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Abstract

Background: In what follows, we consider the Proper Orthogonal Decomposition
(POD) technique of model order reduction, for a parameterized quasi-nonlinear
parabolic equation.

Methods: A POD basis associated with a set of reference values of the characteristic
parameters is considered. From this basis, a parametric reduced order model (ROM)
projecting the initial equation is constructed.

Results: A mathematical a priori estimate of the parametric squared L2-error induced
by this projection is developed. This later estimate is based on both, the parametric
behavior of the squared L2-ROM-error thanks to the resolution of a Ricatti differential
inequality in the parametric ROM-error, and the convergence rate of the parametric
ROM to the full problem, via the augmentation of the basis dimension. Indeed, under
restrictive conditions on the solutions regularity of such equations, we are able to
precise the slope of the logarithm of the squared L2-norm of the ROM error, as a
function of the logarithm of the basis modes number.
Numerical experiments of our theoretical estimate, are presented for the 2D
Navier-Stokes equations in the case of an unsteady and incompressible fluid flow in a
channel around a circular cylinder.

Conclusion: A mathematical a priori estimate of the parametric squared L2-error
induced by the model reduction by POD is developped for a parameterized
quasi-nonlinear parabolic equation. This estimate is obtained thanks to the resolution
of a Ricatti differential inequality.

Keywords: Quasi-nonlinear equations; ROM; POD; Parametric evolution; Sensitivity;
A priori error bound; Burgers equation; 2D Navier-Stokes equations

Background
Statement of the problem

High-dimensional Partial Differential Equations (PDE) intervene widely in applications of
the field of Mechanics (Fluid Mechanics, Solid Mechanics, etc...). The simulation cost of
such equations is in general very high. Model reduction techniques are a very good solu-
tion for such problems: They enable an approximation of these equations in subspaces of
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small dimension. These are applied for Fluid-Structure Interaction problems [1-7], sta-
bility study [8], shape optimization problems [9,10], optimal control problems [11,12]
etc....
In general, the reduction spaces are obtained from the knowledge of a solution flow.

Then, one of the challenges for model reduction, is to enable a good prediction of the
solutions behavior in parametric evolution problems: We cite the Greedy algorithm, that
enriches a reduction subspace computed for a particular set of parametric values, by eval-
uating the errors obtained a posteriori by the reduction of the full numerical solutions
(obtained for example by finite element dicretisations of the complete model problem)
associated with other parametric values. Obviously, this algorithm needs to be accelerated
in a way to enable an estimate of the new parameters’ values for which the reduced order
model (ROM) error is maximal and the computation of a new reduction basis is becom-
ing crucial. At this step only, a complete resolution of the model equations is done for the
new parameters’ values chosen by the algorithm. Two important questions can be asked:
What is the parametric confidence region of a given reduced order model?
How can we improve the performance of a reduced order model when parameters are

variying significantly?
Several techniques of model reduction exist to build a good candidate within the

parametric ROMs:
We consider first the reduced basis (RB) method. It is based on showing a given para-

metric solution as a finite linear combination of solutions associated respectively with
particular parameters values. More precisely, we cite the work of Maday et al. [13,14] who
developed, for a parameterized elliptic PDE which is symmetric and coercive, an a priori
convergence theory of a parametric RB approximation to the parametric full finite ele-
ment solution. The RB is constructed with association to a sample subset of parametric
values which are logarithmically distributed: this allows an a priori convergence of the
Greedy algorithm [15].
They were interested also, in showing an a posteriori bound of the squared parametric

L2-ROM-RB error, of which computation at each parameter value is less expensive than
the parametric ROM-error itself as it is usually done in the original Greedy algorithm. The
a posteriori character of this error bound is due to its dependency on the squared residual
norm of the parametric ROM. We precise also, that the later error bound is obtained by
applying classical energetic methods to the discrete equation in the difference between
the full numerical solution and the reduced one, so one can bound the ROM-error by the
already precised a posteriori residual norm. This technique was applied in the context of
offline-online procedures, in the following cases: parameterized linear elliptic PDE which
is coercive and not symmetric [16]; nonaffine linear elliptic and parabolic equations and
nonlinear elliptic and parabolic equations [17]; parameterized linear parabolic equation
with a nonaffine source term [18]; the model Burgers equation [19,20].
A very adaptive technique, for building a parametric ROM is the Proper Generalized

Decomposition (PGD)method. It is based on building an approximation of the initial PDE
as a finite combination of functions of separate variables, including not only the space and
time variables, but also all eventual parameters that could be associated with the initial
equations. These functions and their coefficients in the later expression are obtained by
an iterated algorithm which minimizes the error with respect to the initial problem. This
method was introduced by P. Ladevèze in the LATINmethod [21,22], where he started by
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a space-time separation. Then, it was generalised by Chinesta et al. for multidimensional
problems [23-28].
We are discussing in this paper, the parametric sensitivity of a reduced order model by

the Proper Orthogonal Decomposition (ROM-POD). A detailed literature on this method
can be found in [29,30].
It is still an important issue, to determine the confidence interval of a ROM-POD for

problems involving parametric evolution. There were few works in this context:
Amsallem et al. [31-33], build a geometric interpolation algorithm of ROM-PODs at

different parametric values, in the case of parameterized linear structural dynamics prob-
lems. The idea is to interpolate various reduced order, symmetric and positive definite
matrices of the complete problem, corresponding each one to a set of characteristic
parameters. This interpolation is done in the tangent space to the manifold of symmetric
positive definite matrices. Numerical experiments show that the obtained reduced order
model, is efficient to represent dynamics asssociated with other parametric sets than the
reference ones.
There are also techniques based on an a posteriori indicator of the PODmodes number

