
Giacoma et al. Adv. Model. and Simul.
in Eng. Sci. (2016) 3:12 
DOI 10.1186/s40323-016-0067-7

RESEARCH ART ICLE Open Access

An efficient quasi-optimal space-time PGD
application to frictional contact mechanics
Anthony Giacoma1*, David Dureisseix2 and Anthony Gravouil2,3

*Correspondence:
anthony.giacoma@ansys.com
1ANSYS France, 11 avenue Albert
Einstein, 69100 Villeurbanne,
France
Full list of author information is
available at the end of the article

Abstract

The proper generalized decomposition (PGD) aims at finding the solution of a generic
problems into a low rank approximation. On the contrary to the singular value
decomposition (SVD), such a low rank approximation is generally not the optimal one
leading to memory issues and loss of computational efficiency. Nonetheless, the
computational cost of the SVD is generally prohibitive to be performed. In this paper,
authors suggest an algorithm to address this issue. First, the algorithm is described and
studied in details. It consists in a cheap iterative method compressing a low rank
expansion. It will be shown that given a low rank approximation, the SVD of a provided
low rank approximation can be reached at convergence. Behavior of the method is
exhibited on a numerical application. Second, the algorithm is embedded into a
general space-time PGD solver to compress the iterated separated form for the
solution. An application to a quasi-static frictional contact problem is illustrated. Then,
efficiency of such a compressing method will be demonstrated.

Keywords: Low rank approximation, Proper generalized decomposition, Singular
value decomposition, Principal component analysis, Quasi-static contact

Background
Computational mechanics tackles nowadays large models involving huge amount of data
to provide fine description of physics or accurate forecasts. For that purpose, several and
various numerical methods have to be taken into account in order to perform efficiently
these large scale simulations (both accurate and computationally cheap). To address this
issue, both computational hardware and algorithms have to progress. During the last
decades, a specific class of algorithms based on model reduction methods has been devel-
oped. They consist basically in focusing on dominant trends of the problem. Then, a
large amount of computational time can be spared and accurate and well representative
solution can be captured. These methods rely strongly on basis design for approximated
solution which has to span the dominant trends and perhaps weaker ones up to a desired
level of accuracy.
Given a collection of data (also called snapshots), the well-known canonical method

to design the optimal basis is the Singular Value Decomposition (SVD). Such a decom-
position may lead to prohibitive computational times in an industrial context due to its
complexity. In addition reduced ordermodelingmethods often require strategies to adapt
online the reduced basis in order to include uncaptured trends of the problem. In other
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words, if one has a SVD basis and wants to add some vectors, one has to recompute the
SVD with new data. For such situations updating strategies are proposed in [1,2].
Usual SVDalgorithms [3] compute SVDmodes one-by-one “incrementally” until having

a basis satisfying a certain level of accuracy. These algorithms iterate until finding a mode.
Once the precision criterion is reached, the basis is ensured to be optimal because each
found mode is the most representative one.
In this paper, we propose a different approach. Given a set of vectors, a basis is defined.

The hereinafter suggested approach iterates over the whole basis in order to make all of
its vectors closer to optimal ones until having SVD basis. Doing so, after each iteration
a “quasi-optimal” basis is computed and few iterations are expected to provide a quite
optimal basis. Such an approach ensures to have at each iteration a basis which spans
the whole considered space to detriment of its optimality. Such an iterated basis could be
sufficient to perform reliable computation or data analysis. One expects that the computa-
tional effort to get a quasi-optimal basis is lowwhereas classic SVD algorithms prescribing
the optimality property are expensive.
In the following sections, the proposed strategy is first described on a rank-2 expansion.

Convergence proof, analysis and results are exposed. Second, this strategy is generalized
for rank-p expansion with a global convergence proof. Afterwards, this strategy is tested
by computing the SVD of a matrix. Finally, an application case is performed. It deals with
a combination of the suggestedmethod and the proper generalized decomposition (PGD)
method. On this basis, the efficiency of quasi-optimal approaches will be exemplified.

