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Background
Due to the industrial significance, elongational viscosity of polymeric liquids has been 
widely investigated. In particular, strain hardening, which is the deviation of the elonga-
tional viscosity from the linear viscoelastic envelope, has been of industrial and scientific 
interest because polymeric liquids exhibiting strain hardening are suitable for processing 
technologies with elongational flow such as fiber spinning, film blowing, blow molding, 
foaming, etc. [1, 2]. Münstedt [3] measured the uniaxial viscosity for polystyrene melts to 
report that the strain hardening is intensified when the molecular weight distribution is 
broadened. Minegishi et al. [4] demonstrated that the small amount of long chain compo-
nent added to the short chain matrix effectively enhances the strain hardening. Further, 
Nielsen et al. [5] performed the experiments for the bidispersed polystyrene melts that are 
mixture of long and short molecules with narrow molecular weight distribution for each. 
They showed that the steady state viscosity ηE(ε̇) is significantly larger than the Trouton’s 
viscosity 3η0 for the bidispersed samples.

Abstract 

In spite of the industrial significance, molecular mechanism of the strain hardening 
saliently observed in bidisperse polymeric liquids has not been elucidated yet. In this 
study, the multi-chain slip-link simulation (called primitive chain network simulation) 
was performed for the bidisperse polystyrene blends for which experimental data for 
elongational viscosity have been reported earlier. The simulation reasonably repro-
duced linear viscoelasticity and transient and steady uniaxial elongational viscosities. 
It has been confirmed that the long chain stretch dominates the stress at the strain 
hardening as already demonstrated earlier via the tube model. The molecular analysis 
employing the decoupling approximation revealed for the first time that there exist 
two molecular mechanisms to induce strain hardening in bidisperse blends. The 
mechanism switches depending on the Weissenberg number with respect to the 
Rouse relaxation time of the long chain, WiRL. At WiRL < 1, the simultaneous increase of 
the long chain orientation and stretch with increasing WiRL lifts the viscosity beyond 
the Trouton’s viscosity. At WiRL ≥ 1, the isotropic short chain suppresses the stretch/
orientation-induced reduction of friction to enhance the stretch of long chain.
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The molecular mechanism of the strain hardening induced by the molecular weight 
distribution has not been elucidated yet although in the common consent the stretch-
ing of long molecule is suggested as the origin of the viscosity increase [6, 7]. Minegishi 
et al. [4] speculated that the entanglement between long chains induces the long chain 
stretch. This idea was partly supported by Wagner et  al. [8] who analyzed the data to 
show that the slow relaxation modes dominate the strain hardening. Such slow modes 
are certainly due to the long chain component. However, the slow modes do not nec-
essarily mean entanglements between long chains. Indeed, the experiments by Nielsen 
et al. [5] clearly demonstrated that the bidisperse blend exhibits the remarkable strain 
hardening even if the long chain concentration is lower than the overlapping concentra-
tion. Nielsen et al. [5] analyzed their own data by the Wiest model [9] to show that the 
long chain component dominates the viscosity, as shown by Wagner et al. [8]. However, 
it is difficult to discuss the molecular origin of the enhanced strain hardening from the 
anisotropic mobility [10] implemented in the Wiest model. van Ruymbeke et al. [11] uti-
lized the tube model modified with the inter-chain tube pressure effect [12] to analyze 
the dataset by Nielsen et al. [5]. Their analysis showed that the stretch of the long chain 
is the origin of the stress at the strain hardening. Although this result was suggested 
even earlier (as mentioned above), to the author’s knowledge their study provided the 
molecular picture for the first time in the quantitative manner. However, the empirically 
determined parameter, called the tube diameter relaxation time, complicates the discus-
sion. Namely, they reported that the tube relaxation time for the long chain dissolved in 
the short chain matrix is larger than that for the monodisperse melt. They stated that the 
mechanism of this counterintuitive result is an open question. Wagner [13] modified the 
molecular stress function theory for bidisperse systems with the improved inter-chain 
tube pressure effect by the dynamic tube dilation. In his theory, the strain hardening for 
bidisperse system is caused by the enhanced long chain stretch induced by the enlarged 
tube diameter and the elongated tube relaxation time owing to the tube dilation. How-
ever, the coupling between long and short chain components is smeared in the multi-
mode memory function.

