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Background
The flow of suspensions through channel bifurcations is a relevant topic in several appli-
cations such as microfluidics and biology. Indeed, a number of microfluidic devices con-
sisting of a main channel with several side branches, aimed at separating particles with 
different size, has been proposed [1–4]. From the biological side, the microcirculatory 
network is made of many capillary bifurcations. The partitioning of red blood cells, white 
blood cells and platelets at vessel junctions plays an important role in determining the 
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microvessel hematocrits and has important physiological consequences [5–9]. It is not 
surprising, then, that a vast literature addressing the problem of microcirculation in capil-
lary networks is available [10–12].

Experimental and numerical studies have demonstrated that, when a suspension of 
rigid, non-Brownian particles under inertialess conditions flows through an asymmet-
ric bifurcation, the partitioning of particles between the two downstream branches is 
different from the partitioning of the total suspension between these branches [13–15]. 
Volume excluded effects in the inlet channel, due to the existence of a zone near the 
channel wall unaccessible to the particles, and particle-wall hydrodynamic interactions 
are responsible for this different partitioning at bifurcations [16]. Several studies have 
addressed the role of particle deformability [17–20], concentration [21–24] and shape 
of bifurcation [16, 24] on the fluid-particle partitioning. Finally, the enrichment/deple-
tion of particles in the two outlet streams has been proposed as an effective mechanism 
to design simple microfluidic devices for particle separation [16], fractionation [16] and 
filtering [15].

The available theoretical, experimental and numerical studies dealing with suspensions 
flowing through bifurcations have mainly considered Newtonian liquids as suspending 
medium. However, an increasing interest in using non-Newtonian fluids in microfluidic 
devices has been recently observed [25]. Indeed, the elastic properties of these fluids 
can lead to ‘internal’ forces that push the suspended particles towards specific regions 
of the channel [26, 27]. By properly exploiting these forces, non-Newtonian fluids can be 
employed to achieve operations like alignment [28–32] and separation [33, 34] in simple 
microdevices.

The flow of non-Newtonian fluids (without particles) in T-shaped channels with one 
inlet and two orthogonal outlets has been the subject of a vast literature [35–39], mainly 
focused on investigating the stress and velocity fields, and the characteristics of recir-
culation regions that may appear as inertia, shear-thinning and elasticity are varied. For 
what concerns the flow behavior of solid viscoelastic suspensions in bifurcating chan-
nels, we are aware of one experimental work where the effect of non-Newtonian proper-
ties on the separation of particles with different size is investigated [40]. Four different 
fluids, namely a Newtonian and three non-Newtonian fluids with different degree of 
shear-thinning and elasticity, have been considered. The experimental measurements 
show that fluid shear-thinning leads to the highest separation efficiency, which is attrib-
uted to the migration mechanism [40]. In the strong shear-thinning fluid, the lateral 
motion is towards the walls and it is fastest for the largest particles. Hence, small and 
large particles travel on different streamlines and can be separated. This is not the case 
when the elastic, constant-viscosity fluid is considered since the migration is towards the 
channel centerline and does not contribute to the separation.

In this work, we carry out a detailed 2D numerical investigation on the partition-
ing of particles suspended in Newtonian and non-Newtonian fluids flowing through a 
microfluidic T-shaped bifurcation. The adopted geometrical configuration is such that 
the microchannel has one inlet and two orthogonal outlets. Inertia is neglected and the 
suspension is assumed to be dilute, thus, simulations with a single particle suffice to 
describe the suspension dynamics. The finite element method (FEM) is used to solve the 
governing equations and a fictitious domain method (FDM) is employed to handle the 
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particle motion. To improve the accuracy of the FDM around the particle, a grid defor-
mation method (GDM) is also used whereby the mesh is dynamically adapted in order to 
distribute the elements around the particle boundary. To highlight the effect of the fluid 
rheological properties, different constitutive equations are considered, namely the New-
tonian fluid (constant-viscosity, inelastic), the Bird-Carreau model (shear-thinning, ine-
lastic) and the Giesekus model (shear-thinning, elastic). The partitioning of the particles 
between the two downstream branches is investigated by varying the inlet flow rate, the 
relative weight of the two outlet flow rates and the ratio of the particle and channel size.

The paper is organized as follows. In Section “Methods”, the governing equations are 
presented along with the constitutive models used in this work. The predictions of the 
constitutive equations in shear and Poiseuille flows are briefly reported. In the same 
Section, the relevant dimensionless parameters, the adopted numerical method and the 
details of the computational domain are also discussed. In Section “Results and discus-
sion”, the simulation results are presented in terms of deviation between the particle and 
suspension fluxes through one outlet, both normalized by the corresponding inlet val-
ues. Finally, in Section “Conclusions”, final considerations are drawn.

Methods
Governing equations

The geometry considered in this work is a T-shaped channel with one inlet and two out-
lets, as depicted in Figure 1a. The two channel outlets are orthogonal and all the channels 
have the same height H. The outlet channel having the same axis of symmetry of the inlet 
one is denoted as ‘main branch’ or ‘branch 1’. The other outlet, having the axis of symmetry 
orthogonal to that of the inlet one, is denoted as ‘side branch’ or ‘branch 2’. A suspension 
of circular particles with diameter dp = 2rp is injected in the channel with a flow rate QIN. 
The suspension is assumed to be very dilute which implies that particle-particle hydro-
dynamic interactions can be neglected. Thus, the dynamics of a single particle suffices to 
describe the problem. We denote by � the fluid and particle domain. The external bounda-
ries are denoted as shown in Figure 1b: ŴIN is the inflow section, ŴOUT1 and ŴOUT2 are 
the outflow sections of the main and side branches, respectively, ŴW collects the remain-
ing boundaries. Notice that, as illustrated in Figure 1c, the corners between the main and 
side channels are rounded to avoid numerical problems due to point singularity. The space 
occupied by the particle is denoted by P(t) with boundary ∂P(t). Notice that, since the par-
ticle is transported by the fluid, the particle domain depends on time. A Cartesian refer-
ence frame is selected with the origin on the midpoint of the inlet section (see Figure 1a). 
The x-axis coincides with the direction of the fluid in the inflow channel and the y−axis 
identifies the direction of the inflow boundary ŴIN.