An iterative process to compute the SVD
In the following, we will denote withA ∈ R

n×m a real rectangular matrix. Without loss of
generality, we will assume that n � m (if not the case, we simply consider the transpose
of A). Given two column vectors of same size u and v, the associated inner product
is denoted with (u | v); since in this article we consider the euclidean canonical inner
product associated to the euclidean norm ‖ · ‖, (u | v) = uTv.
Given a collection ofm vectors si ∈ R

n (e.g. experimental results called snapshots), they
can be cast into a real rectangular matrix A (the snapshot matrix) for which a low rank
expansion (with p ≤ m) is

A =
[
s1 · · · sm

]
=

p∑
i=1

uivTi =
[
u1 · · · up

] [
v1 · · · vp

]T = UVT (1)

MatricesU andV are composed by respectively column vectors ui ∈ R
n (left vectors) and

vi ∈ R
m (right vectors). Left vectors ui form an a priori non-unique basis for snapshots

sk which coordinates are contained in vi. p corresponds to the size of the expansion (i.e.
basis size). In this article, a method aiming at finding a suited basis for snapshots sk (i.e.
the smallest basis) is proposed. The optimal basis is known to be given by left vectors of
the SVD.
Inorder to obtain adecomposition (1), severalmethods could beused.They are expected

tobe able toprescribe specificproperties suchasorthonormality condition for the involved
vectors. Three of them are listed below.

Decomposition according to the canonical basis.Given thematrixA, each snapshot can be
written in the canonical basis leading toU = 1n (square n× n identity matrix, p = n) and
V = AT . Hence, vectors ui are orthonormal and columns of A correspond to vectors vi.
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Cholesky orthonormalization. Given the matrix A, Cholesky factorization method can be
used to find an orthonormal basis for snapshots inA. Let us define the positive symmetric
matrixM = ATA; it is assumed definite to fulfill the Cholesky factorization requirements
(i.e. A is assumed to be full rank).

M = ATA = LLT ⇒ L−1ATAL−T = 1m (2)

Matrix L is a lower triangular matrix. Hence, U = AL−T is an orthonormal basis for
snapshots: UTU = 1m and V = L provide a low rank expansion. The overall complexity
of this method is dominated by the Cholesky factorization for full matrices (about 1

3n
3

operations).

Gram-Schmidt-based orthonormalization. If the matrix A is already provided with a low
rank expansion of size p ≤ m, the Cholesky factorization can be replaced by a Gram-
Schmidt procedure to provide an orthogonality condition for left vectors, i.e. ∀(i, j), (ui |
uj) = δij with δij the Kronecker symbol. For that purpose, the Algorithm 1 can be used.
The overall complexity of the Gram-Schmidt process is about 2np2 operations [3]. One
can note that Algorithm 1 does not change the considered approximation, i.e. Ap = Ãp.
There is also some flexibility concerning the choice of the inner product.

Algorithm 1: Left-orthonormalization.

Input: Ap = ∑p
i=1 uivTi

Output: Ãp = ∑p
i=1 ũiṽTi with (ũi | ũj) = δij

1 First left vector ũ1 ← u1/‖u1‖
2 First right vector ṽ1 ← ‖u1‖ × v1
3 for k = 2 to p do
4 for i = 1 to k − 1 do
5 Projection α ← (ũi | uk )
6 Update right modes ṽi ← ṽi + αvk
7 Subtract projected component uk ← uk − αũi
8 end
9 New left vector ũk ← uk/‖uk‖

10 New right vector ṽk ← ‖uk‖ × vk
11 end

Other standardmethods aimalso at providing afirst guess of the low rank expansion (QR
factorization) and may have suitable advantages like numerical complexity or numerical
stability. Nevertheless, one has to keep inmind that such pre-orthogonalization processes
have a numerical cost.

Iterative singular value decomposition for a rank-2 matrix

Definition of the compression function F

In this section, we consider a rank-2 approximation denoted by A2 defined as follows:

A2 = u1vT1 + u2vT2 with

⎧⎨
⎩
(ui | uj) = δij

‖v1‖2 � ‖v2‖2 > 0
(3)
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Let F be the function providing a new iterate:
(ũ1, ṽ1, ũ2, ṽ2) = F (u1, v1,u2, v2) (4)

and defined as:

1. Right vector v2 is written as v2 = αv1 + v̄2 so that vT1 v̄2 = 0 and α = (v1 | v2)/(v1 |
v1).A2 = ū1vT1 +u2v̄T2 with ū1 = u1 +αu2. One can remark that ūT1 u2 �= 0 a priori.

