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Woodruff School Background: The shock response of metallic single crystals can be captured using
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is available at the end of the material descriptions, in particular the viscoplastic response, must be framed within
article approximations introduced by numerical methods.

Methods: Three methods of modeling the shock response of metallic single crystals
are summarized: finite difference simulations, steady wave simulations, and algebraic
solutions of the Rankine—Hugoniot jump conditions. For the former two numerical
techniques, a dislocation density based framework describes the rate- and temper-
ature-dependent shear strength on each slip system. For the latter analytical tech-
nique, a simple (two-parameter) rate- and temperature-independent linear hardening
description is necessarily invoked to enable simultaneous solution of the governing
equations. For all models, the same nonlinear thermoelastic energy potential incorpo-
rating elastic constants of up to order 3 is applied.

Results: Solutions are compared for plate impact of highly symmetric orientations (all
three methods) and low symmetry orientations (numerical methods only) of aluminum
single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime).

Conclusions: For weak shocks, results of the two numerical methods are very similar,
regardless of crystallographic orientation. For strong shocks, artificial viscosity affects
the finite difference solution, and effects of transverse waves for the lower symmetry
orientations not captured by the steady wave method become important. The analyti-
cal solution, which can only be applied to highly symmetric orientations, provides
reasonable accuracy with regards to prediction of most variables in the final shocked
state but, by construction, does not provide insight into the shock structure afforded
by the numerical methods.
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Introduction
An understanding of the thermomechanical response of metallic crystals at high strain
rates and high pressures is important for research and development of technologies

involving impact, as occurring in crashworthiness applications and ballistic collisions,
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for example. Detailed constitutive models for single crystal thermoelastic—viscoplastic
response enable prediction of effects of microstructure—e.g., lattice orientation, dislo-
cation content, grain structure—on the performance of metals in such dynamic loading
regimes. For modeling shocks of significant magnitude in single crystals, nonlinear elas-
ticity, thermoelastic coupling, and material anisotropy become important. Models for the
shock response of solids have witnessed continuous development and refinement since the
mid-twentieth century [1-3], with theories involving various levels of detail, complexity,
and efficiency available.

The finite difference (FD) approach to modeling shock wave propagation involves dis-
cretization of the solution domain in both space and time. Applications of FD meth-
ods towards descriptions of wave propagation in metals include [3—6]. Advantages of
the method developed in Refs. [5, 6] include the following: crystals of any symmetry and
orientation can be studied (i.e., transverse waves are captured), material properties may
be heterogeneous in the (longitudinal) direction of wave propagation, and sophisticated
rate- and temperature-dependent crystal plasticity models are enabled. Relative disad-
vantages are the time required for calculation of solutions and the need for artificial vis-
cosity to regularize the shock width in the strong shock regime.

The steady wave (SW) approach to modeling shock waves presented in this work,
which is strictly valid only for uniaxial strain conditions, involves transformation of
governing partial differential equations to ordinary differential equations relative to a
coordinate frame that moves along with a steady shock wave. Applications of the steady
wave method towards descriptions of plastic shocks in metallic crystals include [7-11].
Advantages of the method developed in Ref. [10], which is the first known implemen-
tation of the SW approach for anisotropic elastic—plastic crystals, include the follow-
ing: a detailed description of the steady shock structure (and associated material state) is
obtained, solutions are obtained at relatively low computational cost, no artificial viscos-
ity is used, and sophisticated rate- and temperature-dependent crystal plasticity models
are enabled. Disadvantages are that effects of transverse waves for non-symmetric crys-
tal orientations are ignored, unsteady waves cannot be addressed, and material proper-
ties must be spatially homogeneous.

The present analytical approach to modeling shocked metals involves simultaneous
solution of the Rankine—Hugoniot jump conditions for conservation of mass, momen-
tum, and energy, along with rate-independent constitutive equations for thermoelas-
tic—plastic response. Previous work includes [12-15]. The present method, which can
be applied only for symmetric crystal orientations (e.g., shocks propagating along [100]
and [111] directions in FCC crystals), essentially reduces the problem to simultaneous
solution of the yield condition and energy balance for the cumulative plastic slip and
entropy, with the remaining conservation and constitutive laws sufficient for determi-
nation of the downstream material state. In this paper, “downstream” refers to material
behind the plastic shock wave, “upstream” to material ahead of the shock. Advantages
of this method are its simplicity (few material parameters are needed, and solutions are
obtained nearly instantly) and ability to incorporate various nonlinear anisotropic ther-
moelastic potentials [16]. Disadvantages are the following: only highly symmetric orien-
tations can be modeled as noted above, time dependence (e.g., explicit strain rate effects
on strength) is ignored, and the shock is treated as a perfect jump discontinuity such
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that no further information regarding its structure (e.g., transitional values of state vari-
ables between upstream and downstream states) is obtained.

