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Abstract

Background: The use of coarse-grained approximations of atomic systems is the most
common methods of constructing reduced-order models in computational science.
However, the issue of central importance in developing these models is the accuracy
with which they approximate key features of the atomistic system. Many methods have
been proposed to calibrate coarse-grained models so that they qualitatively mimic the
atomic systems, but these are often based on heuristic arguments.

Methods: A general framework for deriving a posteriori estimates of modeling error in
coarse–grained models of key observables in atomistic systems is presented. Such
estimates provide a new tool for model validation analysis. The connection of error
estimates with relative information entropy of observables and model predictions is
explained for so-called misspecified models. The relationship between model
plausibilities and Kullback-Leibler divergence between the true parameters and model
predictions is summed up in several theorems.

Results: Numerical examples are presented in this paper involving a family of coarse-
grained models of a polyethylene chain of united atom monomers. Numerical results
suggest that the proposed methods of error estimation can be very good indications of
the error inherent in coarse-grained models of observables in the atomistic systems.
Also, new theorems relating the Kullback-Leibler divergence between model
predictions and observations to measures of model plausibility are presented.

Conclusions: A formal structure for estimating errors produced by coarse-graining
atomistic models is presented. Numerical examples confirm that the estimates are in
agreement with exact errors for a simple class of materials. Errors measured in the
DKL-divergence can be related to computable model plausibilities. The results should
provide a powerful framework for assessing the validity and accuracy of coarse-grained
models.

Keywords: Molecular dynamics, Coarse–grained models, Adjoint systems,
Information entropy

Background
Coarse-grained-reduced order models

The most commonmethod of constructing reduced-order models in all of computational
science involves the use of coarse-grained models of atomic systems, whereby systems of
atoms are aggregated into “beads”, or “super atoms”, or molecules to reduce the number
of degrees of freedom and to lengthen the time scales in which the evolution of events are
simulated.
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The use of coarse-grained (CG) approximations has been prevalent in molecular
dynamics (MD) simulations for many decades Comprehensive reviews of a large segment
of the literature on CG models was recently given by Noid [1] and Li et al. [2], and an
application to semiconductor nano-manufacturing is discussed in Farrell et al. [3]. The
issue of central importance in developing CG models is the accuracy with which they
approximate key features of the atomistic system. Many methods have been proposed to
calibrate CGmodels so that they qualitatively mimic the all-atom (AA) systems, but these
are often based on heuristic arguments.
In this paper, we develop a posteriori estimates of error in CG approximations of

observables in the AA system. We focus on standard molecular dynamics models of
micro-canonical ensemble (NVE) thermodynamics, and we call upon the theory of model
adaptivity and error estimation laid down in [4] and [5]. In this particular setting, new esti-
mates are also obtained when the information entropy of Shannon [6] is used as a quantity
of interest. This leads to methods for estimating CG-model parameters that involve the
Kullback-Leibler divergence between probability densities of observables in the AA and
CG systems.
In the final Results and discussion section of this presentation, we review several sta-

tistical properties of parametric models, including asymptotic properties of misspecified
models and generalizations of the Bernstein-von Mises theorem advanced by Kleijn and
van der Vaart [7]. There, the fundamental role of the Kullback-Leibler distance (the DKL)
between the true probability distribution and the observations accessible by the model
is reviewed. We present results in the form of theorems that relate the DKL to measures
of model plausibility that arise from Bayesian approaches to model selection. The rela-
tionships of the a posteriori estimates to the statistical interpretations are summarized in
concluding remarks.

Preliminaries, conventions and notations

We generally approach the problem of developing computer models of large atomic sys-
tems through the use of any of several hardened molecular dynamics (MD) codes or
through equivalent Monte Carlo approximations invoking the ergodic hypothesis. For a
system of n atoms, the Hamiltonian is

H
(
rn,pn

) =
n∑

α=1

mα

2
pα · pα + u(rn), (1)

where rn = {r1, r2, . . . , rn} is the set of atomic coordinate vectors, pn = {p1,p2, . . . ,pn} is
the set of particle momentum vectors,mα the atomic mass of the α−th atom and u(rn) is
the potential energy or interaction potential. Then (rn,pn) defines a point or microstate in
the phase space �AA of the all atom (AA) model. In typical MD simulations, the potential
is, for example, of the form

u(rn) = Vbond(rn) + Vangle(rn) + Vdihedral(rn) + Vnon-bonded(rn) + Vcoulomb(rn), (2)

where

Vbond(rn) =
Nb∑
i=1

1
2
kri|ri − r0i|2, (3a)
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Vangle(rn) =
Na∑
i=1

1
2
kθ i(θi − θ0i)

2, (3b)

Vdihedral(rn) =
Nnb−1∑
i=1

Nnb∑
j=1

Vji

2
[
1 + (−1)j−1 cos(jφi)

]
, (3c)

Vnon-bonded(rn) =
Nnb∑
i=1

∑
j>i

4εij

((
σij

rij

)α

−
(

σij

rij

)β
)
, rij ≤ r2, (3d)

Vcolumb(rn) =
Nq−1∑
i=1

Nq∑
j>i

4ε0
qiqj
rij

. (3e)

Here covalent bonds are represented by the harmonic potential (1a), changes in bond
angles by (1b), torsional potentials by changes in dihedral angles (1c), Lennard-Jones non-
bonded potentials by (1d), with rij = |ri − rj| and rc the cut-off radius, (α,β) typically
= (12, 6), and Coulomb potentials between charges qi at ri and qj at rj (1e). These forms
are typical of those implemented in popular MD codes, although several other common
potentials could be added. The parameters of the potential model are given by the vec-
tor of physical coefficients: {ki, kθ i,Vji,φi, εij, σij, rc, . . . }. In general, atomic properties and
values of parameters for the full all-atom system are supplied by systems calibrated using
experimental data or quantum mechanics predictions (see, e.g. the OPLS data in [8,9]).
Given the Hamiltonian (1), Hamilton’s equations of motion are:

