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Abstract

Background: Membrane modeling in the presence of wrinkling is revisited from a
multi-scale point of view. In the engineering literature, wrinkling is generally
accounted at a macroscopic level by nonlinear constitutive laws without
compressive stiffness, but these models ignore the properties of wrinkles, such as
their wavelength, their size and spatial distribution.

Methods: A new multi-scale approach is discussed that belongs to the family of
Ginzburg- Landau bifurcation equations. By using the method of Fourier series with
variable coefficients, several nonlinear macroscopic models are derived that couple
the membrane response with equations governing the evolution of the wrinkles.

Results: Contrary to previous approaches, these macroscopic models are completely
deduced from the “microscopic” shell model without any phenomenological
assumptions. Some analytical and numerical solutions are discussed that prove the
relevance of the presented modeling.

Conclusions: A new class of models has been established. It permits to predict the
characteristics of the wrinkles and their influence on membrane behavior.

Keywords: Wrinkling; Buckling; Bifurcation; Membrane; Slowly variable Fourier
coefficients; Multi-scale
Background
This paper deals with macroscopic modeling of very thin shells, also called membranes

in the scientific literature and in everyday life. Membranes have increasing application

fields such as spacecraft structures (antenna, telescope lenses, Gossamer structures…),

civil structures, life jackets, electronics, biological tissues, textile composites [1-6]. The

appearance of wrinkles is a major feature in the mechanical behavior of membrane,

due to their vanishing bending stiffness.

Membrane wrinkling is a multi-scale phenomenon, but it is generally described by

one-scale models that can be “microscopic” or “macroscopic”. Microscopic models are

simply based on elastic shell theory; see for instance [7-11]. Nowadays many commer-

cial finite element codes permit to carry out such nonlinear shell computations. Shell

analyses are able to describe the details of the membrane response: size, wavelength,

orientation of the wrinkles, instability threshold, etc., but this leads to large scale nu-

merical models that are moreover very difficult to be controlled in cases with a large

number of wrinkles and therefore with a large number of equilibrium solutions. Indeed
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wrinkling can be seen as a small wavelength buckling phenomenon and, in such a case,

there are several neighbor bifurcation modes and it is well known that this leads to

compound response curves involving secondary bifurcations, see for instance [12,13]

among an extensive literature. Even if the complexity of wrinkling patterns requires nu-

merical treatments, one can mention several papers by Coman et al. [14-16] that were

able to find analytically wrinkling modes in cases with inhomogeneous pre-bifurcation

stresses.

The second group of numerical descriptions are pure membrane models that account for

the effect of wrinkling on membrane behaviour. The bending stiffness is neglected and the

compressive stresses are dropped: this yields nonlinear constitutive laws that are of unilat-

eral type, the tensile behaviour being about linear and the compressive states being forbid-

den. This has led to many numerical studies; see for instance [17-22]. In most of these

papers, the constitutive law relates simply membrane stress and strain and it distinguishes

three states: slack, wrinkled and taut. Some authors prefer the method of Roddeman [23,24]

that splits the deformation gradient into consistent membrane part and wrinkling part

[25-28]. The partial differential equations deduced from these membrane models are not

elliptic (or hyperbolic in the dynamical case) in the presence of a non-positive principal

stress so that this problem is mathematically ill-posed. A well-posed problem can be

obtained if the macroscopic model includes an internal length, for instance within Cosserat

theory [29,30]. However this regularisation may be not necessary for an explicit dynamic

computation. All these membrane models have a phenomenological character, the only

mention to full shell models being the vanishing of the membrane compressive stress. A

variant has been introduced by [31] and used for buckling problems of sheets under residual

stresses generated by manufacturing processes [32].

The aim of this paper is to revisit membrane modelling from a multi-scale point of

view. It will be clearly established that a consistent wrinkling model depends both on

microscopic quantities (wavelength, orientation of the wrinkles…) and macroscopic

data like boundary conditions, size and shape of the structure… In this respect, a new

multi-scale membrane model was briefly presented [33] that couple a nonlinear 2D

membrane model with an amplitude equation governing the evolution of wrinkles.

Amplitude equations to describe spatial pattern formation follow generally from the

asymptotic bifurcation analyses of Ginzburg-Landau type [34-37]. Here a slightly differ-

ent method will be applied, where the nearly periodic fields are represented by Fourier

series with slowly varying coefficients [38-41]. In other terms, we use a multi-scale

modelling method whose result is a generalised continuum including an internal length

and where the macroscopic stresses are Fourier coefficients of the microscopic stress.

In this paper, the new membrane model of [33] is discussed in detail. Some additional var-

iants, several analytical and numerical solutions and the corresponding numerical schemes

will be presented. The new membrane models including wrinkling will be deduced from

Föppl-Von Karman plate theory. These analyses will be carried out by applying standard

techniques of multi-scale bifurcation analyses: asymptotic multi-scale method for the linear

bifurcation analysis and multi-scale Fourier approach leading to nonlinear models valid away

from the wrinkling threshold. Note that, contrarily to most of macroscopic membrane

models, the present models are deduced from the shell equations without any phenomeno-

logical assumptions. The bending stiffness effects are included not only to define the

wrinkling wavelength, but also to predict the macroscopic evolution of the buckling pattern.
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The paper is organized as follows. In section “About the origin of short wavelength

instabilities”, the origin of the wrinkling instability is briefly recalled, in order to under-

line its multi-scale origin and the generic character of this instability mechanism.

section “Multi-scale nonlinear models for membrane wrinkling” is devoted to deducing

new nonlinear wrinkling models from Föppl-Von Karman plate theory. Then two

analytical solutions of these models will be presented (section “Two analytical solutions

for clamped rectangular membranes”), the first one for defining the bifurcation features

(bifurcation stress, wavelength and shape of the envelope) and the second one for a

post-bifurcation analysis characterizing the evolution of the size of the wrinkles as a

function of the applied load. The numerical analysis is presented in section “Numerical

implementation” (techniques of implementation) and section Two numerical solutions

where two examples of plate wrinkling will be solved. Finally, in section “Linear

wrinkling analysis revisited by a double scale asymptotic analysis”, a more classical

asymptotic multi-scale analysis will be performed in a special case and the results will be

compared with those arising from the multi-scale Fourier approach.

About the origin of short wavelength instabilities
Spatially periodic instability patterns are encountered in a lot of physical problems.

The instability often occurs in domains whose dimension is smaller than the

others, typically in rectangles or parallelepipeds with a small aspect ratio. The instability

wavelength can be of the same order as the smallest dimension of the domain as in

Rayleigh-Bénard convection [42,43].

The instability wavelength is not always directly related to a structural dimension. A

well known typical case of periodic patterns is the flexible beam resting on a Winkler

foundation that is also referred as Swift-Hohenberg equation [44-50]. The governing

equation has the following form in 1D linear case:

A
d4v Xð Þ
dX4 þ λ

d2v Xð Þ
dX2 þ Bv Xð Þ ¼ 0; X ∈ IR ð1Þ

The wrinkling modes v(X) and the wrinkling load λ are then given by:
v Xð Þ ¼ cos QX þ φð Þ; λ Qð Þ ¼ AQ2 þ B

Q2 : ð2Þ

The instability wavenumber Q or the instability wavelength ℓ = 2π/Q corresponds to

the minimum of the neutral stability curve Q→ λ(Q):

1
Q

¼ ℓ

2π
¼

ffiffiffiffi
A
B

4

r
; λ ¼ 2AQ2 ¼ 2

ffiffiffiffiffiffiffi
AB

p
: ð3Þ

A physical example of such instability is the symmetric microbuckling mode of long
fiber composite materials that are represented by an infinite stack of hard and soft

layers (fiber, matrix), see Figure 1 and Rosen [51].
Figure 1 Antisymmetric and symmetric microbuckling modes of long fiber composite materials.
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In this problem, the coefficients of (1) are related to Young moduli and thickness’s of

the layers (A≅EFh
3
F , B ≅ EM/hM), the microbuckling wavelength is related to the width

of the fiber and of the matrix by the following formula: ℓ≅h3=4F h1=4M EF=EMð Þ1=4 . Quite

similar wrinkling phenomena with a small wavelength can be found in studies about

thin films coupled with compliant substrate, see for instance [52-55], or in the buckling

of sheets due to residual stresses and forming processes [56,57]. In this second class of

instability problems, the wavelength is larger than the microscopic lengths hF, hM be-

cause of a large stiffness ratio. Here is the origin of the multi-scale behavior: the char-

acteristic distance in the width is smaller than the longitudinal wavelength and

moreover these longitudinal waves are generally modulated on larger distances.

The wrinkling of membrane belongs to a third class of instability problems that can

be represented by a partial differential equation in a 2D domain [3]:

A
∂4v X;Yð Þ

∂X4 þ λ
∂2v X;Yð Þ

∂X2 −C
∂2v X;Yð Þ

∂Y 2 ¼ 0; X∈ IR Y∈ IR: ð4Þ

The instability modes are in the form V(Y)cos(QX+φ) and their instability wavelength
2π/Q is generally small with respect to the characteristic length in the transverse direc-

tion. The Equations (1) and (4) can be related by assuming that the coefficient B is an

eigenvalue of the differential operator − C∂2/∂Y2, or equivalently B ¼ C=L2Y , where LY is

a macroscopic characteristic length in the transverse direction.

