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Abstract

Background: It is a well-known fact that cross-laminated timber structures are
sensitive to rumbling noises. These transmissions are best captured by a fully
three-dimensional mathematical model. Since the discretization of such models with
hexahedral elements in a conforming manner is highly complex, we chose the mortar
method to reduce the algorithmic complexity for the mesh generation. Moreover we
consider high-order finite elements in order to deal with the high aspect ratios in
three-dimensionally resolved, cross-laminated walls and slabs. The geometric models
and material specification was derived from a building information model.

Methods: This paper derives a new mortar formulation designed to replace an
explicitely discretized elastomer with a new coupling condition. To this end, tailored
Robin conditions are applied at the interface as coupling conditions instead of the
more standard continuity constraints. Having demonstrated the suitability of the
mortar method for high order finite elements, we proceed with the derivation of the
dimensional reduced model with the new coupling condition and to show its stability
by numerical experiments. We then test the performance of the new formulation on
benchmark examples and demonstrate the engineering relevance for practical
applications.

Results: The newly derived mortar formulation performs well. We tested the new
formulation on fully three-dimensional examples of engineering relevance discretized
by high-order finite elements up to degrees of p = 10 and found the reproduction of
both eigenvalues and eigenmodes to be accurate. Moreover, the mortar method
allows for a significant reduction in the algorithmic complexity of mesh generation
while simultaneously reducing the overall computational effort.

Conclusion: The newly derived modified mortar method for replacing an elastomer
layer is not only an academically interesting variant but is capable of solving problems
of practical importance in modal-analysis of cross-laminated timber structures.
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Background
The main contribution of this paper is a new dimensionally reduced model which cap-
tures eigenvalues and eigenmodes of elastomeric coupled domains in timber structures.
Dimensionally reduced models are very attractive from the computational point of view.
There is no need to mesh the three dimensional but thin subdomain of the elastomer
within our approach. However, new challenges arise such as the formulation of a suitable
coupling condition and their numerical realization. Here we use a variant of the pop-
ular mortar finite element method [1-3]. Mortar methods can be analyzed within the
abstract framework of saddlepoint problems and can be regarded as a domain decompo-
sition technique. Firstly, coupled problems are teared, meshed and discretized separately
resulting, in general, in non-matching meshes at the interfaces. Secondly, these indepen-
dent subproblems are interconnected in a weak form by balance equations involving,
e.g., the surface traction. Thus, these techniques provide a very flexible and computa-
tionally attractive setting to handle numerically coupled multi-physics problems. Mortar
methods have been applied successfully in many engineering applications, such as, e.g.,
contact problems [4-7], dynamic and static structural analysis [8-10], flow problems
[11-13] and coupled problems in acoustics [14,15]. Further, the mortar method is used to
simulate eigenvalue problems in [16,17]. Most contributions deal only with first or second
order approaches. Although the theory of high order mortar methods is well understood
[18,19], the implementation of higher order quadrature formulas on cut elements in 3D
simulations is technical challenging. Here we apply high order, up to 20 in the polynomial
degree, techniques to approximate eigenvalues and eigenmodes in cross laminated timber
structures interconnected by thin elastomer structures.
Our motivation to derive such a formulation stems from the need to compute the

modal-analysis which is amain part of vibro-acoustical-analysis. In order to control sound
transmissions between slabs and walls, these components are often connected by elas-
tomers which we firstly model by using the linear elasticity equation because of the very
thin character. Due to the composition of timber constructions consisting of thin, lay-
ered and orthotropic material, we aim for a fully three-dimensional resolution of the slabs
and walls. For this purpose, we use the p-version of the finite element method, as pre-
sented for example in [20]. Moreover, it is well suited for the computation of solid, but
thin-walled structures because it is robust in terms of the large aspect ratios which arise
naturally in fully three-dimensional models of plates and shells [21]. It also provides bet-
ter accuracy and convergence properties than low-order finite elements. In addition, the
p-version of the FEM has already been shown to lead to excellent results for the analysis
of sound transition through timber floors [22].
However, the construction of conforming, three dimensional meshes, that are analysis-

suitable, is non-trivial. In this paper, we utilize the mesh generation techniques presented
in [23]. A conforming mesh of connected walls and slabs, increases the number of
elements significantly, as a local mesh refinement, in only one of the components
automatically spreads to the others.
These restrictions motivate the use of mortar methods allowing for an independent

meshing of the individual building components, as the physically imperative coupling is
carried out numerically at a later stage in a weak sense.
The mortar method was first introduced as a method to couple spectral elements

with finite elements in [1] where the ansatz space was weakly constrained. The present
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contribution, however, views the mortar method in the more popular context of enforc-
ing the coupling conditions by means of Lagrange multipliers, as introduced in [2], and
thus resulting in a saddle point formulation.
The modeling of elastic interface boundary conditions has been the subject for low

