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discretization errors in �nite element solutions of boundary-value problems with respect 
to quantities of interest. �e method was later extended to the estimation and control of 
modeling error when a �ne scale model is replaced by a coarse-scale model�[6, 7]. �e 
goal-oriented error estimation framework will be used here not only to assess the accu-
racy of the surrogate models but also to guide the adaptive process for improving the 
representation of the true response provided by the reduced model.

We illustrate the methodology on examples dealing with the simulation of turbulent 
channel �ows. Turbulence will be modeled here by the Reynolds averaged Navier–Stokes 
(RANS) equations, supplemented by the Spalart–Allmaras model for the description of 
the Reynolds stress. �is closure model involves several parameters that need to be cali-
brated in order to be useful. Values of the parameters have been proposed in�[8–10]. As 
the turbulence community is well aware that these parameters may include some level 
of uncertainty, Bayesian inference has recently been used to quantify uncertainties in 
simulations of turbulence (see e.g.� [10, 11]). In the present study, our objective will be 
to reproduce some of the numerical examples described in�[10] in order to demonstrate 
that one can con�dently use reduced models rather than the full models to estimate the 
parameters of the Spalart–Allmaras model.

�e content of the paper is as follows: we describe in "Methods" the model problem, 
namely the Reynolds averaged Navier–Stokes equations and the Spalart–Allmaras model 
for the Reynolds stress, and derive the weak formulation of the deterministic problem. 
We also recall, brie�y, some concepts of probability theory and present the parameter-
ized reduced model. We then review the basic principles for goal-oriented error estima-
tion and adaptivity methodology for the construction of the reduced model as presented 
in�[12, 13]. Lastly, we describe the concepts of Bayesian inference and model selection. 
In "Results and discussion", we provide numerical results of a Bayesian model selection 
study, where the full model is replaced with the adapted surrogate model, before provid-
ing some concluding remarks.

Methods
Model problem

Let � ⊂ R
3 be the domain occupying the channel with boundary ∂�. �e RANS equa -

tions are derived from the Navier–Stokes equations using the Reynolds decomposition 
of the velocity, u = U + u′, where U = u is the time-averaged velocity over a time inter-
val (0,�T) and u′ is the �uctuation about the mean. Substituting this decomposition into 
the Navier–Stokes equations and taking the average over (0,�T), we obtain the so-called 
RANS equations,

where P, ρ, and ν, denote the mean pressure, the density, and the kinematic viscosity, 
respectively. In order to be able to solve the equations, one usually considers a closure 
model for the Reynolds stress tensor rij := u′iu

′
j (scaled here by the constant density ρ) 
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based on the eddy viscosity assumption. �at is, the Reynolds stress is expressed as the 
viscosity term,

where the “eddy viscosity” νT can be written in terms of a turbulent length and time 
scale. �e practice of modeling the turbulence e�ects as a viscosity is motivated by the 
fact that turbulence transports momentum in a similar manner to viscosity�[14–16].

Many closure models have been proposed based on the eddy viscosity assumption, see 
e.g.� [8, 9, 14, 17–19], some of which have been examined in the study by Oliver and 
Moser�[10]. Here we will focus on one of the most commonly used models, the eddy vis-
cosity transport model of Spalart and Allmaras�[9]. �e form considered in this work, as 
well as in�[10], has been modi�ed to avoid negative values of turbulent production and to 
ignore the transition to turbulence from a laminar initial condition; see�[8, 20] for more 
details on the modi�ed form of the model.

Starting from the eddy viscosity assumption� (2), the Spalart–Allmaras model intro-
duces a working variable ν̃ such that

where

�e working variable is taken to be governed by the transport equation

where d is the distance to the nearest wall and parameter cw1 is de�ned as:

�e remaining unde�ned terms are given by the following relationships,

where S is the magnitude of the vorticity, and
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�e values of the parameters cb1, σSA, cb2, κ, cw2, cw3, cv1, cv2, and cv3, suggested by Spalart 
and Allmaras, are provided in Table�1.

We suppose that our primary goal is the prediction of the centerline velocity in a 
fully-developed incompressible channel �ow at Reτ = 5000. �e turbulence is assumed 
non-homogeneous in the y-direction (wall normal direction) but homogeneous in the 
x-direction, reducing the complexity of the RANS equations signi�cantly. Except for 
the mean pressure gradient in the x-direction, derivatives of statistical variables are all 
assumed to vanish with respect to x and t; thus, U2 = 0, and U1 = U(y) is only a function 
of y, and the gradient of P can be shown to be constant�[14]. To simplify the presenta-
tion, we set 1/ρ ∂xP = 1 and control the dynamics of the �ow purely through the Reyn-
olds number.

Let D = (0,H), where H represents the half height of the channel. Combining the sim-
pli�ed form of the RANS equations with the Spalart–Allmaras turbulence model, the 
strong form of the equations now reads:

Equation�(10) represents the RANS momentum equation, which governs the behavior of 
the �ow variable U; Eq.�(11) is the transport equation for the Spalart–Allmaras working 
variable ̃ν. �e equations are supplemented with the boundary conditions:

which amount to symmetry boundary conditions at the center of the channel 
(∂yU(H) = 0 and ∂yν̃(H) = 0) and no slip conditions at the walls. We indeed assume 
that the eddy viscosity is symmetric across the channel and vanishes at the wall.