we need to add, in order to decrease the ROM-error, when the parameters are varying.
Volkwein et al. [34-37] were interested in such estimates for solving linear quadratic ellip-
tic and parabolic optimal control problems. Therefore, they developed an a posteriori
estimator of the error between the reduced optimal solution and the optimal one. Also,
this estimator is based on the residual term we add when solving the reduced adjoint
equation. The reduced optimal solution is good when a tolerated error is not trespassed,
otherwise we increase the dimension of the reduced optimal control problem.
Besides all these works, we are interested in developing an a priori bound of the squared

parametric L2-ROM-POD error in the case of a parameterized quasi-nonlinear parabolic
equation. More precisely, our main issue is to give a mathematical criteria in order to
determine a parametric confidence region for a reference POD basis. It appears also the
control problem of the dimension of the associated parametric ROM-POD, so we can
improve its performance if the parameters are varying considerably with respect to the
reference ones.
This type of result will enable us not only to predict the validity extent of a reference

reduced order model of fixed dimension with respect to parametric variation, but also
to do an enrichement step of the ROM-dimension when necessary, thanks to an a priori
indicator of the number of PODmodes we need to add. So that, on the one hand the para-
metric ROM-error is not maximal when the parameters are varying considerably outside
the confidence region determined already, and on the other hand the reduction concept
is still available.
The result of this paper is an improvement of the one we developed in [38,39].Where we

showed an a priori estimate of the parametric squared L2-error induced after the model
reduction of parameterized semi-discrete quasi-linear parabolic problems, by a reference
POD basis associated with a reference solution for a base parameter value. Indeed, the
resolution of a Ricatti differential inequality gives sharper a priori upper bounds com-
pared to the ones we developped in [38,39], where we used the Gronwall lemma to solve
a first order differential inequality in the parametric ROM-error. Moreover, we present
an improvement of this type of results by considering an enriched POD basis associated
with a reference solution and its parametric derivative at the same parameter value.



Akkari et al. AdvancedModeling and Simulation in Engineering Sciences 2014, 2:14 Page 4 of 16
http://www.amses-journal.com/content/2/1/14

More precisely, the mathematical formulation of the problem is given as follows:

Methods
Mathematical formulation of the problem

Let us consider a general parameterized quasi-nonlinear parabolic PDE: We denote X =
[L2(�)]d, V = [H1(�)]d. � is a bounded open set, connected and lipschitz of Rd , where
d = 1 or 2. This equation is given by its weak formulation as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d
dt

(uλ(t), v)X + B (uλ(t),uλ(t), v) + a (uλ(t), v; λ)

= S(uλ(t), v) + lt(v) ∀v ∈ V

(uλ(0), v)X = (
u0λ, v

)
X ∀v ∈ V

, (1)

where B, a, S and l are given by the following expressions:

• ∀v1, v2, v3 ∈ V , B(v1, v2, v3) = (
f (v1).g(∇v2), v3

)
X , where f and g are respectively an

R
d− valued Lipschitz application defined on R

d and an R
d2− valued Lipschitz

application defined on R
d2 .

• ∀v1, v2 ∈ V , a (v1, v2; λ) is a bilinear symmetric and positive form, which is
continuous on V × V and coercive on [H1

0 (�)]d × [H1
0 (�)]d . Moreover, we suppose

that a is α− Holder with respect to λ, with Lipschitz constant equal to 1, i.e.,
|a (v1, v2; λ1) − a (v1, v2; λ2) | ≤ ‖λ1 − λ2‖α a (v1, v2).

• ∀v1, v2 ∈ V , S(v1, v2) = (s(v1), v2)X , where s is an R
d−valued Lipschitz application

defined on R
d .

• ∀v ∈ V , lt(v) = (h(t), v)X , where h is given in L2loc([0,+∞[,X).

(.) denotes the scalar product in the corresponding space. And, λ ∈ R
p,+,∗ (p ∈ N

∗),
denote the parameter vector of these equations.
A solution uλ0 of this equation associated with a reference parameter vector λ0 is com-

puted once and for all. A POD basis �λ0 =
(
�

λ0
n

)
n≥1

in X, associated with uλ0 on a time
interval (0,T), will lead to construct a ROM-POD describing the evolution of an approx-
imation ûλ,λ0 of uλ, in a subspace of dimension N very small. We denote

(
μ

λ0
n

)
n≥1

the
POD eigenvalues sequence associated with the POD basis.
We know that:

1
T

∫ T

0

(
uλ0(t),�λ0

n
)2
X dt = μλ0

n .

The problem that appears naturally, is to find a way to control the parametric evolution:

what is
1
T

∫ T

0

(
uλ(t),�λ0

n
)2
X
dt?

More precisely, if we denote ∀t ∈ (0,T) and ∀x ∈ X:

ûλ,λ0(t, x) =
N∑

n=1
aλ,λ0
n (t)�λ0

n (x),
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where ∀n = 1, . . . ,N , aλ,λ0
n (t) is the solution of:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

daλ,λ0
n

dt
+ B

(
ûλ,λ0(t), ûλ,λ0(t),�

λ0
n

)
X

+ a
(
ûλ,λ0(t),�

λ0
n ; λ

)
= S(ûλ,λ0(t),�

λ0
n ) + lt(�λ0

n )

aλ,λ0
n (0) =

(
u0λ,�

λ0
n

)
(2)

Then, the question which arises naturally is the following: to what extent ûλ,λ0 remains
an accurate approximation to uλ?

