanics
problems, and to lead mesh adaptivity processes. It was primarily used for linear ther-
mal and elasticity problems [6,7] before being extended to nonlinear time dependent
problems [8,9] and to goal-oriented error estimation [10–12]. The use of CRE for model
verification, for which a general overview can be found in [2], requires in particular the
computation of admissible dual fields which are fully equilibrated. This requirement,
which is the main practical issue both in terms of computational cost and implementa-
tion technicality, was addressed by means several techniques that post-process the FE
solution at hand [2,6,13–20]. During the 90s, the CRE concept was extended to model
identification/updating. First introduced for dynamics models [21–24], this method was
latter successfully used in many calibration applications including defects [25], uncer-
tain measurements and behaviors [26,27], or corrupted measurements [28,29]. It was
also used in the context of full-field measurements [30,31]. After initial studies in which
measurements were included as additional admissibility constraints, a more flexible and
effective strategy was developed. Denoted as modified CRE (mCRE), this strategy consists
in relaxing constraints on measurements and other uncertain data, proposing a general
framework in which reliable theoretical and experimental information (equilibrium, sen-
sor position,…) is favored to define admissibility spaces, and residual on complementary
information (material behavior, sensor measurements,…) is measured. It acts in an iter-
ative two-steps algorithm, in which optimal admissible fields are first computed, before
minimizing the obtained mCRE functional with respect to model parameters. The use
of mCRE presents interesting advantages; it has excellent capacities to localize structural
defects spatially, it is very robust with respect to noisy measurements, and it has good
convexity properties.
The objective of the paper is to present new numerical tools, based on model reduction
techniques and offline–online strategy, that can be coupled to the CRE concept to make
this latter fully implementable and exploitable for practical industrial applications. They
particularly aim at decreasing the computational cost and technicality level which are
required when computing admissible fields, leading to fast and inexpensive verification
and validation (V&V) procedures. For that purpose, we decide to refer to the proper
generalized decomposition (PGD) which is an a priori model reduction technique that has
been extensively used over the last decade to solve multi-parametric problems (see [32–
34]). Consider a general linear D-dimensional problem of the form:

Lu = g, u ∈ X = X1 ⊗ X2 ⊗ · · · ⊗ XD (1)

where L is an operator defined on the tensor space X . PGD is a low-rank tensor method
that consists in searching an approximation of u in a low-dimensional tensor subspace of
Xm ⊂ X made of canonical format tensors of rankm:

um =
m∑

i=1
w1
i ⊗ w2

i · · · ⊗ wD
i , wμ

i ∈ Xμ (2)

Among the various strategies to construct um [35], we focus on the one called progressive
Galerkin. Introducing the global weak formulation of the problem:

Find u ∈ X such that B(u, v) = F (v) ∀v ∈ X (3)
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andassuming that the rankm−1decompositionum−1 is known, the rankmdecomposition
um = um−1 + w1 ⊗ w2 · · · ⊗ wD is searched such that:

B(um, δv) = F (δv)

∀δv = δw1 ⊗ w2 · · · ⊗ wD + w1 ⊗ δw2 · · · ⊗ wD + · · · + w1 ⊗ w2 · · · ⊗ δwD (4)

with δwμ ∈ Xμ. This formulation naturally leads to a nonlinear problem where a set of
coupled low-dimensional problems has to be solved:

B(w1 ⊗ w2 · · · ⊗ wD, δw1 ⊗ w2 · · · ⊗ wD) = Rm−1(δw1 ⊗ w2 · · · ⊗ wD) ∀δw1 ∈ X1

B(w1 ⊗ w2 · · · ⊗ wD, w1 ⊗ δw2 · · · ⊗ wD) = Rm−1(w1 ⊗ δw2 · · · ⊗ wD) ∀δw2 ∈ X2
... = ...

B(w1 ⊗ w2 · · · ⊗ wD, w1 ⊗ w2 · · · ⊗ δwD) = Rm−1(w1 ⊗ w2 · · · ⊗ δwD) ∀δwD ∈ XD

(5)

with Rm−1(v) = F (v) − B(um−1, v). This problem is in practice solved with an iterative
(fixed point) strategy.
On the one hand, in the context of model verification, the CRE concept was already used
to control PGD approximations (see a posteriori error estimates developed in [36,37])
or to directly drive the PGD process with CRE minimization [38]. Nevertheless, the use
of PGD in CRE implementation has never been investigated and we wish to show here
that there are major advantages to do so, in particular for the construction of equilibrated
fields. On the other hand, in the context of model validation, PGD was used for model
updating within classical procedures with least square minimization [39]. It was also
recently used in particular applications involving robust model updating with the CRE
concept [40,41]. Here, the goal is to give a general framework on the effective use of PGD
for model updating with CRE. For the sake of simplicity and clarity, we consider scalar
linear elliptic (stationary thermal) problems even though extensions to elasticity or more
complex problems (nonlinear or transient analyses), briefly addressed in this paper, are
possible with regards to existing literature [2,8].
The paper outline is as follows: after presenting the mathematical model of interest in

“Reference problem and approximate FE solution” section, the CRE concept is reviewed
in “Basics on the CRE concept” section; its extension to model validation with the mCRE
concept is addressed in “Extension of the CRE concept for model updating: modified
CRE” section; the use of PGD in addition to CRE for the construction of admissible fields
is shown in details in “Coupling PGD with CRE in model verification” section for model
verification, and in “Coupling PGD with mCRE in model validation” section for model
validation; illustrative numerical results are reported in “Results and discussion” section;
conclusions are drawn in “Conclusions” section.

