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Abstract

In the past decade, several higher-order crystal plasticity models have been developed

University of Technology, to properly capture size effects, dislocation pile-up and patterning. Here we consider a
P.O. Box 513, 5600 MB formulation which accounts for the presence and behavior of both positive and
Eindhaven, The Netherlands negative dislocations in terms of densities. We derive an implicit finite element

Full list of author information is ) - ) o~ ! ) i }

available at the end of the article implementation for the continuum crystal plasticity model including dislocation

transport, using a generalised continuum expression for the short-range dislocation
interactions, by discretizing the two governing non-linear transport equations in time
and space. The resulting non-linear algebraic equations are solved by an
incremental-iterative solution scheme. We compare the resulting numerical solutions
with discrete dislocation simulations. This analysis shows the capabilities of the implicit
FEM framework to solve continuum dislocation transport in crystal plasticity with the
added energetic dislocation interactions.

Keywords: Finite element method, Crystal plasticity, Dislocation transport

Background

Crystal plasticity models are nowadays employed in a wide range of engineering applica-
tions, and the finite element method is commonly adopted in numerical models employing
them [1]. In particular, they allow one to study the effect of microstructural morphology
of poly-crystalline materials. Relevant mechanisms such as anisotropy and plastic defor-
mation along discrete slip planes, as found in crystalline materials, are captured in a
natural fashion. However, other mechanisms such as size effects cannot be described by
classical crystal plasticity [2,3]. Therefore, much attention has recently been given to the
incorporation of strain gradient effects in crystal plasticity models.

Physically, the plastic slip on glide planes is the result of the collective motion of disloca-
tions [4]. On a continuum scale many higher-order phenomenological models exist which
capture, rather than describe, the behaviour of a large collection of dislocations. The work
of Nye [5] provided a basis for such continuum models by introducing a dislocation density
tensor, representing the accumulation of dislocations when non-homogeneous deforma-
tion results in lattice incompatibility. The notion of Geometrically Necessary Dislocations
(GNDs) was used to relate spatial gradients of strain to the presence of dislocations [6].
GNDs, emanating from strain gradients, can be used in a phenomenological way to e.g.
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elevate the strengthening of a slip system [7] or to increase the free energy of a system
[8,9], leading to additional balance equations for the plastic slip. Based on these theories,
numerical models were developed including the effect of dislocations on the plastic behav-
iour of the material, either as strain gradients [10—12] or as additional degrees-of-freedom
[13].

Here, we consider another class of higher-order crystal plasticity models, in which the
presence and transport of dislocations is included more directly via dislocation densities.
A crucial element in such models is the way they account for short-range dislocation
interactions [14]. Such models may for instance be formulated using statistical mechanics
arguments [15]. Here, however, we demonstrate that if the short-range interaction term
is derived from an idealised dislocation configuration, it takes a slightly more general
form, which apart from the usual gradient of GND density also contains a gradient of
the total dislocation density. By upscaling the dislocation interactions in this idealized
configuration we include all dislocation interactions in the continuum expression for the
short-range stresses. This expression is used in the governing equations for the transport
of dislocation densities, as adopted from models taking into account the evolution of
dislocation densities [15-17].

The resulting initial boundary value problem contains two non-linear, coupled PDEs.
In order to solve these equations numerically, they are discretised in space using the finite
element method. In [16] the semi-discrete transport equations are solved using an explicit
temporal discretisation. This however introduces the constraint of small time-steps in
order to have stable numerical solutions.

A second objective of the present paper is therefore to formulate a fully implicit solution
strategy, based on a backward Euler time integration. The obtained non-linear algebraic
equations are then linearised and solved using a Newton-Raphson procedure. The evo-
lution of the dislocation transport is thus simulated by an incremental-iterative scheme.
Results obtained with this implementation are compared to discrete dislocation calcula-
tions in order to study its validity.