orders in [24-26]. Also themodeling of interface elements has been investigated in [27,28],
with a spring boundary condition in [29] and with a Robin-type condition in [30]. We
built on the work of [31], which demonstrated the excellent applicability of the mor-
tar method for problems in structural mechanics for discretizations of high orders. We
extend this concept to elastomeric coupled domains. To this end, we enforce a non-
standard Robin type condition at the interface by means of Lagrange multipliers instead
of the continuity requirements. Robin type interface conditions have been used to glue
nonconforming grids, see, e.g., [32]. The main difference to the current paper is that
our coupling condition not only aims to glue two nonconforming grids together, but is
also able to replace the whole explicit discretization of an elastomer. Therefore, it goes
beyond a simple domain decompositon method, it provides also a dimensionally reduced
model.
The contribution at hand is organized as follows: We start by presenting the prob-

lem setting in Section ‘Problem setting and conforming discretization’ and introduce
the classical mortar method in Section ‘Mortar method’. In Section ‘Modeling of the
elastomer’, we derive our new mortar coupling condition which is able to replace an
explicitly discretized elastomer. In Section ‘Results and discussion’, we present our
simulation results. Section ‘Results and discussion’ compares numerically the standard
mortar method with the conforming high order method in the context of eigenvalue
problems for a rigidly connected L-shaped wall-slab example. To establish a reference
solution, we firstly compute the eigenvalues and eigenfunctions on a wall-slab con-
figuration in a conforming discretization in Section ‘Results and discussion’. There
we already investigate the effect of connecting walls and slabs with different elas-
tomers on the eigenvalues and the eigenfunctions. We then test the new formulation
on the same wall-slab configuration in Section ‘The new elastomeric coupled mortar
formulation’. Section ‘Influence of the elastomer thickness’ analyses numerically the influ-
ence of the elastomer thickness on the new coupling condition. Furthermore a more
complex and application relevant example is presented in Section ‘A complex exam-
ple’. In Section ‘Conclusions’, we give some conclusion according to the numerical
results showing the flexibility and robustness of the new mortar method for practical
application.

Methods
Problem setting and conforming discretization

In this section, we provide a dimensionally reduced model, resulting in a modified mortar
approach. In contrast to the classical mortar setting, we end up with a non-symmetric
saddle-point formulation. The surface traction now enters as a spring into the coupling
condition.
The eigenvalue problem under investigation is given by

− div σ = ωρu, (1)
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where ρ is the density and the stress tensor σ and the linearized strain tensor ε are defined
as

σ = Cε(u) and ε(u) = 1
2

(
∇u + ∇uT

)
. (2)

Furthermore C denotes the Hookes tensor which is given by the material parameters.
We have denoted the eigenvalues by ω to avoid a confusion with the Lagrange multi-
plier λ of the mortar method considered in Section ‘Mortar method’. The most important
parameters are summarized in Table 1, for convenience. We will assume that the domain
� ⊂ R

3 is bounded and polyhedral. In addition, we enforce Dirichlet boundary condi-
tions on a non-trivial set �D and homogeneous Neumann boundary conditions on �N ,
where �N ∩ �D = ∅ and �D ∪ �N = ∂�.
The variational formulation of (1) reads: Find the eigenvalues ω ∈ R and the eigenfunc-

tions u ∈ V (�) := {
u | u ∈ (H1(�))3,u (�D) = 0

}
so that∫

�

Cε(u) : ε(v) dx = ωρ

∫
�

u · v dx. (3)

We discretize Equation (3) using conforming finite elements of high order associated
with a hexahedral mesh. As basis functions, we use hierarchical shape functions based on
integrated Legendre polynomials [20,33].

Mortar method

A mortar method is typically associated with a domain partitioning. Here, the domain �

is decomposed into two non-overlapping subdomains �m and �s so that

� = �m ∪ �s, �m ∩ �s = ∅.

The indices m and s correspond to the master and slave side, respectively. In our case,
the wall is the slave domain and the slab is the mortar domain. We then define a common
interface: � := ∂�s ∩ ∂�m and the Lagrange multiplier space byM :=

(
H− 1

2 (�)
)3

where

H− 1
2 (�) is the dual space of H

1
2 (�). Here, we assume that ∂� ∩ �D = ∅ and thus no

modifications on ∂� have to be taken into account. The primal space is defined by X :=
V (�m)×V (�s), whereV (�i) :=

{
u | u ∈ (

H1(�i)
)3 ,u (�D ∩ ∂�i) = 0

}
with i ∈ {s,m}.