Main results

In whats follows, we present our main results formally, with a lack in rigor:

Reference POD basis associated with a reference parameter vector λ0

Formal result 1. There exist two decreasing sequences
(
f λ0
1 (N)

)
N≥1

and
(
f λ0
2 (N)

)
N≥1

,
such that:

∥∥uλ − ûλ,λ0
∥∥2
L2(0,T ;X)

≤ f λ0
1 (N) + f λ0

2 (N)
‖λ − λ0‖α

‖λ0‖ (3)

f λ0
1 (N) is the error induced already by taking λ = λ0:
f λ0
1 (N) = ∥∥uλ0 − ûλ0

∥∥2
L2(0,T ;X)

, where ûλ0 = ûλ,λ0 , for λ = λ0. For further details
concerning the estimate of this term, we refer for instance to [38].
f λ0
2 (N)is a decreasing sequence, having the same rate of decline as the sequence(
1
N

)
N≥1

.

Precision on result 1

Heuristic result 1. Under regularity conditions on the solutions difference uλ − uλ0 ∈
L2(0,T ; [Hm(�)]d ):

∥∥uλ − ûλ,λ0
∥∥2
L2(0,T ;X)

≤ f λ0
1 (N) + c(N)

‖λ − λ0‖α

‖λ0‖ , (4)

where (c(N))N≥1 is a decreasing sequence, having the same rate of decline as the sequence(
1
Nm

)
N≥1

.

Improvement of the ROM-POD confidence interval: Enriched POD basis containing the

parametric sensitivity of the solution

Formal result 2. Under the following restrictive conditions:

• ∇λuλ(λ0) ∈ L2(0,T ;X).
• �λ0 a POD basis associated to snapshots of uλ0(t) and ∇λuλ(λ0)(t) on (0,T).

We can show that:

∥∥uλ − ûλ,λ0
∥∥2
L2(0,T ;X)

≤ f λ0
1 (N) +

∞∑
n=N+1

μλ0
n ‖λ − λ0‖2 + K ‖λ − λ0‖4 (5)
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Result 1 establishes an a priori estimate of the decrease rate of the squared ROM-POD
error, especially when the two parameters λ and λ0 are distant.
Nevertheless, the usefulness of this result is improved thanks to result 1 under regular-

ity conditions on the diffrenece between two solution flows associated respectively with
a parameter λ and the base parameter λ0. Indeed, result 1 shows for a given class of solu-
tions to equation (1), a very good efficiency of a reference reduced order model by a POD
basis associated with a base parameter value λ0.
Also, not to mention supplementary regularity conditions on the solution flows, the

estimate (5) improves the validity domain of the reduced order model beside our previous
result (estimate (3)) thanks to the term depending on ‖λ − λ0‖4, and to the remainder
of the expanded-POD eigenvalues sum multiplying ‖λ − λ0‖2, of which decrease rate is
optimal thanks to the POD construction.

Organization of the paper

In what follows, we give the proof elements of our principal result. In section “Results
and discussion”, we prove our formal results 1 and 2 and the heuristic result 1, in the
context of multidimensional parametric problems. In section “Numerical experiments:
The 2D Navier-Stokes equations”, we present numerical experiments of our theoretical
estimate for the 2D Navier-Stokes in the case of an unsteady and incompressible fluid
flow. In section “Conclusion and prospects”, we conclude by giving some prospects to this
work.

Results and discussion
Theorems and notations

We recall some theorems and we define some notations, that could be useful to our proof.

Theorem 1. Sobolev embeddings

• For d = 1, H1(�) ⊂ L∞(�), and ∃C ∈ R
+∗ such that ∀v ∈ H1(�),

‖v‖L∞(�) ≤ C ‖∇v‖L2(�) .
• For d = 2, H1(�) ⊂ L4(�), and ∃C ∈ R

+∗ such that ∀v ∈ H1(�),
‖v‖L4(�) ≤ C ‖∇v‖[L2(�)]2 .

For more informations about Sobolev embeddings, see for instance [40].

Theorem 2. Gagliardo-Nirenberg inequality

• For d = 1, ∃c ∈ R
+∗ such that ‖v‖L∞(�) ≤ c ‖v‖1/2L2(�)

‖∇v‖1/2L2(�)
,∀v ∈ H1(�).

• For d = 2, ∃c ∈ R
+∗ ‖v‖L4(�) ≤ c ‖v‖1/2L2(�)

‖∇v‖1/2[L2(�)]2 ,∀v ∈ H1(�).

For more informations, see for instance [41].

Notation 1. Cλ
p denotes the constant relative to the coercivity of the bilinear form a,

associated with a given λ. So, ∀ v ∈[H1
0 (�)]d:

a (v, v; λ) ≥ Cλ
p ‖∇v‖2X .
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Notation 2. Ka denotes the constant relative to the continuity of the bilinear form a on
the spave V . So, ∀ v1, v2 ∈ V:

a (v1, v2) ≤ Ka ‖∇v1‖X ‖∇v2‖X .

Notation 3. Kf , Kg and Ks denote respectively the Lipschitz constants of the mappings f ,
g and s.

Control of
∥∥uλ − uλ0

∥∥2
L2(0,T ;X)

We recall the following intermediate lemma, based on the resolution of a Ricatti equation
of order 3:

Lemma1. Let a and b be two strictly positive real numbers, and let z be a time dependent
positive quantity verifying the following differential inequality:

dz
dt

≤ az(t) + bz3(t).

Then,

z(t) ≤
(
z−2(0) + b

a
(exp(−2at) − 1)

)− 1
2

.