Methods
Reference problem and approximate FE solution

We consider a steady-state thermal problem that consists in finding the temperature/flux
pair (u, q) such that:

u = 0 on �D (kinematic constraints)
−∇ · q = f in �; q · n = g on �N (balance equations)

q = K∇u (constitutive relation)
(6)
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� is an open bounded subset of Rd with Lipschitz boundary ∂�, and �D and �N are
complementary parts of ∂� such that �D ∪ �N = ∂�, �D ∩ �N = ∅, and |�D| 
= 0. We
assume that f ∈ L2(�) and K ∈ [L∞(�)]d×d is a symmetric, uniformly bounded and
positive matrix in the sense that there exists kmax ≥ kmin > 0 such that

∀ξ ∈ R
d, kmin|ξ|2 ≤ Kξ · ξ ≤ kmax|ξ|2 a.e. in �. (7)

Considering theHilbert space U = {v∈H1(�), v = 0 on �D} equippedwith theH1-norm
‖v‖1, the weak formulation of (6) reads:

Find u ∈ U such that a(u, v) = l(v) ∀v ∈ U (8)

with

a(u, v) =
∫

�

K∇u · ∇v, l(v) =
∫

�

fv +
∫

�N

gv. (9)

The bilinear form a is symmetric, continuous and coercive on U . It hence defines an inner
product and induces the energy norm |||v|||U = √a(v, v) which is equivalent to ‖v‖1 on
U . We also denote ‖v‖0 the L2-norm on U . Existence and uniqueness of the solution u
to (8) is provided by the Lax-Milgram theorem. We note that (8) is equivalent to the
minimization of the potential energy J1(v) = 1

2a(v, v) − l(v) on U .
Let Th be a regular (non-degenerate) partition of �. Introducing the space Uh of con-

tinuous and locally supported functions which are polynomials on each element K ∈ Th,
the conforming FE approximation of (8) reads:

Find uh ∈ Uh such that a(uh, v) = l(v) ∀v ∈ Uh (10)

We thus define the discretization error e = uh − u ∈ U , for which a measure |||e|||U in
terms of the energy norm can be introduced to express the global quality of the approxi-
mate solution uh. Introducing the residual functional and associated dual norm:

R(v) = l(v) − a(uh, v); ‖R‖∗ = sup
v∈U ,v 
=0

|R(v)|
|||v|||U (11)

leads to |||e|||U = ‖R‖∗. In the context of model verification, a main goal of a posteriori
error estimators is to assess the value of |||e|||U .

Basics on the CRE concept

We present here the foundations and implementation of the CRE concept, built from a
dual approach and measuring the residual on the constitutive relation q = K∇u, in the
context of model verification.
Using the approximation approach with primal variational principle (10), that consists

of minimizing the potential energy J1(v) on Uh, leads to:

|||e|||2U = 2 [J1(uh) − J1(u)] ≥ 2 [J1(uh) − J1(v)] ∀v ∈ Uh (12)

This shows that any v ∈ Uh can only enable to compute a lower boundon the discretization
error |||e|||U ; this lower bound is in practice usually poor unless v is chosen suitably.
Getting an upper bound on |||e|||U requires to use the complementary variational princi-
ple. Using the subspace S of H (div,�) = {π ∈ [L2(�)]d,∇ · π ∈ L2(�)} defined as:

S = {π ∈ H (div,�),∇ · π + f = 0 in �,π · n = g on �N
}

⇐⇒ S =
{
π ∈ H (div,�),

∫

�

π · ∇v =
∫

�

fv +
∫

�N

gv ∀v ∈ U
}

(13)
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this complementary variational principle defines the solution flux field q = K∇u as:

q = arg minπ∈S J2(π) ; J2(π) = 1
2

∫

�

K−1π · π = 1
2
|||π|||2S (14)

where ||| • |||S is the energy norm for flux fields. A direct consequence is:

|||π − q|||2S = 2 [J2(π) − J2(q)] (15)

Noticing that J1(u) = −J2(q) leads to the property (Prager-Synge equality):

|||e|||2U = 2[J1(uh) + J2(q)] = 2[J1(uh) + J2(π)] − |||π − q|||2S
= 2E2

CRE(uh,π) − |||π − q|||2S (16)

where we introduced the CRE functional ECRE defined as:

E2
CRE(v,π) = J1(v) + J2(π) = 1

2
|||π − K∇v|||2S ∀(v,π) ∈ U × S (17)

that measures the non-verification of the constitutive relation for any pair (v,π) ∈ U ×S .
In the following, such a pair is referred as admissible: a field v ∈ U is said kinematically
admissible (KA); a field π ∈ S (i.e. verifying balance equations exactly) is said statically
admissible (SA). Using the CRE concept, the reference problem (6) can be formulated as:

(u, q) = arg min
(v,π)∈U×S

ECRE(v,π) (18)

Remark 1 For all material models described using internal variables and standard formu-
lation, and introducing a suitable definition of admissibility spaces, a more general local
(in space and time) expression of the CRE functional reads [2,8]:

E2
CRE(X, Y ) = φ(X) + φ∗(Y ) − 〈X, Y 〉 (19)

where (X, Y ) is a dual pair (with duality pairing 〈X, Y 〉), and φ and φ∗ are dual (in the
Legendre Fenchel sense) convex (pseudo-) potentials related to free energy or dissipation.
For the present case, φ(∇v) = 1

2K∇v · ∇v and φ∗(π) = 1
2K−1π · π.

Consequently, and provided that a flux field π ∈ S is available, we observe from (16)
that the term

√
2ECRE(uh,π) is a computable upper bound on |||e|||U . The quality of this

bound depends on that of π.
The constraints in space S make the construction of SA solutions awkward. A first

possibility, which is the most effective, would consist in using a FE discretization with
equilibrium elements on the complementary problem (14) (dual approach, see [42–44]).
However, this is in practice unrealistic as it would require the solution of an additional
global problem, with large computational efforts and non-conventional FE spaces. In
“Coupling PGD with CRE in model verification” section, we present the basis of a tech-
nique (referred as hybrid-flux or EET in the literature) that enables to compute a flux
field q̂h ∈ S [and therefore the a posteriori error estimate

√
2ECRE(uh, q̂h)] from a post-

processing of the FE field qh at hand. The PGD strategy will be used within this technique
in order to facilitate implementation issues.