In the problem of a plane membrane of thickness h submitted to a tensile stress σY in

the transverse direction, A≅ Eh3, C = σYh and σX = − λ/h is a compressive stress in the

X-direction so that the wrinkling wavelength is ℓx≅ E=σYð Þ1=4h1=2L1=2Y [3]. Hence this

wavelength is much smaller than the transverse length LY because a membrane is very

thin (h < <LY) and it decreases when the tensile stress increases. From Equation (3),

one can deduce the critical compressive stress σXj j≅ ffiffiffiffiffiffiffiffiffi
EσY

p
h=LY that is much smaller

than the prescribed tensile stress σy if this stress σy is not too small. It is worth to men-

tion that the wrinkling stress depends both on the microscopic length h and on the

macroscopic transverse one LY.

Note that the Equation (4) seems to be more or less generic. It has also been established in

the antisymmetric microbuckling of long fiber composite [51,58], with A≅EFhF
3, C≅EMhF (this

antisymmetrical mode occurs when the thickness of the fiber and of the matrix are of the

same order hM≅hF). Hence the instability wavelength is ℓx≅ EF
EM

� �1=4
h1=2F L1=2Y where the trans-

verse length LY can be associated with the composite plate thickness or to the ply thickness

[58]. Note that the nonlinear versions of these fiber microbuckling models permit to predict

the compression failure of long fiber composite materials [59-61].

Hence a wrinkling mode follows from two stiffness’s: first the bending stiffness A, that is

very small for a thin membrane or a fiber in a composite material, second a transverse

stiffness C that can be purely elastic in the antisymmetrical microbuckling or the so called

geometric stiffness due to the tensile stress in the wrinkling of a membrane. Clearly, all these

instability problems involve several length scales. That is why we propose several multi-scale

approaches to analyze the behavior of membranes in the presence of wrinkling.
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Methods
A family of nonlinear membrane models is presented that is based on a multi-scale ap-

proach. Unlike macroscopic models of the literature, there is no phenomenological as-

sumption and the models are completely deduced from the full plate model. The

deduction method relies on the concept of Fourier series with slowly varying coeffi-

cients [38,40], whose principle is to work with envelopes of the spatial oscillations.

These envelopes are solutions of systems of nonlinear partial differential equations

established in the next sections “Multi-scale nonlinear models for membrane wrink-

ling”. These equations can be solved, sometimes analytically and in general numerically,

as sketched in the section “numerical implementation”.

Multi-scale nonlinear models for membrane wrinkling
The method of Fourier series with slowly variable coefficients

A new multiple scale approach: the method of Fourier series with slowly variable coefficients

We present here the methodology that will be used to deduce macroscopic nonlinear

models of membrane wrinkling. For simplicity, this first discussion is limited to one-

dimensional case (space variable X ∈ IR) and to a one-dimensional beam model of Von

Karman type that was studied in numerous papers [38-41,44-49]:

dn
dx

þ f ¼ 0 ð5� aÞ

n
ES

¼ γ ¼ du
dx

þ 1
2

dv
dx

� �2

ð5� bÞ

EI
d4v
dx4

−
d
dx

n
dv
dx

� �
þ cvþ c3v

3 ¼ 0: ð5� cÞ

Let us suppose that the instability wavenumber Q is known. Within this method, the
unknown field U Xð Þ ¼ u Xð Þ v Xð Þ n Xð Þ K Xð Þ γ Xð Þð Þ , whose components are

axial displacement, transverse displacement, resultant stress, curvature and membrane

strains, is written in the following form:

U Xð Þ ¼
Xþ∞

m¼−∞

Um Xð Þ exp imQXð Þ ð6Þ
Figure 2 At least two macroscopic fields are necessary to describe a nearly periodic response: the
mean field and the amplitude of the fluctuation.
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The new macroscopic unknown fields Um(X) vary slowly on a single period X;X þ 2π
Q

h i
of

the pattern oscillation. As pictured in Figure 2, at least two functions U0 (X) and U1 (X) are

necessary to describe nearly periodic patterns: U0(X) can be identified to the mean value and

U1 (X) represents the envelope or the amplitude of the spatial oscillations.

The first envelope U0 (X) is real-valued while the next ones are complex. In the whole

paper, we limit ourselves to two envelopes U0 (X) and U1 (X). Most of the time, we shall

assume that they are real.

The derivation operators are calculated exactly according to the following rule:

da
dX

� �
m

¼ dam
dX

þmiQam ¼ d
dX

þmiQ

� �
am ð7Þ

d2a

dX2

� �
m

¼ d2am
dX2 −m2Q2am þ 2imQ

dam
dX

: ð8Þ

It was established [38,40] that it is necessary to keep some spatial derivatives of the
envelopes, despite of the assumption of slowly varying envelopes d/dX < <Q. This will

be re-discussed in the membrane case. At first all the derivatives are kept as in (7) (8),

but some ones can be dropped later.

Application to the membrane constitutive law

The application of the Fourier method to simple nonlinear equation is straightforward

and it can follow from a simple identification of Fourier coefficients. For instance let us

consider the 1-D membrane constitutive law (5-b) that relates the membrane stress n,

the membrane strain γ and the displacement (u,v). From (5-b), one can deduce a

macroscopic constitutive law for the m-th Fourier envelope:

nm
ES

¼ γm ¼ d
dX

þ imQ

� �
um þ 1

2

Xþ∞

k¼−∞

d
dX

þ ikQ

� �
vk

d
dX

þ i m−kð ÞQ
� �

vm−k : ð9Þ

Especially the constitutive law for the mean stress n0(X) will be very useful. In the case

of two real envelopes (u0, v0, n0, γ0, K0) and (u1, v1, n1, γ1, K1), it can be expressed as:

n0
ES

¼ γ0 ¼
du0
dX

þ 1
2

dv0
dX

� �2

þ dv1
dX

� �2

þ Q2v21: ð10Þ

Let us mention the last two terms are positive, what means that the membrane
stretches out when it wrinkles.
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Energetic approach

There is another manner to derive the full macroscopic model [38,40] by starting

from the potential energy. In the elastic beam problem (5), the initial potential is

given by:

P u; vð Þ ¼ 1
2

Z
EI K2 þ ES γ2 þ cv2 þ c3v4

2

� �
dX; K ¼ d2v

dX2 : ð11Þ

As a consequence of the assumptions of slowly varying envelopes, these envelopes
are assumed to be constant on each period so that only terms corresponding to the

harmonic zero of K2,γ2,v2 and v4contribute to the approximated values of the potential

energy. According to Parseval formula, the potential energy of the macroscopic model

can be written as (the contribution of v4 is omitted here for simplicity, full reduced

models can be found in [40]):

P uj; vj
� � ¼ 1

2

Z
EI ð K2

0 þ 2
X∞
j¼1

Kj

		 		2Þ þ ES ð γ20 þ 2
X∞
j¼1

γ j

			 			2Þ þ cð v20 þ 2
X∞
j¼1

vj
		 		2Þ þ…

 !
dX

≈
1
2

Z
EI K 2

0 þ 2 K 1j j2� �þ ES γ20 þ 2 γ1
		 		2� �

þ c v20 þ 2 v1j j2� �þ…
� �

dX:

ð12Þ

Further simplifications can be introduced in this model if one looks only at local
bending instabilities from one-dimensional elastic states. In this respect, we can drop

the mean deflection v0 (X) and the envelope of the axial displacement u1 (X). In this

framework, the curvature and membrane strains of the wrinkled beam are approximated

by (see (7) (9) and suppress the imaginary terms):

K0 ¼ 0 K1j j2 ¼ d2v1
dX2 −Q

2v1

� �2

þ 4
dv1
dX

� �2

γ0 ¼
du0
dX

þ dv1
dX

� �2

þ Q2v21 γ1 ¼ 0:

8>>><
>>>:

ð13Þ

A last approximation can be introduced by disregarding d2v1 in the potential energy.

dX2

This latter approximation has been done in previous works [40] and it is justified by

the slow spatial variations of the envelope. Finally, the potential energy can be approxi-

mated in the following form:

P u0; v1ð Þ ¼
Z

6EIQ2 dv1
dX

� �2

þ EIQ4v21 þ
ES
2

du0
dX

þ dv1
dX

� �2

þ Q2v21

 !2

þ cv21 þ 3c3v
4
1=2

 !
dX

ð14Þ
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Thus the extrema of the macroscopic energy (14) are solutions of the following system:

Comments

Hence the membrane law (15-b) accounts for the wrinkling oscillation v1(X) that is gov-

erned by a sort of bifurcation Equation (15-c) looking like a Ginzburg-Landau equation.

The full model is a nonlinear system coupling membrane behavior and evolution of wrin-

kles. It has been established [38,40] that the Fourier approach generalizes the asymptotic

Ginzburg- Landau method, but it is not limited to the neighborhood of the bifurcation.