Proof. The proof of this lemma is essentially based on the following key points:
• The change of variable: y(t) = z−2(t).

• dy
dt

≥ −2ay(t) − 2b (6)

• Application of the Gronwall lemma to inequality (6).

Thanks to lemma 1, we prove the following proposition:

Proposition 1. We show the following a priori upper bound of
∥∥uλ − uλ0

∥∥2
L2(0,T ;X)

,
thanks to a differential Ricatti inequality in the later:

∥∥(
uλ − uλ0

)
(t)

∥∥2
X ≤

(∥∥u0λ − u0λ0
∥∥−4
X + b

a
(exp(−2at) − 1)

)
− 1

2K2
a

∥∥∇uλ0(t)
∥∥2
X ‖λ − λ0‖α ,

where a and b are positive real numbers that will be detailed in what follows:

Proof. We prove this proposition for d = 1. The same proof applies directly to the case:
d = 2.
We denote w(t) = (

uλ − uλ0

)
(t), which verifies the following weak formulation:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d
dt (w(t), v)X + B (uλ(t),uλ(t), v) − B

(
uλ(t),uλ0(t), v

) + B
(
uλ(t),uλ0(t), v

)
−B

(
uλ0(t),uλ0(t), v

) + a(uλ(t), v; λ) − a(uλ0(t), v; λ0)
= S(uλ(t), v) − S(uλ0(t), v) ∀v ∈ V

(w(0), v)X = (
u0λ − u0λ, v

)
X ∀v ∈ V

(7)
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If we replace v by w(t), then we obtain:

1
2
d
dt

‖w(t)‖2X +
∫

�

f (uλ(t))
(
g(∇uλ(t)) − g(∇uλ0(t))

)
w(t)dx =

−
∫

�

(
f (uλ(t)) − f (uλ0(t))

)
g(∇uλ0(t))w(t)dx − a(w(t),w(t); λ)

−a(uλ0(t),w(t); λ) + a(uλ0(t),w(t); λ0) +
∫

�

(
s(uλ(t)) − s(uλ0(t))

)
w(t)dx.

Therefore, by using the Sobolev embeddings mentioned above, we get:

1
2
d
dt

‖w(t)‖2X ≤ ∥∥f (uλ(t))
∥∥
L∞(�)

∥∥g(∇uλ(t)) − g(∇uλ0(t))
∥∥
X ‖w(t)‖X

+ ∥∥f (uλ(t)) − f (uλ0(t))
∥∥
L∞(�)

∥∥g(∇uλ0(t))
∥∥
X ‖w(t)‖X

−a(w(t),w(t); λ) − a(uλ0(t),w(t); λ) + a(uλ0(t),w(t); λ0)

+ ∥∥s(uλ(t)) − s(uλ0(t))
∥∥
X ‖w(t)‖X

Therefore,

1
2
d
dt

‖w(t)‖2X ≤ CKg
∥∥f (uλ0(t))

∥∥
V ‖∇w(t)‖X ‖w(t)‖X

+Kf Kg ‖w(t)‖L∞(�) ‖∇w(t)‖X ‖w(t)‖X
+CKf

∥∥g(∇uλ0(t))
∥∥
X ‖∇w(t)‖X ‖w(t)‖X

−Cλ
p ‖∇w(t)‖2X

+Ka ‖λ − λ0‖α
∥∥∇uλ0(t)

∥∥
X ‖∇w(t)‖X + Ks ‖w(t)‖2X

By appyling a Young inequality two times and the Gagliardo-Nirenberg inequality one
time, we get:

1
2
d
dt

‖w(t)‖2X ≤
⎛
⎝C2 ∥∥f (uλ0)

∥∥2
V K2

g + C2 ∥∥g(∇uλ0)
∥∥2
X K2

f

2β

⎞
⎠ ‖w(t)‖2X

+β ‖∇w(t)‖2X
+cKf Kg ‖w(t)‖3/2X ‖∇w(t)‖3/2X

−Cλ
p ‖∇w(t)‖2X

+ 1
2ε2

‖λ − λ0‖α K2
a

∥∥∇uλ0(t)
∥∥2
X + ε2

2
‖λ − λ0‖α ‖∇w(t)‖2X

+Ks ‖w(t)‖2X

But cKf Kg ‖w(t)‖3/2X ‖∇w(t)‖3/2X can be upper bounded as follows, thanks to the
application of a Young inequality two times:

cKf Kg ‖w(t)‖3/2X ‖∇w(t)‖3/2X ≤ ‖w(t)‖X
⎛
⎝c2K2

f K
2
g δ

2
‖w(t)‖X + 1

2δ
‖∇w(t)‖3X

⎞
⎠
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If we choose δ = ‖w(t)‖X ‖∇w(t)‖X
ε3

, and η = ‖w(t)‖2X
ε1

, then we obtain the following:

cKf Kg ‖w(t)‖3/2X ‖∇w(t)‖3/2X ≤ ε3

2
‖∇w(t)‖2X +

c2K2
f K

2
g δ

2
‖w(t)‖2X

≤ ε3

2
‖∇w(t)‖2X + δ2

8η
+

ηc4K4
f K

4
g

2
‖w(t)‖4X

≤ ε3

2
‖∇w(t)‖2X + ε1

8(ε3)2
‖∇w(t)‖2X

+
c4K4

f K
4
g

2ε1
‖w(t)‖6X

Therefore,

1
2
d
dt

‖w(t)‖2X ≤
c4K4

f K
4
g

2ε1
‖w(t)‖6X

+
⎛
⎝C2 ∥∥f (uλ0)

∥∥2
V K2

g + C2 ∥∥g(∇uλ0)
∥∥2
X K2

f

2β
+ Ks

⎞
⎠ ‖w(t)‖2X

+
(

β + ε2

2
‖λ − λ0‖α + ε3

2
+ ε1

8(ε3)2
− Cλ

p

)
‖∇w(t)‖2X

+ 1
2ε2

‖λ − λ0‖α K2
a

∥∥∇uλ0(t)
∥∥2
X

If we choose β , ε1, ε2 and ε3 such that the term multiplying ‖∇w(t)‖2X is negative, then
by analogy to lemma 1 and by taking:

a = 2

⎛
⎝C2 ∥∥f (uλ0)

∥∥2
V K2

g + C2 ∥∥g(∇uλ0)
∥∥2
X K2

f

2β
+ Ks

⎞
⎠ .