Governing equations for the transport of dislocation densities

Governing equations

In a crystal plasticity framework the plastic deformation is the result of plastic slip on
distinct glide planes, and depends on the amount and orientation of such (active) slip
systems. Using a small deformation assumption, for a single glide plane the total shear

deformation y can be expressed as:

Y =Ye T Vp (1)
Here, y. and y, represent the elastic and plastic deformation respectively. The stress due
to this deformation is a result of the elastic deformation only. Adopting Hooke’s law the

following relation for the elastic deformation is obtained:
T

Ye = G (2)
where 7 is the shear stress acting on a glide plane and G the shear modulus. The framework
is complete when an expression for the plastic slip ¥}, is formulated. The choice for y,
here is derived from the Orowan relation [4], which states that the plastic slip rate y, is

determined by the flux of dislocations:

Vo = bO. (3)
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Here, b is the length of the Burgers vector and @ is the dislocation flux. An appropriate
expression is required for the dislocation transport on a glide plane accompanying the
dislocation flux.

Dislocation balance equations
In a continuum framework one refrains from keeping track of all individual dislocations
and their positions. Instead, we describe the dislocations in terms of densities. We first
choose to describe a collection of positive and negative infinite straight edge dislocations
by positive densities o™ (x, £), o~ (%, ), where x is the coordinate along the slip system
and ¢ indicates time. Uniformity is assumed in all directions perpendicular to the x-axis,
so that a one-dimensional problem remains. The resulting equations are subsequently
reformulated in terms of the total and GND densities p(x, £) and « (x, £).

We consider the transport of a fixed number of positive and negative dislocations in
a single slip system without creation and annihilation. The transport equations for the
densities of positive and negative dislocations then read:

dpT ot
LI — 4
Jt + ox @
ap~ 09~
—_— =0, 5
Jt + 0x ®)

where @+ and ® are the fluxes of positive and negative dislocations, respectively, which
still depend on p™ and p~. To solve these transient PDEs we need initial and boundary
conditions. The initial conditions are given by an initial density profile for both positive
and negative densities, i.e. oT(x, t =0), 0~ (% t = 0). For animpenetrable barrier there can
be no dislocation transport; therefore at such a boundary there is no flux: ®* = &~ = 0.
In the case of a free surface the dislocation densities vanish at this boundary.

The fluxes in (4) and (5) can be expressed as:

o =yt = 2 (o2, ©
where the + sign holds for positive dislocations and the — sign for negative. For the
velocity v* a linear drag law is adopted, such that the velocity depends linearly on the
forces acting on the dislocations. Here, b is the length of the relevant Burgers vector, the
sign depending on the sign of the dislocation, B is the drag coefficient, 7 the shear stress
acting on the glide plane and oy is the short-range dislocation interaction stress.

The shear stress t includes the stress due to the net incompatibility introduced by a
large number of dislocations, as well as any externally applied loading. These stresses
are naturally recovered in a crystal plasticity framework by the incompatibility of plastic
deformation [5,18,19]. As the focus here lies on the transport of dislocations, we take
7 to be a constant, both in time and space. This is a valid assumption due to mechani-
cal equilibrium in the material and for a stress-controlled deformation. The short-range
interaction stress is the continuum equivalent of the interaction stresses between individ-
ual dislocations. To close the PDEs (4) and (5), we still need to establish the dependence
of oghort ON the dislocation densities p* and p~.

Upscaling of the short-range interaction stress
The short-range dislocation interactions can be described by local gradients in the GND
density, as formulated in [15,16] using dislocation pair correlations. However, here we
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generalise the model by allowing for all dislocation gradients to contribute to the interac-
tion stress. To formulate our continuum expression for the short-range internal stress we
take into account the interactions between all dislocations as follows.

The starting point of the derivation is an idealized dislocation configuration of a single
slip system in an infinite medium, containing infinite positive and negative dislocation
walls with a constant vertical spacing /. The periodic dislocation wall (tilt wall) configu-
ration studied here does not generate any long range stress, and is therefore suitable to
characterise the short-range nature of the interaction stresses [14]. In this analysis we do
not take into account dislocation sources and we avoid annihilation by assuming that no
two dislocations of opposite sign exist on the same glide plane. However, the horizontal
distribution of positive and negative walls can be arbitrary. Furthermore, we consider all
walls to be mobile.