The remainder of this paper is outlined as follows. The FD model, the SW model, and
the analytical model are described in “Finite difference model’, “Steady wave model’, and
“Analytical model’, including governing equations, constitutive theory and parameters,
and numerical methods. Because these models have been described at length in prior
publications [6, 10, 15], only essential features are provided herein. Quantitative com-
parison and evaluation of the numerical approaches (FD and SW) are given in “Numeri-
cal methods comparison” Comparison of these results with the limited scope of results
available from analytical solutions is given in “Comparison of numerical and analytical
solutions”. Concluding discussion follows in “Conclusion” The material of study is pure
aluminum [Al, face centered cubic (FCC) structure], which is advantageous because
of the extensive data available for its thermoelastic and shock response [17-19], and
because it typically does not undergo twinning which would require more elaborate con-
stitutive theory [20] than that employed herein.

Although all three models have been presented individually and validated versus
experimental data in prior work [6, 10, 15], previous papers have not included any
comparisons of results among the three methods or any evaluations of computational
efficiency. Explicit method comparisons identifying material orientations and loading
regimes for which each method may be most appropriate are the primary new con-
tributions of this paper. The only shocks considered herein are stable planar shocks
as encountered in traditional plate impact experiments with null obliquity. Numerical
methods developed to capture the behavior of converging and diverging shocks and
their associated applications may be found elsewhere [21].

Finite difference model
The FD model evaluated in this paper incorporates constitutive theories for nonlinear ani-
sotropic thermoelasticity and crystal plasticity described in detail in Ref. [6, 10]. Many, if
not most, features are also used in the SW and analytical models described later in “Steady
wave model” and “Analytical model”

Let Vo and V denote material and spatial gradients, respectively, and let x = x(X, ¢)
denote spatial coordinates of a material point initially at X. The deformation gradient is
decomposed into thermoelastic and plastic parts:

F = Vox = FEFP. (1)
Let v = & be particle velocity. The velocity gradient is
L=Vv=FF'=FFF1 4 FELPFEL, 2)

For adiabatic cases in the absence of discontinuities, local Lagrangian balances of mass,
momentum, and energy are [22, 23]

p0=,0], VO‘P=/O01'}, U:PZP. (3)

Here, pg and p are initial and current mass densities, /] = JEJP = det F, P is first Piola—
Kirchhoff stress related to symmetric Cauchy stress by P = Jo F~1, and U is internal
energy per unit reference volume.
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The thermoelastic potential here depends on entropy per unit reference volume, 1, and
elastic Green strain, EZ, the standard finite strain measure invoked in finite crystal plas-
ticity theory [5, 10, 24, 25]:

EF =} (FETFE 1), )

Other strain measures such as the Eulerian material strain [6, 16] and logarithmic strain
[15, 26] have certain advantages for modeling large elastic compression; however, since
the focus of the present work is comparison of methods of solution rather than con-
stitutive theories, attention is restricted herein to the Green strain formulation. Letting
Greek indices denote Voigt notation, internal energy is specified as

L[(EE, n) — LCupEEEL + LCups EEEEEE — 09| TWEE An — f(m;)} )

Second- and third-order isentropic elastic constants are Cpg and Cygs; the Griineisen
tensor is I'y; the reference temperature is 6p; A7 is entropy change from the reference

state; and thermal energy is
[ =exp(An/fco) — 1~ Ay + 5(An)?/co, (©)

with ¢ the specific heat per unit volume at constant strain. Stored energy of defect sub-
structure is omitted in (5) but could be incorporated following methods outlined in Refs.
[22, 24, 25]. Such an assumption is considered reasonable for pure Al, wherein experi-
ments [27] indicate that over 90% of plastic work is dissipated as heat and contributes to

temperature rise. Cauchy stress and temperature are given by
o =JEYFEOU/ER)FET, 0 =au/om. (7

Thermoelastic properties for aluminum are listed in Table 1 [6]. For crystals of cubic
symmetry, 'y = 'y, in indicial notation.
The plastic velocity gradient is, summing over slip systems k with initial slip direction

s* and plane normal m,

P_ gPrp-1 _ k =k k=) ok k
L"=FF —;b(va +Nh0mx)s ®@m". (8)

Here, the magnitude of the Burgers vector is b, the mobile dislocation density is N with
glide velocity X, and the rate of homogeneous nucleation is N}Ifam with a mean glide dis-
placement x. For FCC Al slip occurs on up to k =1,2,...,12 {111}(110) systems, and

Table 1 Thermoelastic properties of Al (§p = 300K)

Property Value Units
C] 1, C} 2, C44 106.7,604, 283 GPa
Cirr, Giia, Gios —1,076, =315, 36 GPa
C]44, C155, C456 —23,—-340, 30 GPa

r 2.30 -

Co 235 MPa/K

0 2.71 g/cm?
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the corresponding ambient shear modulus is po = Cas + %(Cn — Ci2 — 2Cy4), leading
to an initial shear wave velocity of ¢s = </tg/po; in the model, ¢s and u are also updated
with temperature and elastic strain [10]. The total dislocation density is N' k = N,’;, + Nik,
where Nik is the immobile density. Constitutive relations for the crystal-level mobile
and immobile dislocation density evolution, as well as their associated mean veloc-
ity, build upon on previously developed isotropic constitutive models [3, 8, 9]. Letting
% = o : (FEs" @ mFFE~1) denote the resolved Cauchy stress on system k, evolution

equations are [6]