Due to the small length scales adopted in microfluidic devices, the Reynolds number 
is generally very small [41], thus inertia can be neglected. Assuming also incompressible 
flow conditions, the equations governing the dynamics of the fluid domain �− P(t) are:

(1)∇ · u = 0

(2)∇ · σ = 0
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where u is the fluid velocity and σ is the stress tensor. These equations are the mass and 
momentum balance equations, respectively. A general expression for the stress tensor is:

where p is the pressure, I is the unit tensor, η is the viscosity, D = (∇u+ (∇u)T )/2 is the 
rate-of-deformation tensor and τ is the extra viscoelastic stress contribution. Notice that 
the viscosity is, in general, not constant, but it is assumed to be a function of the magni-
tude of the rate-of-deformation tensor γ̇ =

√
2D : D [42]. By selecting the constitutive 

equations for the viscosity η(γ̇ ) and for the viscoelastic stress tensor τ, fluids with differ-
ent rheological properties can be modeled. Details on the constitutive models adopted 
in this work are given in the next section.

Due to the inertialess assumption and in absence of external forces and torques, the 
particle is force- and torque-free, i.e. the total force F  and torque T  acting on its bound-
ary are zero:

In these equations, x is the position vector of a point on the boundary ∂P(t), X is the 
position of the particle center, n is the outwardly directed unit normal vector on ∂P(t) 
and ds is the local boundary length.

(3)σ = −pI + 2η(γ̇ )D + τ

(4)F =
∫

∂P(t)

σ · n ds = 0

(5)T =
∫

∂P(t)

(x − X)× (σ · n) ds = 0

Figure 1  Schematic representation of the T-shaped channel. a Global view of the channel. The blue trajec-
tory, at a distance yf from the inlet channel centerline, divides the domain in two regions corresponding to 
fractions of the fluid without particles that end up in the two outlets. The green trajectory, at a distance yc 
from the inlet channel centerline, divides the domain in two regions corresponding to fractions of particles 
that end up in the two outlets. These two limiting trajectories have been drawn assuming that Q1 < Q2. 
b Notation adopted for the domain boundaries. c Close view of the smoothed corners between the main 
and the side channels.
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To solve the governing equations, boundary conditions need to be specified on the 
external fluid boundaries and on the fluid-particle interface. No-slip conditions are 
applied on the channel walls:

A fully developed velocity profile is imposed on the inflow section:

The function uIN(y) is the well-known parabolic profile for a Newtonian suspending 
fluid. However, no analytical expression is available for a general non-Newtonian fluid. 
In this case, the velocity profile is precalculated by simulating the fluid without particles 
in a periodic channel with height H so that a fully developed flow is obtained. For a vis-
coelastic fluid (τ �= 0), the viscoelastic stress tensor profile needs to be specified on the 
inflow section as well:

Like the velocity field, τ IN(y) is taken from a preliminary simulation of the fluid with-
out particles in a periodic channel. In the viscoelastic case, the steady-state velocity and 
stress profiles are applied on the inflow section.

On the outflow sections, we apply outflow boundary conditions:

where n is the outwardly directed unit normal vector on the two outflow sections. These 
conditions assume that the fluid, after crossing the outlet sections of the main and side 
branches, ends up in an ambient with pressure pOUT1 and pOUT2, respectively. Notice 
that the pressure level in a point of the domain does not need to be set because it is spec-
ified through the outflow equations. Notice also that the relevant quantity is the pressure 
difference �p = pOUT1 − pOUT2 rather than the single pressure values. Indeed, the pres-
sure difference �p sets the relative weight of the two outlet flow rates. For a fixed �p, 
different values of the outflow pressures only change the level of the fluid pressure field 
in the channel.

Finally, the rigid-body motion condition is assumed on the particle boundary:

where U  and ω are the translational and angular velocities of the particle.
Concerning initial conditions, no initial velocity is needed due to the inertialess 

assumption. For the viscoelastic fluid, we need to specify the initial stress tensor profile 
in the fluid domain. We select an initial stress-free state condition in the whole domain:

Once the fluid velocity, pressure and, for the viscoelastic case, the stress fields are cal-
culated along with the particle kinematic quantities, the particle position is updated by 
integrating the following equation:

(6)u = 0 on ŴW

(7)u = uIN(y) on ŴIN

(8)τ = τ IN(y) on ŴIN

(9)σ · n = −pOUT1 n on ŴOUT1

(10)σ · n = −pOUT2 n on ŴOUT2

(11)u = U + ω × (x − X) on ∂P(t)

(12)τ |t=0 = 0
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where X0 is the initial particle position.

Constitutive equations

The stress tensor in Eq. (3) needs to be specified by selecting the constitutive equations 
for the viscosity η(γ̇ ) and for the viscoelastic stress tensor τ. In this work, we consider 
three suspending fluids: the Newtonian fluid, a generalized Newtonian fluid modeled by 
the Bird-Carreau constitutive equation [42, 43] and a viscoelastic fluid modeled by the 
Giesekus constitutive equation [42, 43]. The equations of these three models, their rheo-
logical features in shear flow and the velocity profiles obtained in an infinite slit channel 
(like the one corresponding to the inlet channel of the geometry investigated in this work) 
are reported below.

Newtonian constitutive equation (N)

which is characterized by a constant viscosity ηs and no elasticity.
Bird-Carreau constitutive equation (BC)

which is characterized by a viscosity that depends on the shear rate and no elasticity. In 
Eq. (16), the parameter n < 1 sets the fluid shear-thinning, η0 and η∞ are the viscosities 
at low and high shear rates, and 1/K is the shear rate value corresponding to the start 
of viscosity thinning in simple shear flow. For n = 1, a Newtonian fluid with ηs = η0 is 
recovered.