In this study, we applied the multi-chain slip-link simulation (called primitive chain 
network simulation [14]) to the dataset by Nielsen et  al. [5] to reveal the molecu-
lar mechanism of the strain hardening. We found that there are two mechanisms that 
enlarge ηE(ε̇), and the mechanism switches depending on the Weissenberg number WiRL 
with respect to the Rouse relaxation time of the long chain, τRL. At WiRL < 1, the simul-
taneous increase of the long chain orientation S and stretch λ with increasing WiRL lifts 
ηE(ε̇) beyond the Trouton’s viscosity 3η0. At WiRL ≥  1, the isotropic short chain sup-
presses the stretch/orientation-induced reduction of friction (SORF) [15] to enhance the 
λ of the long chain. Details are explained below.

Model and simulation
Since the model and the code used in this study are common to the previous studies [15–
17], just a brief description is given below. In the model, a network that consists of network 
nodes, strands and dangling ends represents the entangled polymer liquid. Each polymer 
chain is a path between two dangling ends through the consecutive strands (subchains). At 
each network node, two subchains are bundled by a slip-link so that four subchains diverge 
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from each node. The position of the node obeys the Langevin-type equation of motion, 
which fulfills the force balance among the drag force, subchain tension, osmotic force and 
Gaussian random force. The sliding motion of the polymer chain through the slip-link is 
represented by the time development of the number of Kuhn segments on each subchain. 
In the kinetic equation for the sliding, the force balance is considered between two adja-
cent subchains for the subchain tension, osmotic force and random force. The network 
topology is periodically rearranged owing to the hooking/unhooking of the surrounding 
subchains at the chain ends. Through this topological change, thermal and convective con-
straint release is naturally considered. The finite chain extensibility was considered with 
FENE-P approximation where the spring constant was determined by the averaged stretch 
of the subchains [18]. To reflect the difference of average stretch between short and long 
components, the FENE constant was set for each component separately. The FENE factor 
for each component (long and short chains), f CFENE, is then given as

Here, the brackets �· · · �C mean the ensemble average for the segments of each compo-
nent, and �̃ is the normalized subchain stretch with respect to the full stretch. SORF was 
considered (unless stated) via the relation between the magnitude of reduction for the 
Kuhn segment friction (with respect to its equilibrium value) and the stretch/orientation 
order parameter. We used the empirical equation and its parameters that were deter-
mined for the stress relaxation data of monodisperse polystyrene melt [15]. We assume 
that the Kuhn segment friction is common for the short and long components, and the 
stretch/orientation order parameter was obtained from the orientation and stretch aver-
aged over the components. The detail of SORF implementation has been published ear-
lier [15–17] and a brief explanation can be found in “Appendix” as well.

Simulations were made for the set of bidisperse polystyrene melts examined by 
Nielsen et  al. [5] and the samples are summarized in Table  1. The unit of molecular 
weight M0 corresponds to the average molecular weight of subchain under equilibrium, 
and the value for polystyrene melt was set to 11k as determined in the previous study 
[19]. Owing to the fluctuation around network nodes in our model, the subchain molec-
ular weight M0 is similar to, but different from the entanglement molecular weight Me 
that is determined from the plateau modulus via the rubber theory. The empirical rela-
tionship we have obtained is M0 ∼ 0.6Me [19, 20]. Nevertheless, once we fix the value 
of M0, the number of subchains for each chain, Z0 = M/M0, can be determined from 
the sample molecular weight M accordingly. Here we denote the molecular weight and 