7k \7k \7k \7k \7k \7k

Ny = XNpom + Nier + Nyt = Nayn = Ny 9)
Nl.k =(1- X)Nilz(om —{—Ntl;a (10)
lel(am = Noexp[(gOhome3/k39> (|7k|/1-0hom - 1)}’ (11

. m
Ny = el #4101+ D (1251 = Toin) /o = T+

. (12)
if Tyin < |rk| < Tmax (leet =0 otherwise),
Nt = PNy [NF 7, (13)
ok K\ 2 =k
N, = Zaannb<Nm> [V, (14)
Nja = Ny /NFIF]. (15)

Density rates corresponding to homogeneous nucleation, heterogeneous nucleation,
multiplication, annihilation, and trapping are labeled by obvious subscripts. Densities of

forest and parallel dislocations are, respectively,

ka = ZNllmk- (ml xsl> , le = ZNl’mk X (ml X sl)’. (16)
l l

Dislocation velocities are controlled by the following relations [6, 10] that involve phys-
ics of thermal activation at low stress and viscous drag at high stress:
iy cshk
VvV =
[exp(AGK/kg) — Llleshk (NP2 /vg] + 1 a17)

if|‘L’k| > Tyas (17k = 0 otherwise),

AG = pb* {1~ [(17"] = 1) /T (18)

pas

Page 5 of 19
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k

Tyas = pashb\/NF, Tl = acurioby/NF, (19)

B =1E? + 11Y2 — €K, €K = Boes/ (27D). (20)

Parameters entering (9)—(20) are compiled in Table 2; for a more thorough description
of the dislocation density based framework for slip, see [6, 10, 22].

The present FD scheme permits particle displacements in all three Cartesian direc-
tions, but variations in displacement are permitted only in the direction of wave propa-
gation denoted X}, leading to the following matrix form of deformation gradient (1):

dx1/0X1 00 Fi; 00
[F] = 3962/3)(1 10| =(F110 (21)
dx3/0X; 01 F3101

Balances of momentum and energy are often augmented with a scalar artificial viscosity
g; correspondingly, from (2) and (3), for deformation of the form (21),

dF;1 /0t = dv;/0X1, (22)
Po(dv;/0t) = dP;1 /90Xy — (9q/0X1)éi1, (23)
AU /ot = Py — qdn)En. (24)

Letting subscripts followed by commas denote spatial discretization indices and super-
scripts denote temporal discretization indices, At and AX; the fixed time step and grid
spacing, in discretized form (22)—(24) are

Table 2 Plastic properties of Al (6 = 300K)

Property Definition Value Units
b Burgers vector 0.286 nm

/\/é Initial dislocation density 0.56 1/pm?
fo Initial mobile disloc. fraction 03 -

No Homogeneous gen. factor 7.2 x 107 1/(mm?us)
Johom Homogeneous gen. parameter 0.04125 -
Tohom/ O Homogeneous gen. stress 0.05 -

X Mobile hom. disloc. fraction 0.08 -

x/b Generation displacement 133 -

Uhet Heterogeneous gen. factor 320 1/pm?
m Heterogeneous gen. exponent 0.8 -
Tmin/ 0O Heterogeneous gen. bound 0.004 -
Tmax/ IO Heterogeneous gen. bound 0.04 -

Prmul Multiplication probability 0.088 -

Qann Annihilation factor 0.25 -

Utrg Trapping factor 0.051 -

Qpas Passing strength factor 0.1 -

eyt Cutting strength factor 09 -

VG Obstacle attempt frequency 1x10° /s
By Drag coefficient 18.0 Paus

D, q Strength exponents 05,2 -
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1 1172 +1/2
(Fﬂﬂ/z _Fﬁ,Hl/Z)/At = (U:li—o—l/ — v )/AXD (25)
00 +1/2 ~1/2 1 12 ~1/2
Ar (Uzn /2~ Ul / ) = AX, [(Pinl,iﬂ/z - q:'q+1//2 51‘1) - (Pi"l,i—l/z - q?—1//2 ‘Sil)}’ (26)

1 1 +1/2 1
Uflyys = Uiy = [% <P;11—;+1/2 +Pi"1,i+1/2> ~ i) 51‘1} [Fi1+ - Fﬁ}- (27)

Artificial viscosity (linear + quadratic) is computed as

n+1/2 1 +1 n+1/2 n+1/2 2
div12 =3 (Pz'n+1/2 + pz‘n+1/2> (“16!|AU1,L‘+1/2| + a2 Avy )| ) (28)
with Avfyﬁl//zz = Uf;}{z - vf;rl/z, ¢; the longitudinal linear elastic wave speed, a; = 0.06,

and ap = 2.0. During expansion/rarefaction (p;’_ﬂl/z — pi"+1/2 <0),qg=0;noteg>0
follows from (28). The linear viscosity coefficient a; was chosen small enough to not
influence the shock structure, whereas quadratic coefficient a, was chosen so that the
shock would spread over three to five elements [28].