Giesekus constitutive equation (GSK)

where ηs is the (constant) viscosity of a Newtonian solvent, � is the fluid relaxation time, 
ηp is the polymer contribution to the viscosity and α is the so-called ‘mobility’ param-
eter. The symbol (∇) denotes the upper-convected time derivative defined in Eq. (20). 
In shear flow, the Giesekus constitutive equation predicts a non-zero first normal stress 

(13)
dX

dt
= U , X |t=0 = X0

(14)η(γ̇ ) = ηs

(15)τ = 0

(16)η(γ̇ ) = η∞ + (η0 − η∞)
1

[

1+ (K γ̇ )2
]
1−n
2

(17)τ = 0

(18)η(γ̇ ) = ηs

(19)�
∇
τ +

α�

ηp
τ · τ + τ = 2ηpD

(20)
∇
τ ≡

∂τ

∂t
+ u · ∇τ − (∇u)T · τ − τ · ∇u
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difference N1 = σxx − σyy. For α > 0, the model also predicts shear-thinning and a non-
zero second normal stress difference N2 = σyy − σzz. The Newtonian case is recovered 
for � = 0.

Figure 2a shows the viscosity trends predicted by the above constitutive equations in 
shear flow with the constitutive parameters reported in the top part of Table 1. First of 
all, notice that all the models have the same zero-shear viscosity η0. For the Giesekus 
model, α is set to 0.2 denoting a shear-thinning fluid. The parameters of Bird-Carreau 
equation are selected in order to match the viscosity trend of the Giesekus fluid. This 
model is referred as ‘Bird-Carreau A’, characterized by n = 0.25. As the Bird-Carreau 
model does not predict elasticity but only shear-thinning, by matching the viscos-
ity curve of this model with the one obtained from the Giesekus equation, we will be 
able to separately investigate the effects of shear-thinning and elasticity on the particle 

a b

Figure 2  Rheology and velocity predictions of the fluids. a Viscosity trends in shear flow predicted by the 
constitutive equations used in this work. The model parameters are reported in Table 1. The inset shows the 
trend of the first normal stress difference coefficient for the Giesekus fluid. b Velocity profiles obtained in a 
wide-slit channel for the same constitutive equations as in panel (a). The velocity is normalized by its average 
value whereas the position along the gap is normalized by the channel height.

Table 1  Parameters of the constitutive equations used in this work in dimensional (top) 
and dimensionless (bottom) form

Newtonian Bird-Carreau A Bird-Carreau B Giesekus

ηs [Pa] 1.1 – – 0.1

η0 [Pa] – 1.1 1.1 –

η∞ [Pa] – 0.1 0.1 –

n [−] – 0.25 0.05 –

K [s] – 1.0 1.0 –

� [s] – – – 1.0

ηp [Pa] – – – 1.0

α [−] – – – 0.2

� – 0.33–1.33 0.33–1.33 0.33–1.33

ηr – 0.091 0.091 0.091

n – 0.25 0.05 –

α – – – 0.2
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partitioning in the T-shaped channel. Furthermore, we will also perform simulations 
with the Bird-Carreau model for a lower value of the parameter n (without varying the 
other parameters) to investigate the influence of a more pronounced shear-thinning. 
This model is referred as ‘Bird-Carreau B’, where n = 0.05. Finally, in the inset of Figure 
2a, the first normal stress difference coefficient �1 = N1/γ̇

2 is reported for the Giesekus 
model.

In Figure 2b, the velocity profiles obtained in a 2D Poiseuille flow (i.e., in a channel 
made by two infinite parallel walls) are shown for the aforementioned constitutive equa-
tions with the parameters reported in the top part of Table 1. The channel height is set 
to H = 1 mm and the flow rate to Q = 1 mm/s, corresponding, for the Newtonian fluid, 
to a shear rate at wall of γ̇w = 6 s−1. It is readily noted that the shear-thinning predicted 
by the Giesekus and Bird-Carreau models alters the parabolic velocity profile observed 
in the constant viscosity fluid. (The shear rate at wall estimated from the Giesekus veloc-
ity profile is around 8.5 s−1, so we are well within the shear-thinning region, see Figure 
2a). Specifically, a flatten profile is observed around the channel centerline. Notice also 
that the profile corresponding to the Giesekus fluid (blue line) essentially coincides with 
that obtained from the Bird-Carreau A model (red solid line) because of the very similar 
viscosity trend shown in Figure 2a. The dashed red line corresponding to the Bird-Car-
reau B model is slightly more flatten due to the more pronounced viscosity thinning. Of 
course, at lower flow rates, the non-Newtonian velocity profiles tend to the Newtonian 
one as the maximum shear rate value (i.e., at wall) becomes smaller and, hence, the vis-
cosity remains essentially constant along the gap. In contrast, at higher flow rates, more 
pronounced deviations from the parabolic profile are expected as the viscosity strongly 
changes through the channel gap due to the fluid shear-thinning. As a final comment, 
we would like to remark that the velocity profiles in Figure 2b refer to a fluid without 
particles. The presence of a particle, of course, alters the velocity profile and, in turn, the 
shear rate distribution. In particular, since the presence of the particle strongly deforms 
the flow field, the maximum shear rate can be much higher than the shear rate at wall, 
especially in highly confined situations. Therefore, the local viscosity around a particle 
suspended in a shear-thinning fluid might be much lower the the zero-shear value.

Dimensionless equations

The governing equations together with the constitutive equations can be made dimension-
less by selecting appropriate characteristic quantities for length, velocity and stress. We 
choose the channel height H as characteristic length, the average velocity in the inflow 
channel ūIN = QIN/H as characteristic velocity and σc = η0ūIN/H as characteristic stress. 
By using these characteristic scales, a number of dimensionless parameters appear that are 
listed in the bottom part of Table 1 for the different constitutive equations.