2. Left vectors are reorthogonalized using u2 = βū1 + ū2 with ūT1 ū2 = 0 so that
β = (ūT1 ū2)/(ūT1 ū1) = α/(1 + α2). A2 = ū1v̄T1 + ū2v̄T2 with v̄1 = v1 + βv̄2.

3. Denoting γ = √
1 + α2, since ‖ū1‖ = γ and ‖ū2‖ = 1/γ , the left vectors are

normalized with ũ1 = ū1/γ , ũ2 = γ ū2 and ṽ1 = γ v̄1, ṽ2 = v̄2/γ .

The new rank-2 approximation is Ã2 = ũ1ṽT1 + ũ2ṽT2 = A2. The following expressions
are obtained:

α = (v1 | v2)
(v1 | v1) (5)

ū1 = u1 + αu2 (6)

v̄1 = v1 + α(v2 − αv1)
1 + α2 = v1

1 + α2 + αv2
1 + α2 (7)

ū2 = u2 − α(u1 + αu2)
1 + α2 = − αu1

1 + α2 + u2
1 + α2 (8)

v̄2 = v2 − αv1 (9)

‖ū1‖ =
√
1 + α2 (10)

‖ū2‖ = 1√
1 + α2

(11)

Note that if α = 0, the function is the identity and the algorithm is terminated. Otherwise,
α �= 0 and

(ũi | ũj) = δij orthonormality (♣)

(v1 | v2) > (ṽ1 | ṽ2) compression (♠)

‖ṽ1‖2 > ‖ṽ2‖2 order preservation (♦)

Proofs are given in thenext Sections.The considered algorithm is the recursive application
of function F .

Algorithm study

Using the Cauchy–Schwarz inequality and properties of right vectors in (3) yield to:

0 � (v1 | v2) � ‖v1‖ × ‖v2‖ � ‖v1‖2 (12)

squaring these inequalities, with (v1 | v2) = α‖v1‖2 and defining η = ‖v2‖2/‖v1‖2, one
obtains:

0 � α2 � η � 1 (13)

which is verified at each iteration ξ of the previous algorithm. Moreover, a recursion
formula can be obtained, once given η0 and α0:⎧⎨

⎩
ηξ+1 = ηξ −α2

ξ

1+α2
ξ (2+ηξ )

αξ+1 = ηξ+1αξ

(14)
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αξ is an error measure at iteration ξ , and ηξ is linked to the convergence rate. If at an
iteration ξ , αξ �= 0, one gets with the previous inequalities

1 + α2
ξ (2 + ηξ ) > 1 + α2

ξ > 1 − α2
ξ ≥ ηξ − α2

ξ > 0
so: 0 < ηξ+1 < 1, ηξ+1 �= αξ+1, αξ+1 �= 0, αξ+1 < αξ . As a consequence, if α0 = 0 we get
the solution without iterating, otherwise

∀ξ ≥ 1, αξ �= 0 and 0 < α2
ξ < ηξ < 1

As a decreasing and lower-bounded αξ serie, it converges to a value α; the fixed point
of (14) is α = ηα, so α = 0 (the error decreases towards 0).
Since one also has 1 + α2

ξ (2 + ηξ ) > 1 + α2
ξ > 1 − α2

ξ /ηξ , the following property holds:
0 < ηξ+1 < ηξ . As a decreasing and lower-bounded ηξ serie, it converges to a value η (the
convergence rate increases).
After algebraic manipulations, the recurrence formula (14) allows to prove that there is

a preserved quantity along iterations:

ηξ + 1/ηξ+1 = η0 + 1/η1 = 1 + 2α2
0 + η20

η0 − α2
0

:= 2δ

The fixed point of this quantity therefore allows to get the asymptotic value η = δ −√
δ2 − 1.