We consider the total interaction stress on both a positive and a negative wall. If there
are many walls within a horizontal distance of &/ from a particular wall, i.e. the horizontal
distance between walls is much smaller than the vertical spacing / within the wall, we can
assume a continuous distribution of dislocation walls. Then, we can rewrite the discrete
sum of individual interaction stresses in a continuum equivalent for the total interaction
stresses on a positive and negative wall as follows:

OE / hp™ (x — &)o ™ (£)dE + / hp~(x — £)0 ™ (E)dE. (7)

—00 —00
In this expression, 0 ¥+ and o ¥~ are the interaction stresses acting on a positive or negative
dislocation wall due to another, positive or negative wall respectively, at a distance & to the
left. The integral runs from —oo to oo, taking into account all interactions and assuming
a continuous distribution of dislocations with infinitesimally small distances. The linear
densities #pT are a measure for the local number of walls.
The shear stress of an infinite periodic wall of positive edge dislocations is given by [20]:

wGb X (cosh2micos2my — 1)

= 4 8
(1= v)h (cosh27% — cos277)> ¥

with G and v the shear modulus and Poisson’s ratio respectively, and ¥ = x/hand y = y/h
the normalised distances to an arbitrary dislocation within the wall. In the special case
where all positive walls have the same vertical position y = 0, all negative walls are shifted
with respect to them by a distance /1/2 and positive and negative walls occur alternatingly
with equal horizontal spacing, as shown in Fig. 1a, the obtained configuration is a Taylor
lattice. In an infinite medium this configuration is stable. In this case, the positive and
negative dislocations are not pairs from the same dislocation loop, but should be thought
of as coming from different sources on different slip planes. Therefore, in this region dis-
locations do not annihilate. In the more general case considered here, visualized in Fig. 1b,
where the horizontal distribution of the walls is governed by two independent densities o™
and p~, walls of different signs do not necessarily alternate and the configuration obtained
is no longer necessarily a Taylor lattice. However, the vertical separation between positive
and negative dislocations is preserved. It avoids annihilation between positive and nega-
tive dislocations and the underlying assumption is that two dislocations of opposite sign
on the same glide plane would annihilate so quickly, that they contribute little to plastic
slip. Furthermore, dislocations on the same glide plane are likely to have been emitted by
the same source. In other words: if a positive dislocation is found on a certain glide plane,
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Fig. 1 Taylor lattice (a) and a general configuration (b) with infinite positive and negative dislocation walls.
The negative walls are shifted h/2 with respect to the positive walls

adjacent dislocations on the same glide plane are more likely to be also positive than nega-
tive. It is worth pointing out that the correlation between dislocations—which admittedly
may be partially exaggerated—also implies that the dislocation configuration surround-
ing an arbitrary positive dislocation is different from that of a negative dislocation and
different interaction forces may thus be experienced by them.

Using this configuration, we can derive from Eq. (8):

Gb %
O‘++=—O‘77=O'5€,~=0 :77_— 9
®y=0 h sinh® & ©)
Gb &
ot =—0"tT=0@®&%y=1/2) = il * (10)

h cosh®ri
where G = G/(2(1 — v)).
Furthermore, the dislocation density at position (x — &) is estimated by a first order

Taylor approximation around point x for both p* and p~:
] ,0i
P —§) = pFw 5 —. (1)
x
If we substitute the expressions (9), (10) and (11) in Eq. (7) and compute the resulting
integrals, we obtain expressions for the total interaction stresses acting on a positive and
a negative dislocation which may be written as:
Gbh® (_dpT  9pT
+
. — 2 .
i) = F—¢ ( ox | ox )

Finally, if we substitute (12) in (6) we obtain the following expression for the dislocation

(12)

fluxes:

o = pt—— — 13
P "B TP 6B ox | ox (13)

Using (13) in (4) and (5) respectively, these PDEs are fully expressed in terms of o™ (x, £) and

4L bt L G i? (2 apt  apT )

P~ (x, £) and we can thus calculate the evolution of the positive and negative dislocation
densities.