(10)1 =
∂
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(12)
U(0) = 0, ∂yU(H) = 0,

ν̃(0) = 0, ∂yν̃(H) = 0,

Table 1 Standard parameter values for�the Spalart–Allmaras turbulence model�[10]

Parameter Nominal value

cb1 0.1355

σSA 2/3

cb2 0.622

κ 0.41

cw2 0.3

cw3 2

cv1 7.1

cv2 0.7

cv3 0.9
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�e weak formulation of the problem is derived in the typical manner of multiplying 
Eqs.� (10) and� (11) by suitable test functions and integrating by parts. Let V = V × V  
where V = {v ∈ H1(D)| v(0) = 0}. �en the problem becomes:

where

with

�e above equations will be solved using a standard continuous �nite element discre-
tization on D. Let Vh ⊂ V be the �nite element subspace consisting of piecewise linear 
functions, on a suitable partition of D with maximal element diameter h. �e �nite ele-
ment approximation of�(13) is given by,

A computable system of equations can then be obtained using Newton’s method, lin-
earizing about the approximate state (Uh, ν̃h).

Problem�(18) represents the model problem we shall consider throughout this work. 
However, since the RANS turbulence model parameters are uncertain, these equa-
tions can be parameterized by random variables; we discuss the characterizations of the 
uncertain parameters in the following section.

Uncertainty characterization and�reduced model

As previously discussed, the parameters of the Spalart–Allmaras turbulence model� (3) 
and�(5) are usually assumed constant with the values provided in Table�1. In this work, 
we suppose that a subset of these parameters are in fact unknown, or random. �ere-
fore, the boundary-value problem can be viewed as parameterized by parameters of the 
Spalart–Allmaras turbulence model.

(13)
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We brie�y review some relevant concepts of probability theory and the use of polyno-
mial expansions, commonly referred to as generalized polynomial chaos, to represent 
the e�ects of uncertainty in the model response.

Let {�,�,P} be a probability space, where � is the sample space of random events, � 
is a σ-algebra, and P is the probability measure on �, meaning P(�) = 1. A random vari-
able on the probability space is de�ned as a P-measurable function of �. Let � ⊂ R

n. We 
use the notation ξ : � → � to denote a random variable and denote by pξ the associated 
probability density function.

Introducing the notion of random variables into the boundary-value problem implies 
that the solution Uh is a random process. Many authors have proposed the use of gen-
eralized polynomial chaos to construct a representation of Uh as an expansion in terms 
of polynomials ξ �[21–27]. Of course, to ensure equality these expansions may require an 
in�nite number of terms; to make the solution computationally feasible the expansion 
is truncated to produce a reduced model for Uh. To make the presentation as general as 
possible, we assume that the truncated expansion is given by

where Uh
i (x) ∈ Vh ⊂ V , ∀i = 1, . . . ,N  and each �i(ξ) represents a basis function for a 

subset of L2(�).
A number of methods for computing the coe�cients Uh

i  of the expansion have been 
developed in the uncertainty quanti�cation literature and generally fall into two cate-
gories: intrusive and non-intrusive. Non-intrusive approaches attempt to estimate the 
coe�cients of a generalized polynomial chaos expansion by solving the determinis-
tic problem at a set of realizations of ξ. As a result, existing simulation codes can usu-
ally be used directly. In contrast, intrusive approaches, such as those based on Galerkin 
methods, solve a system of equations for the entire set of expansion coe�cients; typi-
cally this requires the use of specially designed solvers. We shall focus on non-intrusive 
approaches here since they allow for the existing turbulence simulation codes to be used 
with minimal modi�cation. Moreover, the set of independent parameter values can usu-
ally be run in parallel, making non-intrusive approaches more e�cient.

As discussed previously, non-intrusive approaches aim to compute the coe�cients of 
the expansion based on independent realizations of the deterministic solution Uh(y, ξ). 
One can use sampling-based methods, such as Monte Carlo or Latin hypercube sam-
pling, to compute projections onto the polynomial bases �. In high-dimensional param-
eter spaces sampling may be preferred, since convergence is based on the number of 
samples and not the dimension of the space. In our case, the dimension will remain rel-
atively low so that we can rely on direct numerical integration using quadrature tech-
niques. Even in a high number of dimensions authors have proposed the use of sparse 
representations to make the process more e�cient�[27–33].

Here we utilize the pseudo-spectral projection method�[34]. Consider the di�erential 
equations to be parameterized by ξ. Let Vh be as de�ned above; then, Problem�(18) can 
be rewritten as,

(19)Uh,N (x, ξ) =

N
∑

i=0

Uh
i (x)�i(ξ),
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where B and F  are as de�ned in� (15) and�(14), respectively; the subscript ξ is used to 
indicate their dependence on the parameter. Solutions of�(20) at sampled ξ are independ-
ent and can be used to construct a discrete reduced model (Uh,N , ν̃h,N ). �e accuracy of 
the model is controlled by h, the level of discretization of the physical domain, as well as 
N, the maximum order of polynomials used in the expansion.

In an e�ort to produce more accurate surrogate models goal-oriented error estimation 
techniques, common to the �nite element community, have recently been extended to 
address problems with uncertainty�[27, 35, 36]. �e following section outlines the adap-
tive approach developed in�[12, 13].

Goal-oriented adaptive surrogate modeling

In this section, we provide details of the error estimation and adaptive procedure for 
boundary-value problems parameterized by uncertainty that was developed in�[12, 13]. 
We review the extension of goal-oriented error estimation to the case of uncertainty as 
proposed in previous works� [12, 13, 34–38]. In addition we suggest an adaptive pro-
cedure based on the contribution of higher-order expansion terms to the error in the 
quantity of interest.

