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Abstract

Background: We consider a static condensation reduced basis element framework for
efficient approximation of parameter-dependent linear elliptic partial differential
equations in large three-dimensional component-based domains. The approach
features an offline computational stage in which a library of interoperable parametrized
components is prepared; and an online computational stage in which these
component archetypes may be instantiated and connected through predefined ports
to form a global synthesized system. Thanks to the component-interior reduced basis
approximations, the online computation time is often relatively small compared to a
classical finite element calculation.

Methods: In addition to reduced basis approximation in the component interiors, we
employ in this paper port reduction with empirical port modes to reduce the number
of degrees of freedom on the ports and thus the size of the Schur complement system.
The framework is equipped with efficiently computable a posteriori error estimators
that provide asymptotically rigorous bounds on the error in the approximation with
respect to the underlying finite element discretization. We extend our earlier approach
for two-dimensional scalar problems to the more demanding three-dimensional
vector-field case.

Results and Conclusions: This paper focuses on linear elasticity analysis for large
structures with tens of millions of finite element degrees of freedom. Through our
procedure we effectively reduce the number of degrees of freedom to a few thousand,
and we demonstrate through extensive numerical results for a microtruss structure
that our approach provides an accurate, rapid, and a posteriori verifiable approximation
for relevant large-scale engineering problems.
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Background
For several decades the finite element (FE) method has been a popular and important tool
in engineering design and analysis of systems modelled by partial differential equations
(PDEs). In particular, in fields such as structural analysis and strength assessment, the
FE method is in widespread use in industry through a variety of commercial software
packages. Many of the structures that are subject to industrial FE analysis are composed
of a large number of components — consider for example a truss bridge, a space satellite
[1], or a building or vehicle frame. Such large and at first sight complicated structures
pose challenges both in terms of initial manual labor related to domain modelling and
meshing, and in terms of subsequent computational cost.
Component-based structures which contain many identical or similar components are

often analyzed through substructuring or superelement techniques [2], which mitigate
some of these issues. Mathematically, superelement techniques are based on static con-
densation of all FE degrees of freedom that are interior to components, and hence the
size of the global but condensed linear-algebraic (Schur complement) system is equal to
the number of degrees of freedom associated with component interfaces, henceforth in
this paper referred to as ports. The static condensation step necessitates a large num-
ber of component-interior FE “bubble” solves — one FE solve for each degree of freedom
on each port of each component — and is for this reason rather expensive; however this
step is embarrassingly parallel, and is furthermore required only once for each unique
component instantiation.
Model order reduction techniques can be applied to substructuring or superelement

procedures in order to further reduce the computational cost. A well-known approach
is the classical component mode synthesis (CMS) [3,4], which replaces the original
FE spaces for the component-interior bubble solves with spaces spanned by a few
component-interior eigenmodes. As a result, the cost associated with each bubble calcula-
tion is reduced, and the formation of the global Schur complement system is consequently
much less expensive.
A more recent approach, which is relevant in the context of parameter-dependent

PDEs and which we for this reason consider here in this paper, is the static condensation
reduced basis element method (SCRBE) introduced in [5]. Rather than the eigenmodal
expansion typically used in the CMS, the SCRBE employs the reduced basis method (RB)
[6] for the bubble function approximations. Each RB approximation space is specifically
tailored to a particular bubble and the associated parameter dependence defined by the
PDE within each component; the SCRBE thus accommodates parametric variations for
example related to component geometry, loads, material properties, or boundary con-
ditions. Furthermore, thanks to the typically very rapid (often exponential) convergence
of the RB approximation [7,8], these RB spaces are low-dimensional and thus bubble
function approximation is computationally inexpensive.
In addition to enabling parametric variations, the SCRBE features a strict offline-online

computational decoupling. In the offline stage, the RB spaces and associated datasets for
each component archetype in a component library is computed and stored. This stage
requires FE solves and may thus be relatively expensive, but is carried out only once as
a library preprocessing step. In the subsequent online stage, the user may instantiate any
of the interoperable library archetypes, and assign to each component instantiation the
desired parameter values; the RB bubble function approximations are then computed,