It is worth noting that the governing equations are objective with respect to a change of
sign of dislocations—as is to be expected. This can easily be verified by substituting (13) in
(4) and (5), subsequently exchanging o™ and p~ while replacing b by —b, and observing
that the same governing equations are recovered.
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Formulation in terms of total dislocation and GND densities

In order to more easily relate the dislocation densities to relevant and meaningful (macro-
scopic) properties, e.g. incompatibility and hardening, we rewrite the dislocation densities
in terms of the total dislocation density p, and the Geometrically Necessary Disloca-
tion density k. The GNDs are dislocations which are required to conform to the overall
deformation, i.e. they characterize the incompatibility introduced by plastic slip [5]. The
remaining dislocations are called Statistically Stored Dislocations (SSDs); they do not have
a net geometrical contribution. The total density then reads:

P = pssp + k. (14)

Because of this relation, we only need two quantities to describe the evolution of all
dislocations. A convenient choice is the combination of p and «, because they have a
clearer physical meaning and they can be easily related to the densities of positive and
negative dislocations:

p=p"+p" (15)
K = p+ — p_, (16)

Using the above relations we can determine the transport equations for p and « by adding
(5) to (4) and subtracting (5) from (4) respectively:

dp 0D,
- =0 17
Jat + 0x (17)
oK 0P,
—+—E =0 18
ot + 0x (18)

where &, = ®* + &~ and &, = &' — ®~. The latter characterises the total flow of
Burgers vector, irrespective of the sign of the dislocations which carry it, and thus the
plastic slip rate. The former gives the net flow of Burgers vector. Using (15) and (16)
and the fluxes for positive and negative dislocations (13), the fluxes ®, and &, can be
expressed in terms of p and « as:

) :b—TK—GbZhZ (3pa—p+K8—K) (19)
S 12B ox ox
o, =T, _GPI (o L 0o
»= BT 128 (pax+3"ax)' (20)

Egs. (17)—(20) are a closed set of equations in terms of p and «.

Based on this model we can derive other models found in the literature, by using a
different assumption for the upscaling of the interaction stress. If we only take into account
the interactions between walls of the same sign, i.e. o1tT and 677, the second term in
the resulting interaction stresses in (12) vanishes. This leads to an expression for the
short-range interaction stress in (19) and (20) only in terms of gradients of GNDs, as in
References [8,13]. The length scale introduced in these references then equals the slip
plane spacing 4. Furthermore, if we limit ourselves to only interactions between nearest
neighbouring dislocations instead of taking into account all interactions in x-direction,
and to dislocations on a single slip plane instead of walls, we obtain the interactions
of References [15,16]. In this formulation the length-scale is no longer a constant, but
depends on the local dislocation density.
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Implementation

In the numerical implementation of our model we need to solve the transport equations
(17) and (18) for the total dislocation and GND densities. Although these equations are of a
convection-diffusion nature, no stabilization is applied here. Most stabilization techniques
use the addition of artificial diffusion. Here, the expression for the short-range dislocation
interactions is of a diffusive nature. If one is to study these interactions in detail, addition
of stabilizing diffusion can be of influence on the results. Therefore, no stabilization is
introduced and care was taken choosing a sufficiently small element size and time step to
ensure stability.

Time discretisation
First, the transient terms in the transport equations are discretised using a finite difference
approach. For the temporal discretisation the implicit, backward Euler method is used:

_ ,®

p—p 0D,

—— 4+ —=0 21
At 0x 1)
()

K —K 00,

— =0. 22
At + 0x (22)

The symbols with superscript () represent the values at the previous time step. For brevity
we dropped the superscript (¢ + At) for the values at the end of the current time step.
This implicit time integration is used for additional stability and accuracy.

Spatial discretisation

For the spatial discretisation, the Galerkin method is adopted. By multiplying Egs. (21)
and (22) by test functions ¥, and ¥, and integrating the resulting expression over the
domain (0, L) the weighted residuals formulation is obtained. Subsequently, integration
by parts is applied, resulting in the weak forms:

L N (5] d
p—pY  dyy L
/O (wp—At - CDK)dx—i— Yp®i|y =0 (23)
L Kk —x® AP L

The degrees-of-freedom p, ¥ and the test functions v, ¥, are discretised using the same
shape functions N (x):

p=N"H Vo=YN

k=NTk, Ye=vTIN.