Steady wave model

The theory implemented in the current SW simulations [10, 11] is essentially equivalent
to that of “Finite difference model’, Egs. (1)—(20) and properties in Tables 1 and 2. As dis-
cussed in detail in Ref. [10], the SW model invokes the Helmholtz free energy W as the fun-
damental thermodynamic potential, related to internal energy U via the partial Legendre

transformation
v =w(EF,0) =U—on. (29)
Stress and entropy obey

o =JEVFE (0w /0EF ) FET, n = —0w/00, 30)

Correspondences among properties in Table 1 and those entering a free energy function
consistent with (5) (e.g., cubic in strain) are achieved via the usual Maxwell relations of
nonlinear Lagrangian thermoelasticity [23, 29].

In contrast to (21), for the SW model it is assumed deformation is uniaxial and of the
form below with Fy; = 4:

0x1/0X1 00 4200
[F]= 1|0 10| =1(010 (31)
0 01 001

and is unable to model transverse waves captured by the FD method of “Finite difference
model” However, also in contrast to the FD approach, no artificial viscosity is required
for strong shocks, and the shock profile (e.g., width) is an outcome of the simulation
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rather than controlled by viscous regularization. Equations of continuity and momen-
tum conservation reduce to

dvy /X1 = dA/dt, 0P11/0X1 = po(dv1/dt). (32)

Introducing a coordinate Y = X; — Dt moving with steady speed D in the (X;-) direc-
tion of shock propagation, partial differential equations in (32) can be transformed to the
ordinary differential equations

dvy/dY = —DdA/dY, dP;;/dY = —poD(dvi/dY). (33)

Similarly, rate equations for plastic deformation, dissipative temperature rise, and dislo-
cation densities become

dF?/dy = —LPF?/D, d(A6")/dy = —67/D, (34)

dN}/dy = —-NX/D, dN}/dy = —Nf/D. (35)

Here, § = 6y + AOF + AAP, where AAP results from plastic work and A6F results from
thermoelastic coupling (see [10] for full expressions). Integration of (33) from +oo gives
the Raleigh line

Pll — Pii_l = pODZ(;L - ;v+), (36)

where (-)* denotes a quantity evaluated at the beginning of the steady plastic wave; for
a weak shock, this state corresponds to the elastic precursor and HEL; for a strong/
overdriven shock, P1+1 =0and AT = 1. In the numerical implementation, (34)—(36) are
solved incrementally along the Raleigh line from the initial state (-)* to the end state (-)~
, where the latter is determined by the imposed boundary condition (e.g., shock stress
P or volume ratio V7 /Vy = A7 in the final shocked state at Y — —o0). The material
response may be fully anisotropic, but the analysis ignores transverse waves that would
arise from loading along crystal orientations with less than two-fold rotational symme-
try [30] (neglecting nonlinear elastic effects from higher order elastic constants that may
introduce longitudinal and transverse wave coupling [31]).

Analytical model
The present method of analytical solution, described more fully in Ref. [15], considers the
Rankine—Hugoniot jump conditions for a steady planar shock [12]:

[ovi=0, [l — pvIvl =0, (37)

[ov(u + 3v?) —ov] = 0. (38)

These conditions, which idealize the shock structure to infinitesimal thickness, effectively
replace (3). The above conditions consider a continuous and initially homogeneous slab
of material through which a planar shock moves, in the X;-direction, with natural veloc-
ity D. As in “Steady wave model’, let (-)* and (-)~ label quantities in the material ahead
(i.e., upstream) and behind (i.e., downstream) from the shock. Let [(-)] = (-)~ — ()T and
() = %[(-)_ + (-)7] denote the jump and average of a quantity across the shock. Let n
be a unit normal vector to the planar shock, ie., # = dx/dx;. The only nonvanishing
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component of particle velocity is v = v - n. The Cauchy stress component normal to the
shock front is 0 = o : (n ® n) = o11. The relative velocity of the material with respect to
the shock is v = v — D. Internal energy per unit mass is # = U /po. Using (37), (38) can be
rewritten as [12]

[ull = (o)[1/p]l < (U] = (o) ] (39)

The downstream state is defined by the set of variables (v, p~,0 =, u™). The Rankine—
Hugoniot conditions give three equations for determining this state; in order to fully define
the downstream state, a fourth equation is supplied by the constitutive model. Here, the
constitutive theory for thermoelastic response is identical to the anisotropic nonlinear
Lagrangian theory of “Finite difference model’;, Egs. (1), (4)—(7), and Table 1. Considered
are longitudinal elastic—plastic shocks corresponding to planar impact in pure mode direc-
tions in single crystals (i.e., directions parallel to an axis of two-fold or greater rotational
symmetry). A sample of material subjected to a step or ramp loading in normal stress, with
no applied shear stress, develops a two-wave structure consisting of a single longitudi-
nal elastic wave (i.e., the elastic precursor), followed by a single longitudinal plastic wave
of velocity D if the HEL is exceeded. For overdriven shocks, there is no precursor. Total

deformation is

[t 00]

[Ff]= 8 (1)(1) = [FE1), (40)
[, 00]