This modeling by few Fourier envelopes can be applied with several levels of approxi-

mation. The system (15) is the simplest possible with an internal length. It can still be

simplified by neglecting the derivatives of v1 in (15-c): this leads to a nonlinear relation

between membrane stress and strain, see [40] § 4.4. This pure membrane model will be

extended in the 2D case in the following. It is also possible to include more harmonics,

see [40] § 3.2, with obviously the cost of a greater complexity. The model with a com-

plex envelope v1(X) has been evaluated in [62]: it permits for instance a better account

of the phase in the bulk and improves the response near the boundary.

The previous approach can be considered as a multi-scale method or a computational

homogenization technique. The account of the local behavior is very simplified by the

assumption of a harmonic local variation and it is described only by the instability wave-

number Q. If the Equation (15-c) is reduced to its linear version without modulation of the

envelope, ones recovers the classical approach (2) (3) that gives the wavenumber at the first

bifurcation by minimizing the critical load. When solving a nonlinear macroscopic problem

such as (15), the wavenumber Q has to be prescribed and this could be considered as a

weak point of the present macroscopic approach. Nevertheless it is known that, in a cellu-

lar bifurcation problem, many solutions can exist [45,46,63], each one being characterized

by its wavelength. Furthermore a model with a complex envelope permits to predict a

wavelength slightly deviating from the one a priori prescribed [62]. Higher order harmonics

could also be accounted: for instance, it was established in [40] that a rough account of the

second harmonic is sometimes necessary to recover a consistent post-bifurcation behavior.

But this will be not necessary in the case of membrane wrinkling.

In the next parts, the interaction membrane-wrinkling will be modelised in a bi-

dimensional case within a framework similar to (14) (15), the starting model being the

Föppl-Von Karman equations.

Föppl-Von Karman plate equations as a microscopic model

The main objective of the paper is to obtain nonlinear membrane models where the

wrinkling is described by a bifurcation equation deduced from the initial plate model.
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The method of Fourier series with slowly variable coefficients is applied to deduce the

sought model from the well known Föppl-Von Karman equations for elastic isotropic

plates that will be considered here as the reference model:

DΔ2w−div N:∇wð Þ ¼ 0
N ¼ Lm:γ

2γ ¼ ∇uþ ∇tuþ ∇w⊗∇w
divN ¼ 0

8>><
>>: ð16Þ

where u = (u,v) ∈ IR2 is the in-plane displacement, w is the deflection, N and γ are the mem-

brane stress and strain. With the vectorial notations (N→t(NXNYNXY), γ→
t(γXγY2γXY)), the

membrane elasticity tensor is represented by the matrix Eh
1−ν2

1 ν 0
ν 1 0

0 0
1−ν
2

2
64

3
75 . The corresponding

energy E can be split into a membrane part Emem and a bending part Eben, as follows:

E u;wð Þ ¼ Eben wð Þ þ Emem u;wð Þ
2Eben wð Þ ¼ D

ZZ
Δwð Þ2−2 1−νð Þ ∂2w

∂X2

∂2w
∂Y 2 −

∂2w
∂X∂Y

� �2
 ! !

dω

2Emem u;wð Þ ¼
ZZ

tγ:Lm:γdw ¼ Eh
1−ν2

ZZ
γ2X þ γ2Y þ 2 1−νð Þγ2XY þ 2νγXγY
� �

dω:

8>>>><
>>>>:

ð17Þ

Macroscopic modeling of membrane strain

As explained previously, the unknown fields U(X,Y) are expressed in terms of two harmonics:

the mean field U0(X,Y) and the first order harmonicsr, U1 X;Yð ÞeiQX , —U1 X;Yð Þe−iQX . The
second harmonic should be taken into account to recover the results of the asymptotic

Ginzburg-Landau bifurcation approach, see [40]. Nevertheless the second harmonic does

not contribute to the membrane energy in the present case, because the rapid one-

dimensional oscillations eiQX are inextensional so that N2 = 0, w2 = 0. Hence the second

harmonic does not influence the simplest macroscopic models. For simplicity, the details

of this calculation are omitted.

A unique direction OX for the wrinkling oscillations is chosen in the whole domain.

Of course this assumption is a bit restrictive and should be removed in the future. A

true multi-scale approach should include two levels of modelisation as in the FE2

method [64], but with a basic cell that is not a priori known [65], what should require a

rather intricate management. Thus a more realistic goal is to first discuss the multi-

scale approach with a given wrinkling wavelength and a given direction of the wrinkles.

The derivation rules (7) (8) can be extended easily in a bi-dimensional framework.

For instance, the first Fourier coefficient of the gradient and the 0th order coefficient of

the strain (i.e. its mean value on a period) are given by:

∇wð Þ1

 � ¼

∂w1

∂X
þ iQw1

∂w1

∂Y

8><
>:

9>=
>; ð18Þ
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fγ0g ¼
γX0
γY 0
2γXY 0

8<
:

9=
; ¼ γFK


 �þ γwrf g

γFK

 � ¼

∂u0
∂X

þ 1
2

∂w0

∂X

� �2

∂v0
∂Y

þ 1
2

∂w0

∂Y

� �2

∂u0
∂Y

þ ∂v0
∂X

þ ∂w0

∂X
∂w0

∂Y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð19Þ

γwrf g ¼

∂w1

∂X
þ iQw1

				
				
2

∂w1

∂Y

				
				
2

∂w1

∂X
þ iQw1

� �
∂�w1

∂Y
þ ∂�w1

∂X
−iQ�w1

� �
∂w1

∂Y

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð20Þ

As in formula (10), the strain is split into a classical part γFKthat has the same form

as the original Föppl-Von Karman model (16) and a wrinkling part γwr which depends

only on the envelope of the deflection w1.

Let us now turn to a simplified version of the displacement–strain law (19) (20), in

the same spirit as for the 1D model (15). First the displacement field is reduced to a

membrane mean displacement and to a bending wrinkling, i.e. u1 = 0, w0 = 0. This

means that we account for the influence of the local buckling on the membrane behav-

ior, but not for the coupling between local and global buckling as in [66,67]. Second

the deflection envelope w1(X,Y) is assumed to be real, which disregards the phase

modulation of the wrinkling pattern. Thus the envelope of the displacement has only

three components u0 = (u0, v0) and w1 that will be rewritten for simplicity as u; v;wð Þ¼def
u0; v0;w1ð Þ. The simplified version of the strain field becomes:

γf g ¼def γ0

 � ¼ ε uð Þf g þ γwrf g ð21Þ

ε uð Þf g ¼

∂u
∂X
∂v
∂Y

∂u
∂Y

þ ∂v
∂X

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; γwrf g ¼

∂w
∂X

� �2

þ Q2w2

∂w
∂Y

� �2

2
∂w
∂X

∂w
∂Y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð22Þ

The simplified membrane strain formula (21) (22) is quite similar to that of the initial
Von Karman model. It is split, first in a linear part ε(u) that is the symmetric part of

the mean displacement gradient corresponding to the pure membrane linear strain,

second in a nonlinear part γwr(w) more or less equivalent to wrinkling stain of [23].

The main difference with the initial Föppl-Von Karman strain (16) is the extension

Q2w2 in the direction of the wrinkles. This wrinkling strain is always positive and this

corresponds to a stretching. In the case of a compressive membrane strain, this wrink-

ling term leads to a decrease of the true strain.

As for the 1D model (14), we limit ourselves to the 0th order harmonic to compute

the reduced membrane energy:
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2Emem u;wð Þ ¼ Eh
1−ν2

ZZ
∂u
∂X

þ ∂w
∂X

� �2

þ Q2w2

 !2

þ ∂v
∂Y

þ ∂w
∂Y

� �2
 !2

þ

2 1−νð Þ 1
2

∂u
∂X

þ ∂v
∂Y

� �
þ ∂w
∂X

∂w
∂Y

� �2

þ

2ν
∂u
∂X

þ ∂w
∂X

� �2

þ Q2w2

 !
∂v
∂Y

þ ∂w
∂Y

� �2
 !