We can now define our bilinear forms for the mortar method by

a(u, v) := a�m(u, v) + a�s(u, v), b(u,μ) :=< us − um,μ >∗

d(u, v) := d�m(u, v) + d�s(u, v),

Table 1 Parameter definitions

Parameter Definition

μ̃ Lamé parameter (shear modulus)

λ̃ Lamé parameter

ρ Density

ω Eigenvalue

λ Lagrange multiplier

ν Poissons ratio

E Young moduli
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where < ·, · >∗ denotes the duality pairing of
(
H

1
2 (�)

)3
and

(
H− 1

2 (�)
)3

and a�i(·, ·),
d�i(·, ·) are defined by

a�i(u, v) :=
∫

�i
Cε(u) : ε(v) dx, d�i(u, v) := ρ

∫
�i

u · v dx. (4)

The eigenvalue problem (1) can then be written in the following variational form:
Find the eigenvalues ω ∈ R, the eigenfunctions u ∈ X and λ ∈ M so that

a(u, v) + b(v, λ) = ωd(u, v), v ∈ X
b(u,μ) = 0, μ ∈ M.

(5)

Equation (5) now defines the saddle point problem arising from the mortar method.
The Lagrange multiplier λ corresponds to the negative surface traction −σn of �s on the
interface �, where n is the outward unit normal of �s.
For the discretization of the primal variable of (5), we employ hexahedral finite elements

of high order on each subdomain �m,�s. The dual space is discretized by the trace space
of the discrete primal space on �s. This choice guarantees inf-sup stability [3,34] and the
mortar method for solving (5) can be written as

A(u, λ; v,μ) = ωd(u, v)

with A(u, λ; v,μ) := a(u, v) + b(v, λ) + b(u,μ).
The bilinearform A(·, ·; ·, ·) fulfills the conditions of Remark 13.4 in [35], and thus the

theory given in Section 8 of [35] ensures convergence of the discrete eigenvalues and
eigenfunctions.

Modeling of the elastomer

Themodeling of an elastomer for vibration isolation has been the subject in [36,37]. These
papers take many mechanical properties like strain and damping directly into account.
Alternatively, the modal- and spectral-analysis can be realized by the modal superposi-
tion. In this case, the eigenmodes of the undamped system are required, and the damping
is only taken into account in a postprocessing step. Thus, we neglect the damping. More-
over, the elastomer is modeled in terms of the linear elasticity equations because it is
comparatively thin in one space direction [22]. This section will lay out a new mod-
eling approach using a Robin type condition for the coupling, in order to replace an
elastomer. This new coupling condition results in a dimensional reduced model which
avoids the meshing of the three dimensional subdomain which corresponds to the elas-
tomer. Our new coupling condition still yields a saddle point problem which fits into the
implementational framework of mortar methods.

Modifiedmortarmethod using a Robin type condition

The goal of this modeling approach is to replace the elements representing the elastomer
between the two components by a Robin type condition. The modeling idea is depicted
in Figure 1. Because of the very thin elastomer layer, in our case 1.2[cm], we simplify
the transversal shear in the elastomer and neglect the mass of the elastomer. We assume
the elastomer to act linearly in z-direction on the solution between the slab and the wall.
Without loss of generality, we assume the coordinate system of the mortar interface to
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Figure 1 Modeling concept: thin layer (left) and interface formulation (right).

be at z = 0. Therefore, we define our displacement in the spirit of a Taylor series with
z ∈ [0, d], where d denotes the thickness of the elastomer as

u(x, y, z) = us(x, y) + z
d

(um(x, y) − us(x, y)) . (6)

With this definition and with [u] := (um(x, y) − us(x, y)), the gradient of the displacement
field at z = 0 is given by

∇u|z= 0 =
⎛
⎜⎝ (us)1,x (us)1,y 1

d [u]1
(us)2,x (us)2,y 1

d [u]2
(us)3,x (us)3,y 1

d [u]3

⎞
⎟⎠ .

Now the linearized elastic strain reads

ε(u|z= 0) = 1
2

⎛
⎜⎝ 2(us)1,x (us)1,y + (us)2,x 1

d [u]1 +(us)3,x
(us)2,x + (us)1,y 2(us)2,y 1

d [u]2 +(us)3,y
(us)3,x + 1

d [u]1 (us)3,y + 1
d [u]2

2
d [u]3

⎞
⎟⎠ .

Further, we assume the following standard linear isotropic stress-strain relationship
with the lamé parameters μ̃ and λ̃ to hold in the elastomer, i.e.,

σ = 2μ̃ε + λ̃tr(ε)Id.