~ o~ ~K ~
Substituting these discretised variables in the weak forms (23) and (24) and requiring that
they hold for all ¥ and ¢ we obtain:
~p ~K

L o — p® dN L
= O O = 25
A e S LR L @)
L c — 0 AN L
R =/ N ——®, |dx+ NP, =0. (26)
~« o \R At dx "’ M

Note that the dislocation densities p, k and the fluxes &, can be expressed in terms of
the discretised values o, ¥ by using (25), (19) and (20).
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Linearisation

The expressions (19) and (20) for the fluxes are non-linear; therefore an iterative solution
strategy is used to solve equations (25) and (26). Here we use the Newton-Raphson method
and we thus need to linearize the equations. This implies that we substitute for p and «:

p=p"+8p
k=i + d«k,
where (i) and § denote the estimate obtained from the previous iteration and a variation

(or iterative correction), respectively. The iterative updates for the fluxes §&, and § &, are
obtained by linearising (19) and (20) with respect to the degrees-of-freedom p, «, giving:

so. _ U Gb*h? 38,0(’)8 L3 0330 . ax@a 00K
= —O0K — — 0K K —_—
* B 12B 0x 0x 0x 0x

so. bty GO a e (1)35,0_'_33,0(18 PR
»= B 128 \ox ox 7 ox ox |

After discretisation and linearisation we obtain the following linear system of equations
for the iterative corrections:

5 R
I_<pp Kp/( B - _ ~p (27)
ISK,O Ky 85 5:
with:
_ . _ T
vl INGzgp0 o AN Gy AN
K,, = —NNT + = i Sl p D\ ax
o \ At~~ dx 4B 0x ~ dx 4B dx
- . T
o /L e Mo o New (N
= /o dx B~ dx 12B 9x ~ dx 12B dx
_ . _ T
1< /L Npe o N . Nawe (N
= _—— _— _— _ K _—
—«p 0 dx B~ dx 12B 0x ~ dx 4B dx
_ T
< /L 1ot N G2 9p . N G2 (N
Swoe = )N AN T 4B ox ~ T dx 12B © dx

When an appropriate numerical integration scheme, e.g. Gaussian integration, to approx-
imate the above integrals is chosen, the residuals R and the tangents K can be constructed
element-wise and assembled in order to solve Eq. (27). In this work, linear shape functions
are chosen, and a two-point Gauss integration scheme.

Simulations and results

In this section we compare results obtained with the continuum dislocation transport
equations with fully discrete simulations. The problem investigated is shown in Fig. 2,
including the domain boundaries. We consider a domain of length L within an infinite
elastic medium with parallel slip planes on which dislocations are organised in vertical
walls with a constant vertical spacing of 4. The positive and negative dislocation walls
are arranged such that the negative walls are shifted with /1/2 with respect to the positive
walls. Both the positive and negative dislocation walls can be arbitrarily distributed in the
horizontal direction, as determined by their respective densities.

Page 8 of 18
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—00

Fig. 2 Infinite vertical dislocation walls with both positive and negative signs in a domain with length L. The
distribution of walls is determined by the density profile. The boundaries are either impenetrable or free. An
external shear stress is applied

An external shear stress t is applied to the system. This shear stress is considered to
be constant along the slip system for both the continuum and the discrete framework,
because of equilibrium and because the long-range stresses for infinite dislocation walls
vanish. We can therefore focus on the transport of dislocations in single slip.

After rescaling the material parameters in the governing equations, the relevant para-
meters are the ratios b/h, L/h and 7/G. In the simulations a fixed ratio of /4 = 1/200
is used. The ratios /4 and 7/G vary between the simulations. The number of finite ele-
ments used is 200. For the choice of the time step size, first a characteristic time can be
estimated using the dislocation velocity. This velocity is determined by the linear drag
law, only using the applied stress. Using this relation an upper bound for the time step
can be estimated, i.e. At ~ hv~! ~ B/(bt). An appropriate time step size should be much
lower than this value to obtain accurate results.

In the discrete simulations the position of each individual wall is updated using the same
linear drag law adopted in the continuum framework. The driving force in the expression
for the dislocation velocity is a function of the applied shear stress on the glide plane
and the interaction stress acting on the wall as a result of all other dislocations. The
total interaction stress is the sum of the individual stress fields expressed in (8), with the
appropriate Burgers vector sign and distance to the considered wall substituted for each
dislocation wall.