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
dω:

ð23Þ

Macroscopic bending energy

We saw two possible ways to get a reduced-order model via the technique of Fourier

series with slowly variable coefficients: either identify the Fourier coefficient as in (9), or

simplify the energy by keeping only the 0th order term in the energy, as in (12). Here we

shall prefer the second approach which permits to provide a formulation easier to be

managed for the numerical discretisation. The computation of the energy is based on the

fact that only the 0th order harmonic φ0 of a function φ has a non zero mean value:

ZZ
ω

φdω ¼
ZZ

ω

φ0dω: ð24Þ

The identity (24) is applied to the two terms of the bending energy in the same

framework as in (15) (21) (22), i.e. u1 = (u1, v1) = (0, 0), w0 = 0,w1 ∈ IR:

φ ¼ Δwð Þ2−2 1−νð Þ ∂2w
∂X2

∂2w
∂Y 2 −

∂2w
∂X∂Y

� �2
" #

¼ φA−2 1−νð ÞφB

φA
0 ¼ Δwð Þ2 ¼

Xþ∞

n¼−∞

Δwð Þn Δwð Þ−n ¼2 Δwð Þ1 Δwð Þ−1 ¼ 2 Δwð Þ1
		 		2

¼ 2 Δw1−Q2w1 þ 2iQ
∂w1

∂X

				
				
2

:

Because of the assumption of a real envelope w = w1, the first term of the bending
energy is obtained:

φA
0 ¼ 2 Δw−Q2w

� �2 þ 8Q2 ∂w
∂X

� �2

: ð25Þ

The second term of the bending energy φB is computed in the same way:
0

φB
0 ¼ 2

∂2w
∂X2 −Q

2w

� �
∂2w
∂Y 2 −2

∂2w
∂X∂Y

� �2

−2Q2 ∂w
∂Y

� �2

: ð26Þ

To be consistent with the approach in the previous 1D case, the derivatives of order three

or four in the differential equations are neglected. This has been justified in [39]: indeed

spurious oscillations can appear in the response of the macroscopic model if these high order

derivatives are kept. Finally the bending energy in the simplified framework is reduced as:
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Eben wð Þ ¼ D
ZZ

Q4w2−2Q2wΔwþ 4Q2 ∂w
∂X

� �2

þ 2 1−ν2
� �

Q2 w
∂2w
∂Y 2 þ

∂w
∂Y

� �2
" #( )

dω:

ð27Þ

Three macroscopic membrane wrinkling models

In this section, one establishes the Partial Differential Equations of the macroscopic

models associated with the strain energies previously presented. In fact, we have not de-

fined a closed model, but a family of models that can depend on the number of harmonics

and various other assumptions, such as the assumption of a real wrinkling envelope or

the hypothesis w0 = 0, which means no bending before wrinkling. Three cases will be con-

sidered. First the model presented in [33] couples a linear membrane behavior with a real

envelope governed by a sort of Ginzburg-Landau equation. It corresponds to (15) in the

1D case and can be considered as a reference model because it is simple and able to ac-

count for the influence of wrinkling on membrane behavior. Next a pure membrane

model will be derived by neglecting the dependence with respect to the derivatives of the

envelopes. Last we shortly describe a model with a complex envelope, as the one studied

in [62] in the 1D case that is a relatively simple improvement of the reference model.

A reference macroscopic membrane model

The first proposed macroscopic membrane model follows from the minimum of the

potential energy. In the absence of body forces, the sum of the membrane energy (23)

and of the bending energy (27) is stationary at equilibrium. Let us recall that these

energies associate 0th order harmonic for membrane quantities and a real first order

harmonics for the deflection, as in the 1D model (15). In other words, it permits to

couple a spatially modulated wrinkling with a linear membrane model:

δEben þ δEmem ¼ 0;

for any virtual displacement that is zero at the boundary. This gives:

δEben þ ∬
ω
N : δγwrdω ¼ 0 ð28Þ

∬
ω
N : δεdω ¼ 0: ð29Þ

After straightforward calculations, one obtains the partial differential equations of the
macroscopic problems in the following form, the wrinkling membrane strain γwr(w)

being given in (22):

divN ¼ 0 ð30Þ
N ¼ Lm: ε uð Þ þ γwr wð Þ½ � ð31Þ

−6DQ2 ∂
2w

∂X2 −2DQ
2 ∂

2w

∂Y 2 þ DQ4 þ NXQ
2

� �
w−div N:∇wð Þ ¼ 0: ð32Þ

The nonlinear model (30) (31) (32) couples nonlinear membrane equations with a bi-
furcation Equation (32) satisfied by the envelope of wrinkling pattern. It extends the
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previous analysis of the 1D case that couples a beam membrane with a one-dimensional

Ginzburg-Landau equation. Hence the bifurcation Equation (32) is a sort of bi-dimensional

Ginzburg-Landau equation, but it differs from the amplitude equation of Segel-Newell-

Whitehead [42,43] who consider cases where the pre-bifurcation state is invariant under

rotation. We shall see that finite element discretisation of (30) (31) (31) is straightforward.

Two analytical solutions will be also presented in the section “Two analytical solutions for

clamped rectangular membranes”.

Within the nonlinear model (30) (31) (32), one recovers two ideas of classical macro-

scopic membrane models. First the splitting between membrane and wrinkling strain of

Roddeman theory [23] has been deduced from Föppl-Von Karman Equation, see (31), with-

out any phenomenological assumption. Then the final bifurcation Equation (32) includes an

internal length, which permits to retrieve the multi-scale instability analysis of Part 2. Finally

this model can be qualitatively compared with the models of Banerjee et al. [29,30], where

an internal length is introduced via Cosserat theory. Body forces and boundary forces can

be introduced easily by the same procedure. This requires that these forces can also be put

in the form of Fourier series with slowly variable coefficients. For instance if these forces

vary slowly at the scale of the wrinkles, this leads to a classical body force in the membrane

Equation (30), as well as in the corresponding boundary conditions. In the same way, trans-

verse forces can also be accounted for within the more complete model entitled “A more

sophisticated macroscopic membrane model with a complex envelope”.

A pure membrane model

The reference membrane model (30) (31) (32) is not a pure membrane model because

the Equation (32) includes spatial derivatives of the envelope of the wrinkles. It is nat-

ural to try to recover a pure membrane model, where the kinematic unknown is only

the in-plane displacement, as suggested in [40], § 4.4. By dropping all the spatial deriva-

tives in (32), one gets a bifurcation equation (NX +DQ2)w = 0 that can be transformed

in a perturbed bifurcation equation as:

NX þ DQ2
� �

w ¼ δ ð33Þ

From (33), one can obtain the deflection as a function of one component of the

membrane stress. In (33), δ is a small perturbation parameter that transforms the

perfect bifurcation equation into a perturbed bifurcation, what is more convenient for

numerical path following calculations. If one simplifies the wrinkling strain (22) γwr

(w) = Q2w2ex⊗ ex and if one combines (31) and (33), one can drop the deflection and de-

duce a nonlinear relation between membrane strain ε(u) and membrane stress N. With

account of the balance of membrane forces, the obtained full model is restricted to:

divN ¼ 0

ε uð Þ þ Q2δ2

NX þ DQ2
� �2 eX⊗eX ¼ Lmð Þ−1: N:

8<
: ð34Þ

The model (34) is consistent with the pure membrane theories of the literature, see for in-
stance [23], because NX cannot be lower than the wrinkling stress −DQ2.Generally, this wrink-

ling threshold is approximated by zero so that the membrane does not admit compressive

stresses. In sections “Two analytical solutions for clamped rectangular membranes” and “Two

numerical solutions”, this model will be compared with our reference model (30) (31) (32).



Figure 3 Rectangular membrane under biaxial load.
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A more sophisticated macroscopic membrane model with a complex envelope

More sophisticated models can be introduced in a rather easy way. For instance models with

five envelopes (harmonics 0, ±1, ±2) have been presented in [39,40], starting models being

respectively 2D hyperelasticity and the beam model of section The method of Fourier series

with slowly variable coefficients. The reference model of section A reference macroscopic

membrane model can be improved at least in two ways. First one can reintroduce the mean

deflection w0 to account for a coupling between local wrinkling and global buckling, as in

[66]: in this manner, one will associate an envelope equation with the full Föppl-Von Kar-

man plate equations. Moreover, this envelope can be a complex one for a better account of

the phase field and of the boundary behavior [62]. To keep a relatively simple model, a more

questionable hypothesis will be done: the membrane behavior will be described only by the

0th order harmonic, i.e. u1 = 0,N1 = 0, γ1 = 0. Hence the remaining unknown fields will be:

u ¼def u0; N ¼def N0;γ ¼def γ0;w0 ∈ IR;w1 ∈C; ð35Þ

i.e. the same variables as in the basic Föppl-Von Karman equations completed by the
complex envelope w1 of the wrinkles. This leads to the following system:

divN ¼ 0 ð36Þ

N ¼ Lm : ε uð Þ þ 1
2
∇w0⊗∇w0 þ γwr w1ð Þ

� 

ð37Þ

DΔ2w0−div N:∇w0ð Þ ¼ 0 ð38Þ

−6DQ2 ∂
2w1

∂X2 −2DQ2 ∂
2w1

∂Y 2 þ DQ4 þ NXQ
2

� �
w1−iQ N:eXð Þ:∇w1 þ div w1N:eXð Þð Þ−div N:∇w1ð Þ ¼ 0:

ð39Þ

This system is only presented as an example of the multi-scale procedure and it will
not be discussed further in this paper.



Figure 4 Sketch of wrinkling phenomena of a rectangular membrane under biaxial load.
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Two analytical solutions for clamped rectangular membranes
In this Section, the reference macroscopic model (22) (30) (31) (32) is studied by seeking

closed-form solutions in the case of clamped rectangular membranes: ω = [0, LX] × [0, LY]

as pictured in Figure 3. The membrane is submitted to a large uniform tensile

stress NY = hσY > 0 and to a small uniform compressive stress loading NX = hσX = − λ < 0.