Goal‑oriented error estimation

Since its introduction in the 1990s�[39–42], goal-oriented error estimation has grown in 
popularity in the �nite element community. Here we only provide a brief outline of the 
approach and refer the interested reader to more extensive descriptions and reviews of 
the methodology�[42–45].

Equation�(20) is in fact a deterministic problem and the standard goal-oriented error 
estimation framework can be applied for a �xed ξ; the e�ect of variability in ξ can then 
be handled using the expansion techniques of the previous section as we will show 
below.

In order to derive the error estimation and adaptive strategy, we �rst require the de�-
nition of a linear functional of the solution representing a quantity of interest. We will 
use the average of the mean �ow velocity U over the channel cross-section,

where the subscript ξ is again used to indicate that the solution U depends on the value 
of ξ and thus so does Q. Since the velocity pro�le is expected to reach the maximum at 
the center of the channel, this quantity of interest is expected to be more sensitive to the 
centerline velocity.

�e core ingredient of the goal-oriented framework is the so-called adjoint problem, 
which seeks a generalized Green’s function associated with the quantity of interest. In 
the case of a nonlinear operator, such as�(20), the linearized operator is used to de�ne 

(20)

Find (Uh(·, ξ), ν̃h(·, ξ)) ∈ Vh such that

Bξ

(

(Uh, ν̃h); (vu, vν̃ )
)

= Fξ ((vU , vν̃ )), ∀(vU , vν̃ ) ∈ Vh,

(21)Qξ ((U , ν̃)) =

∫ H

0

U dy,
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the adjoint equation�[41, 43, 45–47]. For our model problem that means that the adjoint 
equation is given by,

where the operator B
′

ξ is used to compute updates in Newton’s method for solving the 
nonlinear primal problem� (18). �e de�nition of the adjoint equation allows one to 
establish a computable estimate for the error in the quantity of interest.

In the traditional deterministic setting one would be concerned with the error 
Q((U , ν̃))−Q

(

(Uh, ν̃h)
)

, here our approximate solution is represented by the reduced 
model (Uh,N , ν̃h,N ). Since (Uh,N (·, ξ), ν̃h,N (·, ξ)) ∈ Vh for sample ξ, the adjoint equa-
tion�(22) holds and we can proceed in much the same way as is done for �nite element 
approximations�[41, 48]. Using the de�nition of the residual

we can write, introducing the errors in the solution as eU = U − Uh,N and eν̃ = ν̃ − ν̃h,N ,

for all (φh
U ,φ

h
ν̃
) ∈ Vh. Note that Eq.�(24) holds because of the linearity of Q, that Eq.�(25) 

follows from using the adjoint problem, that Eq.�(26) is a consequence of the de�nition of 
the linearized operator B′ and of the residual�(23), and that Eq.�(27) is a result of Galerkin 
orthogonality. Due to the complexity of estimating �B, and the fact that it is deemed to 
be higher-order, the term is often neglected [41, 49, 50]; we proceed assuming that the 
contribution due to linearization is negligible.

Furthermore, the representation�(27) cannot be used directly as it involves the exact 
adjoint solution (zU , zν̃ ). To obtain a computable estimate of the error in the quantity of 
interest, we instead introduce an approximate adjoint solution from an enriched �nite 
element space V+ where Vh ⊂ V+ ⊂ V. �at is,

(22)
Find (zU (·, ξ), zν̃ (·, ξ)) ∈ V such that

B′
ξ ((U , ν̃); (zU , zν̃ ), (vU , vν̃ )) = Qξ ((vU , vν̃ )), ∀(vU , vν̃ ) ∈ V ,

(23)Rξ

(

(Uh,N , ν̃h,N ); (zU , zν̃ )
)

:= Fξ ((zU , zν̃ ))− Bξ

(

(Uh,N , ν̃h,N ); (zu, zν̃ )
)

,

(24)EQ = Qξ ((U , ν̃))−Qξ

(

(Uh,N
, ν̃h,N )

)

= Qξ ((eU , eν̃ ))

(25)= B′
ξ ((U , ν̃); (zU , zν̃ ), (eU , eν̃ ))

(26)= Rξ

(

(Uh,N , ν̃h,N ); (zU , zν̃ )
)

−�B((U , ν̃), (eU , eν̃ ), (zU , zν̃ ))

(27)= Rξ

(

(Uh,N , ν̃h,N ); (zU − φh
U , zν̃ − φh

ν̃ )

)

−�B((U , ν̃), (eU , eν̃ ), (zU , zν̃ )),

(28)
Find (z+U , z

+
ν̃
) ∈ V+ such that

B′
ξ

(

(Uh,N , ν̃h,N ); (z+U , z
+
ν̃
), (vU , vν̃ )

)

= Qξ ((vU , vν̃ )), ∀(vU , vν̃ ) ∈ V+,
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where the enriched space will be taken as the space of piecewise quadratic functions 
on the same partition of D as Vh. �us, a computable error estimate for the error in the 
quantity of interest at a speci�ed value of ξ is provided by

In addition, η can be broken into elementwise contributions to de�ne re�nement indica-
tors for mesh adaptation.

To measure the error in the response of the quantity of interest over the range of 
parameters ξ, we use the L2 norm of the error,

�is metric is a natural choice as it implies the control of the mean and standard devia-
tion of the error�[46].