Unless otherwise indicated, the boundaries of our domain are impenetrable barriers to
dislocation motion. It is natural to require that the dislocation velocity is zero at these
boundaries. For the continuum model this means that the boundary terms vanish, i.e.
P,x =0) = Pp(x = L) = P(x = 0) = O (x = L) = 0. In the discrete dislocation
simulations, immobile dislocations of the relevant sign are placed on all slip planes at such
boundaries. The singular stress field emitted by them prevents the mobile dislocations
within the domain from reaching the boundary.
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Double pile-up of positive and negative dislocations

First, the initial dislocation configuration is chosen such that a Taylor lattice configuration
is obtained as in Fig. 1a, in which positive and negative walls are evenly distributed and
alternating. This corresponds in the continuum model with p = pssp, ¥ = 0 as the initial
condition. We first apply a constant shear stress on the domain, resulting in a double
pile-up against the impenetrable barriers at the two ends of the domain. The stress is
chosen such that it is high enough for a negative wall to pass a positive wall. A ratio of
t/G = 1/20 is adopted. The length of the domain is L = 20/. There are 128 dislocation
walls present in the domain, and the uniform initial dislocation density profile is chosen
accordingly.

The evolution of the double pile-up is shown in Fig. 3. The density of SSDs, pssp,
decreases as the positive and negative walls are moving in opposite directions due to the
applied shear stress. At the same time the density of GNDs increases at the boundaries,
such that a linear profile is obtained, as explored in more detail below.

In order to study mesh convergence, the number of elements used in this simulation
is varied. As shown in Fig. 4, when the number of elements is increased the solution
converges to a certain density profile and the oscillations which are visible in the solutions
for coarser discretisations disappear. Note that the number of elements giving a stable
solution would be lower if a stabilization had been applied. However, as can be seen in
Fig. 4, stabilization is not required to yield meaningful results. Even with an element
size in the order of the vertical dislocation spacing / the density profile converges. The
dislocation-dislocation interactions ensure a natural stabilisation, especially in the range
of domain sizes considered here.

Next, the applied shear stress is removed, after which the accumulated interaction
stresses are driving the dislocation walls back towards a uniform distribution. In Fig. 5, we
can see the evolution of the dislocation density towards this equilibrium configuration.

—_
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Fig.3 The evolution of an initially uniform dislocation density profile (dashed lines) containing both positive
and negative walls under the influence of an applied shear stress. A double pile-up results, with positive and
negative walls at opposite sides. Both the SSD (top) and GND (bottom) densities are shown
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Fig.4 The influence of the number of elements m on the steady state dislocation density profiles of a
double pile-up of positive and negative dislocations. Increasing in the number of elements results in
convergence towards a (stable) solution
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Fig.5 Evolution of the density after release of the stress. The dashed line indicates the initial density profile
for this simulation, obtained after the pile-up of dislocations against the impenetrable boundaries. The

dislocation walls recover their equilibrium positions

Figure 6 compares the final, equilibrium solutions of the pile-up and release cases with
a discrete simulation, showing an adequate agreement. The continuum model captures
the linear part of the double pile-up well and after release of the stress the equilibrium
distribution is recovered quite accurately.

Page 11 0f 18
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Fig. 6 The steady state solutions of the total dislocation density for: (1) the double pile-up and (2) after the
stress is released. The continuum solution is compared with a discrete simulation
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Fig.7 The steady state solutions of the total dislocation density (top) and the GND density (middle) when
the stress is released after the double pile-up. In this case the number of dislocation walls is reduced to 32.
The continuum solution is compared with a discrete simulation. The positions of the individual positive and
negative walls are also shown (bottom)

The above simulations involved a large number of walls. With fewer dislocation walls, see
in Fig. 7 for the case of 32 walls, the agreement between the discrete and continuum model
is poorer when the stress is removed after the formation of a pile-up. For a smaller number
of dislocations, the interaction stress is not high enough for the walls of opposing sign to
pass each other and a different, non-uniform equilibrium solution results. Although the
walls are redistributed, the positive and negative walls remain separated. This effect is not
captured by the continuum model, where the densities return to their initial distribution.
The use of first-order derivatives in the continuum expression for the interaction stress
dictates that without an applied stress the dislocation velocity vanishes only when the
gradients of the densities are zero. This triggers the uniformly distributed SSD density.
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A limitation of the continuum model therefore is that a sufficient number of dislocations
must be present in order to accurately capture the behaviour of the dislocation walls. If
not, the continuum assumption does not apply.