First of all, we notice that no dimensionless quantity appears for the case of a Newto-
nian suspending fluid. Indeed, the fluid viscosity ηs, that is the only dimensional param-
eter of this constitutive equation, is used in the definition of the characteristic stress and 
disappears from the dimensionless form of the equations. This implies that the value of 
the flow rate QIN has no influence on the particle dynamics in dimensionless terms. Of 
course, this is valid as long as inertial terms are neglected.
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For the Bird-Carreau and Giesekus models, together with the parameters n and α 
that are already dimensionless in Eqs. (17) and (19), other two parameters appear: the 
viscosity ratio ηr and the parameter �. The viscosity ratio is defined as ηr = η∞/η0 and 
ηr = ηs/η0 for the BC and GSK models, respectively. The parameter � is defined as 
� = KQIN/H

2 and � = �QIN/H
2 for the BC and GSK models, respectively. Notice that, 

both K and � have the dimension of time. However, whereas � is the fluid characteristic 
time related to the stress build-up, K has nothing to do with memory effects. Since �, K 
and H are kept constant throughout this work, the parameter � is changed by varying 
the inlet flow rate QIN. Notice that the parmeter � for the viscoelastic fluid coincides 
with the Deborah number [25].

By making the boundary conditions dimensionless, the dimensionless relative pressure 
difference �p∗ = (pOUT1 − pOUT2)/σc appears. Finally, the last dimensionless param-
eter to be specified is the confinement ratio β = dp/H , i.e. the ratio between the particle 
diameter and the channel height.

Numerical method

The governing equations are solved by the finite element method (FEM). To handle the 
particle motion, a fictitious domain method (FDM) is used [44]. In this method, the par-
ticles are filled by the same fluid of the external phase. The fluid and solid domains are 
embedded into a single weak form. The balance of forces and torques at fluid-particle 
boundaries is satisfied, but the forces and torques do not explicitly end up in the varia-
tional form. To release the constraint on the variational space, the rigid-body motion on 
the particle surface is imposed through Lagrange multipliers. In this work, we adopt a 
weak implementation of the constraints that has been proven to give higher accuracies and 
better conditioned linear systems as compared to the collocation method [45]. Therefore, 
the kinematic quantities of the particle are unknowns of the full system of equations and 
are directly computed by solving the system. The main advantage of the fictitious domain 
method is the possibility to use a fixed, time-independent, regular mesh for both fluid and 
solid. Concerning the particle domain discretization, due to the inertialess assumption, we 
can adopt a rigid-ring description of the particle [46, 47], i.e. the particle is described as a 
rigid-shell and the rigid-body motion is imposed only on the particle boundary.

For the viscoelastic fluid case, a two-step decoupled formulation is adopted [48], 
whereby the momentum and continuity equations are decoupled from the constitutive 
equation. At each time level, the stress field is first updated by solving Eq. (19) where 
the velocity field is taken from the previous step. Then, the viscoelastic stress tensor 
just computed is used as known force term in the momentum balance which is solved 
together with the continuity equation and the force- and torque-free conditions to get 
the velocity and pressure fields, and the particle kinematic quantities. Finally, the par-
ticle position is updated by integrating Eq. (13). A DEVSS-G/SUPG formulation is 
adopted [49–51] with a log-conformation representation [52, 53] to improve the numer-
ical stability.

For the discretization of the weak form, we use quadrilateral elements with continu-
ous biquadratic interpolation (Q2) for the velocity and bilinear continuous interpolation 
(Q1) for the pressure. In the viscoelastic case, bilinear continuous interpolation (Q1) 
for the velocity gradient (coming from the DEVSS-G scheme) and bilinear continuous 
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interpolation (Q1) for the log-conformation tensor are used. More details on the weak 
form and the implementation are given in Refs. [48, 54].

One major drawback of the fictitious domain method is a relatively low accuracy 
around the particle due to the fact that the field variables at the particle boundary are 
interpolated between the values possessed by the physical fluid (outside the particle) 
and the fictitious fluid (inside the particle). Consequently, discontinuities required at 
the interface are lost. To reduce such a problem, we adopt a grid deformation algorithm 
(GDA) to locally refine the mesh around the particle boundary [55]. The method redis-
tributes the mesh nodes while preserving the mesh topology. An example of the mesh 
around a particle near the right corner of the T-channel is reported in Figure 3 without 
(left) and with (right) applying the grid deformation method. The details of the algo-
rithm are given in Ref. [55]. Therefore, by combining the FDM and the GDA, the mesh 
is not fixed and time-independent anymore. However, its topology is preserved and, at 
each time step, it can be readily obtained for a given particle position from an initial reg-
ular mesh. As a final remark, since the mesh moves each time step, an issue arises when 
solving the constitutive equation for the viscoelastic case. Indeed, the time integration 
of Eq. (19) requires the knowledge of the stress tensor field at previous time levels cor-
responding to the grid node positions of the current time level. We solve this problem 
by adopting an Arbitrary Lagrangian-Eulerian (ALE) procedure [56] whereby the con-
vective term u · ∇τ in Eq. (20) is replaced by (u− um) · ∇τ where um is the node mesh 
velocity. The grid velocity is calculated as: um = (xn+1

m − x
n
m)/�t where xn+1

m  and xnm are 
the positions of the mesh nodes at the current and previous time level, and �t is the time 
step size.

Selection of the computational domain

The selection of the domain geometrical parameters is a critical issue. Indeed, the domain 
size should be chosen as small as possible to reduce the computational cost. On the other 
hand, the simulated geometry must be representative of a real device where the three 
branches are generally much longer than the channel height, resulting in a fully developed 
flow far from the bifurcation. In this section, we discuss the procedure adopted to select 
the geometrical parameters of the computational domain.

Figure 3  Grid deformation method. Close view of the mesh around a circular particle near the right corner 
of the T-shaped channel without (a) and with (b) the application of the grid deformation algorithm.
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As mentioned above, we impose the velocity (and the stress for the viscoelastic case) 
profile on the inflow section ŴIN and outflow conditions on the outlet sections ŴOUT1 
and ŴOUT2. To avoid that the imposed boundary conditions affect the particle motion 
near the bifurcation, the lengths of the three branches must be chosen sufficiently long. 
Furthermore, the particle is initially placed at a distance X0 from the inflow section (see 
Figure 1a). Also this distance needs to be selected sufficiently large such that the inflow 
boundary condition does not influence the particle motion. Preliminary simulations 
have been performed by changing the branch lengths as well as the distance X0. For the 
Newtonian and Bird-Carreau models, we found that a good choice of these geometrical 
quantities is LIN/H = L1/H = L2/H = 3 and X0/H = 0.5. Indeed, for these values, we 
observe that, as soon as the simulation starts, the particle follows a straight trajectory 
within the inlet channel at a constant translational velocity (recall that, under inertialess 
conditions, there is no time-derivative and the velocity and pressure fields instantane-
ously develop), i.e., its initial dynamics is unaffected by both the inflow profile and the 
downstream bifurcation. As the particle approaches the T-junction, the path deviates 
and the particle enters one of the two branches. Finally, when sufficiently far from the 
bifurcation, the particle travels again along a straight streamline at a constant velocity, 
i.e. its dynamics is unaffected by the outflow conditions. The simulation is, then, stopped 
before reaching the outlet section.