�e key to obtaining a tractable estimator for� (30) is the evaluation of the norm 
itself. Since evaluating the norm involves integration in a possibly high-dimensional 
parameter space we will likely need to evaluate the error representation in a manner 
that scales exponentially with the parameter dimension. At each point in parameter 
space, in order to evaluate the error estimate� (29), one requires the solution of the 
adjoint equation� (28), a process that would quickly become prohibitively expensive. 
Instead, we propose to construct a reduced model of the semi-discrete adjoint solu-
tion, which can then be evaluated with minimal cost at any point in parameter space. 
Let

where z+α (y) ∈ V+ ⊂ V , ∀α = 1, . . . ,N  can be computed in the same way as the forward  
solution. With this additional modi�cation, we then have a computable estimate for 
the error�(30). Substituting the error estimator�(29) into the norm for�(30) we obtain a 
computable error estimator for the L2 norm on �,

�e accuracy of the estimator can be shown to depend quadratically on the errors eU 
and eν̃�[12, 13, 46].

Theorem 2.1  Assume Bξ to be continuously differentiable, for any ξ ∈ �, in a subset of 
V that contains (U , ν̃), (Uh, ν̃h), (Uh,N , ν̃h,N ). Let (ẑ+,N

U , ẑ+,N
ν̃

) be an approximation of the 
adjoint solution according to�(31). The error estimate�(32) for�(30) satisfies the bound,

(29)
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)

:= ηξ

(

(Uh,N , ν̃h,N ), (z+U , z
+
ν̃
)

)

.

(30)
∣

∣

∣

∣

∣

∣
Qξ ((U , ν̃))−Qξ

(

(Uh,N , ν̃h,N )
)∣

∣

∣

∣

∣

∣

L2(�)
.
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�e extension of the goal-oriented error estimation framework to boundary-value 
problems with uncertain data simply means that uncertainty can be considered in com-
plex physical problems using a reduced-order surrogate model since its accuracy can be 
assessed in terms of the quantity of interest. Even more valuable, much as in the case of 
deterministic goal-oriented error estimation, estimates can be used to drive adaptivity to 
improve the approximations further, as we discuss in the next section.

Adapting the surrogate model

One major disadvantage of using quadrature-based sampling strategies for surrogate 
construction is that the number of points required for a �xed expansion order grows 
exponentially with parameter dimension; this is commonly referred to as the curse of 
dimensionality.

A number of di�erent approaches have been proposed to minimize the e�ect of the 
curse of dimensionality. For example, one may choose to alter the quadrature formula 
used in calculating the expansion coe�cients; in the case a tensor product quadrature 
formula is employed, authors have suggested sparse quadrature grids that can reduce 
the number of evaluations necessary for the same level of accuracy� [3, 27, 31–33, 51]. 
Alternatively, or in a combined manner, higher-order information can be used to iden-
tify the more in�uential parameters. Instead of increasing the expansion order uniformly 
(isotropic re�nement), one may then choose to improve the surrogate model by add-
ing basis functions that only correspond to the most in�uential parameters (anisotropic 
re�nement).

While our proposed error estimates can be used with a sparse quadrature formula, 
we will restrict our discussion to full tensor product quadrature for simplicity. Also the 
advantage of using an anisotropic re�nement strategy is more easily observed in this 
setting. In contrast to existing techniques for using higher-order information to drive 
anisotropic surrogate re�nement, which are often based on heuristic measures, our 
approach identi�es the components associated with the error in the quantity of interest.

In order to identify the most in�uential modes in the expansion, we use the residual in 
the error estimate�(32). To do so, we must be able to identify the parameters to which the 
residual is most sensitive. We use a surrogate model for the residual itself

with a higher order M > N . �e coe�cients in� (34) are calculated based on the same 
type of quadrature used for the primal and adjoint surrogates,
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
Q((U , ν̃))−Q

(

(Uh,N
, ν̃h,N )

)
∣

∣

∣

∣

∣

∣

L2(�)
− η

∣

∣

∣

∣

≤ O

(

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

e
h,N
U

, e
h,N

ν̃

)

∣

∣

∣

∣

∣

∣

V

∣

∣

∣

∣

∣

∣

(
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∣

∣
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∣

∣
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, e
h,N
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∣
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∣

∣

∣

2

V

∣

∣

∣

∣

∣

∣

∣

∣

L2(�)

)

.

(34)E(ξ) :=

M
∑

α=0

Rα�α(ξ) ≈ Rξ

(

(Uh,N , ν̃h,N ); (ẑ+,N
U , ẑ+,N

ν̃
)

)

,
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Although the forward and adjoint solutions are of order N, the residual is not restricted 
to be of order N. �e higher-order coe�cients in� (34) capture additional information 
about the error in the quantity of interest. �e relative magnitudes of the coe�cients in 
E provide a weighting of the most important parameter directions or, more speci�cally, 
which basis functions should be added to the solution expansions. To precisely de�ne 
the re�nement strategy, we need a generalization of the set of multi-indices; let

where N = (N1, . . . ,Nn) represents the maximum polynomial degree in each direction. 
Higher-order expansions of the error will now be obtained using 
M = N + 1 = {N1 + 1, . . . ,Nn + 1}. �us, we seek the coe�cients of E(ξ) in�(34) in the 
set IM\IN  with the largest magnitude, which will be added to the index set IN  for the 
subsequent adaptive step. Algorithm�1 describes the detailed re�nement strategy.