∂H
∂pα

= ṙα ,
∂H
∂rα

= −ṗα , 1 ≤ α ≤ n. (4)

In MD, it is assumed that the atomic system evolves according to the laws of Newtonian
mechanics, so we set pα = m(α)ṙα , and the second Hamiltonian equation in (4) reduces
to the system of equations

mαβ r̈βi(t) + ∂αiu(rn(t)) − fαi(t) = 0, 1 ≤ α,β ≤ n , 1 ≤ i ≤ 3, (5)

where repeated indices are summed throughout their range, mαβ = m(α)δαβ is the mass
of atom α, superimposed dots indicate time derivations, rβi is the component of rβ in
direction i, ∂αi = ∂/∂rαiu(rn(t)) is the total interatomic potential of the system given, e.g.,
by (2), and fαi(t) is the ith component of applied force on atom α at time t. We will add
initial conditions, ṙβi(0) = vβi, and rβi(0) = r0βi, where vβi and r0βi, for now, are assumed
to be given.
Molecular dynamical equations of the form (5) are typical of those in standard MD

codes that are numerically integrated with randomly-sampled initial conditions over time
intervals to approximate systems with constant energy and fixed volume and fixed num-
ber of particles corresponding to so-called micro-canonical ensembles. Without loss in
generality, we confine this development to such thermodynamic scenarios noting that
straightforward extensions to, say, constant temperature settings, are covered by replacing
(5) with appropriate “thermostat” models, such as the Langevin or Nose–Hoover formu-
lations (see e.g. [10]). The general approach is then applicable to canonical ensembles and
more general statistical thermodynamics settings.
A fundamental concept in the molecular theory of matter is that macroscopic prop-

erties actually observed in experiments, the so-called observables, must be the result of
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averages over a time interval τ of some phase function q(rn,pn) that depends on the
phase-point positions (rn,pn) in phase space �AA, as all measurements require a finite
duration.Moreover, for thermodynamic systems in equilibrium, this average, denoted 〈q〉,
must be independent of the starting time t0 and it must attain a value from an essentially
infinite time duration. Thus, our goal in constructing the all-atom model is to compute
observables of the form (cf [10,11]),

〈q〉 = lim
τ→∞ τ−1

∫ t0+τ

t0
q(rn(t),pn(t))dt. (6)

Here we shall confine our attention to phase functions that depend only on the con-
figurations of systems in thermodynamic equilibrium. Our quantities of interest are then
written,

Qr = lim
τ→∞ τ−1

∫ t0+τ

t0
q(rn(t))dt. (7)

In all but the simplest applications, it is impossible to solve the dynamic system (5)
owing to its enormous size. Therefore, reduced-order models must be developed. The
process involves aggregating groups of atoms into beads or molecules or “super atoms”
so as to create a coarse-grained (CG) molecular model. The CG model has N coordinate
vectors RN (t) = {R1(t),R2(t), . . . ,RN (t)}, N < n; and the corresponding equations of
motion are

MABR̈Bi(t) + ∂AiU(RN (t), θ) − FAi(t) = 0, 1 ≤ A,B ≤ N , 1 ≤ i ≤ 3. (8)

MAB defining the CG mass matrix, ∂Ai = ∂/∂RAi,U(·, ·) the interaction potential energy
of the CG system, θ a vector of parameters defining the CG model, and FAi(t) the ith
component of applied force at bead A at time t. Initial conditions are ṘAi(0) = VAi, and
RAi(0) = R0

Ai. The unknown parameters with a potential of the form (2) are denoted, for
example,

θ = (KRi,R0i,Kθ i, θ0i,V0i, εii, σii, · · · ), (9)

the notation, in analogy with (1), being chosen to indicate parameters of the CG model.
It is important to establish a kinematic and algebraic relation between coordinates of

particles in the AA system and those in the CG system. A very large literature exists on
various coarse-graining mapping schemes, and choices of the appropriate map from the
AA to the CG system or vice versa are often based on heuristic methods (see e.g. [2]). Our
general approach can be adapted to any such well-defined AA-to-CG or CG-to-AA map,
but for definiteness, we describe one such family of mappings.
Let JA be the index set of AA-coordinate labels of atoms aggregated into a single

bead A with CG-coordinate vector RA emanating from the origin to a reference point
labeled A within the bead (e.g. RA could be chosen to define the center of mass, RA =∑

α∈JA
mαrα/MA,MA = ∑

α∈JA
mα). Let aAα(t) be a vector from the reference center of

bead A to the end point of AA-coordinate vector rα(t),α ∈ JA. Let G·A
α be component of

the n × N array,

G·A
α =

{
1 if α ∈ JA
0 if otherwise.

(10)
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Then we have,

rα =
N∑

A=1
G·A

α (RA + aAα) , 1 ≤ α ≤ n. (11)

Here we assume that each AA coordinate vector rα belongs to only one bead identified
with CG vector RA, but this is not a necessary assumption. In the case of bonded systems
in which rα is associated with, say, two index sets JA and JB, we simply choose either
JA or JB as the representative of rα and associate rα with only one bead to avoid double
counting.
These kinematical conventions are illustrated in Figure 1. The AA coordinates rα of

atoms assigned to molecular bead A remain with that bead throughout all possible
motions of the CG system. The Boolean array G·A

α merely adjusts labels of the AA system
to agree with labels assigned beads in the CG system.
Returning to (7), it is clear that the CG approximation of the quantities of interest (QoI)

are of the form,

QR(θ) = lim
τ→∞ τ−1

∫ t0+τ

t0
q
(
G
(
RN (t), θ

))
dt (12)

where G is the AA-to-CG map defined in (11), where we denote rn = G(RN (t), θ),
and where we specifically present the dependence of the QoI on the CG potential
parameters θ .
Now it is obvious that the evolution of the CG system defined by the coordinate vectors

RA(t) satisfying (8) do not satisfy the “true” equations of motion (5). Indeed, if RN (t) =
{R1(t),R2(t), . . . ,RN (t)} is the set of N-vectors satisfying (8), they constrain the motion