Remark 2 It can be shown that using the hybrid-flux (or EET) technique to construct an
admissible flux field q̂h enables to obtain a lower error bound from the CRE functional [2,
6]; it is of the form ECRE(uh, q̂h) ≤ C|||e|||U , where C is a constant independent of the
mesh size, proving that the constructed error estimate has the same convergence rate as
the true discretization error.
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Extension of the CRE concept for model updating: modified CRE

We now consider that the material operator K depends on a set p ∈ P of parameters to
be identified from experimental measurements. To solve the associated ill-posed inverse
problem, we introduce the energy-based concept of modified constitutive relation error
(mCRE) [28,45], which can be seen as a direct extension of the CRE concept developed
in the previous section. The mCRE functional, still based on duality between admissible
primal and dual fields (v,π) ∈ U × S , is defined as:

E2
mCRE(v,π,p, s) = 1

2
∣∣∣∣∣∣π − K(p)∇v

∣∣∣∣∣∣2
S + 1

2
r

1 − r
σ‖�v − s‖20 (20)

where s is the set of experimental data,� is an extractionoperator,σ is a scaling coefficient,
and r ∈ [0, 1]. The two terms that compose the mCRE functional are modeling error
term (i.e. classical CRE term) and measurement error term, respectively; these terms are
weighted depending on the value of r.

Remark 3 Thevalue of r should generally be set in regards to theapriori reliability onboth
model and measurements. For instance, the Morozov principle or L-curve method [46]
may be used to define r with respect to data noise. The influence of r on the sensitivity
with respect to measurement uncertainties, and therefore on the quality of the updating
performed using mCRE, was illustrated in [47].

The solution of the inverse identification problem is then defined as the result of a
double minimization:

p0 = argmin
p∈P

(
min

(v,π)∈U×S
E2
mCRE(v,π,p, s)

)
(21)

In practice, this problem is solved using an iterative alternated minimization procedure
with fixed point method as detailed in the following algorithm:

1. Initialize the parameter set p0 and set iteration threshold ε

Iteration loop
2. Compute (̂u, q̂) = arg min(v,π)∈U×SE2

mCRE(v,π,p0, s)
3. Define cost function F (p) = E2

mCRE (̂u, q̂,p, s)
4. Minimize the cost function: p0 = arg minp∈PF (p)
5. If F (p0) ≤ ε, stop. Otherwise, go to Step 2

Remark 4 When some parameters in p describe a field (material parameter field for
instance), a localization step after spatial splitting of the cost function F (p) can be added
at the end of the first minimization (Step 2). It consists in selecting the highest local
contributions to F (p) and updating first the associated parameters. Moreover, a goal-
oriented version of the model updating with mCRE, in which only parameters which have
influence for the prediction of an output of interest are updated, can be constructed [48].

ThemCRE formulation is thus based on a trade-offbetweenmodeling andmeasurement
errors, which enables it to be less sensitive to noise. It inherits all the convenient properties
of the CRE concept; it can be in particular extended to complex constitutive models
[involving e.g. (visco)-plasticity or damage] and leads to a natural regularization.
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Notice to conclude that the mCRE strategy, without adding particular techniques, is
costly. In particular, the iterative strategy requires to compute optimal admissible fields
(̂u, q̂) at each iteration, i.e. each time p0 is updated. This can be highly facilitated using a
PGD meta-model, as shown in “Coupling PGD with mCRE in model validation” section.

Coupling PGDwith CRE in model verification

In this section, we explain how PGD can be advantageously used when implementing CRE
for model verification (see “Basics on the CRE concept” section).

Constructing admissible flux fields with the hybrid-flux technique

We consider the hybrid-flux (or EET) technique which enables to recover a flux field q̂h ∈
S from a post-processing of the FE field qh, with local independent computations [2,6,13].
It is a domain decomposition approach that consists of two steps:

1. Step 1 construction of equilibrated tractions F̂ on the boundary ∂K of each element
K ∈ Th, with F̂ = g if ∂K ⊂ �N , so that equilibration at the element level is verified:

∫

K
f +
∫

∂K
F̂ = 0 ∀K ∈ Th (22)

The construction of F̂ is based on the following prolongation condition:
∫

K
(̂qh − qh) · ∇φi = 0 =⇒

∫

∂K
F̂φi =

∫

K
(qh · ∇φi − f φi) (23)

applied to each elementK ∈ Th and each FE node i connected toK ; φi is the FE shape
function associated to node i. This condition automatically yields equilibrated trac-
tions F̂ and leads to the solution of local well-posed systems over patches of elements
connected to each node i. In practice, tractions F̂ are found as linear combinations
of functions φi. All technical details on the construction of F̂ can be found in [2,20].

2. Step 2 local construction, for given tractions F̂ and over each element K ∈ Th, of q̂h
solving the following Neumann problem:

− ∇ · q̂h = f in K ⇐⇒
∫

K
q̂h · ∇v =

∫

K
fv +
∫

∂K
F̂v ∀v ∈ H1(K )

q̂h · n = F̂ on ∂K (24)

The solution of (24) to get q̂h|K may be performed analytically, using polynomial
functions with sufficiently high degree, provided the source term f is polynomial as
well [49]. In practice, an alternative approach with numerical solution is preferred.
For fixed tractions F̂ , the optimal admissible flux q̂h inside each elementK is the one
thatminimizes the local error estimate onK |||̂q−qh|||S ,K (or equivalently |||̂q|||S ,K )
among all fluxes q̂ verifying (24). Duality arguments show that this is equivalent to
taking q̂h|K = K∇ρ, with ρ ∈ H1(K ) verifying:

∫

K
K∇ρ · ∇v =

∫

K
fv +
∫

∂K
F̂v ∀v ∈ H1(K ) (25)

A numerical approximation of the solution of (25) (defined up to an additive con-
stant) can be obtained using the FEM with a single finite element of high degree
p + k , where p denotes the polynomial degree used to compute uh ∈ Uh and k
denotes the extra degree. Numerical studies performed in [50] showed that analyti-
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cal and numerical approaches give similar CRE error estimates choosing k ≥ 3, even
though the flux field is not rigorously equilibrated in each element K with the latter
approach. We consider the numerical approach in the following.