Bayesian inference and�model selection

To this point we have restricted the discussion to the construction of a reduced model. 
Often the full model is yet still in need of validation against experimental observations. 
A reduced model can certainly make validation studies more computationally feasible, 
the more pressing question is whether using the surrogate model in place of the full 
model will lead to the same conclusions on the model’s validity.

Bayesian inference requires a large number of model simulations; replacing the full 
simulation with an accurate surrogate model may lead to considerable computational 
savings. We �rst provide an overview of the general Bayesian methodology and then dis-
cuss how it can be used in a model selection procedure.

Bayes’ theorem is a fundamental result of probability. Relatively recently, it has been 
adapted toward parameter identi�cation for complex mathematical models. �e advan-
tage of Bayesian inference for model calibration is that it provides for a distribution of 
probable parameter values instead of the one best �tting parameter value obtained from 
traditional optimization procedures. Bayesian parameter identi�cation can be inter-
preted as an update of the degree of belief in the parameters.

(35)Rα =

m
∑

k=1

Rξ k

(

(Uh,N , ν̃h,N ); (ẑ+,N
U , ẑ+,N

ν̃
)

)

�α(ξ
k)wk .

(36)IN = {α ∈ N
n : αj ≤ Nj , j = 1, . . . , n},

Algorithm 1: Anisotropic p refinement in Ξ.
1 Construct E(ξ) =

∑
α∈IM

Rξ(u
h,N
α , ẑ+,N

α )Ψα(ξ) ;

2 Set β∗ =
∑

α∈IM\IN
|Rξ(u

h,N
α , ẑ+,N

α )|.;
3 For α ∈ IM \ IN , sort |Rξ(u

h,N
α , ẑ+,N

α )| in decending order giving index Iα.;
4 Given 0 ≤ η ≤ 1, set β = 0 and i = 0 ;
5 while β < ηβ∗ do
6 Set i = i+ 1 and α∗ = Iα(i) ;
7 Set β = β + |Rξ(u

h,N
α∗ , ẑ+,N

α∗ )| ;
8 for j = 1 → n do
9 if α∗

j > Nj then
10 Increase polynomial order of approximation in component j, Nj ← Nj + 1 ;
11 end
12 end
13 end
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�e solution of the Bayesian calibration procedure is the posterior pdf, or the condi-
tional distribution of the model parameters given the observed data. Let q ∈ R

n repre-
sent the vector of calibration data, or observations, and let ξ ∈ � = R

m be the random 
variable representing the model parameters we wish to calibrate. �e prior distribution 
of the parameters is denoted by p(ξ) and encapsulates the prior knowledge one has 
about the parameters independent of the calibration data. Bayes’ theorem then states 
that the posterior distribution, p(ξ |q) is proportional to the prior times the likelihood 
L(ξ , q) of observing the data�[52, 53],

More speci�cally, the likelihood is de�ned by the conditional distribution of the data as 
a function of the parameters L(ξ |q) = p(q|ξ), but to emphasize the dependence on the 
value of the parameters it is often written in the former notation. �e denominator in 
Bayes’ theorem acts as a normalization constant and using the law of total probability 
can be expressed as,

Perhaps the most critical component of the Bayesian framework is the likelihood func-
tion. Ideally the likelihood is determined by the measurement process, or any other pro-
cess contributing to uncertainty in the calibration data. For example, if the measurement 
error is additive, meaning the observations take the form,

where M(ξ) is the predicted value of q using the model with parameters ξ and ǫ ∈ R
n is 

the error model with distribution pǫ, then the likelihood is given by

In practice, while one might have a decent estimate of the uncertainty in measurements, 
it is often di�cult to fully characterize the distribution of experimental uncertainty. For 
this reason, it can be bene�cial to use a model selection procedure to determine the best 
choice of uncertainty model.

We rely here on a Bayesian model selection procedure that compares a set of models 
to decide which uncertainty description most likely matches the data. We will only con-
sider the methodology to select the most probable model among a class of uncertainty 
models, but one can just as well employ the technique to decide between models gov-
erning the physical response of a system, such as di�erent RANS closure models, or a 
combination of physical and uncertainty models�[10].

In the Bayesian model comparison procedure, the respective models are eval-
uated on the basis of the model posterior plausibility. Given a set of models 
M = {M1,M2, . . . ,Mn}, model plausibility quanti�es the relative probability with which 
model Mi actually generates the observed data�[54]. Again, we let q represent the cali-
bration data and employ Bayes’ theorem to de�ne the plausibility for model Mi by

(37)p(ξ |q) =
L(ξ |q) p(ξ)

p(q)
.

(38)p(q) =

∫

�

p(q|ξ)p(ξ)dξ .

(39)q = M(ξ)+ ǫ,

(40)L(ξ |q) = pǫ(q −M(ξ)).

(41)p(Mi|q,M) = Cp(q|Mi,M) p(Mi|M),
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where C is a normalization constant similar to that in�(37), p(q|Mi,M) acts like a likeli-
hood for model Mi, and p(Mi|M) is the prior model plausibility. �e likelihood of the 
model is given by the evidence, which is simply the normalization constant discussed in 
the previous section, conditioned on model Mi,

and it measures the probability of observing data q given the model Mi. �e evidence is 
used to compare models relative to one another and to identify the model that is most 
likely capable of reproducing the data. In regards to the prior plausibility, one often 
chooses a uniform plausibility across the collection of models; if all models are equally 
likely candidates, then the natural choice for the prior is simply p(Mi|M) = 1/n for each 
model.