(1)f CFENE =
1

1− ��̃2C�

Table 1  Examined samples

Blend1 Blend2 Blend3

ML 390,000 390,000 390,000

MS 51,700 51,700 102,800

ZL 35 35 35

ZS 5 5 9

φL 0.04 0.14 0.14
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the subchain number for long and short chains as ML, MS, ZL and ZS, respectively. The 
volume fraction of the long chain component is denoted by φL. The number of Kuhn 
segments on each subchain (that determines the full stretch for the FENE effect), was 
determined as n0 = 15 [15–17]. The unit of modulus G0 was determined from the rela-
tion G0 = ρRT/M0 [19, 20] as 0.29 MPa at T = 130°C. The unit time τ0 was determined 
via fitting for the linear viscoelasticity as 1.0 s. The linear viscoelasticity was calculated 
from the stress autocorrelation function obtained in quiescent state.

The simulations were made in periodic boundary conditions and the box size for lin-
ear viscoelasticity was 163 (where the unit length is the average subchain length under 
equilibrium). The box size for uniaxial elongation was 4 × 44 × 44 and it was stretched 
to 484 × 4 × 4. This stretch attains the strain of 4.8 and it seems sufficient in compari-
son to the experimentally accessible value. However, to observe the steady state at WiR 
close to unity, we necessarily used the larger box with the dimension of 4 × 82 × 82 and 
stretched to 1,681 × 4 × 4 for Blend1 and Blend2. This stretch corresponds to the strain 
of 6.0.

Results
Linear viscoelasticity

Figure  1 shows the linear viscoelasticity of the examined bidisperse blends. With the 
parameters shown in Table 1 the linear viscoelasticity is reasonably reproduced as earlier 
reported for the other bidisperse polystyrene melts [21]. In particular, for Blend1 the sec-
ond plateau (at ω ∼ 2 × 10−3 rad/s) is correctly captured. On the other hand, for the other 
two samples the simulation shows the faster relaxation than experiment so that the longest 
relaxation time is somewhat underestimated.

Transient elongational viscosity

Figure 2 shows the transient viscosity η+E (ε̇, t). The simulation nicely captures η+E (ε̇, t) at 
ε̇ > 1/τRL = 0.016 s−1 (where τRL is the viscoelastic Rouse relaxation time of the long 
chain calculated from the relation τR = ZL

2τ0/2π2 as derived earlier [22]). For example, for 
η+E (ε̇, t) of Blend1 the simulation result (red curve) at ε̇ = 0.3 s−1 (the leftmost curve) 
almost coincides with the data (symbol). Fair coincidence can be seen for all the blends 
at ε̇ = 0.3, 0.1 and 0.03 s−1. (Note that for Blend2 η+E (ε̇, t) at ε̇ = 0.3 s−1 is not available 
in the literature.) On the other hand, the simulation underestimates the data at ε̇ ≤ 1/τRL. 
In particular, at ε̇ = 0.003 and 0.001 s−1, η+E (ε̇, t) from the simulation is close to the lin-
ear viscoelastic envelope (black dotted curve, obtained from the simulated G′ and G″) but 
the data show clear deviations from the linear viscoelastic response. This discrepancy in 
η+E (ε̇, t) between the data and simulation results is partly attributable to the discrepancy in 
G′ and G″, in which the simulation predicts faster relaxation than experiment for Blend2 
and Blend3 as mentioned for Figure 1. However, the discrepancy in η+E (ε̇, t) is also seen 
for Blend1, for which G′ and G″ are quantitatively reproduced. The mechanism of this dis-
crepancy is unknown.