As the interface is assumed to be aligned to z=0, the normal vector on � directed
towards �m is given by n = [0, 0, 1]T . The fluxes are then explicitly given by

σ |z=0n =
⎛
⎜⎝ μ̃

( 1
d [u]1 +(us)3,x

)
μ̃

( 1
d [u]2 +(us)3,y

)
2μ̃ 1

d [u]3

⎞
⎟⎠ + λ̃

⎛
⎜⎝ 0

0
tr(ε)

⎞
⎟⎠

=

⎛
⎜⎜⎝

μ̃
d [u]1 +μ̃(us)3,x
μ̃
d [u]2 +μ̃(us)3,y(

2μ̃
d + λ̃

d

)
[u]3 +̃λ

(
(us)1,x + (us)2,y

)
⎞
⎟⎟⎠ .

(7)

Equation (7) is the new coupling condition between displacements and surface traction
in the strong form.
Note that in comparison to the standard mortar coupling condition us − um = 0, we

additionally obtain dependencies on the derivatives (us)3,x, (us)3,y, (us)1,x, (us)2,y, and the
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Figure 2 L-shaped connection of a slab to a wall.

surface traction λs = −σ |z= 0n interacts as a spring term with the displacement. The
corresponding bilinear forms are now given by

b̃(u,μ) =
⎛
⎜⎝ <[u]1 ,μ1 >∗ + d < (us)3,x ,μ1 >

<[u]2 ,μ2 >∗ + d < (us)3,y ,μ2 >

<[u]3 ,μ3 >∗ + β
(
< (us)1,x ,μ3 > + < (us)2,y ,μ3 >

)
⎞
⎟⎠ ,

c(λ,μ) =< λ,μ >,

with < ·, · > being the
(
H− 1

2 (�)
)3

scalar product and β = λ̃d/2μ̃ + λ̃. We note that
this scalar product on the dual space is realized within the discrete setting as a L2-surface
integral. In contrast to the bilinear forms b(·, ·) and b̃(·, ·) no basis functions being defined
on different sides of the interface are associated with c(·, ·). Both λ and μ are given by the
mesh on the slave side, and thus a standard quadrature formula can be easily applied. For
given surface tractions λi, the force equilibria of both bodies �i reads

a�i (u, vi)+ < vi, λi > = ωd�i (u, vi) ,

Neglecting the difference between −λs = σ |z=0n and λm = σ |z=dn, setting λ = λs and
adding both equations we obtain

a(u, v) + b (v, λ) = ωd (u, v) . (8)

Figure 3 Hexahedral discretization: left conforming, right mortar.
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Table 2 Elastomer properties for the simulations

Timber Elast 1 Elast 2 Elast 3 Elast 4 Elast 5

Young’s-modulus in [N/m2] 9790 · 106 1.8 · 107 8.0 · 106 3.7 · 106 1.7 · 106 8.0 · 105
Poisson v in [−] 0.05 0.4 0.4 0.4 0.4 0.4

The new coupling condition Equation (7) in the weak form and Equation (8) leads to
the dimensionally reduced model given by

a(u, v) + b (v, λ) = ωd(u, v) , v ∈ X
b̃ (u,μ) − αc (λ,μ) = 0 ,μ ∈ M

(9)

with the modeling parameter α defined as

α :=
⎛
⎜⎝

d
μ̃

0 0
0 d

μ̃
0

0 0 d
2μ̃+̃λ

⎞
⎟⎠ .

Note that the parameters α and β can be directly computed from the properties of the
elastomer. Replacing X by Xh and M by Mh gives the discrete version of Equation (9)
yielding approximations ωh of the eigenvalues.

Results and discussion
Comparison between conforming andmortar discretization

We now consider the example depicted in Figure 2. It resembles a rigidly supported
wall connected to a slab on one side and clamped at the other side. The correspond-
ing discretization is depicted in Figure 3. It consists of ten hexahedral elements in the
conforming case and eight in the mortar case. At this stage, we do not model an elas-
tomeric coupling yet but assign the material parameters for timber to all hexahedral
elements.

Table 3 Comparison of eigenfrequency of the L-shaped wall-slab configuration

p = 3 p = 7

EW Conform Mortar % Conform Mortar %

1 50.720 50.852 0.261 50.289 50.298 0.019

2 70.755 72.006 1.768 69.172 69.942 1.113

3 76.534 78.317 2.330 74.456 74.833 0.506

4 90.707 91.976 1.399 87.931 88.491 0.637

5 159.423 168.390 5.624 125.276 126.069 0.632

6 174.712 174.869 0.090 159.311 159.393 0.051

7 179.359 185.147 3.227 172.931 172.966 0.020

p = 10 p = 15

EW Conform Mortar % Conform Mortar %

1 50.282 50.288 0.012 50.278 50.281 0.006

2 68.929 69.518 0.854 68.749 69.062 0.455

3 74.304 74.535 0.311 74.220 74.341 0.162

4 87.685 88.101 0.475 87.545 87.768 0.255

5 124.818 125.340 0.418 124.581 124.842 0.210

6 159.264 159.315 0.032 159.237 159.264 0.016

7 172.884 172.911 0.016 172.865 172.882 0.010

No elastomer between the wall and slab. The unit for the eigenfrequencies is given by [Hz].
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Figure 4 Conforming (left) andmortar discretizations (right) of the structure whose geometry is
described in Figure 2. The thin elastomer layer is condensed into the mortar interface.