If the plate is clamped, it is known [40] that the envelope w vanishes on the boundary. So

the corresponding boundary conditions will be

N:eX ¼ −λeX on the sides X ¼ 0;X ¼ LX
N:eY ¼ NY eY on the sides Y ¼ 0;Y ¼ LY
w X;Yð Þ ¼ 0 on ∂ω:

8<
: ð40Þ

Classically, we start with a “linear stability analysis” that is quite simple due to the
stress state depending linearly on the applied force. This will establish unambiguously

the multi-scale character of membrane wrinkling. Next a classical nonlinear bifurcation

analysis will be done, in the same manner as for a classical post-buckling computation

[68,69]. This will provide a relation between the applied compressive stress and the size

of the wrinkles.

An analytical solution for wrinkling initiation

The linearised version of the envelope Equation (32) is rewritten as

−6DQ2 ∂
2w

∂X2 − 2DQ2 þ hσY
� � ∂2w

∂Y 2 þ DQ4w ¼ h σXj j Q2w−
∂2w
∂Y 2

� �
: ð41Þ

Since the envelope vanishes at the boundary, the smallest eigenfunction of (41) is in
the form: w(X,Y) = sin(πX/Lx)sin(πY/LY), as shown in Figure 4. This leads to a classical

relation between compressive stress and wavenumber.

h σXj j Qð Þ ¼
6DQ2 π2

L2X
þ 2DQ2 þ hσY
� �

π2

L2Y
þ DQ4

Q2 þ π2

L2X

ð42Þ

Classically, the instability wavenumber Q is chosen by minimizing the stress as a
function of the wavenumber. For simplicity, we take into account the orders of magni-

tude 1 < <QLX, 2DQ
2/h ≈ |σX| < < σY to simplify (42) in the following manner:
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σXj j Qð Þ ¼ σYπ2

Q2L2Y
þ DQ2

t
ð43Þ

The minimum of the latter yields values of the wavenumber and of the critical com-

pressive stress that are consistent with the results of the literature [2,7]:

Qwr ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12π2 1−ν2ð Þ4

p 1ffiffiffiffiffiffiffiffi
hLY

p
ffiffiffiffiffiffi
σY
E

4

r
≈3:2

1ffiffiffiffiffiffiffiffi
hLY

p
ffiffiffiffiffiffi
σY
E

4

r
ℓwr ¼

ffiffiffiffiffiffiffiffi
hLY

p ffiffiffiffiffiffi
E
σY

4

r
σwrX
		 		 ¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 1−ν2ð Þp ffiffiffiffiffiffiffiffiffi
EσY

p h
LY

ð44Þ

This simple calculation brings out the multiple scale character of the wrinkling
phenomenon: indeed, the wrinkling threshold depends on the wavelength that is a micro-

scopic quantity, but this wavelength depends of the width of the plate that is a macro-

scopic length. Thus a full wrinkling analysis has to associate micro and macro scales.

Recent experimental results [9] have established that the wavelength increases when

the thickness h increases and decreases when the tension σY increases. The scaling law

l≈
ffiffiffi
h

p
σ
−1
4

Y seems qualitatively consistent with experimental results.

The wrinkling stress can also be written in terms of the wavenumber by NX = − 2DQ2,

to be compared with the bifurcation load NX = −DQ2 of the pure membrane model (34),

but of course the pure membrane model is not able to predict the wavenumber.

Initial post-bifurcation analysis

Now we try to connect the applied loads and the size of the wrinkles. As in any plate

buckling, the deflection is proportional to the square root of the difference between the

current load and its critical value. This post-bifurcation analysis will be done by starting

from the new reference membrane model (22) (30) (31) (32) in order to illustrate its

ability to characterize the evolution of the wrinkles beyond the instability threshold.

The membrane model (22) (30) (31) (32) is a macroscopic one already simplified by a

multi-scale analysis. Therefore there is no need to come back to a multiple scale bifur-

cation analysis of Ginzburg-Landau type. A standard post-bifurcation analysis as in

[68,69] will be sufficient to predict the amplitude of wrinkles.

According to [69], the solution of the symmetric bifurcation problem (22) (30) (31)

(32) can be solved by seeking the unknowns and the compression load as Taylor series

with respect to a scalar bifurcation parameter “a”:

u X;Yð Þ
N X;Yð Þ
w X;Yð Þ

λ

8>><
>>:

9>>=
>>; ¼

u 0ð Þ

N 0ð Þ

0
λ 0ð Þ

8>><
>>:

9>>=
>>;þ a

0
0

w 1ð Þ

0

8>><
>>:

9>>=
>>;þ a2

u 2ð Þ

N 2ð Þ

0
λ 2ð Þ

8>><
>>:

9>>=
>>;þ a3

0
0

w 3ð Þ

0

8>><
>>:

9>>=
>>;þ… ð45Þ

To avoid any ambiguity with Fourier expansion (Ui), the terms of the Taylor expan-

sions have been denoted with a superscript U(i). This straightforward bifurcation ana-

lysis leads to Partial Differential Equations at each order.

At order 0, the solution is a membrane state:

N 0ð Þ X;Yð Þ ¼ −λ 0ð ÞeX⊗eX þ NyeY⊗ eY : ð46Þ

By introducing the linear operator
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L wð Þ ¼ −6DQ2 ∂
2w

∂X2 −2DQ
2 ∂

2w

∂Y 2 þ DQ4w−NY
∂2w
∂Y 2 : ð47Þ

the PDE’s at orders 1, 2, 3 are:

L w 1ð Þ� �
−λ 0ð ÞQ2w 1ð Þ þ λ 0ð Þ ∂

2w 1ð Þ

∂X2 ¼ 0

w 1ð Þ ¼ 0 on ∂ω

8<
: ð48Þ

Of course the first order Equation (48) corresponds exactly to the bifurcation

Equation (41) that has been solved previously. It is not necessary to re-discuss this point.

The smallest buckling mode is

w 1ð Þ X;Yð Þ ¼ sin
πX
LX

� �
sin

πY
LY

� �
: ð51Þ

Let us solve the second order problem (49). The equilibrium Equation (49-a) can be

solved by introducing a stress function:

N 2ð Þ
X ¼ ∂2φ

∂Y 2 ; N 2ð Þ
Y ¼ ∂2φ

∂X2 ; N 2ð Þ
XY ¼ −

∂2φ
∂X∂Y

: ð52Þ

The membrane constitutive law (49-b) can be detailed as:
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∂u 2ð Þ

∂X
þ ∂w 1ð Þ

∂X

� �2

þ Q2 w 1ð Þ
� �2

¼ 1
Eh

∂2φ
∂Y 2 −ν

∂2φ
∂X2

� 


∂v 2ð Þ

∂Y
þ ∂w 1ð Þ

∂Y

� �2

¼ 1
Eh

∂2φ
∂X2 −ν

∂2φ
∂Y 2

� 

∂u 2ð Þ

∂Y
þ ∂v 2ð Þ

∂X
þ 2

∂w 1ð Þ

∂X
∂w 1ð Þ

∂Y
¼ −2

1þ ν

Eh
∂2φ
∂X∂Y

:

8>>>>>>>><
>>>>>>>>:

ð53Þ

The in-plane displacement u(2),v(2) can be eliminated from the combination ∂2

∂Y 2

53−að Þ þ ∂2
∂X2 53−bð Þ− ∂2

∂X∂Y 53−cð Þ. The resulting equation is:

1
Eh

Δ2φ ¼ 2
∂2w 1ð Þ

∂X∂Y

� �2

−
∂2w 1ð Þ

∂X2

∂2w 1ð Þ

∂Y 2

( )
þ 2Q2 ∂w 1ð Þ

∂Y

� �2

þ w 1ð Þ ∂
2w 1ð Þ

∂Y 2

( )
: ð54Þ

It looks like the in-plane equation of the starting Föppl-Von Karman model, with a

new second term in the r.h.s. due to the rapid oscillations. This second term is of the

order O 1
ℓ2L2

� �
while the first term of the r.h.s. involves only the macroscopic length and

is O 1
L4

� �
. In what follows, this first term will be neglected. To account for the second

order term λ(2) in (52-c), one can introduce a new stress function ψ(X,Y) by:

φ X;Yð Þ ¼ −λ 2ð Þ Y
2

2
þ ψ X;Yð Þ;

so that ψ(X,Y) is solution of the following boundary value problem:

The Dirichlet boundary conditions in (55) are deduced from (49-c) (49-d) by integra-

tion along the boundary, by a quite well known calculation when dealing with a stress

function.