Concerning the effect of SORF, the simulations with and without SORF exhibited 
no difference in η+E (ε̇, t), except for Blend3 at ε̇ = 0.3 s−1 (the leftmost curve). At this 
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condition, the simulated η+E (ε̇, t) without SORF (blue curve) is significantly higher than 
the result with SORF (red curve). In comparison to the monodisperse melts, in which 
SORF appears to reduce the viscosity at ε̇ > 1/τR, in the bidisperse blends the activation 
of SORF is suppressed by the short chains, as discussed later. Nevertheless, the simula-
tion with SORF reproduces the data better than that without SORF.

Steady state elongational viscosity

Figure 3 shows the steady state viscosity ηE(ε̇). As mentioned for η+E (ε̇, t), the simulation 
reasonably captures the data at ε̇ > 1/τRL whereas it underestimates the data at ε̇ ≤ 1/τRL. 
The simulated ηE(ε̇) (red and blue curves) is consistent with the linear viscoelasticity at low 
ε̇; the simulated ηE(ε̇) (blue and red curves) converges to 3η0 (dotted line) around ε̇ = 1/τ1. 
On the other hand, the experimental ηE(ε̇) is higher than 3η0 suggesting some slow relaxa-
tion modes for which the relaxation time is longer than the simulated τ1. The simulation 
failed to predict these behaviors by unknown reasons. The effect of SORF (difference 
between red and blue curves) appears only at ε̇ which is well-beyond 1/τRL, as mentioned 
for η+E (ε̇, t).

Figure 1  Linear viscoelasticity for Blend1, Blend2 and Blend3 from top to bottom. Filled and unfilled circles are 
G′ and G″ obtained by Nielsen et al. [5]. Red solid and dotted curves are simulation results.
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Decoupling analysis on the role of the long chain

In this section, we attempt molecular level analysis on the steady state viscosity for Blend1 
to reveal the significance of the long chain contribution on the basis of the decoupling 
approximation [18] in which the stress is decomposed as

Here, Z is the average number of subchains and Z0 is its equilibrium value, fFENE is 
the FENE spring constant, λ is the stretch normalized with respect to the maximum 
stretch, and S is the subchain orientation defined as S = ux2 − uy2 (where u is the subchain 
orientation vector and x and y are the stretch and normal directions, respectively). The 
numerical prefactor is neglected here. Figure  4 shows the decoupled measures (Z/Z0, 
S, λ2 and fFENE) plotted against ε̇. In the top panel, as shown in the earlier studies, the 
total viscosity (black curve) is dominated by the minor long chain component (red 
solid curve), and the short chain contribution (red dotted curve) is relatively small. In 

(2)σ ≈

(

Z

Z0

)

fFENE�
2S

Figure 2  Transient uniaxial elongational viscosities for Blend1, Blend2 and Blend3 from top to bottom. The 
strain rates (from left to right) are 0.3, 0.1, 0.03, 0.01 and 0.003 s−1 for Blend1, 0.1, 0.03, 0.01, 0.003 and 0.001 s−1 
for Blend2, and 0.3, 0.1, 0.03, 0.01, 0.003 and 0.001 s−1 for Blend3, respectively. Unfilled circle is the data meas-
ured by Nielsen et al. [5] (the data for Blend2 were taken from van Ruymbeke et al. [11]). Red and blue solid 
curves are simulation results with and without SORF. Black dotted curve is the linear viscoelastic envelope for 
the simulation.
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the bottom panel, the reduced friction with respect to the equilibrium value, ζ/ζ(0), is 
shown for comparison.