[F'1=| 0 10| =[FF FP]. (41)
001

For the highly symmetric [100] orientation considered in “Comparison of numerical
and analytical solutions’; n = 8 glide systems are active simultaneously at shock stresses
exceeding the HEL stress Py = —o 1 = —Pfrl, all at the same rate [13]. For monotonic
loading, integration of (8) yields the plastic deformation:

FP()/) = exp (y Zsk ® mk>

k

2 3
~1 s @ m* y2< sk mk> y3< sk mk> , (42
+y§k:®+2g® +6;® (42)
with cumulative shear y, which accounts for slip and nucleation contributions, to be
determined as an outcome of the analysis. The exponential solution in the first of (42) is
exact when the plastic shearing rate is constant, i.e., when y = y /¢ = constant. The series
approximation in the second of (42) is accurate to third order in shear and was sufficient
for problems considered here, where the maximum values of y are on the order of 0.1.
From the geometry of the problem, all # systems experience the same resolved shear stress
7 = 7X. In lieu of the viscoplastic model implemented in “Finite difference model” and
“Steady wave model’; for the analytical treatment a two-parameter yield criterion in the
plastically deforming regime is prescribed:
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Jt/imo =g)/ o = go + Hny. (43)

Here, g is dimensionless initial shear strength at the HEL, dependence of strength g = g*
on temperature is omitted, and hardening is proportional via constant H to the total slip
on all 7 active systems. The factor of / = J in (43) accounts for work conjugacy of Kirch-
hoff stress and plastic slip in the intermediate configuration implied by the multiplicative
decomposition of F in (1) [23].

Assume that HEL shock stress Py is known from experiment. Then the upstream
(HEL) state is fully determined by the analytical solution in Refs. [16, 29]. Specifically,
/. is decreased incrementally until P = —P;; = —oy; reaches Py (positive in compres-
sion), at which point A = AT and I/ = U™. Given total deformation A~ and slip variable y,
thermoelastic deformation behind the plastic shock is known from FE = F(A7)FF ~1(y)
. Internal energy, axial shock stress, and shear stress can then be written as

u =u G ,y,n), P =P (A ,y,n), t=1t(A,y,n). (44)

Note that the full thermoelastic constitutive model is required for evaluation of (44). Let
.~ = V7 /Vy be prescribed as the load parameter. Then energy balance (39) and yield
criterion (43) comprise two coupled algebraic equations that can be solved simultane-

ously for y andn™:
U=y, ) — U =3[P~ (F,y,n) + Pyllit — 27], (45)
T2 ysn )/ o = (o + Hny) /7™ (46)

To obtain Hugoniot stress versus volume curves, (46) and (45) are solved simultaneously
for y and n~ as A~ is decreased incrementally from the HEL state. With shock stress com-
puted from the second of (44), plastic shock velocity D and downstream particle velocity
v~ can be obtained from the Hugoniot equations for mass and momentum conservation
in (37), leading to [7]

D ={(P” = Pw)/lpoAT =IOV v =vt —D@A =N, (47)

The downstream state is now fully known. For aluminum single crystals, the first
strength parameter gop = 7.2 x 10~* is known from the nonlinear elastic solution [16] at
Py = 0.1 GPa [10], corresponding to AT & 0.999, and thus does not require calibration.
The second parameter, hardening constant H = 0.05, is calibrated such that cumulative
plastic deformation predicted by the analysis for shocks in the regime Py < P~ <25
GPa is in respectable agreement with that predicted by the numerical methods of “Finite
difference model” and “Steady wave model’, which have been compared extensively
to experiments [6, 10]. The calibration of H will be explained later in “Comparison of
numerical and analytical solutions” Much of the foregoing discussion applies for weak
shocks; for strong shocks, conditions Py — PT =0, AT =1, v =0, and U =0 are
enforced.

Numerical methods comparison
Approximations introduced by the FD and SW numerical methods are evaluated quan-
titatively via examination of results of four representative test problems, whose shock
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Table 3 Numerical simulations and approximations

Simulation SW approximations FD approximations
5 GPa [100] None None

5 GPa low symmetry Uniaxial F None

25 GPa [100] None Artificial viscosity

25 GPa low symmetry Uniaxial F Artificial viscosity

strengths are given in Table 3. Because the SW method approximates strain as uniaxial,
it is expected to give highly accurate solutions for impact problems wherein the target is
shocked along a direction that possesses twofold or greater rotational symmetry (which
results in uniaxial strain), and give approximate solutions for problems of lower symmetry
(in which quasi-longitudinal and quasi-transverse may form). The FD method is able to
model weak shock loading problems without an artificial viscosity given a mesh resolution
that can sufficiently resolve the shock width; however, in the strong shock regime viscous
regularization is used to damp the large jump in velocity that precedes plastic deforma-
tion [6]. The approximations associated with each of the four problems are summarized in
Table 3. In low symmetry simulations, the crystal is rotated from the reference frame via
Bunge angles ¢; = 43.7° & = 49.26°, and ¢ = 132.8° producing the orientation in Fig-
ure 1. The FD mesh resolution (AX}) is fixed, and a consistent step size is chosen for SW
simulations so that approximately the same number of points is used to resolve the SW in
all simulations.