Figure 1 A Lagrangian description of the motion of a molecular bead A and its associated AA atoms
(i, j, k, l) ∈ JA .
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of the AA system via (11), so upon introducing the constrainedmotions into (5) we obtain
the residual,

ραi(θ , t) = mαβ

N∑
A=1

G·A
β

(
R̈Ai + äAβi

)
(t)

+∂αiu
(
G(RN (t), aN (t))

) −
N∑

A=1
G·A

β ωβ
αFAi(t),

1 ≤ α,β ≤ n , 1 ≤ i ≤ 3, (13)

where
∑

β ω
β
α = 1,

∑
α∈JA

fα = FA, and

G(RN (t), aN (t)) =
{∑

A
G·A
1 (RA + aA1),G·A

2 (RA + aA2)

. . . ,G·A
n (RA + aAn)

}
,

= rn(t). (14)

On the left-hand side of (13), we have taken note that the residual depends on the CG-
model parameters θ , not explicitly presented on the right for simplicity. The AA force fα
at coordinate α is a fraction ω

β
α of the CG force FAi. In general, as a first-order approxi-

mation, one can take the vectors aAα as time-independent constant vectors equal to their
value in a given reference configuration (aAα(t) = aAα(t0); ȧAα = äAα = 0). Then the
approximate residual results of the form

ρ̂αi(θ , t) = G·A
α mαβ R̈Ai + ∂αiu

(
G(RN (t)), aN (t0)

) − fαi, (15)

with fαi = ω
β
αG·A

β FAi, and with repeated indices summed, 1 ≤ α,β ≤ n, 1 ≤ A ≤ N .
It is possible to define a reverse or “push back” relationship that assigns to every AA

coordinate vector rα the CG coordinate vector RA of the bead to which rα belongs. Given
rα , set

RA = G·α
A (rα − aAα), 1 ≤ A ≤ N , (16)

where G·α
A is the transpose of G·A

α (no sum on α).
Thus, for each time t ∈[ t0, τ ], one can select a sample ω(t) of AA coordinates

{r∗1(t), r∗2(t), . . . , r∗n(t)} and employ (16) to generate the corresponding CG coordinates
{R∗

1(t),R∗
2(t), . . . ,R∗

N (t)}. We use the simplified notation,

RN (t) = G(ω(t)) (17)

to define the image of this sample in the CG system.

Methods
Weak forms of the dynamical problem

It is convenient to recast the molecular dynamics problem into a weak or variational form.
Toward this end, we introduce the Banach spaces

V =
{
rn(t); rα ∈ � ⊂ R

3 × H2(0, τ); 1 ≤ α ≤ n;

∥∥rn(·)∥∥2 =
∫ τ

0
[r̈α · r̈α + ṙα · ṙα + rα · rα] dτ < ∞

}
,

(18)



Oden et al. AdvancedModeling and Simulation in Engineering Sciences  (2015) 2:5 Page 7 of 20

and the semilinear and linear forms B : V × V → R,F : V → R, given by

B
(
rn; vn

) =
∫ τ

0

[
mαβ r̈α(t) · vβ(t) + ∂αiu

(
rn(t)

)
vαi(t)

]
dt + I0(vn), (19)

F
(
vn
) =

∫ τ

0
fαi(t)vαi(t)dt + vαi(0)mαβVβ − v̇αi(0)mαβr0β , (20)

where

I0(vn) = vαi(0)mαβ ṙβ(0) − v̇αi(0)mαβrβ(0). (21)

The notation B(·; ·) is intended to mean that B(·; ·) is possibly nonlinear in entries to
the left of the semi-colon and linear in the entries to the right of it.
The problem of finding rn ∈ V such that

B
(
rn; vn

) = F
(
vn
) ∀vn ∈ V , (22)

is equivalent to (8) in the sense that every solution of (8) with appropriate initial
conditions, satisfies (22), and any sufficiantly smooth solution of (22) satisfies (8).

The adjoint problem

Let

B′(rn; zn, vn) = lim
θ→0

θ−1 [B(rn + θzn; vn) − B(rn; vn)
]

(23)

and

Q′(rn; vn) = lim
θ→0

θ−1 [Q(rn + θvn) − Q(rn)
]
, (24)

where Q is a functional on V , and both B′(·; ·) and Q′(·; ·) are assumed to exist and be
finite (i.e. B(·; ·) and Q(·) are Gateaux differentiable). Then the adjoint or dual problem
associated with (22) is
Find zn = {z1, z2, . . . , zn} ∈ V such that

B′(rn; zn, vn) = Q′(rn; vn) ∀vn ∈ V . (25)

Introducing (19) into (23) gives, after some manipulations,

B′(rn; zn, vn) =
∫ τ

0

(
mαβ z̈βi − Hαiβj(rn(t))zβj

)
vαidt

+ṁαβzβi(τ )vαi(τ )

−mαβ żβi(τ )vαi(τ ), (26)

where Hαiβj is the Hessian,

Hαiβj(rn(t)) = ∂2u(rn(t))
∂rαi∂rβj

. 1 ≤ α,β ≤ n , 1 ≤ i, j ≤ 3. (27)

Likewise, if Q(rn) = ∫ τ

0 q(rn(t))dt, then

Q′(rn(t); vn) =
∫ τ

0
∂αiq(rn(t))vαidt. (28)

Note that (25) is solved “backward in time;” the forward problem (22) is solved for rn(t),
which determines the coefficients in B′(rn; zn, vn) which marches the adjoint solution
from t = τ to t = 0. The dynamical system corresponding to (25) is:

mαβ z̈βi + Hαiβj
(
rn(t)

)
zβj(t) = ∂αiq

(
rn(t)

)
. (29)
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Theory of a posteriori estimation of modeling error

Let us now review the theory of a posteriori estimation of modeling error advanced in [4]
and expanded in [5]. We consider an abstract variational problem of finding an element u
in a topological vector space V such that,