The behavior of molecular measures shown in Figure 4 can be divided into five regimes 
with respect to ε̇. In the low strain rate limit (ε̇ < 1/τ1: Region I) S linearly increases with 
increasing ε̇ with no stretch both for long and short chains. This linearity of S appears 
in the viscosity that maintains the Trouton’s viscosity. At the strain rates located in the 
range 1/τ1 < ε̇ < 1/τRL (Region II), the stretch of the long chain occurs in addition to 
the linear growth of S. This simultaneous growths of S and λ induce the increase of ηE(ε̇),  
and consequently ηE(ε̇) is lifted up beyond 3η0 to show the strain hardening. (One may 
argue that the long chain stretch should be observed at ε̇ > 1/τRL, and not at the lower 
strain rates. However, the stretch transition is not sharp and the stretch gradually starts 
from lower ε̇, as discussed for elastic dumbbells [6]. It is also noted that the τRL value dis-
cussed here is the viscoelastic Rouse relaxation time that is 1/2 of the end-to-end relaxa-
tion time. For the monodisperse melt of long chain exhibits similar stretching behavior 
as shown later.) Interestingly, the short chain viscosity also increases with increas-
ing ε̇ even without stretch. This increase of short chain viscosity is due to the coupling 
between long and short chains through entanglement. Nevertheless, the short chain 
contributes much less than the long chain.

Figure 3  Steady state viscosity as a function of strain rate for Blend1, Blend2 and Blend3 from top to bottom. 
Red and blue curves are the simulation results with and without SORF. Unfilled circle is the data extracted from 
Nielsen et al. [5]. Horizontal dotted line is the Trouton’s viscosity. The reciprocal of the longest relaxation time 
τ1, the (viscoelastic) Rouse relaxation times of the long and short chains, τRL and τRS, are also indicated at the 
horizontal axis.
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In the higher strain rate range (1/τRL < ε̇), there exist two critical strain rates. One of 
the critical rates is located around 10−1 s−1 beyond that the short chain stretches (see 
dotted line in the 2nd panel). The other one is around 3 × 10−1 s−1 beyond that the fric-
tion decreases due to SORF (see bottom panel). These critical strain rates are indicated 
as dash-dotted vertical lines in Figure 4 to classify the regions III–V. At the strain rates 
in the range 1/τRL < ε̇ < 10−1 s−1 (Region III), the growth rate of S for the long chain 
is declined as S approaches to the maximum value (S ≤ 1 by definition). The growths 
of λ and fFENE for the long chain retain the viscosity constant. The linear growth of the 
short chain viscosity is maintained, even though the short chain stretch does not occur 
in this region, but the contribution is still small. On the other hand, in the Region IV 
(10−1s−1 < ε̇ < 3× 10−1s−1), as the short chain stretch grows, the short chain contri-
bution in the viscosity also grows to be comparable to the long chain contribution. The 
long chain viscosity increases mainly owing to the increase of fFENE. In the highest strain 

Figure 4  Steady state viscosity ηE, squared reduced stretch λ2, polymer anisotropy S, FENE factor fFENE, entan-
glement segment number per chain Z, and reduced friction ζ/ζ(0) for Blend1 (from top to bottom) plotted 
against strain rate ε̇. Solid and dotted red curves are for long and short chains. Black curve and horizontal dotted 
line in the top panel are the total viscosity and the Trouton’s viscosity, respectively. Dot dashed vertical lines 
indicate the borders between different regions (see text for detail). The reciprocal of the longest relaxation 
time τ1, the (viscoelastic) Rouse relaxation times of the long and short chains, τRL and τRS, are also indicated at 
the horizontal axis.
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rate region (Region V), SORF occurs due to the stretch/orientation of the short chains 
that dominates the stretch/orientation order parameter of the system as a whole.

Comparison of the long chain behavior to the monodisperse system

To illuminate the difference of the long chain behavior between monodisperse and bidis-
perse systems, the decoupled measures for both cases are shown in Figure 5 as functions of 
the Weissenberg number WiRL defined with respect to τRL. The subchain number is omit-
ted for simplicity.