The material parameters are given in Table 2, where Poisson’s ratio and Young’s module
are denoted by ν and E, respectively.
The eigenvalues for a sequence of p-FEM computations with polynomial degree p ∈

{3, 7, 10, 15} are depicted in Table 3 along with the differences between the conforming
and the mortar discretization. The differences decrease for higher orders.

Discrete modeling of the elastomer

In order to obtain a reference solution, the elastomer is discretely represented by a thin
layer of hexahedral elements. The discretization is depicted in Figure 4, on the left.
The green hexahedral elements in Figure 4 mark the elastomer. The material proper-
ties for typical elastomers are given in Table 2, where hard materials are listed first.
The specific type of elastomer chosen in a practical application depends on the dead
load to be expected on the elastomer. The corresponding eigenvalues of the system
wall-elastomer-slab are given in Table 4. Eigenvalues corresponding to a direct con-
nection of wall and slab are provided as well. It is readily apparent that, depending
on the mode and the elastomer under contemplation, the eigenvalues of the system
with an elastomer layer are about 5 − 35[%] lower than without the elastomer. This is
related to the fact that the coupling of the slab to the wall becomes weaker. Figure 5
illustrates the relative decay of each eigenvalue computed from the results depicted in
Table 4.

Table 4 Influence of the different elastomers on the eigenfrequencies given in [Hz]

EW No Elast. Elast. 1 Elast. 2 Elast. 3 Elast. 4 Elast. 5

1 50.282 48.584 47.472 45.933 43.157 38.357

2 68.929 52.437 51.461 50.461 48.676 45.275

3 74.304 64.128 61.773 58.287 52.669 45.588

4 87.685 79.851 77.797 74.245 68.109 59.885

5 124.818 110.669 105.449 98.276 90.290 84.003

6 159.264 149.448 141.577 127.098 106.626 89.151

7 172.884 160.956 154.662 140.762 123.733 105.596

8 178.886 162.633 155.910 145.873 127.320 111.518
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Figure 5 Dependence of the first eight eigenvalues of the elastomer (left) and relative decay with
respect to no elastomer for the first 20 eigenvalues (right).

The new elastomeric coupled mortar formulation

Wenow test the newmortarmodel given by Equation (9) using the discretization depicted
on the right-hand side of Figure 4. The results are compared to the classical, conforming
discretization, as depicted on the left-hand side of Figure 4, where the elastomer was
modeled explicitly, as described in Section ‘Results and discussion’.
Table 5 depicts the first eight eigenvalues obtained by the newmortar model along with

the deviation in [%] from the eigenvalues of the explicitly modeled elastic layer whose
results were given in Table 4. All computations are carried out with a polynomial degree
of p = 10.We observe that the newmodel is able to reproduce the eigenvalues to an accu-
racy of at least four per cent. Not only the eigenvalues but also the eigenmodes of the two
different discretization models have to match closely. Figure 6 shows selected eigenvec-
tors of Elastomer 5. The upper row provides the eigenvectors, as computed by an explicit
modeling of the elastomer while the lower row represents the corresponding eigenvec-
tors of the new mortar method. Obviously, different types of modes such as lateral and
transversal shear modes as well as pure compression and traction modes are equally well
represented. While in the upper row the elastomer undergoes severe deformations, these
are approximated by the coupling conditions at the interface between wall and slab in the
lower row. Note that the missing elements for the elastomeric layer result from the reduc-
tion of the dimension. Moreover, the sequence of the eigenmodes remains the same in
both models.

Table 5 Eigenfrequencies given in [Hz] for the newmodeling approach along with the
deviation in percent from the conforming discretization depicted on the left hand side of
Figure 4

Elast 1 Elast 2 Elast 3 Elast 4 Elast 5

EW Value % Value % Value % Value % Value %

1 48.664 0.165 47.511 0.082 46.034 0.218 43.206 0.112 38.545 0.490

2 52.678 0.459 51.628 0.325 50.685 0.443 48.997 0.659 45.846 1.262

3 64.315 0.292 61.916 0.231 58.685 0.682 52.891 0.421 46.082 1.083

4 80.059 0.260 78.252 0.585 75.113 1.170 69.159 1.542 61.539 2.763

5 110.912 0.220 105.784 0.317 99.112 0.850 90.606 0.350 84.208 0.243

6 149.371 0.052 141.757 0.127 128.750 1.300 107.303 0.635 89.468 0.355

7 161.365 0.254 155.063 0.259 142.314 1.103 124.127 0.319 109.623 3.814

8 162.967 0.205 157.058 0.737 148.494 1.797 130.530 2.521 111.558 0.036
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Figure 6 Comparison between eigenmodes 1, 3, 4, 7. Top row: conforming, hexahedral discretization.
Bottom row: new mortar method. Note that the greyscale shows the displacement.