Eftang and Patera AdvancedModeling and Simulation in Engineering Sciences 2013, 1:3 Page 3 of 49
http://www.amses-journal.com/content/1/1/3

and the Schur complement system is assembled and solved. This online step is much less
expensive and in particular does never invoke the underlying FE discretization.
However, common to all these static-condensation-based approaches — including the

SCRBE — is a global Schur complement linear-algebraic system of size equal to the total
number of degrees of freedom associated with ports. For large systems with many com-
ponents and ports, and in particular for problems with three-dimensional vector-valued
field variables — such as in linear elasticity — the size of this system is considerable and
thus clearly prohibits the fast response required in, say, an interactive design or optimiza-
tion context. To overcome this limitation various port reduction techniques may be used.
For example, for the CMS approaches an eigenmode expansion (with subsequent trunca-
tion) for the port degrees of freedom is considered in [9,10], and an adaptive procedure
based on a posteriori error estimators for the port reduction is considered in [11]. For
the SCRBE, we introduce in [12] port reduction with empirical modes; in this case the
port approximation spaces are informed by snapshots of relevant port-restricted solutions
which are obtained through an offline pairwise empirical training algorithm.
Unique to the SCRBE is a certification framework that allows efficient computation of a

posteriori bounds or estimators for the error in the SCRBE approximation with respect to
the underlying FE “truth” discretization. This framework invokes classical residual argu-
ments on the (RB) bubble level [6], a non-conforming approximation to the error-residual
equation at the port level, and finally matrix perturbation at the system level in order to
bound (under an eigenvalue proximity assumption) the error contributions from both RB
approximation [5] and port reduction [12]. In actual practice, we may reduce online com-
putational cost by consideration of a plausible and asymptotically rigorous error estimator
rather than a rigorous error bound.
In this paper, we extend our earlier work for two-dimensional scalar problems in [12]

to the more demanding three-dimensional vector-field case. We focus here on applica-
tions in linear elasticity, but we note that the component synthesis and indeed RB and
port approximations can be readily extended to problems in heat transfer or (frequency
domain) acoustics, or any phenomenon described by a linear elliptic or parabolic [13]
PDE.a Through our procedure we effectively reduce the number of degrees of freedom
from tens of millions (in the underlying FE discretization) to only a few thousand (in the
port-reduced SCRBE approximation); the associated computation time is thus reduced
from minutes or hours to only a few seconds.
Our approach here features several important innovations. First, as we consider here

larger global systems with a much larger number of instantiated components we intro-
duce a new non-symmetric SCRBE approximation, which reduces both offline and online
cost and memory footprint; the corresponding linear-algebraic system is subsequently
symmetrized in order to (say) accommodate efficient linear solvers. We also demonstrate
that our central theoretical results in particular related to a posteriori error estimation
survive intact for this more efficient revision of our earlier formulations in [12]. Sec-
ond, we provide a precise formulation for general geometric mappings and port space
compatibility, and we demonstrate that (in the isotropic linear-elastic case) rigid-body
parameters related to “docking” of component instantiations in a system do not affect
the associated bilinear forms and thus do not impact offline — thanks to smaller RB
space dimensions — or online — thanks to treatment of differently oriented compo-
nent instantiations as effectively identical — computational cost. Third, we introduce a
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new functional interpretation of our algebraic a posteriori error estimation framework
in [12], which may serve to extend our approach here to larger classes of problems. And
finally, we consider multi-reference parameter bound conditioners [14] for sharper error
estimation.
The remainder of the paper is organized as follows. We start with a brief presentation

of a general parametrized component static condensation framework for d-dimensional
vector-valued linear elliptic partial differential equations; we focus on the concepts rel-
evant in the SCRBE framework and we formulate the port compatibility requirements.
Next, we discuss the RB and port reduction strategies for the computational cost reduc-
tion associated with component interiors and component interfaces, respectively. Then,
we introduce our a posteriori error estimation framework. Finally, we present exten-
sive results for a three-dimensional microtruss application, and provide some conclusive
remarks.
We include with this manuscript [Additional file 1]. This short movie presents the main

ingredients of the port-reduced SCRBE method, and sums up the key numerical results
reported in this paper.