B(u; v) = F(v), ∀v ∈ V , (30)

where B(·; ·) is a semilinear form from V × V into R and F is a linear functional on V .
Problem (30) is equivalent to the problem of finding a solution u of the problem A(u) = F
in the dual space V ′, where A is the map induced by B(·; ·) : 〈A(u), v〉 = B(u; v) = F(v) =
〈F , v〉, 〈·; ·〉 denoting duality pairing in V ′ ×V . Assuming (30) is solvable for u, we wish to
compute the value Q(u) of a functional Q : V → R representing a quantity of interest, or
an observable of interest.
We assume that the semilinear form B(·; ·) and the functional Q(·; ·) are three times

Gateaux differentiable on V with respect to u. In particular, the following limits exist
(recall (23) and (24)),

B′(u;w, v) = limθ→0 θ−1 [B(u + θw, v) − B(u, v)]
Q′(u; v) = limθ→0 θ−1 [Q(u + θv) − Q(u)]

}
. (31)

with similar definitions of higher-order derivatives, e.g. B′′(u;w1,w2, v), B′′′(u;w1,w2,
w3, v), Q′′(u;w, v), Q′′(u; v1, v2, v3), etc. See [5] for details.
The adjoint problem associated with (30) and the quantity of interest Q consists of

finding z ∈ V such that

B′(u; z, v) = Q′(u; v), ∀v ∈ V . (32)

Now let u0 be an arbitrary element selected in V . The residual functional (or
“residuum”) associated with u0 is defined as the semilinear functionalR : V × V → R,

R(u0; v) = F(v) − B(u0; v), (33)

which, for each u0 ∈ V , is a linear functional on V .
Obviously, if u0 = u, the solution of (30),R(u; v) = 0 ∀v ∈ V . Thus,R(u0; v) describes

the degree to which the vector u0 fails to satisfy the central problem (30).
We now recall the basic theorem in [5]:

Theorem 1. Let the semilinear form B(·; ·) in (30) and the quantity of interest Q be three-
times continuously Gateaux differentiable on V . Let u0 be an arbitrary element of V . Then
the error in Q(u) produced by replacing u by u0 is given by:

Q(u) − Q(u0) = R(u0; z) + � (34)

where � is a remainder involving higher-order terms in e0 = u − u0 and ε0 = z − z0, z0
being an approximation of z.
An explicit form of � is given in the appendix.
If u0 is not an arbitrary vector taken from V but is a solution of a surrogate problem

approximating (30) (such as a coarse-grained model approximating an AA model), then
it often happens that � is negligible compared to the residual. Then (34) reduces to the
approximation,

Q(u) − Q(u0) ≈ R(u0; z). (35)
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This relation is the basis for many successful methods of a posteriori error estimation
of both modeling error and numerical error. Whenever B(·; ·) is a bilinear form and Q(·)
is linear, � ≡ 0.

A–posteriori estimation of error in CG approximations

The CG approximations of the “ground truth” AA system are characterized by a paramet-
ric class P(θ) of molecular dynamics models, one model corresponding to each choice
of the vector θ in a space � of parameters defining the CG intermolecular potential
U(RN (t), θ). For a given value of θ , observables of interest in states of thermodynamic
equilibrium of the CG system are typically generated as averages of samples of the observ-
ables taken over subintervals [ tk , tk+1]⊂[ 0, τ ], for a distribution of initial conditions (see,
e.g. [10]).
If we employ the approximation (35) to the AA and CGmodels, then an estimate of the

error in CG approximations of the observable is immediate. Let q(rn) be a phase function
whose ensemble average 〈q〉 is an observable of interest, denoted Qr as in (7). The CG
approximation is QR(θ) and the error, given by (35), is

ε(θ) = Qr − QR(θ) ≈ R(RN (θ); zn), (36)

where R(RN (θ); zn) = ∫ τ

0 ραi(θ , t)zαi(t)dt , ραi(θ , t) is the residual in (13) (or (15)), and
zn is the solution to the corresponding adjoint problem, and is generally unknown. If Zn

is an approximation of zn, then

|ε(θ)| ≤ |R(RN (θ);Zn)| + C(θ)‖zn − Zn‖ (37)

with

C(θ) = sup
vn∈V

‖R(RN (θ , t))‖V ′

‖vn‖V (38)

‖ · ‖V ′ being the norm on the dual space V ′. The problem of error estimation thus reduces
to one of developing efficient procedures to compute the residual (ρ) and to compute
reasonable approximations of zn.
It is clear that a quantitative estimate such as (36) (or an approximation with zn replaced

by Zn) could be a powerful tool for determining validity of the CG model or in designing
validation experiments for CG models. In theory, it also provides a basis for selecting
optimal parameters for a given model so as to manage ε(θ). We elaborate on this notion
in the final part of the Results and discussion section.

Results and discussion
Numerical example: estimation of error in CG-approximation of a polyethelyne chain

Wedescribe in this section an application of a poasterior error estimation described in the
previous section, involving CG approximations of a well-known model of polyethylene.
For the base “AA” model, we consider a united atom model of a polyethylene chain con-
taining 200 CH2 (methyl) monomers, meaning we have aggregated hydrogen and carbon
atoms into an “AA” bead for simplicity. The united-atom coordinates ri define the loca-
tions of each particle on an r-axis, and the displacement is denoted ui(t). As an additional
simplification, we assume that the interatomic potential is characterized by harmonic
bonds of the form (1a), with parameter kl = k = 350 kCal/mol, bond length of l = 1.5
Å, and atomic mass m = 14.026 gr/mol. Initially, each united atom is separated by bond



Oden et al. AdvancedModeling and Simulation in Engineering Sciences  (2015) 2:5 Page 10 of 20

length l, the initial velocities are zero, and the system is assigned an initial displacement
field ui(0) = f (ri), where f (ri) = 1.2e−0.1ri(0). Under these conditions, the AA system (5)
reduces to

mü − ku = 0, u(0) = u0, u̇(0) = v0, (39)

where m and k are the mass matrix and the stiffness matrix of the united atom system
and are of the form

m = m

⎡
⎢⎢⎣
1
. . .