Solving (25) is in practice the most costly part in the hybrid-flux method (in particular
for 3D applications), as it involves high-order elements and has to be performed for each
element K . We wish to use the PGD technique in order to find, in an offline phase,
a parameterized solution to (25), valid for any configuration of the geometry and the
loading. From equilibrated tractions computed in Step 1 and with respect to problem data
(material parameters, mesh geometry, …), this PGD solution would then be directly used
in the online error estimation phase for each element K of the mesh.

Use of the PGD to solve problems at the element level

In the following:

• We consider that the material behavior is isotropic and that material parameters
are constant over each element K , so that their values have no influence on q̂h|K ;
we thus set K = I when solving (25) and define q̂h|K = ∇ρ. In cases where K is
not constant over each element, its evolution could be parameterized and additional
material parameters would be introduced in the PGD decomposition;

• We consider, as an illustrative example, the case of 3-node triangle elements (Fig. 1).
Nevertheless, the proposed strategy is generic (based on element shape functions and
nodes coordinates alone) and can be straightforwardly applied to other elements.

On each edge �jl between vertices j and l of any element K , tractions are linear
combinations of FE shape functions and thus read, for the considered element type,
F̂ jl(x) = F̂ jl

j φj(x)+ F̂ jl
l φl(x) with

(
F̂ jl
j , F̂

jl
l

)
∈ R

2. Consequently, the solution ρ to (25) can
be written as a linear combination of elementary solutions:

ρ(x) =
∑

(j,l)

[
F̂ jl
j ρ

jl
j (x) + F̂ jl

l ρ
jl
l (x)
]

(26)

where ρ
jl

 (
 = j, l) is the solution (up to a constant) to the elementary problem:

∫

K
∇ρ

jl

 · ∇v =

∫

�jl
φ
v −

∫

K

1
|K |
(∫

�jl
φ


)
v ∀v ∈ H1(K ) (27)

In the present case, there are 6 elementary problems.

K

1

2

3

F^12

F^23

F^13

Fig. 1 Configuration at the element level. A 3-node triangle element is considered, and linear tractions F̂ jl are
defined on element edges
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Remark 5 Considering elasticity problems, (25) is changed in:
∫

K
K∇sρ : ∇sv =

∫

K
f · v +

∫

∂K
F̂ · v ∀v ∈ [H1(K )]d (28)

where K is the fourth-order symmetric elasticity tensor and ∇s is the symmetric part of
the matrix gradient operator. For 3-node triangle elements, tractions on each edge �jl of
K read F̂ jl(x) = F̂ jl

j φj(x) + F̂ jl
l φl(x) or:

F̂ jl(x) = F̂ jl
jxφ

x
j (x) + F̂ jl

jyφ
y
j (x) + F̂ jl

lxφ
x
l (x) + F̂ jl

lyφ
y
l (x) (29)

with F̂ jl

 =
(
F̂ jl


x, F̂
jl

y

)T
, φx


(x) = (φ
(x), 0)T and φ
y

(x) = (0,φ
(x))T (
 = j, l). We thus

introduce solutions, defined up to a rigid body motion, to the following elementary prob-
lems [generalization of (27)]:

∫

K
K∇sρ

jl,x/y

 : ∇sv =

∫

�jl
φ
x/y

 · v −

∫

K
(a1 ∧ X + a2) · v ∀v ∈ [H1(K )]2 (30)

where X are barycentric coordinates in element K , and a1 and a2 are defined as:

a1 =
(∫

�jl X ∧ φ
x/y



)
· z

∫
K X · X z; a2 = 1

|K |
∫

�jl
φ
x/y

 (31)

with z the orthonormal vector to the 2D plane. The solution ρ to (28) is then recovered
as:

ρ(x) =
∑

(j,l)

[
F̂ jl
jxρ

jl,x
j (x) + F̂ jl

jyρ
jl,y
j (x) + F̂ jl

lxρ
jl,x
l (x) + F̂ jl

lyρ
jl,y
l (x)

]
(32)

The solution ρ
jl

 to each problem (27) can be computed with the PGD technique, for

any element K , parameterizing the geometry of K with a set of parameters pgeo ∈ P .
Following the approach described in [51–53], we reformulate the weak problem (27) by
introducing a parameter-dependent mappingM(pgeo) : Kref → K (pgeo) from a reference
fixed elementKref to the geometrically parameterized elementK (pgeo). Such a geometrical
transformation then allows defining the weak problem in a tensor product space and
applying the PGDmethod, in order to compute generic parameterized solutions ρ

jl

 (pgeo)

which can be used for any element geometry.

Remark 6 In the presence of geometrical variabilities, an alternative approach described
in [54,55] could also be used. It consists in embedding the parameterized domain into a
fixed fictitious domain.

In the present case, the mapping is defined from three parameters (Fig. 2):

• A first scaling mappingM1 : K → K maps a homothetic element K with diameter 1
to the actual element K with diameter α. This mapping reads:

(
x
y

)
= T1

(
x
y

)
; T1 =

[
α 0
0 α

]
= αI (33)

• A second linear mapping M2 : Kref → K maps a reference element Kref (right-
angled isosceles triangle) to element K . This mapping reads, using an isoparametric
formulation:
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η
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12
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ref

Fig. 2 Mapping between reference and parameterized elements. The mapping is defined as a combination
of a scaling mappingM1 between homothetic elements K and K , and a linear mappingM2, defined from
an isoparametric formulation, between a reference element Kref and K

(
x
y

)
=
(

φ2(η, ξ ) + x3φ3(η, ξ )
y3φ3(η, ξ )

)
= T2

(
η

ξ

)
; T2 =

[
1 x3
0 y3

]
(34)

where (x3, y3) are local coordinates of node 3 in the coordinates system associated
with element K , and (η, ξ ) are local coordinates in the coordinates system associated
with element Kref (see Fig. 2).

It thus involves 3 parameters and leads to the global mapping:

M
(
α, x3, y3

) = M1(α) ◦ M2(x3, y3) (35)

with transformation matrix T(α, x3, y3) = αT2(x3, y3), Jacobian matrix J = T, and Jaco-
bian J = det(J) = α2y3.