In the slow flow regime (WiRL  <  1), the remarkable difference is observed in the 
growth of S (3rd panel). Although it is common for both cases that the S growth starts 
at ε̇ ≈ 1/τ1, the shortened τ1 of the bidisperse system due to the short chains retards the 
S growth (red solid curve) in comparison to that of the monodisperse case (black dotted 
curve). Interestingly, S for the bidisperse system steeply increases to reach a similar value 
to the monodisperse system at WiRL = 1. As a consequence, the bidisperse system exhib-
its the simultaneous growth of S and λ, which causes the strain hardening (ηE  >  3η0). 
On the other hand, for the monodisperse system the λ growth separately occurs after 
the S growth. Since the growth rates for λ and S against ε̇ are less than the linear rela-
tionship, strain softening occurs (ηE < 3η0). Note that the critical WiRL value at which λ 
starts growing is around 2 × 10−1 and it is common for the monodisperse and bidisperse 
systems. (As mentioned in the previous section, it is noted that the stretch observed at 
the strain rates lower than WiRL = 1 is just due to the nature of the Rouse chain [6].) The 
growth rate of λ is also similar to each other in WiRL < 1.

Figure 5  Steady state viscosity, squared reduced stretch, FENE factor, orientation and reduced friction for the 
long chain as functions of τRL based Weissenberg number WiRL in Blend1 (red solid curve) and monodisperse 
system (black broken curve). The longest relaxation times, τ1monodisp, and τ1bidisp are indicated at the horizontal 
axis.
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It is fair to mention that the simultaneous growth of S and λ for bidisperse systems 
has been suggested earlier (but rather implicitly). Wagner [13] analyzed the dataset of 
Nielsen et al. [5] by the molecular stress function theory to report that the strain hard-
ening is induced by the dynamic tube dilation through the reduction of the inter-chain 
tube pressure. Although Wagner did not discuss the effect of long chain orientation, his 
picture is essentially common with ours in a sense that the reduced motional constraint 
for the long chain induces the strain hardening.

In the fast flow region (WiRL ≥ 1), the S growth saturates and λ growth dominates the 
ηE behavior. In this respect, the remarkable difference between the monodisperse and 
bidisperse systems is the appearance of SORF. See bottom panel, in which the friction 
decreases with increasing ε̇ for the monodisperse system (black dotted curve) whereas it 
retains the equilibrium value for the bidisperse system (red solid curve) up to the much 
higher value of WiRL (∼20). The difference in friction is induced by the total stretch/
orientation of the system. For the monodisperse system, the high stretch/orientation of 
the system as a whole induces SORF. This occurrence of SORF suppressed λ and fFENE, 
and then the monotonic decrease of ηE is attained. On the contrary, for the bidisperse 
system, the average stretch/orientation are maintained at low values due to the short 
chains (that is not stretched/oriented at this flow rate). Then the growth rate of λ against 
ε̇ is close to the linear relationship, which compensates the declined growth rate of S and 
maintains ηE > 3η0.

Discussion
The decoupling analysis (shown in Figures 4, 5) has revealed that the strain hardening in 
bidisperse blends is induced by the simultaneous growth of orientation and stretch of the 
long chain (at WiRL < 1) and the suppressed SORF due to the short chain (at WiRL ≥ 1). In 
this section, this explanation shall be evaluated for the other systems.

Let us consider the effect of molecular weight on the strain hardening for monodis-
perse linear polymers. The simultaneous growth of orientation and stretch is induced 
when the longest (orientational) relaxation time and the Rouse (stretch) relaxation 
time are not separated from each other. The ratio of two relaxation times is reduced if 
the number of entanglement per molecule is small. Indeed, Nielsen et al. [5] reported 
that for the polystyrene melt with relatively low molecular weight (M =  51.7k) shows 
ηE  >  3η0 whereas the higher molecular weight samples (M =  102.8k, 200k and 390k) 
exhibit ηE < 3η0. Concerning the effect of SORF at WiRL ≥ 1, it has been demonstrated 
that SORF is suppressed and intensive strain hardening occurs if polymer concentration 
is low (regardless of the amount of entanglement in the system) [15, 17]. These results 
suggest that the strain hardening is intensified for less entangled system. This view is 
consistent with the fact that the (unentangled) dumbbell models exhibit clear strain 
hardening [6].