1

⎤
⎥⎥⎦ , k = k

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1

−1 2
. . .

. . . . . . −1

. . . −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
. (40)

A family M of CG approximations of this model is obtained by aggregating the atoms
into beads, with CG models inM distinguished by the number P of atoms per CG bead.
The resulting CG system (8) is of the form

MÜ − KU = 0, U(0) = U0, U̇(0) = V0, (41)

with the mass of each bead set toM = Pm and the bond stiffness K = αk/P; α ∈ R
+.

Upon solving (41) for the CG displacement trajectory U(t), we compute the residual
trajectory

ρ = mÜCG − kUCG, (42)

where UCG(t) is the projection �U(t) onto AA atom locations.
The bilinear and linear forms described in (19)-(21) reduce, in this case, to

B(u; v) =
∫ τ

0
vT (mü − ku) dt − vT (0)mu̇(0) − v̇T (0)mu(0), (43)

F(v) = −vT (0)mv0 − v̇T (0)mu0. (44)

and (25) yielding

B′(u; v, z) =
∫ τ

0
(mz̈ − kz)T vdt (45)

+ (mz(τ ))T v̇(τ ) − (mż(τ ))T v(τ )

= Q′(v).

As an example of a QoI, we take Qr to be the locally-averaged displacement,

Qr =
∫ τ

0
ζ(t)dt; ζ(t) = 1

N0

∑
i∈N

ui(t); N = {i : xi ≤ βl;β ∈ R
+}, N0 = card N ,

(46)

for which the strong form of the dual problem is

mz̈ − kz = q, mż(τ ) = 0, z(τ ) = 0, (47)

where N0 is the number of united atoms considered in set N and q is the vector defined
such thatQ(u) = qTu. Given the QoI (46), q will be as a n × 1 vector,

qi =
⎧⎨
⎩1 if xi ≤ βl

0 otherwise
i = 1, · · · , n. (48)
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The residual functionR(·, ·) of (36) in this example is of the form

R(UCG, zn) =
∫ τ

0
ηt(t)dt; ηt(t) =

n∑
i=1

zi(t) · ρi(t) dt. (49)

The estimated error in the QoI is then

Eest. = R(UCG, zn) ≈ Qr − QR, (50)

where QR = ∫ τ

0 ηt(t)dt and then the exact error is

Eexact = Eest. + �, (51)

� being the remainder in (34). Since the forms in (43)-(46) are linear in their respec-
tive arguments, the exact remainder � should be zero, but the error introduced by the
numerical integration schemes employed generally leads to an additional numerical error
��t �= 0. We employ a converted Runga-Kutta algorithm here to integrate (39), (41), and
(47).
The results of the coarse-grained model for the case of P = 4 are presented in Figure 2.

Figure 2a shows the coarse-scale displacement U = U(t) at different times, obtained
from solution of (41) over the time domain t ∈[ 0, τ ]. The local residual of Figure 2b
is then computed from (42). Figure 2c shows the solution of z(t) at different times. It
observed that the adjoint solution propagates in time in the opposite direction to the
primal solution, (47) being integrated backward in time.
It is known that in general, the solution of the base model is not available. However, in

order to show the effectiveness of the method presented here, the equations of motion for
the united atom system is also solved in this example. Having the solution of the united
atom model, u(t), the evolution of the exact ζ and estimated ηt over time is shown in
Figure 2d.
Numerical approximations to the exact error are compared with the estimated error for

various CG approximation of the united atom model in Figure 3a. The estimated error
R = R(UCG(θ); zn) for various values of P, with θ = αk/P, are indicated in Figure 3b for
α = 1. The computed estimated error (Eest = R) versus the parameter α are indicated in
Figure 3c.
In general, the solution of the base model is not available, but the effectiveness of the

method presented here is determined by comparing the CG solutions with the exact
united atom model. The exact ζ and estimated ηt over time are shown in Figure (2d).

Maximum entropy principle for atomic systems

Among features of the AA system that could qualify as quantities of interest, we consider
a special measure of uncertainty content embodied in the so-called information entropy.
In 1948, Shannon [6] introduced the concept of information entropy as a real-valued
functionH(p) of probability distributions (densities) p as a logical measure of uncertainty
content in p that satisfied four rather straight forward “common-sense” desiderata (see
also [12] for full details). For a discrete pdf p = {p1, p2, . . . , pn}, the entropy is defined by

H(p) = −
n∑

i=1
pi log pi, (52)
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Figure 2 Numerical solutions of the coarse-grained model. Coarse-grained model of a polyethylene chain
containing 200 monomers with 4 united atoms per coarse-grained bead, P = 4, α = 1, and β = 4: (a)
coarse-scale displacement, U(t); (b) local residual ρ(t); (c) adjoint solution, z(t); (d) time evolution in
estimated and exact error in QoI, ηt .

and for a continuous density, p ∈ L2(R), we write

H(p) = −
∫
R

p(y) log p(y)dy. (53)

Given two probability densities p and q, with non-empty support of domains, the
relative entropy between p and q is given by the Kullback-Leibler divergence,

DKL(p‖q) =
∫
R

p(y) log
p(y)
q(y)

dy

= H(p, q) − H(p), (54)

whereH(p, q) (= − ∫
R
p log qdy) is the cross entropy and it is understood that 0 log 0

0 = 0
and 0 log 0

q = 0.
Shannon’s principle of maximum entropy asserts that in the set P of all possible prob-

ability distributions relevant to a random field, the correct probability p corresponds to
the maximum entropy:

H(p) = max
q∈P H(q). (55)
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Figure 3 Numerical approximations of estimated error. Different CG-mapping G defined by number P of
united atoms per bead and different CG parameters corresponding to θ = K = αk/P: (a) evolution of ηt over
time (α = 1 , β = 4), (b) values ofR versus P (α = 1, β = 4), and (c) values ofR versus α (P = 4, β = 4).