Concerning the viscoelastic case, a time-derivative appears in the governing equation 
through Eq. (20). Therefore, the stress field develops from the stress-free initial condition 
given in Eq. (12) to a ‘steady-state’ (actually, it is not a true steady-state since the particle 
moves and, in turn, the surrounding stress field changes in time). Of course, the velocity 
field and the kinematic particle quantities undergo the same transient dynamics. How-
ever, as discussed above, our simulations must be representative of fully developed flow 
conditions. To satisfy this requirement, we adopt the following procedure. We select a 
value LIN for the inlet channel length and we place the particle at a distance X0 from the 
inflow section. We start the simulation and check the evolution of the particle position 
and its translational velocity. The velocity trend shows an initial start-up corresponding 
to the viscoelastic stress development. The choice made for LIN is correct whether, after 
the initial transient, (1) the translational velocity becomes constant and (2) the particle 
travels within the inlet channel following a straight path. If both conditions are satisfied, 
the situation just after the start-up is equivalent to that obtained by running the same 
simulation in a much longer inflow channel. Hence, we can conclude that LIN has been 
chosen sufficiently large to assure a fully developed flow far from the bifurcation. If this 
is not the case, the inflow length LIN is increased and the simulation is run again. In this 
respect, it should be mentioned that, as the stresses develop, the particle may change 
its  y-position due to the migration mechanism [57]. However, we found that the lateral 
particle displacement is negligible in all the simulations carried out in this work, due to 
the short duration of the start-up phase. This is also confirmed by previous simulations 
in similar conditions [57].

Of course, the space covered by the particle during the start-up increases as the flow 
rate is higher. As a consequence, LIN depends on the inlet flow rate. An inlet channel 
length of LIN/H = 9 is required for the two lowest flow rates considered in this work. 
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The length must be increased to LIN/H = 12 for the highest flow rate. In Table 2, the 
values of the geometrical parameters are summarized.

Concerning the adopted mesh, the reference (undeformed) grid is refined along 
the walls and, in particular, around the corners where the largest field gradients are 
expected. Spatial and temporal convergence is verified for all the simulations per-
formed in this work. As expected, the most critical case is the viscoelastic one at high 
�-values. For the Newtonian and Bird-Carreau models, about 20,000 quadrilateral ele-
ments are sufficient to get grid independence of the solution. The elements must be 
increased to about 35,000 when the Giesekus model is considered. A time step size of 
�t = 0.01 guarantees time convergence for all the simulations. A typical simulation for 
a Newtonian fluid takes about 3-4 h of computational time. The CPU time increases by 
about a factor 3 for the Bird-Carreau case because of the Newton-Rhapson iterations 
required at each time step. Finally, one day is needed to get the results for the viscoe-
lastic suspending fluid due to the finer mesh and to the increased size of the system of 
equations as a consequence of the adopted DEVSS-G procedure.

As a final note, we recall that all the simulations are performed by setting the inlet flow 
rate (through the velocity profile) and the ambient pressures pOUT1 and pOUT2 on the 
two outflow sections. Of course, the flow rate partitioning through the outlet branches 
depends on the pressure difference �p = pOUT1 − pOUT2 as well as on the lengths of the 
outlet branches L1 and L2. It is convenient to present the results in terms of outlet flow 
rates rather than outlet pressure difference. In this way, in fact, the results are general 
and independent of the lengths of the outflow channels.

Results and discussion
Let us consider a fluid without particles that is pumped through the inlet branch of a 
T-shaped channel. Near the bifurcation, the fluid is partitioned between the two outlets 
according to the imposed pressure difference �p = pOUT1 − pOUT2. Specifically, if �p = 0 
and if the outlet channels have the same height and length, it is Q1

∼= Q2, where Q1 and 
Q2 are the flow rates through the main and side outlet branches, respectively. (Actually, 
these two flow rates are not exactly equal because the bifurcation is asymmetric). In case of 
�p > 0 (�p < 0), the fluid encounters a higher resistance in the main channel (side chan-
nel) and prevalently moves through the other branch, i.e., Q2 > Q1 (Q1 > Q2). Of course, 
there will be two limiting values of �p (one positive and one negative) such that the fluid 
totally passes through only one outlet. In the general case, a critical streamline dividing the 
inflow section in two regions corresponding to the fluid portion that ends up in the two 

Table 2  Geometrical parameters used in this work. See Figure 1 for the notation

Newtonian/Bird-Carreau Giesekus

LIN/H 3 9–12

L1/H 3 3

L2/H 3 3

R / H 0.2 0.2

X0/H 0.5 0.5
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outlets can be identified. An example of this streamline is depicted as a blue line in Figure 
1a, which is at a coordinate yf along the section of the inlet branch.