We also analyse the eigenmodes by a modal assurance criterion as it is described
in [38]. This modal assurance criterion determines the correlation of the eigenmodes. For
a good correlation, the resulting matrix should have a diagonal with values greater than
0.9. Values close to 0 mean a poor correlation. The modal assurance criterion matrices
show very good results for all practically relevant elastomers investigated in this paper.
We show exemplary the modal assurance criterion matrix for elastomer 5 in Table 6.
A selection of the eigenmodes are depicted in Figure 6. This confirms the good results
for the newly developed coupling condition. Furthermore, it is pointed out that the
number of finite elements is reduced by one third even in this small example. Herein,
the boundary conforming model required 12 hexahedral elements while only 8 hexahe-
dral elements sufficed for the new mortar approach. However, and most importantly,
the mesh generation is simpler using the reduced model in the sense that each wall or
slab can now be meshed separately before the discretized components are glued back
together.

Influence of the elastomer thickness

A key assumption of the new approach is that the displacement field varies only linearly in
the direction perpendicular to the two opposite interface of the elastomer with adjacent
structures. In order to investigate the validity of this assumption, we vary the thickness of
the elastomer and show its influence on the corresponding eigenvalues.

Table 6Modal assurance criterion for themodeling of Elastomer 5

u1 u2 u3 u4 u5 u6 u7 u8

u1 1.000 0.000 0.004 0.000 0.002 0.000 0.000 0.000

u2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

u3 0.003 0.000 0.999 0.000 0.000 0.000 0.003 0.000

MACE5_1.2[cm]= u4 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.000

u5 0.001 0.000 0.000 0.000 1.000 0.000 0.000 0.000

u6 0.000 0.000 0.000 0.000 0.000 1.000 0.002 0.000

u7 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.000

u8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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Table 7 Eigenfrequencies given in [Hz] for the conform and the newmethod with the
corresponding deviation in [%] for the elastomer thickness 3[cm]

Elast 1 Elast 3 Elast 5

EW Conform New % diff Conform New % diff Conform New % diff
method method method method method method

1 46.873 46.828 0.096 42.043 42.282 0.568 29.716 30.419 2.367

2 51.223 51.504 0.549 47.783 48.655 1.825 36.608 37.718 3.033

3 60.827 61.081 0.416 50.929 51.658 1.432 37.274 39.155 5.047

4 76.991 78.028 1.347 65.466 68.104 4.031 48.848 51.360 5.143

5 103.857 104.722 0.833 88.359 89.365 1.139 76.357 76.166 0.251

6 138.595 139.275 0.491 101.474 103.915 2.406 79.253 79.477 0.283

7 151.783 152.988 0.794 119.491 121.222 1.449 84.601 88.684 4.826

8 153.680 156.466 1.813 119.571 127.398 6.546 103.182 102.752 0.416

Remark 1. At this point it is noted that the thickness of the elastomers for typical wall-
slab configurations is below 3[cm]. In practical applications, thicknesses range from 1[cm]
to 1.5[cm].

The reference solution is again computed with the conforming finite element method.
We perform our simulation with two further thicknesses of the elastomer. The first thick-
ness is 3[cm], which is the maximum relevant thickness and the second thickness is
4[cm], which is beyond the typical application range. The results for the investigation
for the two elastomer thicknesses are depicted in Table 7 and Table 8 respectively. The
tables show the deviation in [%] between the new model and the explicitly modeled
elastomer.
While it can be observed that the thicker the elastomer, the bigger the error, the error

does not rise above engineering accuracy for practical applications. Table 9 and Table 10
show the model assurance criterion matrices for the eigenmodes for the corresponding
3[cm] and 4[cm] elastomer simulations.

A complex example

The good performance of the newmortar method carries over to larger examples of engi-
neering relevance even if an orthotropic material law is used for the elastically connected
building parts as these changes in the material parameters only have an influence on the

Table 8 Eigenfrequencies given in [Hz] for the conform and the newmethod with the
corresponding deviation in [%] for the elastomer thickness 4[cm]

Elast 1 Elast 3 Elast 5

EW Conform New % diff Conform New % diff Conform New %diff
method method method method method method