Because of the boundary conditions, it seems difficult to get a closed form solu-

tion of (55). We propose to build an approximate equation by using a Galerkin

approximation. Let us transform the domain ω = [0, LX] × [0, LY] into a reference domain

ωref = [−1, + 1] × [−1, + 1] by:

X ¼ 1þ r
2

LX ; Y ¼ 1þ s
2

LY

⇒w 1ð Þ r; sð Þ ¼ cos
πr
2

� �
cos

πs
2

� �
:

Let us consider a shape function that satisfies the boundary conditions (55-b) (55-c)
(55-d), for instance
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W r; sð Þ ¼ 1−r2
� �2

1−s2
� �2

: ð56Þ

The PDE (55-a) can be rewritten as (with α ¼ LY
LX
):

α2
∂2

∂r2
þ ∂2

∂s2

� �2

ψ ¼ π2EhQ2 L
2
Y

16
1− cos π 1þ rð Þð Þ cos π 1þ sð Þ:

Its Galerkin approximated solution is:

ψ ¼ π2EhQ2 L
2
Y

16
I2
I1
W r; sð Þ

I1 ¼
ZZ
ωref

α2
∂2

∂r2
þ ∂2

∂s2

� �2

W

" #
Wdrds

I2 ¼
ZZ
ωref

1− cos π 1þ rð Þ½ � cos π 1þ sð ÞWdrds:

ð57Þ

The corresponding axial stress field is:

N 2ð Þ
X ¼ −λ 2ð Þ þ π2

4
EhQ2 I2

I1

∂2W
∂s2

: ð58Þ

Finally we take into account the third order Equation (50-a), but we only need to

write an orthogonality condition between the mode w(1) and the r.h.s. of (50-a):ZZ
ωref

N 2ð Þ
X Q2 w 1ð Þ

� �2
−div N 2ð Þ:∇w 1ð Þ

h i
w 1ð Þ

� �
dω ¼ 0: ð59Þ

1
� �
For simplicity we disregard the second term of (59) that is of order O
L2

while the

first one is of order O Q2
� � ¼ O 1

ℓ2

� �
(ℓ is the small instability wavelength), which leads

to a simpler solvability condition:ZZ
ωref

N 2ð Þ
X w 1ð Þ
� �2

dω ¼ 0:

This leads to the value of the second order load λ(2), that is written in terms of four
adimensional integrals I1, I2, I3, I4

λ 2ð Þ ¼ π2

4
EhQ2 I2I4

I1 αð ÞI3 ð60Þ
Table 1 Membrane response for different tensile loads as a function of the tensile stress:
wrinkling compressive load, wrinkling wavenumber, size of the wrinkles when the
compressive load is twice the wrinkling load

NY (N/mm) Nwr
X (N/mm) LX

ℓwr
a
h

forNX =2Nwr
X

5 −0.064 6.28 1.66

10 −0.090 7.48 1.66

15 −0.110 8.28 1.66

20 −0.127 8.90 1.66

Data: E = 70000 MPa, ν=0; LX = LY = 200 mm, h = 0.05 mm.



Figure 5 Amplitude of the wrinkles normalised by membrane thickness versus compression load
for different tensile loads.
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I3 ¼
ZZ
ωref

w 1ð Þ
� �2

drds ¼ 1

I4 ¼
ZZ
ωref

∂2W
∂s2

w 1ð Þ
� �2

drds:

This identity (60) permits to evaluate the increment of the load due to the wrinkles.

It is convenient to compare this load to the approximated critical load λ(0) = 2DQ2:

λ

λ 0ð Þ ¼ 1þ λ 2ð Þ

λ 0ð Þ a
2 ¼ 1þ 3

2
π2 1−ν2
� � I2I4

I1 αð ÞI3
a
h

� �2
: ð61Þ

Curiously, this ratio depends rather little on the macroscopic lengths LX, LY and the
wrinkling wavelength ℓ, except via the aspect ratio α ¼ LY
LX
. Obviously the critical load

depends strongly on ℓ or on LY by λ 0ð Þ
Eh ≈

h
l

� �2≈ h
LY
:

This means that for a given aspect ratio α ¼ LY
LX
, there is an universal law connecting the

ratio “amplitude of wrinkles over the thickness” to the ratio “loading over critical wrinkling

load”, but clearly the critical wrinkling load depends on the traction load. Finally by noting;

C αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3π2 1−ν2ð Þ

I1 αð ÞI3
I2I4

s
;

and by accounting for (44), we obtain the law connecting the wrinkling amplitude as a

function of the compressive stress:

a
h
¼ C αð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σXj jffiffiffiffiffiffiffiffiffi
EσY

p LY
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1−ν2ð Þ

π

r
−1

s
: ð62Þ

Note that this analytical formula comes from a structural analysis. Hence the results
depend on the domain via the coefficient α ¼ LY
LX

and on the boundary conditions. The
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formula (62) is illustrated by numerical values in the case of a square membrane in

Table 1 and Figure 4, for four values of the tensile force.

Let us underline that the previous bifurcation analysis depends strongly on the spatial

derivatives in the envelope Equations (32) and therefore on the boundary conditions

satisfied by the envelope w. For instance, if one considers a simply supported mem-

brane, the macroscopic boundary conditions are of Newman type ( ∂w∂n ¼ 0 ) and the

mode is w(1) = 1 so that the bifurcation analysis from (32) should imply a bifurcation

branch with a constant load, as in straight beam buckling. In other terms, the stable

postbuckling response obtained in (62) is strongly related to the spatial evolution of the

wrinkling mode. The non-linearity of this response is not negligible, as shown by

the last column of Table 1 and Figure 5, which means that a significant wrinkling

amplitude requires a significant increasing of the compression.

Numerical implementation
We describe now the discretisation techniques and the solving algorithm for the refer-

ence model (30) (31) (32). Because this system is a second order partial differential sys-

tem, any classical C0 finite element is acceptable. In the applications, quadratic

quadrilateral finite elements (Q8) will be used. The resulting nonlinear discrete equa-

tions will be solved by the Asymptotic Numerical Method [70]. Some numerical tests

will be performed with the pure membrane model (34); its discretisation being straight-

forward, the details will be omitted.

Matrix form of the bending virtual work

The bending energy (27) depends only on the envelope of the deflection that can be

represented by the vector:

βf g¼t w;
∂w
∂X

;
∂w
∂Y

� �
ð63Þ

After introducing the matrix
Lf
� � ¼ 2D

Q4 0 0
0 6Q2 0
0 0 2Q2

2
4

3
5 ð64Þ

The bending energy can be written as:
δEben ¼
ZZ

δβh i Lf
� �

βf g dω ð65Þ

Matrix form of the membrane virtual work

The membrane energy (23) is a quadratic function of the membrane strain γ given in

(21) (22) that is a quadratic function of the displacement. The displacement field and

its useful derivatives are described by the vector:

θf g¼t ∂u
∂X

;
∂u
∂Y

;
∂v
∂X

w;
∂w
∂X

;
∂w
∂Y

� �
ð66Þ

Note that the two displacement vectors (63) (66) are connected by a transform matrix
[Tβ]:
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βf g ¼ Tβ θf g

Tβ

� � ¼ 0 0 0
0 0 0
0 0 0

0 1 0
0 0 1
0 0 0

0
0
1

2
4

3
5 ð67Þ

The strain {γ} can be expressed by a constant matrix [H] and by a matrix [A(θ)] that

depends linearly of the displacement vector:

γf g ¼ H½ � þ 1
2
A θð Þ½ �

� �
θf g ð68Þ

H½ � ¼
1
0
0

0
0
1

0
0
1

0
1
0

0
0
0

0
0
0

0
0
0

2
4

3
5 ð69Þ

A θð Þ½ � ¼ 2

0

0

0

0

0

0

0

0

0

0

0

0

Q2w

0

0

∂w
∂X

0

∂w
∂Y

0

∂w
∂Y
∂w
∂X

2
66666664

3
77777775

ð70Þ

With these notations, the membrane constitutive laws and the membrane energy can

be written as:

Nf g ¼ Lm½ � H½ � þ 1
2
A θð Þ½ � θf g

� �
ð71Þ

δEmem ¼ ∬ δθh i t H½ � þ t A θð Þ½ �Þ Nf g dω
� ð72Þ

Discretisation

A classical 2D-Q8 finite element that is defined by eight nodes and three degrees of

freedom per node is used. The displacement (u,w) and the full vector on each element

are discretised in the form:

u
w

� �
¼ N½ � qf ge ð73Þ
Figure 6 Rectangular membrane submitted to tension and compression. Post-bifurcation patterns just after
the bifurcation, with the new reduced model (a) and the full shell model (b). NY = 10 N/mm, NX =−0.09 N/mm.



Figure 7 Rectangular membrane submitted to tension and compression. Response curves near the
bifurcation for the bi-axial load problem of Figure 3, with three different FE models and analytical solutions
in (44).

Damil et al. Advanced Modeling and Simulation in Engineering Sciences 2014, 1:6 Page 23 of 35
http://www.amses-journal.com/content/1/1/6
θf ge ¼ G½ � qf ge ð74Þ

We need also few matrices to connect the discrete displacement and the membrane
strain:

B qð Þ½ � ¼ Hþ A θ qð Þð Þ½ � G½ � ð75Þ

Bl½ � ¼ H½ � G½ � Bnl qð Þ½ � ¼ A θ qð Þð Þ½ � G½ � ð76Þ

Hence we obtain the discrete form of the full internal virtual work:
δEben þ δEmem ¼
X
e

δqh ie∬ t B qð Þ½ � Nf g þ t G½ �t Tβ

� �
Lf
� �

Tβ

� �
G½ � qf gedω

ð77Þ

Nf g ¼ Lm½ � Bl½ � þ 1
2
Bnl qð Þ½ �

� �
qf ge ð78Þ

The external virtual work is quite classical and the details will be omitted.