Component-based static condensation
Concepts: library components and system

We now introduce the key concepts for our SCRBE approximation: a library of
parametrized and interoperable archetype components, which is prepared in the offline
stage; and a system of component instantiations connected at ports, which is assembled
and solved (and, if desired, visualized) in the online stage.
In the context of structural analysis, an archetype component typically (but not neces-

sarily) corresponds to a physical construction unit, such as a beam, a plate, or a connector;
in physical d-dimensional space (d = 1, 2, 3) we denote by �̂m ⊂ Rd the reference
domain associated with archetype component m, 1 ≤ m ≤ M, where M is the num-
ber of archetypes in the library. The boundary of this domain, ∂�̂m, has a set of nγ

m

disjoint local ports, denoted as γ̂m,j ⊆ ∂�̂m, 1 ≤ j ≤ nγ
m; these ports enable the

components to connect to other components. Note we shall assume that all ports on
an archetype component are mutually separated by (at least) a non-port, non-Dirichlet
boundary segment. If this is not the case, modifications to our procedures below must be
considered [10].
The physical behavior of each archetype component is governed by a vector-valued

(we consider d field components) parametrized linear elliptic partial differential equation.
We thus introduce for 1 ≤ m ≤ M the continuous (and here, in this paper, symmetric)
archetype bilinear form âm(·, ·; μ̂m) : (H1(�̂m))d × (H1(�̂m))d → R, and the bounded
archetype linear functional f̂m(·, ·; μ̂m) : (H1(�̂m))d → R. Here, μ̂m ∈ D̂m ⊂ RP̂m is
a vector of P̂m scalar parameters that describe (say) the component geometry, boundary
conditions, loads, or material properies, and (H1(�̂m))d is the usual (d-tensorized) first-
order Sobolev space over �̂m. We shall assume that âm and f̂m admit affine expansions
as

âm(·, ·; μ̂m) =
Q̂a
m∑

q=1
âq(·, ·)�q

a(μ̂m), f̂m(·; μ̂m) =
Q̂ f
m∑

q=1
f̂ q(·)�q

f (μ̂m), (1)
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where the âq and f̂ q are parameter-independent forms and the �
q
a and �

q
f are parameter-

dependent functions; for computational efficiency of the SCRBE evaluation stage it is
critical that Q̂a

m and Q̂ f
m are relatively small.

We next introduce the discrete archetype component spaces X̂h
m ⊂ (H1(�̂m))d, 1 ≤

m ≤ M, which correspond to standard FE discretizations [15] of (H1(�̂m))d; and we
introduce the discrete port spaces, the restrictions

P̂m,j ≡ X̂h
m|γ̂m,j (2)

of dimension N γ
m ≡ dim(P̂m,j). We denote the bases for these port spaces by {χ̂m,j,k}

N γ
m,j

k=1
such that

P̂m,j = span{χ̂m,j,1, . . . , χ̂m,j,N γ
m,j

}. (3)

For simplicity of presentation here we shall assume that Dirichlet conditions are enforced
only on ports and thus not through the archetype component discrete spaces X̂h

m (this is
the case for our numerical results later).
The library component archetypes may be instantiated and connected at ports to form

a global system. To this end we introduce a mapping M : {1, . . . , I} → {1, . . . ,M} from
any of the I instantiations in the system to exactly one of theM archetypes in the library.
For instantiated component i, we introduce the parameter vector μi ∈ Di, where Di ⊆
D̂M(i). We then introduce a (parameter-dependent) geometric mapping Ti : �̂i → �i
from archetype (reference) to system (physical) coordinates; thus �i = Ti(�̂M(i)) is the
instantiated component domain and γi,j = Ti(γ̂M(i),j), 1 ≤ j ≤ nγ

M(i), are the instantiated
ports. We consider for each of our mappings Ti application of a deformation T def

i and
then a rotation T rot

i such that Ti ≡ T rot
i T def

i . In this paper, we consider for T def
i only

dilation and translation, and we further assume that T def
i , when applied to a port, is pure

translation (such that γi,j = Ti(γ̂M(i),j) corresponds to a rigid-body transformation). We
illustrate the situation (for d = 2) in Figure 1 and Figure 2: in Figure 1 we show a single