1 46.100 46.001 0.215 39.931 40.471 1.354 26.683 27.634 3.562

2 50.780 51.115 0.661 46.091 47.664 3.413 32.869 35.531 8.098

3 59.252 59.736 0.817 47.753 48.835 2.266 35.046 36.449 4.004

4 75.331 76.804 1.956 61.409 65.291 6.323 45.903 48.787 6.283

5 100.661 102.266 1.594 85.356 86.606 1.464 73.943 73.419 0.707

6 132.275 134.570 1.735 93.278 96.202 3.135 78.124 78.372 0.317

7 145.499 148.266 1.902 108.759 115.437 6.140 80.538 84.663 5.122

8 148.833 153.236 2.959 113.584 119.391 5.113 101.426 100.758 0.658
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Table 9Modal assurance criterion for themodeling of Elastomer 5 with thickness 3[cm]

u1 u2 u3 u4 u5 u6 u7 u8

u1 1.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

u2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

u3 0.000 0.000 0.996 0.000 0.000 0.000 0.003 0.000

MACE5_3cm= u4 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.000

u5 0.001 0.000 0.000 0.000 0.998 0.000 0.006 0.000

u6 0.002 0.000 0.000 0.000 0.002 0.999 0.001 0.000

u7 0.000 0.000 0.004 0.000 0.000 0.000 0.994 0.000

u8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

tensor C for the wood parts in the linear elasticity Equation (3). C is then given according
to [22] by

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 0 0 0
A21 A22 A23 0 0 0
A31 A32 A33 0 0 0
0 0 0 Gxy 0 0
0 0 0 0 Gyz 0
0 0 0 0 0 Gzx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

A11 = Ex
D0

(
1 − ν2yz

Ez
Ey

)
, A12 = A21 = Ey

D0

(
νxy + νyzνzx

Ez
Ey

)
,

A13 = A31 = Ez
D0

(
νxyνyz + νzx

)
, A22 = Ey

D0

(
1 − ν2zx

Ez
Ex

)
,

A23 = A32 = Ez
D0

(
νyz + νxyνzx

Ey
Ex

)
, A33 = Ez

D0

(
1 − ν2xy

Ey
Ex

)

where

D0 = 1 − ν2yz
Ez
Ey

− ν2xy
Ey
Ex

− νxyνyzνzx
Ez
Ex

− ν2zx
Ez
Ex

.

Figure 7 depicts a floor plan of a timber building along with a 2 1/2D submodel
consisting of three rooms.
This model forms the basis of the three-dimensional computational solid model com-

prising all conforming hexahedral elements depicted in Figure 8. Note that walls and
slabs consist of several layers of wood, as depicted in Figure 9. The thickness of the

Table 10Modal assurance criterion for themodeling of Elastomer 5 with thickness 4[cm]

u1 u2 u3 u4 u5 u6 u7 u8

u1 1.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

u2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

u3 0.000 0.000 0.994 0.000 0.000 0.000 0.003 0.000

MACE5_4cm= u4 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.000

u5 0.002 0.000 0.000 0.000 0.998 0.000 0.008 0.000

u6 0.002 0.000 0.000 0.000 0.002 0.999 0.001 0.000

u7 0.000 0.000 0.008 0.000 0.000 0.000 0.990 0.000

u8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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Figure 7 Detail of the ground floor plan considered for acoustical analysis.

layers is given in Table 11. Each layer is explicitly modeled with the characteristic,
orthotropic material parameters of timber. We set the Young’s moduli in fiber direction
Ex = 137 × 106

[
N/m2], in-plane orthogonal Ey = 1424 × 106

[
N/m2], and perpen-

dicular to the plane Ez = 10211 × 106
[
N/m2]. The Poisson’s ratios are vzx = 0.035,

vyz = 0.045, vxy = 0.037. In addition, we apply the shear moduliGzx = 459×106
[
N/m2],

Gyz = 102 × 106
[
N/m2] and Gxy = 171 × 106

[
N/m2]. The density is assumed to be

ρ = 450
[
kg/m3] for all layers. Although the individual layers have the same material

properties, their fiber orientation in plane is orthogonal in adjacent layers in such a way
that the orientation is equal on every other layer only. This situation is accurately resolved
by the finite element mesh. The elastomer is situated only at the interface where the slab
rests on the walls and possesses the isotropic material properties of Elastomer 5, as given
in Table 2. The conforming model is depicted in Figure 8. In total, the mesh consists of
7578 hexahedral elements.

Figure 8 Conforming hexahedral discretization.
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Figure 9 Wall types from left to right: Wall type 61, 85, 95 and slab 125.