We have explicitly left M in the conditional distributions above since the whole pro-
cess is strictly conditional on the original set of models. In other words, only the models 
included in the set M are evaluated, thus any conclusions or observations resulting from 
the quantitative analysis are limited by the quality of the models under consideration; 
the process can not be used to identify a truth model unless it is present in M.

Results and�discussion
In this section we present two sets of results. First, we illustrate the adaptive algorithm 
for the construction of a reduced model for the mean velocity of a turbulent �ow in a 
channel. Secondly, we demonstrate that, as a result of the error estimation and adapta-
tion, the surrogate model can be used in place of the full model for a Bayesian model 
selection procedure, providing a more computationally e�cient method for performing 
uncertainty quanti�cation in complex simulations.

Adapted surrogate model for�turbulence model problem

We apply here the adaptive surrogate re�nement procedure to the model problem of 
RANS turbulence modeling for incompressible �ows. We will consider the physical dis-
cretization as �xed and focus on the adaptive construction of a surrogate model for the 
Spalart–Allmaras turbulence model with six uncertain parameters: κ, cb1, σSA, cb2, cv1, 
cw2. To evaluate the surrogate model, we will use both the error estimates reviewed in 
"Goal-oriented error estimation" as well as simulations of the quantity of interest pro-
vided by the full model to further establish the accuracy of our error estimates.

�e prior distribution for all uncertain parameters will be taken to be uniform. �e 
exact descriptions will be based on the nominal values presented in Table�1 with a range 
from 50 to 150�corresponding value; for example κ ∼ U(0.205, 0.615).

Starting with a constant, or N = 0, surrogate model, we performed 17 adaptive steps 
adding additional polynomials to the expansion according to Algorithm� 1. Figure�1 
shows the convergence of the error estimate in terms of the number of nonlinear PDE 
solves. Compared to uniform, or isotropic p-re�nement, the anisotropic re�nement of 
the surrogate model leads to signi�cant improvement of the error for an equal number 
of forward model evaluations, roughly two orders of magnitude reduction. �e progres-
sion of the expansion order is shown in Table�2. We observe that the initial re�nements 

(42)E(Mi|q,M) := p(q|Mi,M) =

∫

�

p(q|ξ ,Mi,M)p(ξ |Mi,M) dξ ,
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are associated with the κ and cv1 parameters, demonstrating that their values have the 
greatest in�uence on the quantity of interest. Following initial re�nement of κ and cv1
, we also see a continued increase in the expansion order for κ, which we would expect 
to see since it has a signi�cant impact on the �ow velocity away from the wall where 
the velocity is higher and thus contributes more signi�cantly to the quantity of interest. 
Re�nements are suggested for all model parameters, though cb2 is only modeled linearly, 
suggesting that the gradient of the working variable ν̃ does not have a notable impact on 
the average velocity.

From Fig.�2, one can clearly see that the adaptive surrogate model is able to capture 
the general response of the quantity of interest over the range of uncertain param-
eters. To quantify the agreement between the two distributions, we computed the 

100 101 102 103 104
Number of evaluations

10−3

10−2

10−1

100

101

102

||E
|| L

2 (
Ξ
)

adaptive
uniform

Fig. 1 Convergence of error estimate for adaptive surrogate of Spalart–Allmaras turbulence model with six 
uncertain parameters

Table 2  Expansion orders for�parameters in�adaptive surrogate of�Spalart–Allmaras turbu-
lence model

Iteration κ cb1 σSA cb2 cv1 cw2

1 0 0 0 0 0 0

2 1 0 0 0 0 0

3 1 0 0 0 1 0

4 2 0 0 0 1 0

5 3 0 0 0 1 0

6 3 0 1 0 1 0

7 3 1 1 0 1 0

8 3 1 1 0 1 1

9 4 1 1 0 1 1

10 4 2 1 0 1 1

11 4 2 2 0 1 1

12 4 2 2 0 2 1

13 5 2 2 0 2 1

14 5 2 2 1 2 1

15 5 2 3 1 2 1

16 5 3 3 1 2 1

17 5 3 3 1 2 2

18 6 3 3 1 2 2
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Kullback–Leibler divergence and found DKL = 0.0048. Moreover, the mean and vari-
ance of the response were evaluated at 25.06 and 49.12 for the full model, and 25.88 and 
51.52 for the surrogate model, respectively. Furthermore, the convergence of the error 
estimate suggests that the reduced model can be used in further studies without a sig-
ni�cant loss in accuracy. One attractive use case is that of model validation since many 
techniques, particularly Bayesian methods, require repeated evaluations of the forward 
model for the quantity of interest. While the surrogate presented in this section is capa-
ble of producing accurate predictions of the quantity of interest, in order to be useful in 
a validation setting, the reduced model must also exhibit the same sensitivities as the full 
model. We investigate this issue in the next section based on a simpli�ed version of the 
Bayesian uncertainty quanti�cation study performed in�[10].

Bayesian model selection

As a basis for comparison we use the work of Oliver and Moser� [10], where Bayes-
ian methods were used to evaluate the validity of a number of turbulence models and 
discrepancies. To simplify the presentation here, we restrict our investigation to the 
Spalart–Allmaras model for eddy viscosity discussed previously and consider four dif-
ferent uncertainty models: independent homogeneous, correlated homogeneous, corre-
lated inhomogeneous, and an additive Reynolds stress error model.