Let us now consider a particle suspended in a fluid and initially moving in the inlet 
branch of the T-shaped channel far from the junction. The particle is transported by the 
fluid and deviates its path while approaching the bifurcation. Depending on the relative 
pressure between the two outlets and on the position of the particle center along the 
section of the inlet branch, the particle can be displaced to the side branch or follow the 
main flow direction and exit the channel from the main branch. Similarly to the above 
mentioned critical streamline, for a fixed pressure difference �p, a critical trajectory can 
be identified that divides the inlet channel section in two parts corresponding to paths 
that lead the particle to the main (above the critical trajectory) or to the side (below the 
critical trajectory) outlets. An example of the critical trajectory is reported as green line 
in Figure 1a. Of course, the critical trajectory changes by varying �p. The key point is 
that, in general, the critical streamline and the critical trajectory do not coincide. Indeed, 
the hydrodynamic interaction between the particle and the right corner of the bifurca-
tion alters the path followed by the finite-sized particle as compared to the fluid particle 
(that has no size). This hydrodynamic interaction is more pronounced for bigger parti-
cles and, in fact, larger deviations between the two critical separatrices are expected in 
this case. If the two separatrices are different, the fraction of fluid flowing through the 
two outflow branches is, hence, different from the fraction of particles collected from 
the two outlets. Therefore, the two outlet streams have a different relative amount of 
suspended particles as compared to the inlet one. In the case of a bi-disperse suspension, 
this method could be used to fractionate the sample suspension and enrich the outlet 
streams with bigger or smaller particles.

To quantify the fractionation of particles between the two outlets, we introduce the 
particle flux ratio through the main outlet [13]:

where F1 and FIN are the fluxes of particles through the main outlet and the inlet, respec-
tively, Ux(y) is the particle translational velocity along the flow direction in the inflow 
channel far from the bifurcation, and yc is the position of the critical trajectory along the 
section of the channel inlet (see Figure 1). First of all, we remark that both integrals are 
computed along one section of the inlet branch corresponding to fully developed flow 
conditions. Notice that the definition in Eq. (21) assumes a uniform particle distribution 
in inflow. Comments about such an assumption will be given at the end of this section. 
Finally, notice also that the integrations are performed over the channel section accessi-
ble to the particle (i.e., the zone near the walls with thickness of one radius is excluded). 
The values F1/FIN = 0 or F1/FIN = 1 correspond to the limiting conditions such that all 
the particles end up in the side or the main branches, respectively.

In this work, we carry out simulations by varying � (through the inlet flow rate), the 
relative weight of the outlet flow rates (through the pressure difference �p∗) and the con-
finement ratio β, for the three constitutive equations discussed in the previous section. 

(21)
F1

FIN
=

∫ H
2 −rp

yc
Ux(y)dy

∫

H
2 −rp

−H
2 +rp

Ux(y)dy
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For each set of these parameters, we evaluate the particle flux ratio from Eq. (21). This 
requires the knowledge of the particle velocity profile Ux(y) along the channel inlet as 
well as the position yc of the critical trajectory. The computations of these two quantities 
is done by adopting the following procedure. For a fixed set of parameters, we release the 
particle at 10 equally distributed positions along the cross-section of the inflow channel, 
at a distance X0 from the inflow boundary, selected as discussed in the previous section. 
(Due to numerical issues, the closest distance between the particle center and the walls 
is set to 1.1rp). For each initial position, we compute the  x-component of the transla-
tional velocity Ux. For the inelastic constitutive equations, a single time step is sufficient 
to compute the translational velocity since inertia is neglected. For the viscoelastic case, 
Ux is computed after the stress build-up. The simulation data are, then, interpolated 
and an analytical velocity profile Ux(y) is reconstructed. To compute yc, we run simula-
tions by initially locating the particle at different  y-positions on the section of the inlet 
branch. We first detect the two closest trajectories that lead the particle to the main and 
side outlets. Then, we run other simulations by initially locating the particle between the 
two initial positions corresponding to these trajectories in order to identify the critical 
path with higher accuracy. The uncertainty in computing yc is set to ±0.5% of the chan-
nel height H, i.e. a particle released at yc/H + 0.005 ends up in the main outlet and a 
particle released at yc/H − 0.005 ends up in the side outlet.

We start by presenting the results for particles suspended in the Newtonian fluid. 
Figure 4a reports the particle flux ratio F1/FIN as a function of the flow rate ratio Q1/QIN 
for three different confinement ratios β = 0.1 (red circles), β = 0.2 (green circles) and 
β = 0.5 (blue circles). A point of the diagonal in this diagram (solid black line) indicates 
that the same fraction of particles is obtained between the inflow and outflow streams, 
i.e. the inflow particles are fractioned through the two outlets proportionally to the fluid 
flow rates. On the contrary, a point above (below) the diagonal denotes that the fluid 
exiting the main outlet (the side outlet) is enriched of particles as compared to the inlet. 
The enrichment is more and more pronounced as the deviation from the diagonal is 
large. The data reported in Figure 4a show that fractionation is enhanced for a flow rate 

ba

Figure 4  Particle partitioning in a Newtonian fluid. a Particle flux ratio as a function of the flow rate ratio for 
three different confinement ratios. The inset shows experimental data taken from [16]. b The same data of (a) 
plotted in terms of difference of particle flux ratio minus flow rate ratio.
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ratio above 0.5 and for the largest particle size considered. For lower Q1/QIN values, only 
slight (negative) deviations are noted even for the largest confinement ratio. As the par-
ticle becomes smaller, the separation process is less and less efficient regardless of the 
value of the flow rate ratio (the red and green circles are hardly distinguishable from the 
diagonal).

Although a quantitative comparison with the available experimental data [15, 16, 21] 
is not possible due to the 2D assumption of the present simulations, the results in Figure 
4 fairly reproduce the experimental trends. To show this, the inset of Figure 4a reports 
the experimental data taken from Ref. [16]. The two sets refer to confinement ratios of 
β = 0.5 (blue triangles) and β = 0.77 (magenta triangles). In both cases, the volume frac-
tion is φ = 0.02 so that the system can be assumed dilute. In qualitative agreement with 
our results, the experimental measurements show that larger particles are more easily 
separated and the process is more efficient for flow rate ratios above 0.5. Notice also 
that, in spite of the 2D nature of our simulations, the experimental and numerical data at 
the same β are quantitatively close.

The way to visualize the simulation results shown in Figure 4a has been used in previ-
ous works dealing with particle separation processes in branched capillaries [13, 15, 16, 
21]. However, to better quantify the fractionation process, in what follows, we prefer to 
report the data as in Figure 4b. Here, the quantity F1/FIN − Q1/QIN is plotted as a func-
tion of the flow rate ratio. Therefore, each symbol directly represents the distance from 
the diagonal that is now the horizontal line at y = 0. The data confirm the asymmetric 
trend around Q1/QIN = 0.5 and the decreasing efficiency of the fractionation process for 
smaller particle sizes.