Algorithm properties

The orthogonality property (♣) results directly from the orthogonalization in the algo-
rithm. Since ηξ < 1, the order preservation (♦) is proved. Finally, one can obtain

(ṽ1 | ṽ2)
(v1 | v2) = (v̄1 | v̄2)

(v1 | v2) = η − α2

1 + α2

with previous inequalities, this ratio is strictly less than 1, proving the compression prop-
erty (♠).

Numerical example

The first terms α0 and η0 depend on the initial given low rank approximation to compress.
To illustrate briefly the behavior of the suggested algorithm, a plot (Fig. 1) is proposed.
It depicts trajectories (ηξ ,αξ ) starting from some different cases with different values
of (η0,α0). This confirms the previous analysis of the algorithm about convergence and
convergence rate:

• The higher α0, the lower becomes η and the higher the convergence rate is.
• The lower η0, the faster the convergence is.
• The lower α0 (right vectors are poorly correlated) and the higher η0 (amplitudes of

right vectors are similar), the lower the convergence rate is.

The last observation is perturbing because in this extend one has quasi-orthogonal right
vectors and in other words, the job is quite completed. But the discrepancy between
right vectors amplitudes is not enough to distinguish the most contributory rank one
approximation.

Generalization to higher rank expansions

In this section, the compression stage is generalized to higher rank expansions (1), with
p > 2 and (ui | uj) = δij and ∀ i � j, 0 < ‖vi‖ � ‖vj‖. With V =

[
v1 v2 · · · vp

]
, we

introduce the following symmetric matrixW:
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Fig. 1 Evolution of both αξ and ηξ along iterations ξ starting from some (η0 ,α0). Each mark corresponds to
an iteration

W = VTV =

⎡
⎢⎢⎢⎢⎢⎣

vT1 v1 vT1 v2 · · · vT1 vp
vT2 v1 vT2 v2 · · · vT2 vp
...

...
. . .

...
vTp v1 vTp v2 · · · vTp vp

⎤
⎥⎥⎥⎥⎥⎦

(15)

IfW is diagonal, then right vectors vi are orthogonal. In this case and since left vectors
ui are orthonormal, A is written under its (unique) SVD. The compression function
defined by (4) can be applied for two pairs of vectors (to be chosen). Both pairs have to
fulfill conditions (3). Resulting pairs and their properties have been studied in previous
sections. As the expansion is of rank higher than 2, investigation about properties of the
two resulting pairs of vectors regarding the others have to be carried out.
Orthogonality (♣) and compression (♠) properties have to be checked for all vectors.

Ordering property (♦) can be always ensured by sorting dyads at the end of the application
of F .
First of all, as resulting ũi and ũj vectors are obtained by a linear combination of ui and

uj , it turns out clearly that orthogonality property (♣) regarding other vectors pertains.
Then, a non-declining compression property (♠) has to be checked. We denote by A the
initial expansion as defined in (1) and Ã the resulting expansion after the application of F
for two pairs of vectors with:

Ã = ŨṼT =
[
u1 · · · ũi ũj · · · up

] [
v1 · · · ṽi ṽj · · · vp

]T
(16)

Thanks to (4) and orthonormality for vectors U, the matrix W can be expressed as
follows:

A = Ã ⇔ AAT = ÃÃT ⇔ UVTVUT = ŨṼT ṼŨT ⇔ W = RW̃RT (17)

With R = UT Ũ and W̃ = ṼT Ṽ. Matrix R is of the following form:

R =
⎡
⎢⎣
1 0 0
0 P 0
0 0 1

⎤
⎥⎦ (18)
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With P the transformation between the two chosen pairs. It can be exhibited from
equations (5)–(11):

P =

⎡
⎢⎢⎢⎣

1√
1+α2

α√
1+α2 0

−α√
1+α2

1√
1+α2 0

0 0 1

⎤
⎥⎥⎥⎦ (19)

As a consequence, it turns out that matrices R and P are rotation matrices. In other
words, the two chosen vectors vi and vj are rotated around a subspace of dimension
p − 2. They are rotated in such a way that their associated extra-diagonal terms in W
diminish whereas other terms remain the same in norm. Then, compression property (♠)
holds. Finally, the compression function can be applied for high rank expansion making
it converge to its SVD expansion.
Various combinations of p − 2 dimensional subspace rotations can be chosen. It is a

compromise between efficiency and computational sustainability (parallel computation).