Speci�cally, we use the same calibration data as Oliver and Moser� [10], which was 
obtained from direct numerical simulations by Jiménez et� al.� [55, 56]. Mean velocity 
measurements were taken at Reτ = 944 and Reτ = 2003. �e uncertainty in the observa-
tions from the direct simulation is the result of calculating the sample mean rather than 
the true mean. �e authors of�[57] provide an estimate of the variance in the error, how-
ever the covariance between data points in the pro�le is not provided. To minimize the 
impact of the correlation of sampling errors between measurement points, Oliver and 
Moser�[10] downsampled the data and considered points that are farther apart; we will do 
the same and assume the sampling errors to be independent. Since the simulation of the 
channel �ow is dependent on the Reynolds number Reτ, we will construct two surrogate 
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Fig. 2 Kernel density estimates of the average velocity from the six-parameter Spalart–Allmaras turbulence 
model (solid line full model, dash line surrogate model)
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models, one for each �ow scenario represented in the calibration data. For all error mod-
els we will use the same surrogate construction of the approximate forward models.

As we did in the examination of the forward model, we consider six uncertain 
parameters. �is set of parameters is naturally augmented with the calibration param-
eters for the uncertainty models considered. For both Reynolds numbers we will use 
the �nal expansion order in Table�2, N = (6, 3, 3, 1, 2, 2), which yields error estimates 
η944 = 1.388788× 10−2 and η2003 = 1.878746× 10−2.

We begin with the general description of the model error by supposing that the error 
is multiplicative in terms of the velocity. �us, the observed data is taken to be governed 
by the equation,

where z = y/H is the non-dimensionalized wall-normal coordinate, U+ = U/u∗ is the 
non-dimensionalized velocity, and �u�+ is the prediction of the true non-dimensionalized 
velocity. We assume a zero-mean Gaussian �eld for the error term ǫ = ǫ(z) = ǫ(z; ξ). 
�e previous studies�[10, 46] investigated three di�erent de�nitions of the covariance of 
ǫ: independent homogeneous, correlated homogeneous, and correlated inhomogeneous.

Independent homogeneous covariance

First, we will adopt the belief that the data points provided in the DNS calibration data 
are independent. �e covariance of ǫ is thus,

where the standard deviation σ will be treated as an unknown parameter in the calibra-
tion process in addition to the turbulence model parameters.

Correlated homogeneous covariance

A straightforward extension of the independent multiplicative model is to incorporate 
spatial correlation into the de�nition of the covariance for ǫ. If we assume a homogene-
ous correlation length, we can write the covariance of ǫ as

where now both σ and the correlation length l are additional calibration parameters. 
While undoubtedly more reasonable than independent errors, a homogeneous correla-
tion length still seems improbable; generally the accuracy of the turbulence models near 
the wall di�ers considerably from that in the region far from the wall.

Correlated inhomogeneous covariance

Since length scales in turbulent �ows are set di�erently based on the region of the �ow, it 
makes sense to incorporate that structure in the uncertainty model. To mimic the change 
in length scales, we use a covariance function with a variable length scale�[10, 58],

(43)�u�+(z; ξ) = (1+ ǫ(z; ξ))U+(z; ξ),

(44)�ǫ(z)ǫ(z′)� = σ 2δ(z − z′),

(45)�ǫ(z)ǫ(z′)� = σ 2 exp

(

−
(z − z′)2

2l2

)

,

(46)�ǫ(z)ǫ(z′)� = σ 2

(

2l(z)l(z′)

l2(z)+ l2(z′)

)1/2

exp

(

−
(z − z′)2

l2(z)+ l2(z′)

)

,
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where σ is a calibration parameter and the length scale function l(z) is given by,

Here lin = l+in/Reτ, zin = z+in/Reτ, and l+in, z
+
in, lout, and zout are additional calibration 

parameters.

Reynolds stress uncertainty model

Finally, we introduce an uncertainty model based on the Reynolds stress. While more 
complex, and thus more di�cult to implement in practice, a Reynolds stress uncertainty 
model is appealing since it directly targets the source of error, the approximation of the 
Reynolds stress tensor.

�e uncertainty model for Reynolds stress proposed by Oliver and Moser�[10], takes 
the form,

where T+ is the Reynolds shear stress computed by the approximate turbulence model, ǫ 
represents the error �eld as before, and �u′

iu
′
j�
+ is the predicted Reynolds stress.

Note that�(48) does not lead to a prediction of the mean velocity directly; in order to 
predict the mean �ow one must �rst compute the Reynolds stress T+ governed by the 
turbulence model. �en the predicted Reynolds stress �u′

iu
′
j�
+ obtained from�(48) is used 

to complete the momentum equations,

which must then be solved for the mean velocity �u�+. As a result, realizations of the 
solution do not necessarily satisfy the turbulence momentum equations�(10)�[10].

We must still choose a description for the error �eld ǫ. Sticking with�[10], we assume a 
zero-mean Gaussian with covariance,

where kin models the error near the wall and kout represents the error far from the wall. 
�e choices made in�[10] are,

(47)l(z) =











lin for z < zin

lin +
lout − lin

zout − zin
(z − zin) for zin ≤ z ≤ zout

lout for z > zout.