We now investigate the effect of fluid shear-thinning on the particle partitioning. To 
this aim, we first consider the Bird-Carreau A model where the shear-thinning parame-
ter is set to n = 0.25. We recall that such a model does not predict elastic effects but only 
a viscosity dependent on the shear rate. Figure 5 reports the quantity F1/FIN − Q1/QIN 
as a function of the flow rate ratio Q1/QIN. The three plots correspond to different con-
finement ratios: β = 0.1 (a), β = 0.2 (b) and β = 0.5 (c). For each confinement ratio, 
three different values of � have been considered: � = 0.33 (close circles), � = 0.66 
(open circles) and � = 1.33 (crossed circles). The lines are fits of the simulation data that 
are added as a guide for the eye. The trends are qualitatively similar to the Newtonian 
case. The data, indeed, are negative (positive) for flow rate ratios lower (higher) than a 
value slightly below 0.5. Furthermore, larger confinement ratios improve the fractiona-
tion as clearly visible by the scales of the y−axis of the three panels. At variance with 
the Newtonian case, the inlet flow rate QIN (contained in �) now affects the shear rate 
and the velocity profile along the channel cross-section (see Figure 2b). At the lowest 
value of �, the shear rate at wall is around 2.5, corresponding to a moderate viscosity 
thinning. Nevertheless, by comparing the close circles in Figure 5 with the data for the 
Newtonian case in Figure 4b, very similar quantitative trends are found for all the con-
finement ratios considered. An improvement of the fractionation process with respect 
to the one found in a Newtonian suspending fluid is only observed for the highest con-
finement ratio at Q1/QIN < 0.5 (close circles in Figure 5c). In this region, the minimum 
value of F1/FIN − Q1/QIN in the Bird-Carreau A fluid is twice lower than the Newtonian 
case, and comparable with the maximum value observed for Q1/QIN > 0.5 in the same 
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fluid. It so appears that shear-thinning does not seem to significantly affect the distribu-
tion of particles in a T-shaped bifurcation. Indeed, by increasing �, i.e. by increasing 
the inlet flow rate QIN, corresponding to a more pronounced viscosity thinning, the data 
follow the same qualitative and quantitative trend of the minimum flow rate case just 
discussed. Specifically, for β = 0.1 and β = 0.2, the three sets of data describe a unique 
trend. For β = 0.5, the simulation data for the largest inlet flow rate (crossed circles) are 
slightly higher than the other two flow rates. A possible explanation might be related 
to the high local shear rate values around a highly confined particle (see the end of sec-
tion ‘Constitutive equations’) that contribute to reduce the local viscosity. However, 
the observed deviations from the lower flow rate cases are quite small, denoting a weak 
effect of shear-thinning on the particle fractionation.

To further investigate on the effect of shear-thinning, we repeated the same simula-
tions by decreasing the parameter n to 0.05 (Bird-Carreau B, red dashed curves in Figure 
2). The simulation results are shown in Figure 6. The same notation of Figure 5 is used. 
First of all, we notice that the data for each set of parameters are a bit more scattered 

a

b

c

Figure 5  Particle partitioning in a Bird-Carreau A fluid (n = 0.25). Difference of particle flux ratio minus flow 
rate ratio as a function of the flow rate ratio for three different confinement ratios: β = 0.1 (a), β = 0.2 (b) and 
β = 0.5 (c). In each panel, three different �−values have been considered. The lines are fits of the simulations 
data that are added as a guide for eye.
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than the previous case. This might be ascribed to numerical convergence issues aris-
ing when dealing with low  n-values. A comparison between the data in Figure 6 and 
Figure 5 shows that roughly the same particle paritioning is obtained for both β = 0.1 
and β = 0.2 at any investigated value of the parameter �. A slightly improved fractiona-
tion is, instead, observed for the largest particle size and for the most shear-thinning 
fluid (compare the scales of the y-axis between Figures 6c and 5c). As mentioned above, 
the high local shear rate values around the particle that, for n = 0.05, lead to even more 
pronounced viscosity thinning, might be responsible for the enhanced fractionation pro-
cess. However, as the deviations from the simulation data between the case n = 0.25 and 
n = 0.05 are quite small, we can conclude that the viscosity thinning alone does not pro-
duce any significant effect on the particle distribution downstream a T-junction as com-
pared to a Newtonian suspending fluid.

As final case, we discuss now the partitioning of particles in the T-shaped channel 
when a viscoelastic fluid (Giesekus model) is used as a suspending medium. The simula-
tion results are shown in Figure 7. First of all, for β = 0.1 and β = 0.2, a more efficient 

a

b

c

Figure 6  Particle partitioning in a Bird-Carreau B fluid (n = 0.05). Difference of particle flux ratio minus flow 
rate ratio as a function of the flow rate ratio for three different confinement ratios: β = 0.1 (a), β = 0.2 (b) and 
β = 0.5 (c). In each panel, three different �−values have been considered. The lines are fits of the simulations 
data that are added as a guide for eye.
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separation is found for the highest inlet flow rate (� = 1.33, crossed circles) as compared 
to the two lower values (close and open circles). (For this reason, we fit separately the 
two trends that are identified by the solid and dashed curves). Notice that this behavior 
is at variance with the Bird-Carreau fluid where no significant effect of the parameter � 
was found. By increasing the confinement ratio, the deviations between the data at low 
and high �-values are less and less pronounced and, in fact, the three sets of data fol-
low the same quantitive trend in panel (c) (corresponding to β = 0.5). The just discussed 
results suggest that fluid elasticity, that is enhanced at high flow rates, plays a relevant 
role on the particle distribution downstream the bifurcation. This is further confirmed 
by comparing the scales of the  y-axis between Figure 7 and the previous figures. The 
fractionation process obtained in the viscoelastic fluid is from 5 (for β = 0.1) to 3 (for 
β = 0.5) times more efficient than the inelastic cases.