The computational mesh for the mortar method is depicted in Figure 10. It consists
of only 2475 hexahedral elements. It is evident how the components wall and slab were
meshed independently of one another and are non-conforming at their interface. Not only
does this greatly simplify the mesh generation process itself, it also avoids the genera-
tion of hexahedral elements due to continuity constraints at the interfaces of walls and/or
slabs. A further reduction of hexahedral elements is possible by choosing mesh densities
individually for all involved components. Also note that local refinements do not branch
out to other walls. The elastomer where the slab rests on the walls is now modeled using
the new mortar method given in Equation (9).
Table 12 also summarizes the comparison for the first eight eigenvalues and then

selected higher eigenvalues up to one hundred. Note that the modeling error introduced
by the new mortar approach remains below one per cent for all investigated eigenvalues.
The error (in comparison to the conforming method) obtained when using the mor-
tar method with the new coupling condition is comparable to the error obtained when
using the standard mortar method. The upper row of Figure 11 depicts selected eigen-
vectors resulting from the conforming discretization given in Figure 8, while the lower
half depicts the corresponding eigenvectors of the mortar discretization of Figure 10.
All eigenvectors match within an accuracy which is considered sufficient for engineering
applications.

Conclusions
The aim of this contribution was to model the behavior of eigenvalue problems of
elastomerically supported, cross-laminated timber structures by means of an extended
mortar method.
To this end, we first evaluated the applicability of the mortar method to the p-version

of the finite element method of an eigenvalue problem for three-dimensional shell and

Table 11 Layer thicknesses of walls and slab 125

Type Layering [mm]

61 17*–27–17*

85 17*–17–17*–17–17*

95 17*–17–27*–17–17*

125 27*–27–17*–27–27*
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Figure 10 Non-conforming hexahedral discretization.

plate-like structures. The deviation from a conformingly discretized, stiffly coupled wall-
slab configuration for higher order p is below 1[%] for all investigated eigenvalues. The
eigenmodes likewise provided an excellent match within the required engineering tol-
erance. Secondly we derived a new coupling condition for the mortar method which is
able to replace an explicit resolution of an elastomer. This new transmission condition

Table 12 Computed eigenfrequencies given in [Hz] for the building example

EW Conform Mortar % diff Conform New coupling % diff
no elast no elast elast elast

1 11.357 11.471 1.007 9.883 9.960 0.779

2 13.738 13.861 0.899 12.439 12.496 0.459

3 14.347 14.425 0.547 13.302 13.346 0.330

4 15.807 15.947 0.884 13.938 14.067 0.926

5 16.988 17.133 0.856 14.980 15.134 1.030

6 21.070 21.329 1.227 19.256 19.398 0.737

7 21.832 21.988 0.715 20.765 20.833 0.325

8 24.038 24.265 0.947 21.072 21.165 0.437

... ... ... ... ... ... ...

20 36.868 37.071 0.552 34.033 34.437 1.189

... ... ... ... ... ... ...

30 48.414 48.769 0.732 43.329 43.850 1.202

... ... ... ... ... ... ...

40 61.815 62.479 1.073 53.238 53.574 0.631

... ... ... ... ... ... ...

50 69.224 70.028 1.162 60.897 61.468 0.938

... ... ... ... ... ... ...

60 77.711 78.402 0.889 66.702 67.982 1.919

... ... ... ... ... ... ...

70 86.225 86.443 0.253 76.123 76.488 0.479

... ... ... ... ... ... ...

80 93.425 93.893 0.501 83.881 84.382 0.597

... ... ... ... ... ... ...

90 101.063 101.673 0.603 88.875 89.558 0.769

... ... ... ... ... ... ...

100 108.871 109.382 0.469 94.814 95.145 0.349
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Figure 11 Comparison between eigenmodes 1, 2, 3, 4. Top row: resulting from the conforming
discretization corresponding to Figure 8, Bottom row: non-conforming discretization corresponding to
Figure 10.

is obtained from a dimension reduction. We then compared the eigenvalues and eigen-
modes computed within this approach to the conformingly discretized wall-slab example,
the wall now being connected to the slab by means of an elastomer. The resulting lowest
eight eigenvalues of the two models correspond within a tolerance of less than 1[%]. This
accuracy is sufficient for the application at hand. We finally demonstrate that the good
results obtained by the newly developed mortar variant also extend to larger examples of
engineering relevance.
The practical motivation of using the new mortar method was to greatly simplify both

the engineering modeling effort and the meshing process by dispensing with the need
for a conformal element coupling between construction components like slabs and walls.
An interesting side effect, however, was that it was also possible to significantly reduce
the overall computational workload. The conforming model of the engineering exam-
ple resulted in 7578 hexahedral elements while only 2475 hexahedral elements were
needed for the mortar model. This reduction is due to the facts that: a) a component-
wise mesh generation naturally introduces the possibility to choose local mesh densities,
b) necessary refinements in other building components do not need to be respected
and, accordingly, do not spread across interfaces, and c) at the interfaces of orthogonally
coupled, laminated structures it was possible to avoid unnecessary hexahedral elements
naturally due to the relaxed topological constraints, and d) it is not required to resolve the
geometrically thin elastomer layer.
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