Figure 1 An archetype component in coordinates (x̂m, ŷm).
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Figure 2 Two component instantiations form a system in coordinates (x, y).

archetype library component; in Figure 2 we instantiate two components of the same
archetype subject to different mappings T1 and T2, the first of which has a non-trivial
(piecewise dilation) T def

1 .
We also introduce a mapped discrete component-local space

Xh
i = span{T rot

i
(
v ◦ T −1

i
)
, v ∈ X̂h

M(i)}; (4)

and further, with

χi,j,k ≡ T rot
i

(
χ̂M(i),j,k ◦ T −1

i
)
, (5)

we introduce, for 1 ≤ j ≤ nγ

M(i), 1 ≤ i ≤ I, the mapped discrete port spaces

Phi,j = span{χi,j,k , 1 ≤ k ≤ N γ

M(i),j}. (6)

Note that here and in the following the notation [·] ◦T −1
i denotes the usual composition,b

and the notation T rot
i (·) denotes pointwise application of T rot

i to the (vector-valued)
argument;c we apply T rot

i to the dependent variables to eliminate parameters related
to spatial orientation of components from the bilinear forms, and to accommodate
compatibility of basis functions on instantiated ports.
We may now introduce the synthesized system domain � as � = ∪I

i=1�i, the system
parameter domain D = ⊕I

i=1Di, and the system parameter vector μ = (μ1, . . . ,μI); we
denote the total number of system parameters by P.
When an instantiated component becomes part of a system, its local ports are associ-

ated to global ports. Each global port �p, 1 ≤ p ≤ n�
0 , in the system is either a coincidence

of two local ports and hence in the interior of �, or a single local port on the bound-
ary ∂�. We define the connectivity of the system through global-to-local index sets πp,
1 ≤ p ≤ n�

0 : an interior global port is associated to two local ports γi,j and γi′,j′ , and we
thus set πp = {(i, j), (i′, j′)}; a boundary global port is associated to a single local port γi,j,
and we thus set πp = {(i, j)}. We also introduce for instantiated component i, 1 ≤ i ≤ I,
a local-to-global map Gi such that for local port j, 1 ≤ j ≤ nγ

M(i), we have Gi(j) = p if
(i, j) ∈ πp. Note that on any global port �p, 1 ≤ p ≤ n�

0 , we may elect to impose Dirichlet
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boundary conditions; we denote by n� ≤ n�
0 the number of global ports on which we do

not impose Dirichlet boundary conditions.
To ensure global continuity of the solution wemust require conforming port spaces and

bases in the sense that for any shared (that is, interior) global port πp = {(i, j), (i′, j′)} we
must have

χi,j,k = χi′,j′,k ; (7)

we discuss this port compatibility requirement further in the “Port compatibility” subsec-
tion below.
We may now introduce for any w, v ∈ (H1(�))d and any μ ∈ D the system-level

symmetric, continuous bilinear form as

a(w, v;μ) =
I∑

i=1
âM(i)((T rot

i )−1(w|�i ◦ Ti), (T rot
i )−1(v|�i ◦ Ti);μi), (8)

and the system-level bounded linear functional

f (v;μ) =
I∑

i=1
f̂M(i)((T rot

i )−1(v|�i ◦ Ti);μi); (9)

note that the effect of the mapping Ti to each archetype bilinear and linear form (defined
over the archetype reference domain) is reflected through the parameter μi.
In the case that Ti is a pure rigid-body transformation (that is, Ti is a rotation and a

translation) and the material properties of the component do not depend on spatial orien-
tation — such as in isotropic linear elasticity — the application of T rot to the dependent
variables results in cancellation of the mapping Jacobians, and thus the archetype bilinear
form does not reflect the associatedmapping parameters. Similarly, when Ti is a combina-
tion of a rigid-body map and (say) dilation, only the latter must be parametrized through
the archetype bilinear form. We explicitly demonstrate this cancellation for the case of
isotropic linear elasticity in the “Microtruss beam application” section, and we comment
on the computational implications in the “Model reduction” section.
We now introduce a global spaceX(�) ⊂ (H1(�))d such thatX(�) is equal to (H1(�))d