Introducing xref =
(

η

ξ

)
, approximations of solutions ρ

jl



(xref ,α, x3, y3
)
are computed

offline and once for all using the PGD technique with variable-separated modal decom-
position. The parameter α is included only for completeness of the description; it acts as
a multiplicative constant in the solution ρ and disappears when computing q̂h|K = K∇ρ.
PGD solutions thus read:

ρ
jl

,m
(xref ,α, x3, y3

) = α

m∑

i=1
ψi(xref )δxi (x3)δ

y
i (y3) (36)

Remark 7 The number of elementary problems (27) and the number of geometrical para-
meters involved in the mappingM depend on the FE element type; for instance, 6-node
triangle elements would involve 9 elementary problems (3 for each of the three edges)
and 9 geometrical parameters (12 degrees of freedom with three rigid body motions),
whereas 4-node tetrahedron elements would involve 12 elementary problems (3 for each
of the four edges) and 6 geometrical parameters (12 degrees of freedomwith six rigid body
motions).

Implementation of the PGD

TheprogressiveGalerkin approachdescribed in “Background” section is usedwithbilinear
form B and linear form F constructed from the parameterized separated variable Jacobian
transformation (all technical details can be found in [51,52]). Introducing the interval Iα
(resp. Ix3 and Iy3 ) in which α (resp. x3 and y3) evolves, these forms read:
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B(ρjl

 , v) =

∫

Iα

∫

Ix3

∫

Iy3

∫

Kref

J.J−T∇ρ
jl

 · J−T∇v

F (v) =
∫

Iα

∫

Ix3

∫

Iy3

[∫

�
jl
ref

Jsφ
v −
∫

Kref

J.
1

|K |
(∫

�jl
φ


)
v
]

(37)

Space functions ψi(xref ) in (36) are computed using the FEM with a single element of
degree p + k . Other functions are discretized using a fine grid over spaces Iα , Ix3 , and Iy3 .

Remark 8 The numberm of PGDmodes which is required to get accurate solutions ρ
jl

,m

can be rigorously defined using classical a posteriori error estimation tools devoted to
PGD [36,37,56,57]. A numerical assessment of the valuem that yields sufficient accuracy
is provided in “CRE estimate obtained from EET-PGD” section.

Remark 9 In order to save computational time and storage needs, symmetries in the local
parameterized solutions ρ

jl

 can be used. For instance, the relation ρ12

1
(
η, ξ ,α, x3, y3

) =
ρ12
2
(
1 − η, ξ ,α, 1 − x3, y3

)
holds.

The PGD technique thus provides for a parameterized equilibrated flux field at the
element level:

q̂h,m|K
(
xref ,
{
F̂ jl




}
,α, x3, y3

)

= J
−T (α, x3, y3)∇

⎛

⎝
∑

(j,l)
[̂Fjl

j ρ
jl
j,m(xref ,α, x3, y3) + F̂ jl

l ρ
jl
l,m(xref ,α, x3, y3)]

⎞

⎠ (38)

which can be directly used online in the a posteriori error estimation procedure.

Remark 10 Another study, which is not considered here, would benefit from the PGD
representation q̂h,m|K

(
xref ,
{
F̂ jl




}
,α, x3, y3

)
. It addresses the optimization of equilibrated

tractions
{
F̂ jl




}
considering a global problem in which the complementary energy is min-

imized. This procedure, first developed in [49], is very costly in the general case but can
be highly facilitated by the explicit dependency on

{
F̂ jl




}
provided by the PGD.

Coupling PGDwith mCRE in model validation

In this section, we explain how PGD can be advantageously used when implementing
mCRE for model updating (see “Extension of the CRE concept for model updating: mod-
ified CRE” section).

Performingminimizations in themCREmethod

The constrained minimization of the mCRE method (Step 2 in the algorithm given in
“Extension of the CRE concept for model updating: modified CRE” section) is in practice
performed finding the saddle-point of the following Lagrangian functional:

L(v,π,p, λ) = E2
mCRE(v,π,p, s) −

[∫

�

π · ∇λ −
∫

�

f λ −
∫

�N

gλ
]

(39)

for all (v,π, λ) ∈ U ×H (div,�)×U . It leads to the solution
(
û, q̂, λ̂) of the coupled system:

∫

�

(K(p)∇û − q̂) · ∇v + r
1 − r

σ (�û − s) · �v = 0 ∀v ∈ U
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∫

�

(̂q − K(p)∇û) · K−1(p)π −
∫

�

∇λ̂ · π = 0 ∀π ∈ H (div,�)
∫

�

q̂ · ∇λ −
∫

�

f λ −
∫

�N

gλ = 0 ∀λ ∈ U (40)

The second relation yields q̂ = K(p)∇ (û + λ̂
)
, and (̂u, λ̂) is obtained solving:

−
∫

�

K(p)∇λ̂ · ∇v + r
1 − r

σ�û · �v = r
1 − r

σ s · �v ∀v ∈ U
∫

�

K(p)∇ (û + λ̂
) · ∇λ =

∫

�

f λ +
∫

�N

gλ ∀λ ∈ U (41)

The gradient of the cost function F (p), which is required when performing the second
minimization with first order strategies, is then easily computed using the adjoint state
method, as ∇F (p) = ∇pL

(
û, q̂,p, λ̂).

Remark 11 Usually, the discretization error is assumed to be negligible in the mCRE for-
mulation (it can be anyway controlled using classical verification procedures, see [58]) so
that a discretized version of (21) can be written using FEM, andmodel updating is applied
directly to the discretized representation. In particular, the strong equilibrium conditions
involved in the admissibility space S are replaced by weaker equilibrium conditions, in
the FE sense only. We start from the following definitions:

• The discretized field V is KA if it verifies the (discretized) kinematic constraints of
(6), so that it contains prescribed dofs. The associated admissibility space is denoted
Uh;

• ThediscretizedfieldW is SA if it verifies theFEequilibriumequationsV T (KW−F ) =
0 for all V ∈ Uh, where K and F are the global stiffness matrix and load vector,
respectively, of the FE system. The associated admissibility space is denoted Sh.