Algorithm

We propose to apply iteratively the compression function F according to the Algorithm
2. In the suggested algorithm, all rotations are swept at in the while-loop (precision loop).

Algorithm 2: Recursive SVD
1 ξ ← 1
2 while ξ � ξmax do
3 for i = p down to 2 do
4 Sort vectors v such that ‖v1‖2 � · · · � ‖vp‖2
5 for j = 1 up to i − 1 do
6 (ui, vi,uj , vj) ← F (ui , vi,uj , vj)
7 end
8 end
9 ξ ← ξ + 1

10 end

Algorithm 2 consists in applying compression function F to two rank-2 approximations
composing the whole approximation of A. This is achieved in a such way that condi-
tions (♣), (♠) and (♦) are fulfilled. Doing so, previously given proofs can be reused. This
algorithm may run until producing the SVD of A.
With the proposed algorithm, loops dependencies do not enable their execution in

parallel. Several for-loop strategies can be implemented, but are not studied herein.

Rank adaptation and downsizing

Letnbe the size ofu andm the size of v. The complexity of one instance of the compression
function F is cF = 6n+ 10m+ 6. One loop (indexed by ξ ) involves 1

2p(p− 1) occurrences
of F . All in all, complexity of Algorithm 3 can be estimated to c = ξmax[3np(p − 1) +
5mp(p−1)+3p(p−1)]. This complexity is evaluated assuming that expansion size q = p
remains constant. Nonetheless, during iterative process, one is able to eliminate pairs of
vectors of poor contribution by prescribing a threshold ε for the norms of the right vectors.



Giacoma et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:12 Page 8 of 17

Algorithm 3: Downsizing algorithm for a low rank approximation.
1 ξ ← 1
2 q ← p
3 while ξ � ξmax do
4 for i = q down to 2 do
5 Sort vectors v such that ‖v1‖2 � · · · � ‖vp‖2
6 Cut at threshold ε: ‖v1‖2 � · · · � ‖vq‖2 � ε

7 to produce q and set i ← min(i, q)
8 for j = 1 up to i − 1 do
9 αij ← (vj | vi)/(vj | vj)

10 ρ ←
√
1 + α2

ij

11 uj ← (1/ρ)uj + (αij/ρ)ui
12 ui ← ρui − αijuj
13 vj ← (1/ρ)vj + (αij/ρ)vi
14 vi ← ρvi − αijvj
15 end
16 end
17 ξ ← ξ + 1
18 end

Thus, a computational expense could be spared and the analysis focused on dimensions
of interest.

Numerical application

To illustrate the previously described algorithm, the singular value decomposition of a
given matrix is performed. This matrix is picked up from Matrix Market1 and is called
rbs480a.mtx. First, its SVD is computed using the standard Matlab solver. Singular
values (σ ref

i ), reference left (urefi ) and right (vrefi ) singular modes are therefore provided.
Previously, convergence properties have been enlightened according to mode ampli-

tude properties. To exemplify those convergence behaviors, several configurations are
built to affect amplitude ratio between modes (σ ref

i is transformed into σmod
i ); left and

right singular modes remain the same and only mode contribution is affected. For each
configuration, a whole modified matrix is rebuilt.
The square matrix rbs480a.mtx is full rank and has 480 singular values and singular

modes. Three configurations are studied:

• No modification. Original singular value amplitudes of the matrix decrease slowly
along the 400 first modes.

• Medium slope for singular value amplitudes. In a semilog diagram, a linear slope for
mode amplitudes is prescribed.

• Strong initial slope for singular value amplitudes.A small amplitude ratio is prescribed
for first successive modes.

These modifications are shown on Fig. 2.

1http://math.nist.gov/MatrixMarket/.

http://math.nist.gov/MatrixMarket/


Giacoma et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:12 Page 9 of 17

Fig. 2 Singular value amplitudes according to modifications applied on reference SVD of rbs480a.mtx.