Velocity profiles
In FD simulations at P~ = 5 GPa, the shock was generated by longitudinal plate impact
of an a-sapphire impactor (X-cut). In all FD simulations, the a-sapphire impactor was
modeled using isentropic thermoelasticity with an internal energy potential third order
in elastic Green strain and elastic constants from Ref. [32]. The shock response was sam-
pled from an interior point located 5.0 mm from the impact surface for these simulations,
which were discretized using a mesh resolution of AX; = 0.83 wm. Velocity profiles from
the SW and FD simulations of [100] and low symmetry orientations are compared in Fig-
ure 2. Because SW simulations are based on relative time, the wave profile is adjusted so
that it is centered on the FD solution, which uses total time after impact.

For the [100] orientation, Figure 2a indicates that the SW and FD simulations give
nearly identical results. This agreement is expected as neither method introduces

[111]

[100] [110]

Figure 1 Inverse pole figure of low symmetry orientation.
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Figure 2 Velocity profiles computed using SW and FD methods (P~ = 5 GPa) for a single crystal with a [100]
orientation and b low symmetry orientation.

intrinsic approximations for this orientation and shock strength (Table 3). For the low
symmetry orientation, Figure 2b shows that although the SW method approximates
deformation as uniaxial, it predicts a nearly identical longitudinal component of the
velocity profile as the FD simulation. Although the wave profiles are nearly identical, the
SW method under-predicts the peak resolved shear stress that occurs on slip systems by
approximately 10% because it does not include the shear components of the quasi-longi-
tudinal wave [22]. However, this appears to negligibly influence the longitudinal compo-
nent of the velocity profile at the low impact stress.

In FD simulations at P~ = 25 GPa, the shock was again generated by longitudinal
plate impact via an a-sapphire impactor; however, in this case an artificial viscosity was
used. The shock response was sampled from an interior point located 20.0 pm from the
impact surface for these simulations, which were discretized using a mesh resolution of
AX; = 5.0 nm. Velocity profiles from the SW and FD simulations of [100] and low sym-
metry orientations are compared in Figure 3.

For the [100] orientation, wave profiles for the two methods are shown in Figure 3a.
Because the SW method begins to track the solution at an adiabatic elastic compression
for which the longitudinal elastic wave speed equals the SW speed (in this case, at a par-
ticle velocity of approximately 0.55 km/s), it gives no additional information concerning
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Figure 3 Velocity profiles computed using SW and FD methods (P~ = 25 GPa) for a single crystal with a
[100] orientation and b low symmetry orientation.

the wave profile up to this velocity; however, any wave structure calculated by the FD
method up to this velocity is due to the artificial viscosity, so no physical insight is gained
in FD simulations up to this velocity either. Above this velocity, the SW method predicts
a slightly sharper rise than the FD method. This is because even though an extremely
fine mesh resolution is employed there is still a smearing effect from the artificial viscos-
ity, which decreases the peak strain rate experienced in the material. This decrease in
peak strain rate decreases the rate of homogeneous dislocation by two orders of mag-
nitude, which in turn alters the wave profile at elevated velocities, as fewer mobile dis-
locations are available to relax the deviatoric response through glide. Even though the
coupling between viscoplasticity and viscous regularization is undesirable, the FD and
SW methods predict nearly identical strength and accumulated plastic strain, although
their wave profiles differ slightly.

Computed wave profiles for the low symmetry orientation in Figure 3b differ in several
respects. The FD method captures transverse components of formation of the quasi-lon-
gitudinal wave which cannot be considered using the SW method. Additionally, the FD
method predicts a single wave structure, whereas the SW method indicates deformation
preceding the main rise. As discussed previously, local adiabatic treatment of overdriven
shocks provides no information until the point where the elastic wave speed equals the
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SW speed. However, for the low symmetry shock, since SW simulation (longitudinal
wave) has a different elastic stiffness than the FD simulation (quasi-longitudinal wave),
the point where viscoplastic deformation occurs differs. This causes the two methods to
predict differing shock structures, where the SW method predicts a dual shock structure
and the FD method predicts an overdriven shock. Additionally, the FD method expe-
riences elevated shear stresses due to the transverse deformation components, which
gives a slightly different viscoplastic response as well. Based on these observations, the
SW method appears unsuitable for simulations in which transverse wave components
have a relatively large magnitude, i.e., simulation of strong shocks in single crystals with

low symmetry orientations.

Computational efficiency

Because the SW method converts governing partial differential equations in space-time to
ordinary differential equations in a steadily moving coordinate frame, it is expected to be
significantly more computationally efficient than the FD method. This assertion is verified
by computation times for simulations described in “Velocity profiles” Table 4 shows that
the SW method is ~2,000—8,000x faster than the FD method.