Pile-up of positive walls

Now, we compare the new model with previous work and analyze its behaviour at the
boundaries, in addition to the effect of the number of dislocation walls present. We study
the case presented in [14] and [21] in which positive walls pile-up against a hard barrier,
here located at x = 0. This implies as boundary condition ®,(x = 0) = ¢, (x = 0) = 0.
Furthermore, we consider only positive dislocation walls in the domain. This corresponds
with p = k, pssp = 0 in the continuum model.

The length of the domain is L = 10A. First, a uniform distribution of positive walls
is considered with an applied shear stress according to /G = —1/20. This results in a
pile-up of dislocation walls for which the evolution is shown in Fig. 8. The applied stress
pushes the dislocation walls towards the barrier, while at the same time the dislocation
walls repel each other. This results in a pile-up against the barrier. The interaction stress
emanates from the gradient of the density. In the final equilibrium state, this interaction
stress must compensate the externally applied stress —t which is constant. Therefore, a
linear pile-up is predicted [21].

In Fig. 9, the equilibrium solution is shown for the present model and fully discrete
simulations with different numbers of dislocations and thus initial densities. The results
observed in Fig. 9 are consistent with the results found in [21]. The comparison between
the continuum and discrete simulations is quite good for a large number of dislocations
and at some distance from the barrier. However, if we decrease the number of walls below
a certain limit, the continuum model no longer captures the discrete wall distribution, as
the dislocations do not distribute linearly near the boundary. For all cases, the agreement
in the region close to the boundary is poorer, because a boundary layer appears where the
discrete nature of the dislocation walls is dominant. The assumptions made in deriving
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Fig. 8 Pile-up of an initially uniform distribution of positive dislocations (dashed line) against an
impenetrable barrier
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Fig.9 The pile-up of positive dislocation walls against an impenetrable barrier, predicted by the present
continuum model and discrete dislocation simulations. The number of walls is varied

the continuum model do not hold in this region. In the expression for the velocity only the
gradient of the density is related to the applied stress; therefore it is unable to capture the
\/%? behaviour near the obstacle. However, the linear part of the pile-up, as explained in
[21], is captured accurately, i.e. the gradient of the density corresponds well between the
discrete and continuum case. The absolute difference in density is a result of dislocation
conservation in the domain. The area below the continuous and discrete data must be
constant and equal. Because the continuum model is unable to capture the sharp peak

near the boundary, the density in the region away from the boundary is higher.

Non-uniform distribution of positive and negative walls

To illustrate the effect of taking into account all short-range interaction stresses, and not
only those between dislocations of the same sign, we consider equal numbers of positive
and negative walls, corresponding in the continuum case with a distribution of SSDs, i.e.
p = pssp, k = 0. Initially, these walls are not horizontally equispaced, but their mutual
distances are such that they result in a non-uniform density distribution as illustrated by
the dashed curve in Fig. 10. In the center of our domain more walls are present, their
number decreasing closer to the boundaries. The integral of the initial density profile
corresponds with 89 dislocation walls. The boundaries are impenetrable barriers. No
external stress is applied, such that the interactions between walls, due to the gradients
in densities, constitute the only driving forces for dislocation motion. The length of the
domain is L = 60/.

In Fig. 10, the evolution of the SSD density is shown. The driving force of the dislocation
density, i.e. the gradient in the density profile, results in mutually repelling walls and the
spreading of the density distribution. The density profile is evolving to its equilibrium
configuration, i.e. a uniformly distributed dislocation density.

We next compare the present model to a discrete dislocation simulation as well as a
continuum model including only GND interactions using the same number of walls, see
Fig. 11.
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Fig. 10 The evolution of an initially non-uniformly distributed SSD density (dashed line). Due to the repulsive
interaction stresses, the density profile evolves to a uniformly distributed density

5 T
O Initial
All interactions
X GND interactions
Discrete density
4 L 4
o™
|31
>
i)
‘B
g
a2
1F
0 10 20 30 40 50 60

Position z/h

Fig. 11 The steady state result of an initially non-uniformly distributed SSD density. The present model is
here compared with discrete dislocation simulations and with a continuum model containing GND
interactions only

In the present model (marked “all interactions”) the dislocation walls tend to repel each
other, thereby rearranging into a uniform distribution as is also observed in the discrete
simulation. The offset between the discrete and the present continuum simulations is
caused by the boundary condition in the discrete simulations. In the discrete simulation
the impenetrable barrier is modelled by the addition of immobile dislocations. Two addi-
tional dislocation walls, one of each sign, are pinned at each boundary of the domain to
ensure that no dislocations leave the domain. This results in an additional contribution
to the interaction stress at the boundary and a slightly higher discrete density in the bulk.