For each of the three previously described matrices, the proposed algorithm is applied.
ErrorE and indicatorI are followed throughout iterations on Fig. 3. The error isE = ‖ε‖F
with:

εi = urefi σmod
i [vrefi ]T − uivTi for 1 � i � p (20)

The convergence indicator corresponds to the root mean square of all computed αij .
On Fig. 3, one can note for the different configurations:

• No modification. As it may have been expected, the convergence is quite slow during
the first iterations, because the first successive modes do have a high (close to 1)
amplitude ratio. Nevertheless, the last 80 modes are more rapidly found.

Fig. 3 Convergence of the proposed algorithm to compute the SVD of rbs480a.mtx test
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• Medium slope. The amplitude ratios are all the same, and all iterations provide a
similar convergence rate.

• Strong initial slope. The small amplitude ratio for the first successive modes lead to a
large convergence rate during first iterations. The converse if obtained for the latest
iterations.

As a summary, the first modes are converged during the first iterations, and the con-
vergence rate is related to their amplitude ratio. Progressively, the following modes are
detected by the algorithm and the convergence rate adapts to their new amplitude ratios.
Note also that a constant amplitude ratio leads to a uniform convergence rate.

Application to SVD-free quasi-optimal space-time PGD
During the last decade, a novel generation of solvers based onmodel reduction techniques
has been fostered for both linear and non-linear problem solving. These solvers aim at
reducing drastically the computational time and the memory usage to store the solution.
They consist in different strategies:

• a posteriori approaches (POD/SVD, surrogatemodeling) usingprior knowledge about
the solution (sampling, snapshots, etc.) to compute desired new solutions.

• a priori approaches which do not require previous knowledge about the solution and
aim at computing a desired solution in a convenient form (memory and cost efficient).

Given a problem formulated by PDEs and denoted byP , one aims at finding its solution
S on the domain �. This domain is spatial or temporal or parametric (a space-time-
parameter domain). Model reduction methods rely on several expectations on S :
• Reducibility: S can be represented on a low-dimensional basis, i.e. S can be written

accurately (up to a certain level) with a linear combination of a few vectors
• Dominant trends (scale separability): some vectors of the basis (which are supposed

to be the first ones) are highly contributory to generate S whereas other ones are less
important. These vectors depict the different scales of the problem [4].

Assuming S is known, its SVD decomposition can be computed. Then, the set of the p
first vectors is the optimal basis of size p for S thanks to the Eckart and Young Theorem
[5]. In other words, these p first vectors are the most contributory ones in the solution,
considering the Frobenius norm. One has to make a difficult compromise between having
a smallp andpreserving a goodaccuracy for basis (i.e. relevancyof the generated subspace).
The obtained basis can be used within the a posteriori approach to generate Reduced

Order Models (ROMs). Indeed, a first approach consists in projecting P (Galerkin pro-
jection) into the spanned subspace [6–8]. Secondly, this basis can be considered as a filter
for data due to the basis truncation. Indeed, noise is expected to generated by the high
order SVD modes. Therefore the basis can be used to generate surrogate models relying
on regression methods (ARMA, ARIMA processes [9,10]), time series analysis [11], etc.
These resulting models are expected to be easy to use and computationally efficient. The
quality of the snapshots depends highly on the initial chosen vectors and the process to
generate the model; error criterion could be difficult to exhibit.
A widespread a priori approach is the Proper Generalized Decomposition (PGD) [12–

14]. This approach aims at finding S directly into a separated form or low rank expansion



Giacoma et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:12 Page 11 of 17

a

c

b

Fig. 4 Aluminum billet pushed into a conical die

as in equation (1) without prior knowledge. PGD solvers are incremental processes which
consists in enriching progressively a low rank expansion to make an iterated solution
Si more accurate. The ideal PGD solver should be able to find each vectors of the SVD
decomposition ofS , i.e. the first iterated vector is themost contributory one ofS , then the
second, etc. Basically, PGD does not prescribe orthogonality for left or right vectors of the
low rank expansion. In practice, such a condition is often applied for a sake of numerical
efficiency. In practice, the low rank expansion generated by the PGD is generally not the
optimal none.Nevertheless, as the computational effort is concentrated on rank-1 tensors,
a great amount of computations and memory can be spared.
We propose to illustrate the previously described algorithm into a space-time PGD

solver aiming at solving a frictional contact solid mechanic quasi-static problem. We
suggest to embed into a PGD iteration, one iteration of Algorithm 3 in order to compress
progressively the iterated low rank expansion. Doing so, one can expect to make it close
to the optimal one and stem inflation of iterated expansion [15].