And,

b =
c4K4

f K
4
g

ε1
,

we conclude to our result.

Remark 1. On the choice of β, ε1, ε2 and ε3
Let’s suppose for instance, that p = 1, Cλ

p = λCp and α = 1.

A necessary condition to have β < λCp − ε2

2
|λ − λ0| − ε3

2
− ε1

8(ε3)2
, is :

λCp − ε2

2
|λ − λ0| − ε3

2
− ε1

8(ε3)2
> 0. (8)

• If λ > λ0, then equation (8) is equivalent to:
(
Cp − ε2

2

)
λ + ε2

2
λ0 − ε3

2
− ε1

8(ε3)2
> 0.

Then, we choose ε1, ε2 and ε3 such that: Cp >
ε2

2
, and

ε2

2
λ0 − ε3

2
− ε1

8(ε3)2
> 0.
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• If λ < λ0, then equation (8) is equivalent to:
(
Cp + ε2

2

)
λ − ε2

2
λ0 − ε3

2
− ε1

8(ε3)2
> 0.

Then, λ >

ε2

2
λ0 + ε3

2
+ ε1

8(ε3)2

Cp + ε2

2

.

Choice of
(
f λ0
2 (N)

)
N≥1

and an a priori estimate of its terms

We prove the following proposition, that will be a key point in order to give an a priori
estimate of the terms of the sequence

(
f λ0
2 (N)

)
N=1,...,M

.
For instance, we suppose that d = 2 and for convenience we take � = (0, 1) × (0, 1),

without any loss of generality:

Proposition 2. Let (�n)n≥1 be an orthonormal basis of (V , ‖.‖X). We denote �n =(
�1

n,�2
n
)T . We define fn = (

f 1n , f 2n
)T :

f 1n (x1, y1) =
∫ y1

0

∫ x1

0
�1

n(x, y)dxdy and f 2n (x1, y1) =
∫ y1

0

∫ x1

0
�2

n(x, y)dxdy.

Then,
∞∑
n=1

∥∥fn∥∥2X = 1
2
.

Proof. For i = 1, 2:

f in(x, y) = (
�i

n, 1[0,x]×[0,y]
)
X , then

∥∥f in∥∥2X =
∫ 1

0

∫ 1

0

∣∣(�i
n, 1[0,x]×[0,y]

)
X
∣∣2 dxdy.

Therefore,
∞∑
n=1

∥∥f in∥∥2X =
∫ 1

0

∫ 1

0

∥∥1[0,x]×[0,y]
∥∥2
X dxdy.

Which concludes to the result.

From now on, we denote: f λ0
2 (N) =

∞∑
n=N+1

∥∥f λ0
n

∥∥2
X , where f λ0

n is the primitive function

of the POD mode �
λ0
n .

Completion of the proof of result 1

∥∥uλ − ûλ,λ0
∥∥2
L2(0,T ;X)

≤ 2
∥∥uλ0 − ûλ0

∥∥2
L2(0,T ;X)

+2
∥∥∥(
uλ − uλ0

) − 
N
�λ0

(
uλ − uλ0

)∥∥∥2
L2(0,T ;X)

+2
∥∥∥
N

�λ0

(
uλ − uλ0

) − (
ûλ,λ0 − ûλ0

)∥∥∥2
L2(0,T ;X)

•
∥∥∥(
uλ − uλ0

) − 
N
�λ0

(
uλ − uλ0

)∥∥∥2
L2(0,T ;X)

=
∞∑

n=N+1

∥∥(
uλ − uλ0 ,�λ0

n
)
X
∥∥2
L2(0,T ;R)

.

• The Galerkin error
∥∥∥
N

�λ0

(
uλ − uλ0

) − (
ûλ,λ0 − ûλ0

)∥∥∥2
L2(0,T ;X)

is controled by
∞∑

n=N+1

∥∥(
uλ − uλ0 ,�λ0

n
)
X
∥∥2
L2(0,T ;R)

; This is shown easily by reducing the equation

describing the evolution of
(
uλ − uλ0

)
(t).
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Therefore, the parametric squared POD-Galerkin error is essentially controled by the

remainder
∞∑

n=N+1

∥∥∥(
uhλ − uhλ0 ,�

λ0
n

)
X

∥∥∥2
L2(0,T ;R)

. Then, based on the previous proposition 2,

a way to study the decrease rate of this remainder will be by considering the remainder
of the primitives sum of the reference POD modes �

λ0
n : This is shown simply by applying

successively the Green formula and the Cauchy-Schwarz inequality to each one of the
orthogonal projection coefficients

(
(uλ − uλ0)(t),�

λ0
n

)
X
.

Therefore,∞∑
n=N+1

∥∥(
uλ − uλ0 ,�λ0

n
)
X
∥∥2
L2(0,T ;R)

is controled by f λ0
2 (N) ‖λ − λ0‖α .