For the FD simulations presented in this work, one reason that the total computation
times are several orders of magnitude longer than SW simulations is that a sufficiently
fine mesh is employed so that dissipation is primarily due to the viscoplastic constitu-
tive equation and not from artificial viscous regularization. To illustrate the effect of
mesh resolution and viscous regularization on the wave profile, FD simulations were
performed on a [100] single crystal shocked at P~ = 5 GPa. The resultant wave profiles
are given in Figure 4 whereas computation times and computed dislocation densities in
the shocked state are given in Table 5. Figure 4 illustrates that when an artificial vis-
cosity is employed in conjunction with a mesh resolution that is too coarse to resolve
the shock width predicted from the viscoplastic constitutive relations alone, the shock is
smoothed. Consequently, Table 5 indicates that although computation times approach
those associated with the SW method, the viscoplastic behavior, indicated by the total
dislocation density in the shocked state, is altered due to the decrease in peak strain rate
associated with the shock. When this damping occurs the viscoplastic behavior becomes
highly mesh-dependent. Consequently, physical meaning associated with internal state
variables that govern viscoplastic deformation and the ability to predict detailed wave
profile evolution are lost in the FD approach with nonzero artificial viscosity.

Although the analysis in this section used a fixed set of shock viscosity parame-
ters (recall a1 = 0.05 and a = 2.0), without significantly decreasing these parameters

Table 4 Total computation times on a single 2.67 GHz Intel Xeon X5650 processor

Simulation Machine time (s) Speedup factor
SwW FD

5 GPa [100] 3238 6.69 x 10% 2006

5 GPa low symmetry 58.24 169 x 10° 2902

25 GPa [100] 1599 127 x 10° 7942

25 GPa low symmetry 7043 128 x 10° 1817
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with SW method predictions (P~ = 5 GPa). All FD simulations used an artificial viscosity, (28), except
AXy = 0.83um.

Table 5 Computational time and total dislocation density for [100] shock at P~ = 5 GPa
computed using the FD method with varying mesh resolutions

Mesh resolution AX; (jum) Machine time (s) Total dislocation density (Lm=32)
083 6.69 x 10* 270
25 806 x 103 212
5 2.08 x 10° 192
10 562 176
20 159 177
40 515 172

a similar conclusion is reached. In cases where mesh resolution is not fine enough to
resolve the viscoplastic shock behavior, the shock is smoothed across three to five ele-
ments by the quadratic component of the viscosity. The quadratic viscous pressure is
proportional to the square of the jump in velocity, so unless a is altered by orders of
magnitude, the viscous pressure is determined by the magnitude of the velocity jump,
and not by the relative magnitude of a».

Comparison of numerical and analytical solutions

Aspects of numerical solutions obtained using the FD approach of “Finite difference
model” and the SW approach of “Steady wave model” are now compared with available
results from the analytical approach outlined in “Analytical model” Specifically, the analy-
sis is applied towards pure Al single crystals shocked along [100] to stresses of P~ = 5 GPa
and P~ = 25 GPa, the former corresponding to a weak plastic shock with an elastic pre-
cursor and the latter to a single overdriven plastic wave. Tables 6 and 7 list outcomes of
the computation/analysis—volume ratio, resolved shear stress, cumulative plastic strain,
total temperature rise, particle velocity, and shock velocity—for shocks of strength 5 and
25 GPa, respectively, obtained from the FD method, SW method, and analytical solution.
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Table 6 Shocked state of Al [100] (P~ = 5 GPa)

Variable (units) FD SwW Analytical Birch-Murnaghan EOS
A 0.944 0.944 0.945 0.944

7~ (MPa) 56.7 55.8 1204 0

(555)_ 0.037 0.037 0.034 0

(AB)™ (K) 40.5 39.2 423 3836

v~ (km/s) 0323 0323 0319 0321

D (km/s) 5.739 5717 5.798 5.771

Table 7 Shocked state of Al [100] (P~ = 25 GPa)

Variable (units) FD sw Analytical Birch-Murnaghan EOS
AT 0.810 0.805 0.805 0.816

7~ (GPa) 1.023 1.047 0417 0

(GAa 0113 0.110 0131 0

(A0)~ (K) 256.1 269.1 250.8 126.56

v~ (km/s) 1.324 1.341 1.343 1.303

D (km/s) 7.000 6.882 6.879 7.105

The precursor velocity calculated from the analytical nonlinear elastic solution [16, 29] is
6.28 km/s, which is exceeded by D for the overdriven shock at P~ = 25 GPa. Also shown
for comparison are hydrodynamic predictions obtained using the Birch—Murnaghan pres-
sure—volume equation of state (EOS) [33], with compressibility properties of Al from
the literature [34]. Temperature rise in the EOS was calculated assuming compression is
isentropic and internal energy is first order in entropy. The hydrodynamic approximation,
which by construction omits shear/deviatoric stress components, is often used as a simple
model for shocks in materials whose strength is low relative to shock pressure.