The discretized mCRE functional thus reads:

E2
h (V ,W ,p, s) = 1

2
(W − V )TK(p)(W − V ) + 1

2
r

1 − r
(��V − s)TG(��V − s) (42)

where G is a scaling diagonal matrix that integrates σ . Defining the cost function Fh(p)
as:

Fh(p) = min
(V ,W )∈Uh×Sh

E2
h (V ,W ,p, s) (43)

the associated constrained minimization is performed introducing the Lagrangian:

Lh(V ,W ,p,�) = E2
h (V ,W ,p, s) − �T [K(p)W − F ] (44)

and leads to
(V̂ , Ŵ , �̂

)
solution of the system:

K̃(p) (Û − Ŵ )+ r
1 − r

��T
G̃
(
��Û − s) = 0

K(p) (Ŵ − Û)− K(p)�̂ = 0
K̃(p)Ŵ − F̃ = 0 (45)
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where K̃ (resp. G̃ and F̃ ) is the restriction ofK (resp.G andF ) inwhich lines corresponding
to prescribed dofs in Uh have been removed.

Use of the PGD for the first minimization

In this section,we implement aPGDmeta-model tofind, in an offline phase, parameterized
solutions

(
û, λ̂
)
to (41). Defining σr = r

1−r σ ∈ �r (single parameter gathering scaling and
weighting effects in mCRE) and assuming that P = ⊗P

j=1Pj , these are searched of the
form:

ûm(x, σr ,p) =
m∑

i=1

⎡

⎣ψu
i (x)κu

i (σr)
P∏

j=1
χu
j,i(pi)

⎤

⎦ ;

λ̂m(x, σr ,p) =
m∑

i=1

⎡

⎣ψλ
i (x)κλ

i (σr)
P∏

j=1
χλ
j,i(pi)

⎤

⎦ (46)

Here again, the progressive Galerkin approach described in “Background” section is used
with the following bilinear form B and linear form F :

B((̂u, λ̂), (v, λ)) =
∫

�r

∫

P

[∫

�

K(p)∇(̂u + λ̂) · ∇λ −
∫

�

K(p)∇λ̂ · ∇v + σr�û · �v
]

F ((v, λ)) =
∫

�r

∫

P

[∫

�

f λ +
∫

�N

gλ + σrs · �v
]

(47)

Using then (̂um, λ̂m) in theonlinemodelupdatingphasewithmCREhas several advantages:

• The explicit dependency on parameters p enables: (1) to evaluate very fast and for
any values of p the optimal admissible fields arising from the first constrained min-
imization; (2) to compute gradients of the cost function F (p) analytically and thus
perform the second minimization step very easily;

• The explicit dependency on parameter σr makes the definition of the optimal value of
σr (primarily with respect to measurement noise using the L-curve method) straight-
forward.

Remark 12 In the present work, we assume that measurement values in s are known
upstream to the updating procedure, and that this procedure is conducted for a single set
of measurement values. In other cases such as data assimilation on time-dependent prob-
lems, they can be considered as extra-parameters in the PGDdecomposition as performed
in [40,41].

In practice, space functions ψu
i (x) and ψλ

i (x) are computed using the FEM, and other
functions appearing in PGDmodes are discretized using a fine grid over spaces �r andPj
(j = 1, . . . , P).

Results and discussion
In this section, we illustrate and analyze performances of the approach proposed in “Cou-
pling PGD with CRE in model verification” and “Coupling PGD with mCRE in model
validation” sections. “Example 1: a posteriori error estimation on a 2D structure” section
deals with model verification using a CRE error estimate coupled with PGD, whereas
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“Example 2: model updating on a 3D structure” section addresses model updating using a
mCRE formulation coupled with PGD.

Example 1: a posteriori error estimation on a 2D structure

Problem geometry and data

We consider discretization error estimation on a 2D holed plate �, according to a given
mesh composed of 3-nodes triangular elements (Fig. 3). We consider a steady-state ther-
mal problem and homogeneous isotropic material properties with K = I. A prescribed
zero temperature is applied on the external boundary �D, while a flux g = 1W /m is
imposed on the inner boundary �N . Owing to problem symmetries, only one quarter of
the plate is studied.
From the associated FE solution, equilibrated tractions are computed using the first step

of the hybrid-flux (or EET) technique.

Details on the PGD solution

We compute a parametrized solution ρ
jl

,m
(xref ,α, x3, y3

) = α
∑m

i=1 ψi(xref )δxi (x3)δ
y
i (y3)

of (25) with a single 4th order FE element and 20 PGD modes (m = 20). The domains
Ix3 = [0, 1] and Iy3 = [0.1, 1] are discretized with 100 points each, after checking that
this is sufficient to ensure an accurate description of the evolutions with respect to x3
and y3. The first three PGD modes of ρ11

1,20 are shown in Fig. 4. In Fig. 5, we represent
the PGD approximation of ρ11

1 for different configurations of parameters x3 and y3. The
computation of this PGD solution is done once for all, in an offline phase and stored for
later use.
After identifying the PGD parameters α, x3 and y3 over each element of the mesh (see

Fig. 6), an accurate PGD approximation of the admissible flux q̂m can then be directly
evaluated inside each element in an inexpensive online phase; this method is referred as
EET-PGD method in the following.

g

Fig. 3 Representation of the 2D domain, associated FE mesh, and applied loading. The holed plate is
discretized with triangle elements, a zero temperature is prescribed on the external boundary, and a given
flux is applied on the inner boundary
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Fig. 4 First PGD modes of ρ11
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Fig. 5 PGD solution ρ11
1,20. The parameterized approximate solution is represented over the element K for

various parameter configurations

CRE estimate obtained from EET-PGD

From PGD solutions, we have all ingredients to estimate the discretization error using
the CRE method. In Fig. 7, we compare local contributions to the CRE estimate 2E2