Quasi-static frictional contact problems

Reference problem

To exemplify the suggested algorithm, an extrusion of an elastic aluminum billet into a
rigid conical die is simulated (Fig. 4). This problem [16,17] is investigated assuming small
perturbations even if such hypothesis is not ensured. The finite element method is used
and the solid is meshed with 2D quadrangular elements. A displacement is prescribed in
such a way that the billet is pushed into, then extracted from, a conical die. Signorini’s
conditions and Coulomb’s Law are considered for the frictional contact laws.
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The large time incrementmethod

To solve this problem, the non-linear LArge Time INcrement (LATIN) solver is used
[18]. This method, close to augmented Lagrangian methods, is well-known for its ability
to solve difficult non-linear and time-dependent large problems with a global time-space
approach (non-linear material [19], contact problems [4,15,20], large displacement [21],
transient dynamics [22,23], fracture mechanics [24,25]...). The non-incremental LATIN
method was proposed as a commitment of three principles, which are, for the elastic
frictional contact problems:

(P1) Separation of the linear and non-linear behaviors. We denote by u the displace-
ment field over�× [0, T ] and λ the contact force field over ∂3�× [0, T ].A denotes
the set of solutions s = (u,λ) satisfying linear constitutive law, kinematic admissi-
bility and static admissibility. These are defined on the whole space-time domain
� × [0, T ]. � denotes the set of solutions ŝ = ( v̂, λ̂) verifying frictional contact
conditions and are defined locally at the contacting interface and on the whole time
interval ∂3� × [0, T ]. The solution of the problem is s ∈ A ∩ �.

(P2) A two-staged iterative algorithm. The solution of the problem is searchedwith the
constructionof two sequences of approximations belonging alternatively toA and�.
At the ith iteration, the local stage consists in finding ŝi = (v̂i, λ̂i) ∈ � with a search
direction (ŝi − si−1) = (v̂i − vi−1, λ̂i − λi−1) ∈ E+. Note that si−1 = (v̂i−1, λ̂i−1)
is known from the previous iteration. Then, the global stage consists in finding
si = (vi,λi) ∈ A with another search direction (si − ŝi) = (vi − v̂i,λi − λ̂i) ∈ E−.
Note that ŝi = (v̂i, λ̂i) is known from the previous local stage.

(P3) Radial approximation or space-time separation. Unknown fields are represented
as a sum of products between a space function and a time function to limit memory
usage. An orthonormality condition is prescribed for space modes (i.e. left vectors).

For certain cases and for a sakeof simplicity, theLATINmethodcanbe formulatedwithout
the space-time separation (i.e. the solution is not sought into a low rank approximation).
In this case several similarities can be stated with augmented Lagrangian methods [26].
All in all, the LATIN method for frictional contact problems consists in global / local
strategy whose global stage does not require matrix re-factorization (stiffness operator
remains constant along LATIN iterations, symmetric and definite positive) and local stage
is explicit (no iterations are required to handle the non-linear behavior at the contacting
boundary). As a consequence, comparisons between LATIN and Newton solvers is not
an easy task as the number of iterations is not a good performance indicator for possible
comparison. Only CPU measures seem a good approach for that purpose.

Numerical results

We consider the LATIN method (including only the first and second principle) as the
reference non-linear solver.
Then, the LATIN method including the third principle (LATIN-P3) and the LATIN

method including the third principle and the suggested algorithm are compared (LATIN-
PGD). On Fig. 5 the convergence and evolution of basis sizes are depicted. Convergence
plots show that for a given level of accuracy the LATIN method needs less iterations
than LATIN-P3 and LATIN-PGD. Nonetheless, an iteration of the LATIN method is