Figure 8 Rectangular membrane submitted to tension and compression. Post-bifurcation profile along
the length, at the beginning of the bifurcation curve. NX = −0.09001 N/mm.

Figure 9 Rectangular membrane submitted to tension and compression. Post-bifurcation profile along
the length in the medium range predicted by the new reduced (22) (30) (31) (32). NX = −0.090528 N/mm.
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Figure 10 Rectangular membrane submitted to tension and compression. Post-bifurcation profile
along the length in the large predicted by the new reduced (22) (30) (31) (32). NX = −0.13543 N/mm.

Figure 11 Rectangular membrane submitted to tension and compression. Bifurcation curves obtained
with two numerical models and the analytical solution of § 4.2.
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Figure 12 A rectangular membrane under uniaxial load.
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Continuation procedure

The full discrete problem (54) (55) is solved by a continuation procedure called Asymp-

totic Numerical Method [70] that is a step by step continuation algorithm. In each step,

the unknowns are expanded into series with respect to a real path parameter “a”:

N
q

n o
¼
XNorder

n¼0

an Nn
qn

n o
ð79Þ

To compute the term of order “n” in (56), we followed a procedure described in nu-

merous papers of the literature [66,70], which is not developed in this paper.

Two numerical solutions
The procedure described in the previous section has been applied to two numerical

tests: the wrinkling of a rectangular membrane submitted to a compressive-tensile

loading studied previously in section “Clamped rectangular membrane submitted to

tension and compression” and the wrinkling of long rectangular membrane submitted

to a uniaxial traction that was studied by several authors in the literature. The main

question is to evaluate the validity range of the reduced model (30-32) and (34).

Clamped rectangular membrane submitted to tension and compression

In this section, we study again the example of a clamped rectangular membrane under

bi-axial tension-compression load (see Figure 3). The side lengths LX and LY are



Damil et al. Advanced Modeling and Simulation in Engineering Sciences 2014, 1:6 Page 27 of 35
http://www.amses-journal.com/content/1/1/6
respectively 400 mm and 200 mm, and the thickness h is 0.05 mm. The applied tension

is NY = 10 N/mm and the compression force NX increases in the path following pro-

cedure. In the macroscopic model, a wavenumber Q has to be chosen and we take the

one predicted by the analytic formula (44). The Figure 6 presents the wrinkling pattern

just after the bifurcation. Clearly the envelope is nearly sinusoidal in the two directions

OX and OY, as predicted by the analytical solutions. It appears also that the envelope

model is able to describe correctly the wrinkling shape predicted by the full shell

model. A more quantitative picture is provided by Figure 7, where the results of the

pure membrane model (34) are also reported. First the finite element study corrobo-

rates the analytical bifurcation study. Second the pure membrane model (34) underesti-

mates very much the wrinkling load. Last the macroscopic model (30) (31) (32) is able

to describe quite perfectly the initial post-bifurcation response. Let us underline that

the macroscopic model requires less degrees of freedom than the full shell model.

As it is well known [43,46] with the Ginzburg-Landau equation, the post-bifurcation

profile evolves rapidly. Just after the bifurcation (w/h = 0.16), the envelope is nearly si-

nusoidal as predicted analytically, cf Figure 8. Next it changes rapidly for a hyperbolic

tangent shape (w/h = 0.2, Figure 9), what is also predicted by Ginzburg-Landau theory.

The numerical results show that the profile changes gradually and becomes more and

more localized, with two peaks at the end of the boundary layers (w/h = 2, Figure 10).

The Figure 11 evaluates the ability of the macroscopic model to predict large sizes of

wrinkles. It appears that correct amplitudes can be obtained for rather large wrinkles

(w/h = 1). Nevertheless one has to be careful in the analysis of the responses for large

deflections because these problems can have many stable and unstable solutions and it

is not obvious that a path following method with a full shell model provides always the

most relevant solution. In the same Figure 11, we reported the result predicted by the

approximate analytical solution (61). It gives correctly the beginning of the bifurcated

branch up to about w/h ≈ 0.3.
A rectangular membrane submitted to uniaxial traction

A thin rectangular membrane whose dimensions are h = 0.05 mm, LX = 1400 mm,

LY = 200 mm, is submitted to a uniaxial load (see Figure 12). The long sides are

stress-free. Along the short sides, an increasing displacement is applied in the X-direction,

the OY-displacement being locked. Linear bifurcation was studied in [56,71] with

the same boundary conditions and a nonlinear bifurcation as here in [33], but with

a prescribed stress at the boundary. In this case, the wrinkling occurs for rather
Figure 13 Long membrane in uniaxial tension. Post-bifurcation patterns obtained with the envelope
model (a) and a full shell model (b).



Figure 14 Long membrane in uniaxial tension. Bifurcation curves with two different models.
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high axial stresses since it is caused by small transverse compressive stresses due

to the boundary effects (for a finer analysis, see [71]). Comparing with the previous

tests, it permits to evaluate the ability of the macroscopic model in a case of non

uniform pre-buckling stresses.

In Figure 13, one sees that the post-bifurcation patterns obtained by the new reduced

model (30) (31) (32) are quite similar as those provided by the full shell model. This
Figure 15 Long membrane in uniaxial tension. Post-bifurcation profile along the width.
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establishes the relevance of this new reduced model to represent the wrinkling modes

in a case with a non uniform pre-buckling stress field.

In Figure 14, a response curve is plotted for these two models: the macroscopic

model (30) (31) (32) and the full shell model. As in the previous case, the new reduced

model gives about the same bifurcation point as the reference model as well as the

post-bifurcation response. The number of degrees of freedom is much smaller with the

envelope models because they do not need to describe explicitly the full details of the

wrinkles. Then a wrinkling pattern along the width is plotted in Figure 15 for the full

and the reduced model. Globally they are quite similar but with slight differences for

the amplitude and for large sizes of wrinkles (up to w/h = 4). One can wonder if these

results could still be improved by keeping a complex envelope as in (36-39) or by keep-

ing higher order harmonics.
Linear wrinkling analysis revisited by a double scale asymptotic analysis
Last we re-discuss the problem of membrane wrinkling from the point of view of the

traditional asymptotic double scale method [72,73] that is slightly different from the tech-

nique of Fourier series with slowly variable coefficients. In both methods, one distinguishes

two levels of spatial evolution. Within the asymptotic double scale method, the considered

problem involves further small parameters and the solutions are also expanded with respect

to these small parameters. It will be interesting to compare shortly the two approaches.

This will done for the problem of wrinkling initiation in a rectangular membrane

0 < X < LX,0 < Y < LY studied previously. A uniform ompression-traction membrane

field (NX= hσX, NY= hσY, σX < 0 < σY , σY > > |σX|) is applied. The wrinkling mode and the

wrinkling compressive stress are assumed to solve the linearized Fôppl-Von Karman equation:

DΔ2w−NY
∂2w
∂Y 2 ¼ − NXj j ∂

2w

∂X2 ð80Þ

A small parameter η is introduced that can be identified to the stress ratio:
η ¼
ffiffiffiffiffiffiffiffiffiffi
NXj j
NY

s
¼

ffiffiffiffiffiffiffiffi
σXj j
σY

s
<< 1: ð81Þ

The unknown wrinkling mode is assumed to depend on three independent spatial vari-
ables: the starting space coordinates X, Y and another rapidly varying coordinate x ¼ X
η in

the compressive direction. The eigenpair w(x, X,Y), NX is sought in the form of an

asymptotic expansion with respect to η. In agreement with the order of magnitude

(81), we define an unknown control parameter λ and another fixed load parameter

N−4
Y by:

NX ¼ −
λ

η2
; λ > 0; NY ¼ N−4

Y

η4
; ð82Þ

in such a way that λ and N−4
Y will be O(1) in the formal asymptotic expansion. The classical

rules of the asymptotic expansion are as follows:
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λ ¼ λ 0ð Þ þ ηλ 1ð Þ þ η2λ 2ð Þ þ…

w x;X;Yð Þ ¼ w 0ð Þ x;X;Yð Þ þ ηw 1ð Þ x;X;Yð Þ þ η2w 2ð Þ x;X;Yð Þ þ…

∂
∂X

→
1
η

∂
∂x

þ ∂
∂X

∂
∂Y

→
∂
∂Y

Δ ¼ ∂2

∂X2 þ
∂2

∂Y 2 →
1
η2

∂2

∂x2
þ 2
η

∂
∂x

∂
∂X

þ Δ

Δ2→
1
η4

∂4

∂x4
þ 4
η3

∂3

∂x3
∂
∂X

þ 1
η2

4
∂2

∂x2
∂2

∂X2 þ 2
∂2

∂x2
Δ

� 

þ 4
η

∂
∂x

∂
∂X

Δþ Δ2:

ð83Þ

To distinguish from the coefficients of the Fourier expansion (6) Ui(X), the indices of
the asymptotic expansions (83) have been denoted by λ(i),w(i).