except for restrictions to enforce port (and in general also non-port) Dirichlet boundary
conditions; we assume that sufficient boundary conditions are enforced such that a(·, ·;μ)

is coercive over X(�). The well-posed system-level variational problem then reads as
follows. For any μ ∈ D, find u(μ) ∈ X(�) such that

a(u(μ), v;μ) = f (v;μ), ∀v ∈ X(�); (10)

we also introduce a compliance output as s(μ) = f (u(μ);μ). (Note that, as discussed in
[5], restrictions apply to the geometric maps Ti to maintain well-posedness of (10).)
Similarly, we introduce a global FE discretization Xh(�) ⊂ X(�) as Xh(�) =

⊕I
i=1X

h
i (�) ∩ X(�); hence Xh(�) inherits the boundary conditions as well as the global

continuity enforced by X(�). The FE discretization of (10) now reads as follows. For any
μ ∈ D, find uh(μ) ∈ Xh(�) such that

a(uh(μ), v;μ) = f (v;μ), ∀v ∈ Xh(�); (11)

we also introduce the FE compliance output sh(μ) = f (uh(μ);μ).
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Mathematical formulation: static condensation

To formulate the static condensation procedure we decompose our discrete global space
Xh(�) into bubble spaces associated with component-interior degrees of freedom and a
skeleton space associated with port degrees of freedom.
To this end we introduce on archetype componentm, 1 ≤ m ≤ M, the bubble space

B̂h
m;0 = {v ∈ X̂h

m : v|γ̂m,j = 0, 1 ≤ j ≤ nγ
m}; (12)

note that members of B̂h
m;0 vanish on local ports. We next introduce the coupling modes

ψ̂m,j,k ∈ X̂h
m such that∫

�̂m
∇ψ̂m,j,k · ∇v = 0, ∀v ∈ B̂h

m;0, (13)

ψ̂m,j,k =
⎧⎨
⎩

χ̂m,j,k , on γ̂m,j,

0, on γ̂m,j′ for j′ �= j,
(14)

for 1 ≤ k ≤ N γ
m,j, 1 ≤ j ≤ nγ

m; we define, on instantiated component i, 1 ≤ i ≤ I,
ψi,j,k ≡ T rot

i (ψ̂M(i),j,k ◦ T −1
i ), and we introduce the global functions 
p,k ∈ Xh(�) such

that, for πp = {(i, j), (i′, j′)},


p,k ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψi′,j′,k , in �i′ ,

ψi,j,k , in �i,

0, in � \ (�i′ ∪ �i).

(15)

We may then introduce the global skeleton space

S(�) ≡ span{
p,k , 1 ≤ k ≤ N �
p , 1 ≤ p ≤ n�} (16)

of dimension

nSC ≡
n�∑
p=1

N �
p . (17)

Note that S(�) is a continuous space thanks to the port compatibility requirement (7).
Also note that in the definition of S(�) we include only the n� ≤ n�

0 ports on which we
do not impose Dirichlet boundary conditions (we assume without loss of generality that
we enforce Dirichlet boundary conditions on global ports �n�+1, . . . ,�n�

0
).

Given the bubble spaces and the coupling modes, we now first introduce, for 1 ≤ i ≤ I,
the source bubble b̂f ;hi (μi) ∈ B̂h

M(i);0, which satisfies

âM(i)(b̂
f ;h
i (μi), v;μi) = f̂M(i)(v;μi), ∀v ∈ B̂h

M(i);0; (18)

we define bf ;hi (μi) ≡ T rot
i (b̂f ;hi (μi)◦T −1

i ). Note that bf ;hi (μ) is a component-local particu-
lar solution to our global equation. We next introduce fundamental solutions φ̂i,j,k(μi) ≡
b̂hi,j,k(μi) + ψ̂i,j,k associated with each coupling mode ψ̂i,j,k and bubble b̂hi,j,k(μi) ∈ Bh