Errors in information entropy

The connection with the statistical mechanics characterization of the AA and CGmodels
can be established by choosing as a quantity of interest the infinite–time average of the
phase function q(rn(t)) over [ 0,∞]. For this we invoke the ergodic hypothesis,

Qr = lim
τ→∞ τ−1

∫ t0+τ

t0
q(r(t))dt (56)

=
∫

�

ρ(rn)q(rn)drn (57)

= 〈q〉 (58)

ρ(rn) being the distribution function for the ensemble under study and � the correspond-
ing phase space subdomain. The corresponding CG approximation is

QR(θ) = lim
τ→∞ τ−1

∫ t0+τ

t0
q(G(RN (t); θ))dt (59)

=
∫

�

ρ(rn)q(G(RN ; θ))drn (60)

where the notation G(RN ; θ) represents the relation (11). Setting

q(rn) = log ρ(rn), (61)
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gives immediately

Qr − QR(θ) = DKL
(
ρ(rn)‖ρ(G(RN ; θ)

)
, (62)

where DKL(·‖·) is the Kullback-Leibler divergence defined in (54). Thus, if zn is the
equilibrium solution of (25) with Q′(rn; vn) = ∫ τ

0 ∂αiq(rn(t))vαidt, then

DKL(ρ(rn)‖ρ(G(RN ; θ))) ∼= R(RN (θ); zn). (63)

The specification (60) of the CG approximation (with ρ(rn) as opposed to ρ(RN (θ)))
requires some explanation. In interpreting (60), one assumes the role of an observer who
resides in the AA system and, instead of the true phase function q(rn), observes a cor-
rupted version for each choice of θ constrained to reside only in microstates accessible
by the CG-model. This is also the interpretation of the residual described in (13) and
(15). It is also noted that the estimate (63) is reminiscent of the minimum relative entropy
method suggested by Shell [13].
A fundamental question arises at this point: given estimates (36) or (63), is it possible to

find a special parameter vector θ∗ that makes the error ε(θ∗) = 0? This question is related
to the so-called well-specification or missspecification of the CG model. We believe the
answer to this question is generally “no.”

Model misspecification and statistical analysis

A fundamental concept in the mathematical statistics literature on parametric models is
the notion of a well-specified model, one that has the property that a special parameter
vector θ∗ exists that the model P maps into the truth; i.e. the true observational data. If
no such parameter exists, the model is said to bemisspecified.
More generally, we consider a space Y of physical observables (in our case, the values

of appropriate observables sampled from the AA model) and a set M(Y) of probability
measures μ on Y . As always, a target quantity of interest Q : M → R is identified (e.g.
Q(μ) = μ[X ≥ a], X being a random variable and a a threshold value). We seek a partic-
ular measure μ∗ which yields the “true” value of the quantity of interest Q(μ∗). We wish
to predictQ(μ∗) using a parametric model P : � → M(Y), � being the space of parame-
ters. Again, if a θ∗ ∈ � exists such thatP(θ∗) = μ∗, the model is said to be well-specified;
otherwise, if μ∗ /∈ P(�), the model is misspecified. See, e.g., Geyer [14], Kleijn and van
der Vaart [7], Freedman [15] , Nickl [16]. In our model discussed in Section ‘Preliminar-
ies, conventions and notations’, we seek a parameter θ∗ of the CG model such that ε(θ∗)
of (36) is zero, an unlikely possibility for most choices of Q.
To recast the issue of error estimation into a statistical setting, we presume that our goal

is to determine (predict) a probability distribution of a random variable, an observable
q in the AA system, using a CG model P , given a set y1, y2, · · · , yn of iid (independent,
identically-distributed) random variables representing samples yi = q(ωi) (ωi = rni is
meant to denote a particular point in phase space). We denote by π(yi|θ) the conditional
probability density p of the distance between the random data yi and the parameter-to-
observation map di(θ),

p(yi − di(θ)) = π(yi|θ); i = 1, 2, · · · , n, (64)
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where π(yi|θ) is the ith component of the likelihood function. The joint density of the
data vector yn = y1, y2, · · · , yn is then,

πn(y1, y2, · · · , yn|θ) = π(y|θ) =
n∏

i=1
π(yi, θ). (65)

The log-likelihood function is

Ln(θ) = logπ(y|θ) =
n∑

i=1
logπ(yi|θ). (66)

Let π(θ) be any prior probability density on the parameters θ (computed, for instance,
using the maximum entropy method of Jaynes [12], as described for CG models in [3]);
then the posterior density satisfies,

πn(θ |y) = π(y1, y2, · · · , yn|θ)π(θ)/Z(θ), (67)

where Z(θ) = ∫
�

π(y|θ)π(θ)dθ is the model evidence.
The following definitions and theorems follow from these relations:

• The Maximum Likelihood Estimate (MLE) is the parameter θ̂
n
that maximizes Ln(θ):

θ̂
n = argmax

θ∈�

Ln(θ). (68)

• The Maximum A Posterior Estimate (MAP) is the parameter θ̃
n that maximizes the

posterior pdf:

θ̃
n = argmax

θ∈�

πn(θ |y). (69)

• The Bayesian Central Limit Theorem for well-specified models under commonly
satisfied smoothness assumptions (also called the Bernstein-von Mises Theorem
[7,16,17]) asserts that

πn(θ |y) P→ N (θ∗; I−1(θ∗)), (70)

where convergence is convergence in probability,N (μ,�) denotes a normal
distribution with mean μ and covariance matrix �, θ̂ is the generalized MLE, and
I(θ) is the Fisher information matrix,

Iij(θ) = −
n∑

k=1

[
∂2

∂θi∂θj
logπ(yk|θ)

]
θ=θ∗

(71)

• Given a set of parametric models,M = {P1(θ1),P2(θ2), · · · ,Pm(θm)}, the posterior
plausibility of model j is defined through the applications of Bayesian arguments by
(see [3,18])

ρj = π(Pj|y,M) =
∫
�i

π(y|θ j,Pj,M)π(θ j|Pj,M)dθ jπ(Pj|M)

π(y|M)
(72)

with
∑m

j=1 ρj = 1, and the largest ρj ∈[ 0, 1] corresponds to the most plausible model
for data y ∈ Y .