This ends the proof of result 1.

Completion of the proof of heuristic result 1

By applying successively the Green formula and the Cauchy-Schwarz inequality
and by repeating this step m-times to each

(
(uλ − uλ0)(t),�

λ0
n

)
X
, we prove that

∞∑
n=N+1

∥∥(
uλ − uλ0 ,�λ0

n
)
X
∥∥2
L2(0,T ;R)

is finally controled by the remainder of the m-iterated

primitives sum of the reference POD modes.
Which concludes to the result.

Completion of the proof of result 2

Thanks to proposition (1), the first restrictive condition of result 2 is verified for a quasi-
nonlinear equation of the form (1). Then, we write the following Taylor expansion of uλ

to the order 1:
uλ = uλ0 + ∇λuλ(λ0). (λ − λ0) +R1(λ), where ‖R1(λ)‖L2(0,T ;X) is a function of ‖λ − λ0‖2.
Now, we impose the second restrictive condition of result 2. Then, we can easily show

that:

∥∥(∇λuλ(λ0),�λ0
n

)
X
∥∥2
L2(0,T ;R)

≤ 2Tμλ0
n .

In this case, the remainder
∞∑

n=N+1

∥∥(
uλ − uλ0 ,�λ0

n
)
X
∥∥2
L2(0,T ;R)

is better controled by the

POD modes:

M∑
n=N+1

∥∥(
uλ − uλ0 ,�λ0

n
)
X
∥∥2
L2(0,T ;R)

≤ ‖λ − λ0‖2
∞∑

n=N+1

∥∥(∇λuλ(λ0),�λ0
n )X

∥∥2
L2(0,T ;R)

+ ‖R1(λ)‖2L2(0,T ;X)
.

Therefore, we deduce the a priori estimate (5).
This ends the proof.

Numerical experiments: The 2D Navier-Stokes equations
We place our problem in the particular case of the Navier-Stokes equations for a 2D
incompressible fluid flow. The parameter λ denotes here the viscosity of the flow.
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Flow configuration

Our study configuration is for an unsteady and incompressible fluid flow in a channel,
around a circular cylinder (see Figure 1). The inlet condition is a uniform fluid flow. We
impose an outlet condition, and symmetry conditions on �1 and �2.

The two strategies of POD computations

We present a numerical comparaison of our theoretical estimates (3) and (5), for a fixed
POD modes numbers N and by varying only the viscosity λ. For a fixed POD modes
number N , we plot the logarithm of parametric ROM-POD error

∥∥∥uhλ − ûλ,λ0

∥∥∥
L2(0,T ;X)

,
as a function of log(|λ − λ0|).
Indeed, the reference parameter value λ0 = 0.001 corresponds to a Reynolds number

equal to 100. And, we varied the viscosity λ in the interval [5.56 × 10−4, 1.43 × 10−3]
in order to have computations associated with Reynolds numbers varying in the inter-
val [70, 180]. We consider two strategies of POD computations. Indeed, two different
snapshots sets are considered on the time interval [0,T] , where T = 75s:

• S1 = {uλ0(t) t ∈ [0,T]}.
• S2 = {vλ0(t) t ∈ [0, 2T]}. Such that:

– vλ0(t) = uλ0(t) for t ∈ [0,T] .

– vλ0(t) = ∂u
∂λ

(λ0)(2T − t) for t > T .

More precisely, if we discretize the time interval toM = 200 points, then the snapshots
sets are given as follows:

• S1 = {uλ0(ti) i = 1, . . . ,M}.
• S2 = {vλ0 (ti) fori = 1, · · · , 2M}
Therefore, the POD eigenvectors �

λ0
n associated respectively with these snapshots sets

are solutions of the following two eigenvalues problems:
The correlation matrix:

C1
ij =

∫
�

uλ0 (ti, x, y) · uλ0

(
tj, x, y

)
d�,

of which size isM × M.

Figure 1 Flow configuration.
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We denote by An = (
Ai,n

)
1≤i≤M for n = 1, . . . ,M, a set of orthonormal eigenvectors of

the matrix C1. Then, the POD-eigenvectors associated to uλ0 , are given by:

�λ0
n = 1√

M

M∑
i=1

Ai,nuλ0(ti).

And, the correlation matrix:

C2
ij =

∫
�

vλ0 (ti, x) · vλ0

(
tj, x

)
d�,

of which size is 2M × 2M.
We denote by An = (

Ai,n
)
1≤i≤2M for n = 1, . . . , 2M, a set of orthonormal eigenvectors

of the matrix C2. Then, the POD-eigenvectors associated to vλ0 , are given by:

�λ0
n = 1√

2M

2M∑
i=1

Ai,nvλ0(ti).

We should note that, in the case of S2, the dimensions of the snapshots are compati-
ble. Indeed, the flow snapshots are normalized by the inlet velocity, and the parametric
derivatives snapshots are normalized by their corresponding magnitudes.

Numerical comparaison of the two theoretical estimates (3) and (5)

We compare the two plots of log
(∥∥uλ − ûλ,λ0

∥∥
L2(0,T ;X)

)
as a function of log(|λ − λ0|),

obtained respectively from the model reduction by the reference POD basis and the
enriched one. We get the two plots on (Figure 2).
We retrieve here the power law of the parametric ROM-POD error with respect to

|λ − λ0|, for both strategies of the POD computation.