Next the rules (82) (83) are inserted in the considered PDE (80) and a sequence of

differential problems is deduced by identifying the PDE at the orders O 1
η4

� �
, O 1

η3

� �
,

O 1
η2

� �
, etc. This leads to

L w 0ð Þ
� � ¼def D ∂4w 0ð Þ

∂x4
þ λ 0ð Þ

∂2w 0ð Þ
∂x2

−N−4
Y

∂2w 0ð Þ
∂Y 2 ¼ 0 ð84Þ

L w 1ð Þ
� � ¼ −4D

∂3

∂x3
∂w 0ð Þ
∂X

−2λ 0ð Þ
∂
∂x

∂w 0ð Þ
∂X

−λ 1ð Þ
∂2w 0ð Þ
∂x2

¼def −M w 0ð Þ
� �

−λ 1ð Þ
∂2w 0ð Þ
∂x2

ð85Þ

L w 2ð Þ
� � ¼−M w 1ð Þ

� �
−4D

∂2

∂x2
∂2w 0ð Þ
∂X2 −2D

∂2

∂x2
Δw 0ð Þ

−λ 0ð Þ
∂2w 0ð Þ
∂X2 −2λ

1ð Þ
∂
∂x

∂w
1ð Þ

∂X
−λ

1ð Þ

∂2w
1ð Þ

∂x2
−λ 2ð Þ

∂2w 0ð Þ
∂x2

:

ð86Þ

As it is classical, the first term w(0)(x,X,Y) of the expansion of the mode will be

defined by taking into account the equations at the three levels (84) (85) (86) with the

associated boundary conditions. The first Equation (84) is exactly the same as Equation

(4). It depends on two variables: the fast variable x in the direction of the wrinkles and

the slow variable Y in the transverse direction; the dependence with respect to X will

appear later. One recovers a main characteristic of the wrinkling: its modelisation re-

quires two length scales: the scale of the wrinkles and a macroscopic length scale. Since

the physical domain is very large with respect to the wavelength of the wrinkles, the

mode w(0)(x,X,Y) may be assumed harmonic with respect to the fast variable x, the

wavelength ℓ ¼ 2π
q being not prescribed at this stage:

w 0ð Þ x;X;Yð Þ ¼ A X;Yð Þ cos qxþ φð Þ: ð87Þ

The assumption (87) permits to define a slowly varying envelope A(X,Y) and (84)
leads to a differential equation satisfied by this envelope:

−N−4
Y

∂2A
∂Y 2 þ Dq4−λ 0ð Þq2

� �
A ¼ 0: ð88Þ

As expected, (88) looks like a linearized Ginzburg-Landau equation. The solution of
(88) requires boundary conditions on the sides of the rectangle that are parallel to OX.
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If the deflection w and its Y-derivative are assumed to be zero on the sides Y = 0, Y = LY,

the amplitude A(X,Y) must satisfy the boundary conditions ([62] § 2.4):

A X; 0ð Þ ¼ A X; LYð Þ ¼ 0: ð89Þ

This leads to a first bifurcation pair:
A X;Yð Þ ¼ B Xð Þ sin πY
LY

� �

λ 0ð Þ qð Þ ¼ Dq2 þ N−4
Y

q2
π2

L2Y
:

ð90Þ

If one goes back to the corresponding initial quantities Q ¼ q , N ¼ − λ 0ð Þ and to
η X 0ð Þ η2

σY ¼ NY
h ¼ N−4

Y
hη4 , one recovers exactly the classical wrinkling stress and wavelength of (44).

The wrinkling wavelength is defined at this level by minimizing the critical load λ(2)(q)

with respect to the wavenumber.

Now Equation (85) corresponding to the second level O 1
η3

� �
is discussed. Because of

(87), (85) is rewritten as:

L w 1ð Þ
� � ¼ −2 sin qxþ φð Þ 2Dq2−λ 0ð Þ


 �
q
∂A
∂X

þ λ 1ð ÞA cos qxþ φð Þ: ð91Þ

The first term of the right hand side of (91) vanishes because λ(0) = 2Dq2. Since the

operator L(.) is singular, the existence of a bounded solution x→w(1)(x, X,Y) requires

the elimination of “secular terms”. This solvability condition leads to λ(1) = 0. Then the

solution of (91) has the same shape as the first order term:

w 1ð Þ x;X;Yð Þ ¼ A 1ð Þ X;Yð Þ cos qxþ φ 1ð Þ
� �

: ð92Þ

Last we look at the Equation at the third level (86). By taking into account the previ-

ous results, we get

L w 2ð Þ
� � ¼ cos qxþ φð Þ 6Dq2−λ 0ð Þ

� � ∂2A
∂X2 þ 2Dq2

∂2A
∂Y 2 þ λ 2ð Þq2A

� �
: ð93Þ

The elimination of the secular terms leads to a PDE satisfied by the slowly varying
envelope A(X,Y) = B(X)sin(πY/LY):

−2D 2
∂2A
∂X2 þ

∂2A
∂Y 2

� �
¼ λ 2ð ÞA ⇒ −4D

∂2B
∂X2 þ 2D

π2

L2Y
B ¼ λ 2ð ÞA: ð94Þ

The resulting Equation (94) is a one-dimensional eigenvalue problem that permits to
define a correction λ(2)η
2 to the critical stress and the variation of the amplitude A(X,

Y) = B(X)sin(πY/LY) in the compressive direction. In this respect, boundary conditions

along the sides X = 0,X = LX are needed. For instance with Dirichlet boundary condi-

tions, the smallest eigenvalue and eigenmode of (94) are:
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A X;Yð Þ ¼ sin
πX
LX

� �
sin

πY
LY

� �
ð95� aÞ

λ 2ð Þ ¼ 2Dπ2 2

L2X
þ 1

L2Y

� �
: ð95� bÞ

Hence the analysis of the corrective Equation (86) permits to define the evolution of
the mode shape in the membrane, especially in the X-direction. This equally permits to

correct the buckling stress according to (95-b). With account to this value of λ(2), the

critical stress is corrected as σwr2X ¼ − λ 0ð Þþλ 2ð Þη2

hη2 :

σwr2X

		 		
E

¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1−ν2ð Þp ffiffiffiffiffiffi

σY
E

r
h
LY

þ π2

6 1−ν2ð Þ 2
h2

L2X
þ h2

L2Y

� �

¼ σwr1X

		 		
E

þ π2

6 1−ν2ð Þ 2
h2

L2X
þ h2

L2Y

� �
: ð96Þ

Nonetheless the correction is generally small for very thin membranes, i.e. h ¼ O 10−2ð Þ,
LX
h
LY

¼ O 10−2ð Þ. This correction depends mainly on the bending effects, as this can be seen

from (95) or (96). It depends also on the boundary condition on the four sides, while the

first order term σwr1
X depends only on boundary conditions on X = 0, L.

Last comments about the asymptotic modeling

The asymptotic modeling splits the modal analysis into several steps. First a harmonic

fast evolution is obtained at the scale of the wrinkle wavelength, see (87). Then the dif-

ferential Equation (88) yields a first approximation of the wrinkling load, the wave-

length and the variation of the envelope in the transverse direction. Finally the mode is

completely characterized if one takes into account its evolution along OX via (94), the

latter equation being an eigenvalue problem that provides a small correction λ(2) to the

wrinkling load.

This splitting of the governing envelope equation corresponds to a consistent account

of the different levels of applied stresses and of length scales. This cumbersome multi-

scale analysis does not exist within the Fourier series that only distinguishes the Fourier

coefficients of the response. Unlike the purely asymptotic approach, Fourier method

leads to consistent bi-dimensional models as (30) (31) (32) that are easier to handle nu-

merically. Nevertheless the two approaches are not contradictory and an asymptotic

procedure could be applied by starting from the reduced models (30-32)(34) or (36-39).

Conclusion
Membrane wrinkling has been re-discussed from multi-scale approaches. Basically, a

local wrinkling wavelength is chosen and macroscopic models are deduced, whose un-

knowns are envelopes of the fastly varying oscillations of the wrinkles. This amounts to

coupling a membrane model or a shell model with a sort of bifurcation equation that

governs the appearance of wrinkles. This new class of models leads to well-posed par-

tial differential systems that are easy to be solved numerically. These models have been

studied in details, by computing several numerical and analytical solutions. This new

approach is rather different from those classically used in the literature, but it permits to
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recover their main features: a quite different behavior of the membrane with or without

wrinkling, a splitting into macroscopic strain and wrinkling strain and the presence of an

internal length that proves to be necessary to get a consistent distribution of the wrinkles.

A main originality is the ability to predict the main characteristics of the wrinkles from

macroscopic models and coarse meshes. Likely the weakest point is the necessity to

choose a priori the wavelength in the case of a nonlinear analysis, but this could be im-

proved by coming back to a true multi-scaled approach as in FE2 method.
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