Finally, we come to the case of misspecified parametric models in which μ∗ /∈ P(�);
i.e. no parameter θ∗ exists such that the truth μ∗ = P(θ∗). This situation, we believe, is
by far the most common encountered in the use of CG models.
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We remark that in the (rare?) case of a well-specified CG model, for any continuous
functional Q : � → R and if � is compact, if θ∗ is the unique minimizer of Q and if

sup
θ∈�

|Q(θ ; y1, y2, · · · , yn) − Q(θ)| P→ 0, (73)

as n → ∞, then the sequence

θ̂
n = argmin

θ∈�

Qn(θ ; y1, y2, · · · , yn) (74)

converges to θ∗ in probability as n → ∞. This is proved in Nickl [16]. In particular, under
mild assumptions on the smoothness of the log-likelihood Ln(θ),

Q(θ∗) − Q(θ) = −DKL(π(·|θ) ‖ π(·|θ∗)) (75)

DKL(·‖·) being the Kullback-Leibler distance defined in (54). By Jensen’s inequality (see,
e.g. [16]), Q(θ∗) ≤ Q(θ) ∀θ ∈ �; i.e. θ∗ is the minimizer of Q.
The asymptotic results for the finite misspecified case is summed up in the powerful

result of Kleijn and van der Vaart [7,19]: let g(y) denote the probability density associated
with the true distribution μ∗. Then the posterior density πn(θ |y) converges in probability
to the normal distribution,

πn(θ |y) P→ N (θ†,V−1(θ†)), (76)

where

Vij(θ) = −Eg

[
∂2

∂θi∂θj
DKL (· | π(·|θ))

]
θ=θ†

. (77)

Thus, the best approximation to g in P(�) is the model with the parameter

θ† = argmin
θ∈�

DKL
(
g‖π(·|θ ,P ,M)

)
(78)

M being a class of parametric models to which P belongs.
It is easily shown that θ† is a maximum likelihood estimate, i.e. it maximizes the

expected value of the log-likelihood relative to the true density g:

θ† = argmin
�

[∫
Yn

g(y) log g(y) dy −
∫
Yn

g(y) logπ(y|θ) dy
]

= argmin
�

[
−
∫
Yn

g(y) logπ(y|θ) dy
]

= argmax
�

∫
Yn

g(y) logπ(y|θ) dy

= argmax
�

Eg
[
logπ(y|θ)

]
, (79)

where the negative self-entropy
∫
g log g dy was eliminated since it does not depend on θ

and therefore does not affect the optimization.

Plausibility-DKL theory

Let us now suppose that we have two misspecified models, P1 and P2. We may compare
these models in the Bayesian setting through the concept of model plausibility: if P1 is
more plausible thanP2, ρ1 > ρ2. In themaximum likelihood setting, themodel that yields
a probability measure closer to μ∗ is considered the “better” model. That is, if

DKL(g‖π(y|θ†1,P1,M)) < DKL(g‖π(y|θ†2,P2,M)), (80)
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it can be said that model P1 is better than model P2. The theorems presented here define
the relationship between these two notions of model comparison.
However, Bayesian and frequentist methods fundamentally differ in the way they view

the model parameters. Bayesian methods consider parameters to be stochastic, char-
acterized by probability density functions, while frequentist approaches seek a single,
deterministic parameter value. To bridge this gap in methodology, we note that con-
sidering parameters as deterministic vectors, for example θ0, is akin to assigning them
delta functions as their posterior probability distributions, which result from delta prior
distributions. In this case, the model evidence is given by

π(y|Pi,M) =
∫

�

π(y|θ ,Pi,M)δ(θ − θ0) dθ = π(y|θ0,Pi,M). (81)

In particular, if we consider the optimal parameter θ
†
i for model Pi, π(y|Pi,M) =

π(y|θ†i ,Pi,M). We can take the ratio of posterior model plausibilities,

ρ1
ρ2

= π(y|P1,M)π(P1|M)

π(y|P2,M)π(P2|M)
= π(y|θ†1,P1,M)π(P1|M)

π(y|θ†2,P2,M)π(P2|M)
= π(y|θ†1,P1,M)

π(y|θ†2,P2,M)
O12,

(82)

where O12 = π(P1|M)/π(P2|M) is the prior odds and is often assumed to be one. With
these assumptions in force, we present the following theorems.

Theorem 2. Let (82) hold. If P1 is more plausible than P2 and O12 ≤ 1, then (80) holds.

Proof. If P1 is more plausible than P2,

1 <
ρ1
ρ2

= π(y|θ†1,P1,M)

π(y|θ†2,P2,M)
O12 ≤ π(y|θ†1,P1,M)

π(y|θ†2,P2,M)
(83)

Equivalently, the reciprocal of the far right-hand side is less than one, so

log
π(y|θ†2,P2,M)

π(y|θ†1,P1,M)
< 0. (84)

Since g(y) is a probability measure, it is always non-negative. Thus

g(y) log
π(y|θ†2,P2,M)

π(y|θ†1,P1,M)
< 0 ⇒

∫
Yn

g(y) log
π(y|θ†2,P2,M)

π(y|θ†1,P1,M)
dy < 0. (85)

This can be expanded into∫
Yn

g(y) logπ(y|θ†2,P2,M) dy −
∫
Yn

g(y) logπ(y|θ†1,P1,M) dy < 0, (86)

which means

−
∫
Yn

g(y) logπ(y|θ†1,P1,M) dy < −
∫
Yn

g(y) logπ(y|θ†2,P2,M) dy. (87)

By adding the quantity
∫
Yn g log g dy to both sides, the desired result (80) immediately

follows.