Giacoma et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:12 Page 13 of 17

a

b

Fig. 5 Convergence of LATIN methods

more computationally consuming than LATIN-P3 or LATIN-PGD. Such a behavior is
not surprising as the space-time separation is not prescribed for the LATIN method,
leading to a better accuracy of the iterated solutions.
As far as accuracy is concerned, LATIN-P3 and LATIN-PGD shows similar perfor-

mances on a first group of iterations. Then, convergence rate of LATIN-PGD accelerates
until being stabilized to an asymptotic convergence rate (which is reached by the LATIN-
P3 next the first group of iterations). Basis sizes evolution is interesting: SVD analysis of
the reference solution shows that the full space-time solution is optimally generated with
32 modes (see Figs. 6, 7). From a quantitative point of view, the LATIN-P3 generates a
low rank approximation for the solution that overshoots the optimal basis size whereas
the LATIN-PGD generate a basis which size fits the optimal.
Given two sets of vectors of same dimension (Xi)

p
1 and (Yi)

q
1, theMAC (modal assurance

criterion) matrix [27] denoted byM whose entries are:

Mij = |XT
i Yj|2

‖Xi‖2‖Yj‖2 ∈ [0, 1] (21)

for 1 � i � p and 1 � j � q. The coefficient Mij measures the correlation between
modes Xi and modes Yj . If Mij = 1, then Xi and Yj are colinear (highly correlated). On
the contrary,Mij = 0 means that Xi and Yj are orthogonal.
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Fig. 6 Singular values and normalized optimal SVD temporal modes of the reference solution

a b c d

e f g h

Fig. 7 Optimal SVD spatial modes of the reference solution. Arrows correspond to contact force field and the
color maprefers to the norm of the strain field tensor ‖ε‖ = √

ε : ε
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Fig. 8 MAC Diagrams of iterated basis by the LATIN-P3 and reference SVD basis for the solution

On Figs. 8, 9, MAC matrices are plotted to assess the quality of iterated basis for both
methods. LATIN-P3 catches roughly the trends of the solution. But optimal vectors are
obviously not computed. On the other hand, the LATIN-PGD computes painlessly dom-
inant trends and iterated vector are very close to SVD optimal vectors of the solution.
Even if a given iterated vector is not the most suited one (in regard to the converged
solution), it is quickly corrected through next iterations. The LATIN-PGD computes
nearly the solution of the numerical problem into its optimal SVD expansion. Additional
numerical experiments confirm that the combination of the proposed algorithm with a
LATIN-P3 method achieves a strong solver to design quasi-optimal basis for the solution
with a reduced computational effort. The basis enriching strategy allowed by the PDG is
completed with an on-the-fly compression strategy provided by the proposed algorithm.

Conclusion
In this paper, an iterative SVDalgorithm isproposed. It relies on rotations around subspace
which compress a given low rank approximation to its SVD form. Different strategies can
be proposed as far as rotations are concerned (selection, order, simultaneity ...) provided
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Fig. 9 MAC Diagrams of iterated basis by the LATIN-PGD and reference SVD basis for the solution

that appropriate conditions are fulfilled. Nonetheless, its interest does not rely on SVD
expansions but on quasi-optimal bases which are expected to be close to. Indeed, the pro-
posed algorithm feature is to provide such quasi-optimal bases after a few iterations. This
efficiency depends on low rank expansion characteristics (ratios of right vector norms).
It provides an interesting tool for basis enrichment strategies. Usually, reduced order

modeling techniques do not require a computationally expensive optimal basis (i.e. quasi-
optimal is enough). These enrichment strategies can be embedded into PGD methods as
shown herein. But a posteriori or SVD approaches within big data framework could also
be concerned. Indeed, to design a relevant basis upon which ROMs or surrogate models
are built, snapshots are stored and an associated generated basis has to be updated. The
basis update can be expensive if one considers the optimal basis. Using the proposed
algorithm makes a compromise by refreshing cheaply the basis but weaks the optimality
property. Moreover, the suggested algorithm enables to consider specific inner product
and to control the quasi-optimality.
An interesting extension of such an algorithm could be designed for higher order rank

one tensors. This extension could be useful for PGD multiparametric studies and may
converge to recent works concerning the High Order SVD (HOSVD) or similar tensor
decomposition [28–32].
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