M(i);0
such that φ̂i,j,k(μi) satisfies

âM(i)(φ̂
h
i,j,k(μi), v;μi) = 0, ∀v ∈ B̂h

M(i);0 (19)
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(note (19) is an equation for b̂hi,j,k(μi) given the known ψ̂i,j,k); we define, on instantiated
component i, 1 ≤ i ≤ I, φi,j,k(μi) ≡ T rot

i (φ̂i,j,k(μi) ◦ T −1
i ) and we introduce the global

functions �p,k(μ) ∈ Xh(�) such that, for πp = {(i, j), (i′, j′)},

�p,k(μ) ≡

⎧⎪⎨
⎪⎩

φi′,j,k(μi′), in �i′ ,
φi,j,k(μi), in �i,
0, in � \ (�i′ ∪ �i).

(20)

Note that each �Gj(i),k(μ) is the fundamental solution (local to a component pair) of
our (homogeneous) global equation associated with the particular port mode χi,j,k . Also
note that �Gj(i),k(μ) and bf ;hi (μi) scale linearly with certain “free” parameters, such as
component-wide thermal conductivity or Young’s modulus, which enter outside the bilin-
ear form in (18) and (19); this will have important cost-saving implications in the context
of RB approximation.
For each instantiated component we introduce a global function uhi (μi) ∈ Xh(�) which

represents the local solution on component i in terms of the source bubbles bf ;hi (μi) and
the fundamental solutions φi,j,k(μi) as

uhi (μi) =

⎧⎪⎪⎨
⎪⎪⎩

I∑
i=1

b f ;h
i (μi) +

nγ

M(i)∑
j=1

N γ

M(i),j∑
k=1

UGi( j),k(μ)φi,j,k(μi), in �i,

0, in � \ �i,
(21)

where the coefficient vector UGi( j),k(μ) contains global unknowns to be determined
below. To couple the solutions in neighboring components we require weak flux continu-
ity across global ports:d we write

uh(μ) =
I∑

i=1
uhi (μi) =

I∑
i=1

bf ;hi (μi) +
n�∑
p=1

N�
p∑

k=1
Up,k(μ)�p,k(μ); (22)

we then test on all v ∈ S(�) such that uh(μ) ∈ Xh(�) satisfies

a(uh(μ), v;μ) = f (v;μ), ∀v ∈ S(�); (23)

as before, our FE compliance output is sh(μ) = f (uh(μ);μ).
We emphasize that (23) is, thanks to Galerkin orthogonality of the fundamental solu-

tions in (19) with respect to the associated bubble space, equivalent to (11). For this same
reason we may further define an alternative skeleton space

Ssymm ≡ span{�p,k(μ), 1 ≤ k ≤ N �
p , 1 ≤ p ≤ n�}, (24)

such that uh(μ) ∈ Xh(�) satisfies

a(uh(μ), v;μ) = f (v;μ), ∀v ∈ Ssymm(�). (25)

There is no distinction between (23) and (25) in the FE static condensation context;
however in the context of the SCRBE, direct approximation of (23) leads to a non-
symmetric Schur complement system, while direct approximation of (25) leads to a
symmetric Schur complement system. In this paper we shall pursue the former with sub-
sequent Schur complement symmetrization as the latter implies significantly larger online
computational cost.
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The formulation (23) is equivalent to the symmetric linear-algebraic Schur complement
system

A(μ)U(μ) = F(μ) (26)

of size nSC, in which

A( p,k),( p′,k′)(μ) = a(�p′,k′(μ),
p,k ;μ), (27)

F( p,k)(μ) = f (
p,k ;μ) −
I∑

i=1
a(bf ;hi (μi),
p,k ;μ). (28)

Wemay readily demonstrate the symmetry: by (19) and symmetry of âm(·, ·;μi)we obtain

âM(i)(φ̂i,j,k(μi), ψ̂i,j′,k′ ;μ) = âM(i)(b̂hi,j,k(μi) + ψ̂i,j,k , b̂hi,j′,k′(μi) + ψi,j′,k′ ;μi) (29)

= âM(i)(b̂hi,j′,k′(μi) + ψ̂i,j′,k′ , b̂hi,j,k(μi) + ψi,j,k ;μi) (30)