The initial wall distribution (in which no GNDs are present) does not evolve for the
model with only GND interactions. This model only includes the gradient of the GND
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density as a driving force for dislocation motion, which is obviously absent in the initial
state. In the new, “all interactions” model the interactions between positive and negative
walls is properly included via the gradient of the total dislocation density.

Outflow of dislocations

In the final example we replace the barrier at x = 0 by a free outflow condition, regardless
of the sign of the dislocations. A free boundary in the continuum framework is modelled
by a Dirichlet condition on the densities, i.e. p(0) = «(0) = 0. Furthermore, no stress is
applied and the length of the domain is set to L = 10/4. Our purpose is merely to illustrate
the effect of accounting for all short-range dislocation interactions (as opposed to only
GNDs) on the ability to model outflow. No comparison is therefore made with discrete
simulations and only a qualitative analysis of the continuum models is performed.

Figure 12 shows a decrease in dislocation density near the boundary for the newly
proposed model. The model with GND interactions only is unable to capture the outflow
of dislocations, because there are no (gradients of) GNDs to generate the driving force
in that formulation. In a qualitative sense the model presented here is thus capable of
capturing dislocation outflow.

Conclusion and discussion

Starting from an idealised dislocation configuration, a continuum model for dislocation
transport in single slip has been derived, including (short-range) dislocation-dislocation
interactions. The driving force in the transport equations emanates from the behaviour
of discrete dislocation walls. Whereas the long-range stresses in the driving force can be
captured naturally in a continuum model, the short-range stresses are to be determined
from the individual interactions between dislocations. These short-range stresses in the
presented continuum model depend on the gradient of GND and total dislocation density,
as opposed to other models found in literature in which they depend only on the gradient

of GND density.
T
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Fig. 12 The evolution of the outflow of dislocations, initially uniformly distributed (dashed line), when a free
boundary (at x = 0) is present
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The resulting equations are non-linear transient PDEs. They are numerically solved
by temporal and spatial discretisation and by adopting an incremental-iterative solution
procedure. We develop a fully implicit scheme here, in contrast with the explicit time
integration generally used in the literature. This framework was shown to convergence to
asolution with a relatively low number of elements. In this study, no stabilisation is used for
the transport equations, because this could interfere with the presence of the short-range
dislocation interactions. When more realistic cases are considered, with larger problem
length-scales, numerical stabilization may be necessary to avoid nonphysical solutions for
tractable mesh sizes. Different approaches for stabilization of the dislocation transport
equations as presented here (or similar) may be found in [22-24].

The behaviour of individual dislocation walls in a single slip system is captured ade-
quately by our continuum model. However, a limitation of our model is its continuum
nature, requiring a sufficient number of dislocation walls in the domain. A continuum
description is unable to capture the distribution of dislocation walls when there is only a
limited number of dislocations. The derivation of the interaction stress assumes that the
walls are continuously distributed in the direction of the slip plane. In the case of a pile-up
of walls against an impenetrable barrier, the linear part of the pile-up is captured accu-
rately if the number of walls is sufficiently high. When the stress is removed in the case of
a double pile-up, a continuum model cannot capture the discrete distribution when the
number of dislocation walls is small.

It is shown that the short-range dislocation interactions can be easily implemented in an
implicit finite element model for continuum dislocation transport. Although the current
governing equations are formulated in terms of an idealised single-slip case, the ideas
developed here may be extendable to more general cases with multiple active, and inter-
acting, slip systems with mixed dislocations. As a first step, the extension to multiple slip
systems with straight edge dislocations is considered in a forthcoming paper, assuming the
Taylor-like organisation of the dislocations at the level of each individual slip system. This
leads to balance laws for dislocation transport on each slip system which are equivalent
with those for the single system considered here. The further extension to dislocations of
mixed edge-screw type, cross-slip, etc. is a subject of further research.
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