A possible explanation of the just mentioned elasticity effect might be related to the 
normal stress distribution around the particle. It is likely to assume that, as the particle 

a

b

c

Figure 7  Particle partitioning in a Giesekus fluid. Difference of particle flux ratio minus flow rate ratio as a 
function of the flow rate ratio for three different confinement ratios: β = 0.1 (a), β = 0.2 (b) and β = 0.5 (c). 
In each panel, three different �−values have been considered. The lines are fits of the simulations data that 
are added as a guide for eye. In (a) and (b), the solid lines have been obtained by considering the data at 
QIN = 1/3 and QIN = 2/3, whereas the dashed lines refer to the data at QIN = 4/3.
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approaches the right corner of the bifurcation, the shear rate gradients in the fluid gap 
between the particle surface and the wall are very large. The large shear rate gradients 
lead to large normal stress gradients that deviate the particle from the streamline fol-
lowed if it is suspended in an inelastic fluid. The shear rate gradients are enhanced 
whether both the confinement ratio and the flow rate increase. The data reported in 
Figure 7 show that, for strongly confined conditions, even relatively low flow rates are 
sufficient to displace the particles (i.e., the large particle size suffices to produce high 
normal stress gradients even at low flow rates). In contrast, at low confinement ratios, 
the small particle size is unable to produce relevant shear rate/normal stress gradients 
and high flow rates are needed to increase the efficiency of the fractionation process.

To summarize the simulation results, we report in Figure 8 the data shown in the pre-
vious figures for the three suspending fluids. The three panels differ for the confinement 
ratio and the data refer to the highest value of the parameter � = 1.33. The trends con-
firm that the particle partitioning is quantitatively similar for the Newtonian and the 

a

b

c

Figure 8  Particle partitioning in the Newtonian, Bird-Carreau A and Giesekus fluids. Difference of particle flux 
ratio minus flow rate ratio as a function of the flow rate ratio for three different confinement ratios: β = 0.1 
(a), β = 0.2 (b) and β = 0.5 (c). In each panel, the simulation data for three different suspending fluids are 
reported with � = 1.33. The lines are fits of the simulations data that are added as a guide for eye. The solid 
lines have been obtained by considering the data for the Newtonian and the Bird-Carreau A models, whereas 
the dashed lines refer to the data for Giesekus model.
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shear-thinning inelastic fluids. In contrast, the outlet streams are much more enriched/
depleted of particles whether a viscoelastic liquid is used as suspending medium. In par-
ticular, the maximum fractionation is observed for Q1/QIN between 0.7 and 0.8, for all 
the three values of the confinement ratio considered in this work.

These results can be used to predict the partitioning of dilute bidisperse suspensions 
as well, i.e. when particles with different size are simultaneously suspended in the inlet 
stream. Indeed, the diluteness assumption allows to neglect interparticle hydrodynamic 
interactions and the partitioning after the T-junction can be still deduced from the sin-
gle-particle problem. As discussed above, the fractionation is quantitatively different for 
small or big particles (see the scales of the y−axis in the panels of Figure 8). Therefore, 
for a fixed value of Q1/QIN, the small and big particles will be differently distributed 
between the two outlet streams (fractionation process). A viscoelastic fluid is prefer-
able as it guarantees a fractionation efficiency in a single device much higher than that 
obtained in an inelastic fluid. Of course, by changing the relative weight of the outlet 
flow rates, the partitioning of the particles between the outlet streams can be quantita-
tively tuned.

As a final comment, it is worthwhile to mention that the definition of the particle flux 
ratio given in Eq. (21) assumes a uniform particle distribution along the section of the 
channel inlet. Under inertialess conditions, a single particle suspended in an inelastic 
fluid flowing in a channel follows the fluid streamlines. Therefore, in case of the parti-
cles are randomly distributed when the suspension is injected into the device, the parti-
cle distribution remains uniform along the inlet channel (the particle paths are straight 
lines). This might not be the case when the particles are suspended in a viscoelastic liq-
uid. Indeed, the well-known migration phenomenon, i.e. a motion transversal to the flow 
direction, may take place [27, 57, 58]. Such a phenomenon is induced by fluid elasticity 
and, of course, alters the particle distribution along the channel axis. Specifically, it has 
been shown that the migration is towards the channel axis and, in shear-thinning (and 
elastic) fluids, also towards the wall [57]. Although the migration velocity depends on 
several factors (e.g., fluid properties, flow conditions, geometrical parameters), it is gen-
erally 2–3 order of magnitude lower than the main flow velocity and a channel much 
longer than the cross-section characteristic size is required to drive a particle from the 
wall to the centerline [57]. Therefore, the results presented in this work assume that the 
length of the inlet channel is relatively short (at most one order of magnitude larger than 
H) so that migration is negligible. For this reason, a direct comparison with the experi-
mental data reported in Ref. [40] is not possible due to the relevant migration phenom-
enon that occurs in the experiments.

Conclusions
In this work, we investigated the effect of the fluid rheology on the partitioning of a dilute 
suspension of particles flowing through a T-shaped bifurcation by 2D direct numerical 
simulations. A fictitious domain method together with a grid deformation procedure is 
used to handle the particle motion. Three constitutive equations have been considered: the 
Newtonian equation (constant-viscosity, inelastic), the Bird-Carreau model (shear-thin-
ning, inelastic) and the Giesekus model (shear-thinning, elastic). Simulations are carried 
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out by changing the inlet flow rate, the relative weight of the two outlet flow rates and the 
confinement ratio.

The results show that, in agreement with the previous literature, the partitioning of 
particles at the bifurcation differs from the partitioning of the suspending fluid, regard-
less of the fluid rheology. The only effect of shear-thinning does not produce any relevant 
quantitative deviation from the Newtonian suspending fluid case. On the other hand, 
fluid elasticity greatly enhances the efficiency of the fractionation process. Specifically, 
the most pronounced deviations between the particle and fluid fractions that end up in 
the two outlet branches are found for the largest confinement ratio and inlet flow rate.

The results reported in this work show the advantage of using viscoelastic fluids to effi-
ciently separate and fractionate particles by sizes in simple microfluidic devices.
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