= âM(i)(b̂hi,j′,k′(μi) + ψ̂i,j′,k′ , ψ̂i,j,k ;μi) (31)

= âM(i)(φ̂i,j′,k′(μi), ψ̂i,j,k ;μi), (32)

and as a result

a(�p′,k′(μ),
p,k ;μ) = a(�p,k(μ),
p′,k′ ;μ). (33)

The matrix A(μ) is thus symmetric and in particular may be rewritten as

A(p,k),(p′,k′)(μ) = 1
2
a(�p′,k′(μ),
p,k ;μ) + 1

2
a(�p,k(μ),
p′,k′ ;μ) (34)

We shall invoke the interpretation (34) of A(μ) to symmetrize the SCRBE Schur comple-
ment system below.

Port compatibility

The port compatibility requirement (7) between port basis functions associated with
ports which may interconnect in a system — port of the same type — ensures solu-
tion continuity across shared global ports. We recall the archetype port basis functions
χ̂M(i),j,k introduced in (3), and we recall the associated physical (instantiated) port space
basis functions χi,j,k introduced in (6). To honor (7), it is clear that the basis functions
χ̂m,j,k on different archetype ports of the same port type must be defined differently
according to the archetype port orientation.
To render this more precise we introduce for each unique port type a reference port

domain β ⊂ Rd−1; we assume for simplicity of exposition that there is only a single port
type and thus β needs no subscript. We then consider, on archetype component m, each
archetype port domain γ̂m,j as the image of β under a rigid-body mapRm,j = Rrot

m,jRtran
m,j ,

whereRrot
m,j corresponds to rotation andRtran

m,j corresponds to translation, such that

γ̂m,j = Rm,j(β); (35)

this map is the key to honor the port compatibility requirement (7).e

We then introduce, on the reference port domain β , a set of reference port modes χ̂
β

k ,
1 ≤ k ≤ N β , and an associated reference port space

Pβ = span{χ̂β

k , 1 ≤ k ≤ N β} (36)
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of dimensionN β . We then define, on archetype port domain γ̂m,j of type β , the archetype
port space basis functions χ̂m,j,k , 1 ≤ k ≤ N γ

m , 1 ≤ j ≤ nγ
m, as

χ̂m,j,k ≡ Rrot
m,j(χ̂

β

k ◦ R−1
m,j), (37)

Note thatN γ
m = N β .

We now consider two instantiated port domains

γi,j = Ti(γ̂M(i),j), γi′,j′ = Ti′(γ̂M(i′),j′), (38)

on different instantiated components i and i′. From (5) we have for the associated port
space basis functions

χi,j,k = T rot
i (χ̂M(i),j,k ◦ T −1

i ), (39)

χi′,jv,k = T rot
i′ (χ̂M(i′),j′,k ◦ T −1

i′ ), (40)

and so, with (37),

χi,j,k = T rot
i (Rrot

M(i),j(χ̂
β

k ◦ R−1
M(i),j) ◦ T −1

i ), (41)

χi′,j′,k = T rot
i′ (Rrot

M(i′),j′(χ̂
β

k ◦ R−1
M(i′),j′) ◦ T −1

i′ ). (42)

Now, suppose that πp = {(i, j), (i′, j′)} for a shared global port �p such that γi,j = γi′,j′ . In
this case, from (35) and (38), we obtain

Ti(RM(i),j(β)) = Ti′(RM(i′),j′(β)). (43)

We recall that T def
i (for 1 ≤ i ≤ I) when applied to a port corresponds to pure translation.

As a result, application of the port mapping TiRM(i),j corresponds only to translation and
rotation. We now recall that the rotation applied to β on each side of (43) is unique, and
we may thus conclude from (43) that T rot

i Rrot
M(i),j = T rot

i′ Rrot
M(i′),j′ . With (41) and (42), we

then obtain χi,j,k = χi′,j′,k , and we thus honor our port compatibility requirement (7).