This theorem demonstrates that if model P1 is “better” than model P2 in the Bayesian
sense, it is also a “better” deterministic model in the sense of (80). However, the reverse
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implication requires much stronger conditions. The assertion (80) can be equivalently
written as∫

Yn
g(y) log

π(y|θ†2,P2,M)

π(y|θ†1,P1,M)
dy < 0. (88)

For this inequality to hold, the relationship

π(y|θ†2,P2,M)

π(y|θ†1,P1,M)
< 1 (89)

does not necessarily need to be true for every point y ∈ Yn.
One perhaps naive way to proceed is to invoke the Mean Value Theorem: if |Yn| < ∞

and under suitable smoothness conditions, there exists some ȳ ∈ Yn such that∫
Yn

g(y) log
π(y|θ†2,P2,M)

π(y|θ†1,P1,M)
dy = ∣∣Yn∣∣ g(ȳ) log π(ȳ|θ†2,P2,M)

π(ȳ|θ†1,P1,M)
. (90)

Then, combining (88) and (90) yields,

∣∣Yn∣∣ g(ȳ) log π(ȳ|θ†2,P2,M)

π(ȳ|θ†1,P1,M)
< 0. (91)

Since |Yn| > 0 and g(y) > 0,

log
π(ȳ|θ†2,P2,M)

π(ȳ|θ†1,P1,M)
< 0 ⇒ π(ȳ|θ†2,P2,M)

π(ȳ|θ†1,P1,M)
< 1 ⇒ π(ȳ|θ†1,P1,M)

π(ȳ|θ†2,P2,M)
> 1. (92)

If O12 ≥ 1,

π(ȳ|θ†1,P1,M)

π(ȳ|θ†2,P2,M)
O12 > 1 ⇒ ρ1

ρ2
> 1. (93)

Thus P1 is more plausible than P2 for given data ȳ.
In summary, we have:

Theorem 3. If DKL(g‖π(y|θ†1,P1,M)) < DKL(g‖π(y|θ†2,P2,M)) and if |Yn| < ∞ and if
(90) holds, then there exists a ȳ ∈ Yn such that P1 is more plausible than P2, given that
O12 ≥ 1.

Conclusions
The formal structure of a posterior estimates for errors in quantities of interest in CG
approximations of atomistic systems is given by (36) if the CG model is sufficiently close
to the AA model in some sense, and this error depends upon the CG model parame-
ter θ . Numerical experiments presented in Section ‘Numerical example: estimation of
error in CG-approximation of a polyethelyne chain’ involving a family of CG models of
a polyethylene chain of united atom monomers suggest that these estimates can be very
good indications of the error inherent in CG models of observables in the AA system.
In section ‘Errors in information entropy’ an example of special interest arises in the

comparison of the information entropy of AA and CG models. This leads to estimates
(62) and (63) involving the Kullback-Leibler divergence, DKL.
When the CG model is misspecified in a statistical sense, which is generally the case,

the “DKL-distance” between the AA truth and the best possible approximation of any CG
model is defined by choosing θ = θ†, the minimizer of the DKL as indicated in (78).
Under special assumptions, one can relate the DKL distance to Bayesian posterior model
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plausibility, as stated in our Theorem 2, which provides sufficient conditions for the most
plausible model among a class of models to be in fact closest to the AA model in the DKL
sense. The possible role of estimates such as (36), (62), and (63) inmodel validation should
be noted.
For each map G : AA → CG of the type defined by (10), a set M of paramet-

ric model classes {P1(θ1),P2(θ2), · · · ,Pm(θm)} is defined, each with undetermined and
possibly random parameter vectors θ i. For a calibration scenario, AA calibration data
yc = {y1, y2, · · · , yn} are sampled, and a series of Bayesian updates is performed using an
expanded form of Bayes’s rule that recognizes prior choices of the setM and the class Pj
withinM:

π(θ j|yc,Pj,M) ∝ π(yc|θ j,Pj,M)π(θ j|Pj,M), 1 ≤ j ≤ m (94)

The marginalization of the right-hand side of this relation is the model evidence, which
serves as a likelihood function for a higher level of Bayes’s rule. The corresponding poste-
riors are the model plausibilities of (72). We remark that the notion of model plausibilities
is an extension of the idea of Bayes factors prevalent in statistic literature (see e.g. [12]
for discussion of the ideas) and was introduced to the best of our knowledge in [18]. The
development of algorithms involving Bayesian plausibilities to study model selection in
CG models of complex atomic system is discussed in [3,20].
It has been demonstrated, the most plausible model in a set will, under stated assump-

tions, involve parameters that minimize the DKL−distance between the model and the
so-called truth parameters. Whether that “best” model is valid for the intended purpose
depends on tolerances set of error in key observables, the QoIs of the validation scenario
(see [3]).

Appendix
A surrogate pair of equations approximating (30) and (32) may be embodied in the
problem of finding the pair (u0, z0) ∈ V × V such that

B0(u0; v) = F0(v) ∀v ∈ V
B′
0(u0; z0, v) = Q′

0(u0; v) ∀v ∈ V

}
. (A-1)

The remainder � in (34) can, in this case, be shown (see [4]) to be given by:

� = 1
2

∫ 1

0

{
B′′(u0 + θe0; e0, z0 + θε0)

− Q′′(u0 + θe0; e0, e0, ε0)
}
dθ

+1
2

∫ 1

0

{
Q′′′(u0 + θe0; e0, e0, ε0) − 3B′′(u0 + θe0; e0, ε0)

−B′′′(u0 + θe0; e0, e0, e0, z0 + θ)

− B′′′(u0 + θe0; e0, e0, e0, z0 + θε0)θ(1 − θ)dθ
}
, (A-2)

where

e0 = u − u0 and ε0 = z − z0. (A-3)

The theory and estimates reduce to finite element a posterior error estimates in the
special case in which u0 = uh and z0 = zh are finite element approximation of solutions
(u, z) to partial differential equations (see e.g. [21]).
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