Figure 2 Red line: The logarithm of the error relative to the model reduction by the enriched POD
basis. Black line: The logarithm of the error relative to the model reduction by the reference POD basis.
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Moreover, (Figure 2) shows that the case for which the parametric sensitivity of the flow
is also included in the snapshots set, is better than the one where we had only snapshots
associated with a reference solution: The slope of the red line is clearly greater than the
black one, and the numerical parametric error in this case is less than the one associated
to the reduction by a reference POD basis.

Conclusion and prospects
Conclusion

Wewere interested inmathematical a priori error bounds of a parametric ROMby a refer-
ence POD. A mathematical a priori estimate of the parametric squared L2-error induced
by the corresponding ROM is developped, thanks to the resolution of a Ricatti differential
inequality.
This result is an improvement of the one we developed in [38], where we showed an a

priori estimate of the parametric squared L2-error induced after the model reduction of
parameterized semi-discrete quasi-linear parabolic problems, by a reference POD basis
associated with a reference solution. We obtained here sharper a priori estimates. More-
over, when we considered the enriched POD basis, the parametric ROM-POD error was
better controled. Which shows an improvement of the ROM-POD confidence interval
with respect to parametric variation.

Prospects

Concerning the prospects of this work, we hope to be able to apply this type of results as
an a priori convergence technique of enrichement algorithms as the POD-Greedy one.
It is important also to be able to use these a priori techniques for errors estimate as a

sharp a posteriori errors indicator.
Furthermore, it is important to apply these results to interpolation techniques (using

the Lie group theory) of reduced order models, available each one in a confidence region
around a reference parameter.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
NA have made substantive intellectual contributions to the mathematical conception of the manuscript and drafted the
manuscript. AH have been involved in revising the manuscript critically for important intellectual content and have given
final approval of the version to be published. EL have made substantial contributions to the acquisition of the numerical
data and to the interpretation of the numerical experiments. MJ have participated to the mathematical content of the
manuscript. All authors read and approved the final manuscript.

Acknowledgment
The authors are thankful to FEDER (European Regional Development Fund) for providing the necessary financial facilities
for the preparation of the paper.

Received: 23 December 2013 Accepted: 7 July 2014
Published: 2 August 2014

References
1. Lieu T, Farhat C, Lesoinne M (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration.

Comput Methods Appl Mech Engrg 195(41-43):5730–5742
2. Balajewicz M, Farhat C (2013) Model order reduction of embedded boundary models. Bulletin of the American

Physical Society 58



Akkari et al. AdvancedModeling and Simulation in Engineering Sciences 2014, 2:14 Page 15 of 16
http://www.amses-journal.com/content/2/1/14

3. Liberge E, Hamdouni A (2010) Reducer order modeling method via proper orthogonal decomposition (POD) for
flow around an oscillating cylinder. J Fluids Struct 26(2):292–311

4. Liberge E, Benaouicha M, Hamdouni A (2007) Proper Orthogonal Decomposition (POD) investigation in fluid
stucture interaction. Eur J Comput Mech 16:401–418

5. Liberge E, Benaouicha M, Hamdouni A (2008) Low order dynamical system for fluid rigid body interaction problem
using POD method. Int J Multiphys 2:59–81

6. Liberge E, Pomarède M, Hamdouni A (2010) Reduced-order modeling by POD multiphase approach for
fluid-structure interaction. Eur J Comput Mech 19:41–52

7. Lassila T, Quarteroni A, Rozza G (2012) A reduced basis model with parametric coupling for fluid-structure
interaction problems. SIAM J Sci Comput 34(2):1187–1213

8. Lassila T, Manzoni A, Rozza G (2012) On the approximation of stability factors for general parametrized partial
differential equations with a two-level affine decomposition. ESAIM Math Model Numer Anal 46(6):1555–1576

9. Manzoni A, Quarteroni A, Rozza G (2012) Shape optimization for viscous flows by reduced basis methods and
free-form deformation. Int J Numer Methods Fluids 70(5):646–670

10. Lassila T, Rozza G (2010) Parametric free-form shape design with pde models and reduced basis method. Comput
Methods Appl Mech Eng 199(23–24):1583–1592

11. Ito K, Ravindran SS (1998) A reduced-order method for simulation and control of fluid flows. J Comp Phys
143:403–425

12. Afanasiev K, Hinze M (2001) Adaptive control of a wake flow using proper orthogonal decomposition. Shape
optimization optimal design. Lecture Notes Pure Appl Math:317–332

13. Maday Y, Patera AT, Turinici G (2002) Global a priori convergence theory for reduced-basis approximations of
single-parameter symmetric coercive elliptic partial differential equations. C R Acad Sci Paris, Ser I 335:289–294

14. Buffa A, Maday Y, Patera AT, Prud’homme C, Turinici G (2012) A priori convergence theory of the greedy algorithm
for the parametrized reduced basis. ESAIM-Math Model Numer Anal 46(3):595–603

15. Chen Y, Hesthaven J-S, Maday Y, Rodriguez J, Zhu X (2012) Certified reduced basis method for electromagnetic
scattering and radar cross section estimation. Comput Methods Appl Mech Eng 92(108):233–236

16. Machiels L, Maday Y, Patera AT (2001) Output bounds for reduced-order approximations of elliptic partial differential
equations. Comput Methods Appl Mech Eng 190:3413–3426

17. Grepl MA, Maday Y, Nguyen N-C, Patera AT (2007) Efficient reduced-basis treatment of nonaffine and nonlinear
partial differential equations. ESAIM: Math Model Numer Anal 41(3):575–605

18. Klindworth D, Grepl MA, Vossen G (2012) Certified reduced basis methods for parametrized parabolic partial
differential equations with non-affine source terms. Comput Methods Appl Mech Eng 209(212):144–155