(48)�u′
iu

′
j�
+(z; ξ) = T+(z; ξ)− ǫ(z; ξ)

(49)−
d

dz

(

1

Reτ

d�u�+

dz
− �u′

iu
′
j�

)

= 1,

(50)�ǫ(z)ǫ(z′)� = kin(z, z
′)+ kout(z, z

′),

(51)

kin(z, z
′) = σ 2

in

(

1−
(z − z′)2

l
2
in

−
(z − z′)2

�2
−

l
2
inzz

′

�2�2

)

× exp

(

−
1

2

(z − z
′)2

l
2
in

−
1

2

(z2 + z
′2)2

�2

)

,

(52)kout(z, z
′) = σ 2

out

(

1−
(z − z′)2

l2out

)

exp

(

−
1

2

(z − z′)2

l2out

)

,
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where lin = l+in/Reτ, � = Cdlin and σout = Cs/Reτ. �e additional calibration parameters 
for this uncertainty model are σin, l

+
in, Cd, Cs, lout.

Numerical results

Some of the above models are obviously de�cient while others may be overly complex 
for the present analysis; all models are now evaluated based on their agreement with the 
calibration data. With the model set M comprised of the four models proposed in this 
section, we are prepared to move forward with the application of the Bayesian model 
comparison procedure with the adaptive surrogate model for the turbulent channel �ow 
problem.

�e same uniform distributions used to de�ne the parameter ranges in "Adapted sur-
rogate model for turbulence model problem" are carried over here as the prior distribu-
tions for each parameter. �e results of this section were obtained using the QUESO 
library of algorithms for statistical inverse problems�[59]; more speci�cally, we used the 
multi-level sampling functionality.

Table�3 reports the evidence computed for each of the four models and reproduces the 
relevant portion of Table�2 from�[10]. While the numerical values themselves di�er, the 
results are qualitatively similar. As expected, the two multiplicative error models with 
homogeneous covariance structures have very small evidences; clearly the error in the 
turbulence model is not homogeneous across the channel. Interestingly, the multiplica-
tive model with inhomogeneous covariance appears to perform on par with the much 
more complex Reynolds stress model. If we actually compute the plausibility using the 
prior, we see that both are nearly equally plausible with P(M3|M) = 0.53 for the inho-
mogeneous covariance model and P(M4|M) = 0.46 for the Reynolds stress model. At 
this stage either model is equally probable, however the multiplicative model may be 
preferred for its relative simplicity.

Our conclusions are in line with those found in�[10] regarding the inability of homoge-
neous uncertainty models to capture the turbulence modeling error. �eir results favor 
the Reynolds stress model over the correlated inhomogeneous model, but again the two 
are relatively close in plausibility. In contrast to the use of the full turbulence model, 
our surrogate based model selection procedure required less computationally e�ort to 
complete. Table�4 displays the number of full model simulations required for each of 
the models using the full turbulence model, where as the use of the surrogate requires 
only polynomial evaluations. �e more complex the full model the greater advantage 
the use of a reduced model will be. Of course this does not take into account the number 
of solutions needed to actually construct the adaptive surrogate models. A total of 7515 

Table 3  Evidences computed for� the four uncertainty models ( log(E) is reported in� the 
table)

Surrogate Full model

Independent homogeneous −1.457 8.862

Correlated homogeneous 1.963 8.045

Correlated inhomogeneous 164.9 164.0

Reynolds stress 164.8 169.0
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samples (nonlinear solves) were used to complete all 18 iterations of the adaptive pro-
cedure to construct the anisotropic surrogate model. Even factoring in these additional 
solves, it is obvious that using the reduced model in the model selection study leads to 
signi�cant computational savings. �e advantage of performing the analysis with a sur-
rogate model is that the same surrogate can be used for all uncertainty models, thus the 
cost can be amortized over the exploration of many di�erent uncertainty models. In 
other words, once a surrogate model has been constructed, a new model selection study 
can be performed rather e�ciently whenever we wish to access a newly proposed uncer-
tainty model, making the surrogate approach a valuable resource for modelers.

Our results suggest that for uncertainty quanti�cation studies of this nature, requiring 
many simulations of a relatively complex forward model, the reduced model described 
here leads to the same conclusion as using the full model to perform the same analysis. 
In fact, some work has been done to show that, in limited cases with mostly Gaussian 
assumptions, the error in the surrogate model can be used to prove a bound on the error 
in the posterior distributions obtained through Bayesian inference�[2–5]. However, fur-
ther e�ort is needed to extend these results to more general cases.

Conclusion
We have examined the application of goal-oriented error estimation to the adaptivity of 
surrogate models for boundary-value problems with uncertainty. In contrast to existing 
anisotropic re�nement strategies, a new re�nement algorithm was proposed that uses 
higher-order information from the goal-oriented error estimate to identify the most 
in�uential parameters and adapt the surrogate model accordingly.

Based on our approach, an accurate surrogate model need to be constructed for the 
Spalart–Allmaras turbulence model and the solution of the RANS equations in a fully-
developed channel. �e reduced model was then used in a Bayesian model calibration 
study in place of the full simulation. Posterior distributions for the parameters showed 
excellent agreement with those obtained using the original forward model. �e results 
demonstrate that the newly developed methodology can be a valuable resource to com-
putational scientists in assessing complex physical systems using Bayesian techniques 
where a large number of model simulations are required. In our case, the quantity of 
interest and calibration observables were both de�ned in terms of velocities; an interest-
ing question is how to alter the approach taken here if the observable measurements are 
rather di�erent from the quantity of interest for which we would like to use the model. 
One would thus be required to construct surrogate models with respect to both the 
quantity of interest and the observable calibration data. �is will be the subject of future 
work.

Table 4  Number of�nonlinear PDE solves computed in�the MCMC process for�each uncer-
tainty model

Independent homogeneous 7776

Correlated homogeneous 8453

Correlated inhomogeneous 8084

Reynolds stress 7595

Total 31,908
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