Let us move to multi-branched polymers for which intensive strain hardening has 
been reported [23]. For such polymers, because the diffusion of the branch point domi-
nates both of orientation and contraction relaxation times of the backbone [24], these 
two characteristic times are not well-separated. Consequently, the simultaneous growth 
of orientation and stretch occurs, and ηE becomes larger than 3η0 at relatively low ε̇, as 
shown earlier [16]. On the other hand, the backbone stretch (and the corresponding 
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strain hardening) at high ε̇ is dominated by the occurrence of the branch point with-
drawal [25], which is the other important relaxation mechanism.

Conclusion
The PCN simulations have been performed for bidisperse polystyrene melts for which 
Nielsen et al. [5] have reported the uniaxial elongational viscosity experimentally. The sim-
ulation reasonably reproduced linear viscoelasticity and transient and steady uniaxial elon-
gational viscosities, though some inconsistencies between the data and simulations were 
found due to unknown reasons. The molecular analysis based on the decoupling approxi-
mation was performed to reveal the mechanism of strain hardening in the bidisperse 
systems. The long chain stretch dominates the stress at the strain hardening, as already 
demonstrated earlier via the tube models. On the other hand, the induction mechanism 
of the strain hardening has been clarified for the first time. At the strain rates of WiRL < 1, 
the simultaneous growth of orientation and stretch of the long chain causes the non-lin-
ear growth of stress and the raise of viscosity beyond the linear value. This mechanism is 
essentially the same for the elastic dumbbell for which stretch and orientational relaxations 
are not separated. Nevertheless, it is worth noting that the long chain behavior observed 
in this study is not reproduced unless the orientation coupling between the chains is cor-
rectly captured through thermal and convective release. At the strain rates of WiRL ≥ 1, 
the suppression of SORF by the short chain component (that exhibits relatively low stretch 
and orientation) maintains the stretch of long chain.

Appendix
Although SORF has been reported earlier [15] and the implementation to the primitive 
chain network simulation has been described [15–17], we present a brief description in 
this appendix for readers’ convenience. Yaoita et al. [15] have found the acceleration of the 
stress relaxation after uniaxial stretch. The magnitude of the acceleration depends on the 
magnitude of polymer stretch and orientation at the initial state of the relaxation. They 
organized the results into an empirical relationship between the polymer friction and the 
stretch/orientation order parameter as shown below.

ζ is the segmental friction and ζ(0) is the equilibrium value. FSO is the stretch/orienta-
tion order parameter. fFENE is the FENE factor (Eq. 1) but averaged for the system as a 
whole, not for each component. α( = 20), β ( = 5× 10−9), γ (= 0.15) and F′∗SO(= 0.14) 
are the parameters that were determined via fitting of the experimental data [15]. In 
this present study, we implemented the SORF relationships (Eqs. 3–5) into the primi-
tive chain network simulation. We calculate the value of FSO at each simulation timestep 
from the subchain vectors to obtain ζ/ζ (0). Then, the calculation at t + Δt is performed 

(3)
ζ

(

F
′

SO

)

ζ (0)
= fFENE

1

(1+ β)γ

[

β +
1

2

{

1− tanh α

(

F ′
SO − F

′∗
SO

)}

]γ

(4)F ′
SO = FSOfFENE

(5)FSO = �̃
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with respect to the value of ζ/ζ (0) at time t. Note that we do not change the friction 
coefficient in the kinetic equations to avoid violation of the fluctuation–dissipation 
relationship for each segment. Instead, we modulate the flow rate to keep the Weissen-
berg number that varies according to the change of ζ/ζ (0). The primitive chain network 
simulations with the SORF implementation mentioned above has attained semi-quanti-
tative agreement with experiments for entangled polymer solutions and melts of linear 
polymers [15, 17] and a pom–pom branch polymer [16]. It is noteworthy that the same 
SORF relationship has been examined via the tube model as well [26].
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