The analytical solutions are obtained nearly instantaneously, in contrast to the more
computationally intensive numerical methods. However, the analytical solutions only
apply for symmetric orientations for which a single slip variable y suffices (e.g., [100] for
FCC crystals). While the yield condition used in the analytical solution benefits from
extreme simplicity, explicit rate and temperature effects on flow stress are ignored. Fur-
thermore, while only a single fitting parameter (H) is required, rather than an extensive
list as in Table 2, H must still be prescribed via comparison with shear strength data
from experiments or other more physically descriptive model output. Here, following
the latter approach, H has been calibrated such that cumulative plastic deformation

1/2 12
€ = \/g/(Lfym:Lﬁ}m) dt:\/g/(DP:DP) &
8 8
=y % lZ(si ® mi)sym] : Z(s/ ® mj)sym

i=1 j=1

(48)

predicted by the analysis for 5 and 25 GPa shocks is in relatively close agreement (within
~20% error) with that predicted by SW and FD models, as is evident from Tables 6
and 7. Results for all end state variables and shock velocity are nearly equal for FD and
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SW simulations. Because these or very similar values have already been compared
with experimental data [18, 19, 35-39] indicative of viscoplastic relaxation rates (e.g.,
strength, precursor decay, wave profiles in single crystals and polycrystals) in previous
publications [6, 10], these numerical results are deemed physically accurate. Results
for volumetric compression ratio, adiabatic temperature rise, particle velocity, and
shock velocity obtained from the analytical solution are also very close to correspond-
ing numerical results, and effective plastic strain is reasonably close as noted already,
although it is reiterated that the hardening parameter H entering the analytical method
is obtained by fitting plastic deformation to the FD results. The only major discrepancy
between analytical and numerical solutions is slip system-level shear strength in the
shocked state (r7), which appears to be over-predicted by the analytical solution for the
5 GPa shock and under-predicted for the 25 GPa shock. While it would be possible to
more closely duplicate results of the numerical methods by using a more complex (i.e.,
nonlinear) hardening model than that prescribed in (43), such an approach would also
suffer from requiring additional fitting of more parameter(s), detracting from the sim-
plicity of the analytical approach. Similarly, using a simple viscoplastic model wherein
the dislocation density and velocity are prescribed functions of the accumulated shear
strain and shear stress, respectively, may produce results that are simpler to replicate
using the analytical model [5]. However, such a model is unable to describe both the
weak and strong shock loading regimes [9]. Previous isotropic representations [3, 7-9]
are also unable to account for anisotropy of single crystals and textured polycrystals that
are addressed by the present fully anisotropic theory.

Because the Birch—Murnaghan EOS assumes a spherical stress state, shear stress and
plastic deformation are unresolved in Tables 6 and 7, and temperature rise is under-pre-
dicted since there is no contribution to dissipation from plastic slip. The EOS does, how-
ever, predict reasonably accurate values of relative volume, particle velocity, and shock
velocity.

Conclusion

Analytical, FD, and SW numerical solutions have been compared for shock loading of
single crystals using identical thermoelastic frameworks, but with rate- and temperature-
independent shear strength constitutive relations in the analytical approach, and rate- and
temperature-dependent shear strength constitutive relations in the latter two methods.
Scenarios exist in which each of these methods is most appropriate. These method com-
parisons have not been published in previous papers which have focused on each model
and its results in isolation.

Given a material for which there are limited strength data and incomplete understand-
ing of physical mechanisms governing dissipation during shock loading, the analytical
approach provides rapid shock response characterization based on thermoelastic prop-
erties, which are often available in literature, and a simple empirical hardening relation.
In this case wave profile information predicted by the SW and FD methods would be
largely speculative unless physical or experimental insights could be used to suggest
more realistic, and presumably more complex representations of dissipation mecha-
nisms and their relation to material strength.
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On the other hand if there is data that quantifies the spatio-temporal of the velocity
profile, or if rate-dependent micromechanical mechanisms that govern the viscoplastic
material response are well characterized, the SW or FD methods may be more appropri-
ate. In particular, the SW and FD methods can be used to predict the steady shock struc-
ture as well as give information regarding evolution of internal state variables and the
thermodynamic state prior to, within, and after the shock. Due to its computational effi-
ciency, the SW method is especially useful for developing constitutive equations prior
to their implementation in FD frameworks. Additionally, in “Computational efficiency”
it was shown that predicted rate-dependent behavior may be unphysically altered in FD
simulations due to viscous damping effects unless a sufficiently fine mesh resolution is
employed, whereas viscous damping is not required in the SW method. Only the FD
method is capable of quantifying transient aspects of evolving shock waves, which is
necessary to model spatio-temporal shock wave evolution data such as elastic precursor
decay.

All three methods can be used to model highly symmetric single crystal orientations
subjected to shock loading, but only the FD method can be used to capture quasi-longi-
tudinal and quasi-transverse waves that arise in low symmetry crystal orientations. For
weak shock loading in Al, approximating deformation as uniaxial was shown to be rea-
sonable. Therefore, the SW method should be preferred due to its computational effi-
ciency and lack of artificial viscosity. For strong shocks, however, the response of low
symmetry crystal orientations was poorly captured using the SW method. Therefore,
when modeling strong shocks for low symmetry crystal orientations relative to the load-
ing direction, the finite-difference method should be employed.

These conclusions can be extended to other cubic metals with similar elastic anisot-
ropy. However, additional investigations are required before generalizing these conclu-
sions to materials that exhibit significantly higher elastic anisotropy or materials with
lower crystal symmetry.
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