CRE ,
obtained from the EET-PGD technique when computing an admissible flux q̂h,m, with:
(1) contributions to the CRE estimate obtained from the classical EET technique when
computing an admissible flux q̂h; (2) contributions to the exact error |||e|||2U evaluated
using a highly refined mesh (overkill solution). One observes similarities between the two
CRE estimations, showing up areas where the mesh needs to be refined. These areas are
correctly predicted when comparing to the exact error distribution.
Choosingm = 20 to compute PGD solutions in the EET-PGD techniquemay be unnec-

essary.To analyze this point,we show inFig. 8 values of the effectivity index ieff =
√
2ECRE

|||e|||U
with respect to the number m of PGD modes used to evaluate the equilibrated flux q̂h,m.
We also represent in Fig. 9 the evolution of the relative error |||̂qh,m−q̂h|||S

|||̂qh|||S with respect to
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Fig. 6 Identified PGD parameters in the mesh. The parameters values α, x3 and y3 are set for each element K
of the domain

Fig. 7 Local contributions to the CRE estimate. We represent elementary contributions to the error estimate
2E2CRE obtained using either the EET technique (left) or the EET-PGD technique (center), and elementary
contributions to the exact error |||e|||2U (right)

m, where q̂h is the equilibrated flux field constructed with the EET technique. A map of
|||̂qh,m − q̂h|||S form = 1,m = 2, andm = 3 is given in Fig. 10.We observe that choosing
m = 7 is enough to reconstruct an admissible flux solution which is equivalent to the one
obtained with the classical EET technique.We also observe thatm = 3 enables to capture
the complexity of the local problems and to provide for a relevant error estimate, even
though it is not guaranteed.
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Number m of PGD modes
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f

f

EET
EET-PGD

Fig. 8 Influence on the effectivity index. We represent the value of the effectivity index with respect to the
number of PGD modes used to evaluate the equilibrated flux in the CRE estimate

Fig. 9 Error on the PGD construction. We represent the evolution of the relative error∣∣∣∣∣∣̂qh,m − q̂h
∣∣∣∣∣∣S /

∣∣∣∣∣∣̂qh
∣∣∣∣∣∣S with respect to the number of PGD modes used to compute q̂h,m

Fig. 10 Map of the error on the flux field computed with PGD. The spatial distribution of the error∣∣∣∣∣∣̂qh,m − q̂h
∣∣∣∣∣∣S is represented form = 1 (left),m = 2 (center), andm = 3 (right)

Speed-up obtained using the PGD solution

Eventually, we compare the CPU time required to compute the equilibrated flux field
depending on whichmethod is used (Fig. 11). All the computations were performed on an
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EET
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normalized CPU time

tractions construction
local recovery

Fig. 11 Comparison of CPU times. Values of CPU times required to compute the hybrid-flux steps are given
depending on the equilibrated flux technique which is used

Intel Core i5 2.4 GHz with 8 GB of RAM, without parallelization. Classical EET and EET-
PGD techniques share as much code as possible, and only the construction and solution
of the matrix problem is replaced by a simple post-processing with PGD solutions in the
EET-PGD technique. Naturally, the first step with construction of equilibrated tractions
is similar for both techniques.
When using the EET-PGD technique, the offline CPU cost to compute the PGD solution
is 312 s; this solution can then be used in a multi-query context. In the online step,
computing the equilibrated flux from the classical EET technique (Cholesky factorization)
takes 0.01509 s per element (0.0587 s for the whole mesh composed of 42 elements),
whereas computing the equilibrated flux from a direct evaluation of the PGD solution
takes 0.00426 s per element (0.0077 s for the whole mesh). We thus observe a speed-up of
almost 10 in the second CRE step (construction of equilibrated fluxes in each element),
and the global speed-up on the whole hybrid-flux technique (with associated CPU cost of
0.0960 s) is about a factor 2.
In Fig. 12, we represent this same speed-up for different levels of refinement of the initial
mesh (corresponding meshes are given in Fig. 13). The speed-up increases as the mesh
becomes finer, reaching a gain of 125 on a 2688 elementsmesh for the local recovery, while
the overall hybrid-flux technique shows a speed-up of magnitude 5 on this same mesh.

102 103

101

102

Number of elements

G
ai
n

local recovery
hybrid-flux technique

Fig. 12 CPU gains. For meshes with increasing numbers of elements, the CPU gains on the equilibrated flux
step are given. Gains on the local recovery alone or on the overall hybrid-flux technique are explicited
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Fig. 13 Sequence of refined meshes. This sequence, obtained from a refinement of the initial mesh, is used
to assess gain on the CPU time with the EET-PGD technique

An additional step would be to reduce the CPU time of the tractions reconstruction, by
optimizing implementation, in order to fully benefit from the use of the PGD technique.

Example 2: model updating on a 3D structure

Identification problem

We consider a steady-state thermal problem on the 3D geometry shown in Fig. 14. It is a
two layers cylinder (length L = 100, internal radius Rint = 10, external radius Rext = 14)
with a localized inclusion (length Linc = 10) in the middle of the cylinder. The internal
layer (resp. external layer, and inclusion) is represented in green (resp. blue, and red) color
in Fig. 14. In each of the layers and in the inclusion, thematerial is supposed to be isotropic
and homogeneous with respective material operators Kint = pintI, Kext = pextI, and
Kinc = pincI. The applied boundary conditions are: (1) homogeneous Dirichlet boundary
conditions onone endof the cylinder; (2) given thermal flowqd = 1on the inner boundary;
(3) zero thermal flow (free surface) on all other boundaries.
Wewish to identify thermal conductivity parameters (pext , pinc) fromnoisymeasurements
given by a set of 12 sensors. These sensors are placed on four horizontal rows with π/6
angle spacing (see Fig. 14). The reference values for parameters (pext , pinc) to be identified
are prefext = 10 and prefinc = 1. Furthermore, we fix pint = 20.
To perform the identification process, the structure is discretized with a FE mesh made

of 41,856 tetrahedra (13,164 nodes) as presented in Fig. 14. The noisy observation data are
synthesized numerically by solving the direct problem with reference parameter values
(prefext , p

ref
inc), extracting the obtained nodal temperature values ui at sensors positions, then

adding a Gaussian white noise to get data si:

si = (1 + N (0,ϒ))ui (48)

with variance ϒ . In the following, we choose ϒ = 0.1.
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Fig. 14 Problem geometry and sensors location. The structure is a two layers cylinder with a localized
inclusion (represented in red), which is subjected to a given thermal flow on the inner boundary. The
identification process is performed from sensors (red squares) located on the external boundary, and using a
FE mesh made of tetrahedral elements