19. Veroy K, Prud’homme C, Patera AT (2003) Reduced-basis approximation of the viscous burgers equation: rigorous a
posteriori error bounds. C R Acad Sci Paris, Ser I 337:619–624

20. Nguyen N-C, Rozza G, Patera AT (2009) Reduced basis approximation and a posteriori error estimation for the
time-dependent viscous Burgers’ equation. Calcolo 46:157–185

21. Ladeveze P, Passieux J-C, Néron D (2010) The LATIN multiscale computational method and the proper generalized
decomposition. Comput Methods Appl Mech Eng 199(21-22):1287–1296

22. Ladeveze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for
structural mechanics. Comput Methods Appl Mech Eng 192(28–30):3061–3087

23. Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimate for seperated representation of highly
multidimensional models. Comput Methods Appl Mech Eng 199:1872–1880

24. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensionnal
partial differential equations encountered in kinetic theory modeling of complex fluids. J Non Newtonian Fluid
Mech 139:153–176

25. Ammar A, Normandin M, Chinesta F (2010) Solving parametric complex fluids models in rheometric fows. J Non
Newtonian Fluid Mech 165(23–24):1588–1601

26. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized
decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

27. Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) Pgd-based
computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20(1):31–59.
doi:10.1007/s11831-013-9080-x

28. Gonzalez D, Masson F, Poulhaon F, Leygue A, Cueto E, Chinesta F (2012) Proper generalized decomposition
based dynamic data driven inverse identification. Math Comput Simul 82(9):1677–1695.
doi:10.1016/j.matcom.2012.04.001

29. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows.
Annu Rev Fluid Mech 25(1):539–575

30. Aubry N, Holmes P, Lumley JL, Stone E (1988) The dynamics of coherent structures in the wall region of a turbulent
boundary layer. J Fluid Mech 192:115–173

31. Amsallem D, Cortial J, Carlberg K, Farhat C (2009) A method for interpolation on manifolds structural dynamics
reduced-order models. Int J Numer Methods Eng 80:1241–1258

32. Amsallem D, Farhat C (2008) An interpolation method for adapting reduced order models and application to
aeroelasticity. Am Inst Aeronautic Astronautics 46(7):1803–1813

33. Amsallem D, Cortial J, Farhat C (2009) On-demand CFD-based aeroelastic predictions using a database of
reduced-order bases and models In: 47th AIAA Aerospace Sciences Meeting, vol 18.

34. Hinze M, Volkwein S (2008) Error estimates for abstract linear-quadratic optimal control problems using proper
orthogonal decomposition. Comput Optim Appl 39:319–345

35. Troltzsch F, Volkwein S (2009) POD a-posteriori error estimates for linear-quadratic optimal control problems.
Comput Optim Appl 44:83–115

36. Tonn T, Urban K, Volkwein S (2011) Comparison of the reduced-basis and POD a posteriori error estimators for an
elliptic linear-quadratic optimal control problem. Math Comput Model Dyn Syst 17(4):355–369



Akkari et al. AdvancedModeling and Simulation in Engineering Sciences 2014, 2:14 Page 16 of 16
http://www.amses-journal.com/content/2/1/14

37. Vossen G, Volkwein S (2012) Model reduction techniques with a posteriori error analysis for linear quadratic optimal
control problems. Math Comput Model Dyn Syst 2(3):465–485

38. Akkari N, Hamdouni A, Liberge E, Jazar M (2013) A mathematical and numerical study of the sensitivity of a reduced
order model by POD ROM-POD, for a 2D incompressible fluid flow. J Comput Appl Math 270:522–530

39. Akkari N, Hamdouni A, Jazar M Mathematical and numerical results on the parametric sensitivity of a ROM-POD of
the burgers equation. Eur J Comput Mech 23(1-2):78–95

40. Evans L (1998) Partial differential equations. Am Math Soc 662
41. Nirenberg L (1959) On elliptic partial differential equations. Ann Scuola Norm Sup Pisa 13(3):115–162

doi:10.1186/s40323-014-0014-4
Cite this article as: Akkari et al.: On the sensitivity of the POD technique for a parameterized quasi-nonlinear
parabolic equation. AdvancedModeling and Simulation in Engineering Sciences 2014 2:14.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Statement of the problem

	Methods
	Mathematical formulation of the problem
	Main results
	Reference POD basis associated with a reference parameter vector 0
	Precision on result 1
	Improvement of the ROM-POD confidence interval: Enriched POD basis containing the parametric sensitivity of the solution
	Organization of the paper

	Results and discussion
	Theorems and notations
	Control of bold0mu mumu "026B30D u-u0"026B30D 2L2(0,T;X)"026B30D u-u0"026B30D 2L2(0,T;X)==============="026B30D u-u0"026B30D 2L2(0,T;X)"026B30D u-u0"026B30D 2L2(0,T;X)"026B30D u-u0"026B30D 2L2(0,T;X)"026B30D u-u0"026B30D 2L2(0,T;X)
	Choice of bold0mu mumu (f02(N))N1(f02(N))N1===============(f02(N))N1(f02(N))N1(f02(N))N1(f02(N))N1 and an a priori estimate of its terms
	Completion of the proof of result 1
	Completion of the proof of heuristic result 1
	Completion of the proof of result 2

	Numerical experiments: The 2D Navier-Stokes equations
	Flow configuration
	The two strategies of POD computations
	Numerical comparaison of the two theoretical estimates (3) and (5)

	Conclusion and prospects
	Conclusion
	Prospects

	Competing interests
	Authors' contributions
	Acknowledgment
	References