PGDmodel reduction

As detailed in “Coupling PGD with mCRE in model validation” section, PGD representa-
tions of the parameterized solutions

(
û, λ̂
)
to (41) are computed in an offline phase. These

read:

ûm(x, σr , pext , pinc) =
m∑

i=1
ψu
i (x)κu

i (σr)χ
u
1,i(pext )χ

u
2,i(pinc)

λ̂m(x, σr , pext , pinc) =
m∑

i=1
ψλ
i (x)κλ

i (σr)χ
λ
1,i(pext )χ

λ
2,i(pinc) (49)

The first five (normalized) PGD modes are represented in Figs. 15 and 16. In Fig. 17, we
represent the energy norm of each PGD mode relative to the energy norm of the first
PGD mode u1, which shows that their influence highly decreases with m. In practice, we
choosem = 15.

Identificationwith PGD

Starting from the initial parameter values p0ext = 20 and p0inc = 10, we implement the
model updating process using the mCRE method coupled with the previously computed
PGD solutions. We represent in Fig. 18 the evolution of the cost function F (pext , pinc) =
E2
mCRE (̂um, q̂m, pext , pinc, s); it clearly shows the convex feature of this cost function, and

therefore theuniqueness of theminimization solution.Wealso plot in Fig. 19 the evolution
of the two terms of the cost function, i.e. themodel error term and themeasurement error
term, with respect to the penalty coefficient σr for (pext , pinc) = (p0ext , p0inc

)
. The optimal

value of σr is the one for which the two error terms are balanced (i.e. when the two curves
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Fig. 15 Spatial PGD modes for the identification with mCRE. The first five (normalized) modes for the primal
field (left), and the adjoint field (right), are plotted

intersect). Notice that these evolutions of the mCRE functional are easy to obtain as the
PGD solutions (49) lead to explicit dependencies with respect to pext , pinc, and σr .
We now perform the iterative process using a first order (gradient) minimization

method. For each iteration, we show in Fig. 20 the identified values of (pext , pinc), as
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Fig. 16 Extra-coordinates PGD modes for the identification with mCRE. The first five (normalized) modes for
the primal field (left), and the adjoint field (right), are plotted

well as the optimal value σr used for this iteration and defined as previously. We observe
that the method converges to identified values of (pext , pinc) which are very close to the
reference values

(
prefext , p

ref
inc

)
. In addition, we study the incidence of the numberm of con-

sidered PGD modes on the identification results. The convergence of the identification
process is represented in Fig. 21 for several values ofm. We clearly observe that the accu-
racy of the identification results is highly impacted by the value chosen form, and that the
process leads to a relative error lower than 10% for both parameters pext and pinc when
usingm = 15. It is also interesting to notice that the PGD representation withm = 10 is
suitable for the identification of pext , which is the parameter with greater weight on the
overall solution, but still fails for the identification of pinc.
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Fig. 17 Energy norm of each PGD mode. The graph on the right is a zoom for PGD modes with small values
of the energy norm
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Fig. 18 Convex shape of the mCRE cost function. We represent the evolution of the mCRE functional with
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Fig. 19 Trade-off in the mCRE functional. We represent the evolution of the two terms which compose the
mCRE functional, i.e. the model error term and the measurement error term, with respect to σr

The use of PGD enables large computation gains. Using a direct solver with paralleliza-
tion over 4 nodes, a classical identification process with mCRE would require about 4 h
for this problem. Coupled with PGD, this same process takes only 5 min in the online
phase (and additional 30 min to compute PGD solutions with 15 modes in the offline
phase). All computations were performed with a Python FE code using the scipy.sparse
module for matrix representation, and systems were solved with a dedicated direct solver
based on the UMFPACK library. The speed-up thus comes from the difference between
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Fig. 20 Identification results. Identified values of parameters pext and pinc (left), and optimal value of the
penalty coefficient σr (right), are given with respect to iterations
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Fig. 21 Influence ofm on the identification results. We represent the relative error on the identified values of
parameters pext (left) and pinc (right), along the identification iterations, with respect to the value ofm

the original mCRE and the PGD-mCRE strategies. A crude complexity analysis of the two
approaches can be conducted as follows:

• Considering original mCRE, each iteration with update of the value of σr requires
to solve a Pareto problem to find the optimal value of σr . This involves about 40
sub-iterations, each of them corresponding to the solution of a linear system with the
size of the problem in space [resulting from (41)]. Considering 10 iterations in the
mCRE identification process thus leads to the solution of about 400 linear systems of
the space problem size;

• Considering PGD-mCRE, the offline computational cost is due to the use of a greedy
algorithm to compute 15 PGD modes. At each iteration of this algorithm, we imple-
ment a fixed point procedure which converges in 3 sub-iterations (average), and a
sub-iteration requires the solution of the space problem. Consequently, the compu-
tation of the parametric PGDdecomposition requires to solve about 45 linear systems
with the size of the problem in space. Then, no more solutions of linear systems are
required in the online step, merely some inexpensive evaluations of parametric func-
tions.

Conclusions
We presented a general framework that highlights the beneficial use of PGD in V&V
procedures performed by means of the CRE concept. Based on an offline/online strategy,
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it drastically decreases the computational cost and technicalities which are essentially
associated with the computation of admissible fields. We believe this work paves the way
to both robust, practical, and real-timemethods for controlling computational mechanics
models. Furthermore, as the proposed technique is focused on balance equations alone,
it should be possible to extend it to nonlinear time-dependent problems. This will be the
topic of forthcoming research works.
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