Model reduction
The computational efficacy of our port-reduced SCRBE approach is realized through two
separate model reduction techniques. As in the standard SCRBE approach [5] we con-
sider component-interior model reduction through RB approximation [6] of the source
bubbles (18) and of the fundamental solutions (19) to reduce the cost of each of the many
component-interior linear solves required to form the Schur complement system. In addi-
tion to RB approximation in the component interiors, we employ port reduction [12] with
empirical port modes to reduce the number of degrees of freedom on the ports and thus
the size of the Schur complement system. We now discuss each of these techniques in
more detail.

Component-interior reduction

For the component-interior model reduction we employ RB approximations

b̃fi (μi) ≈ bf ;hi (μi), (44)

φ̃i,j,k(μi) ≈ φh
i,j,k(μi), (45)

and thus �̃p,k(μ) ≈ �p,k(μ). The purpose of these RB approximations is to allow for
efficient formation of an approximation to the Schur complement system (54): each RB
approximation b̃fi (μi) or φ̃i,j,k(μi) is associated with a rapidly convergent [7] RB space
specifically tailored to the particular bubble and to the parameter dependence defined by
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the corresponding (archetype domain) PDE (18) or (19). All RB bubble spaces are thus
different, and furthermore each space is typically of much lower dimension than the orig-
inal FE spaces B̂h

m;0. As a consequence, the RB approximations to the solutions of (18) and
(19) are obtained at significantly reduced computational cost with minimal compromise
to solution accuracy. The RB method is now considered standard, and we refer the reader
to [6] for all technical details relevant to the particular class of problems (linear elliptic)
that we consider here.
We now introduce the SCRBE approximation ũ∗(μ) ≈ uh(μ) as

ũ∗(μ) =
I∑

i=1
b̃fi (μi) +

n�∑
p=1

N�
p∑

k=1
Ũ∗
p,k(μ)�̃p,k(μ), (46)

and we again choose S(�) as the test space such that ũ∗(μ) ∈ Xh(�) satisfies

a(ũ∗(μ), v;μ) = f (v;μ), ∀v ∈ S(�); (47)

the equivalent linear-algebraic system is

Ã∗(μ)Ũ∗(μ) = F̃(μ) (48)

where

Ã∗
( p,k),( p′,k′)(μ) = a(�̃p′,k′(μ), 
̃p,k ;μ), (49)

F̃( p,k)(μ) = f (
̃p,k ;μ) −
I∑

i=1
a(bf ;hi (μi), 
̃p,k ;μ), (50)

for 1 ≤ k ≤ N �
p , 1 ≤ k ≤ N �

p′ , 1 ≤ p, p′ ≤ n� . Note that Ã∗(μ) in (49) is non-symmetric
because each RB approximation φ̃i,j,k(μi) (mapped to the respective archetype domain)
satisfies (19) only with respect to the associated RB bubble subspace. These RB approxi-
mations are thus not Galerkin orthogonal with respect to other bubble spaces; recall that
this Galerkin orthogonality (together with symmetry of âm(·, ·;μi)) is the key to the sym-
metry of A(μ) as demonstrated in (29). To recover symmetry we have two options: we
may either, as in [5,12], test on a space

S̃symm(�) = span{�̃p,k(μ), 1 ≤ k ≤ N �
p , 1 ≤ p ≤ n�} (51)

in (47), or we may explicitly symmetrize Ã∗(μ) by algebraic manipulation. The former
option necessitates larger offline and online computational cost and storage, in fact,
when compared to the latter, by a multiplicative factor equal to the number of RB basis
functions.
We thus elect to recover symmetry by algebraic manipulation: we exploit the interpre-

tation (34) of A(μ) and we define Ã(μ) ≈ A(μ) as

Ã(μ) = 1
2
Ã∗(μ) + 1

2
Ã∗(μ)T, (52)

such that

Ã(p,k),(p′,k′)(μ) = 1
2
a(�̃p′,k′(μ),
p,k ;μ) + 1

2
a(�̃p,k(μ),
p′,k′ ;μ). (53)

We may then finally introduce our symmetric SCRBE linear-algebraic system as

Ã(μ)Ũ(μ) = F̃(μ), (54)
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and we define the SCRBE field approximation ũ(μ) ≈ uh(μ) as

ũ(μ) =
I∑

i=1
b̃fi (μi) +

n�∑
p=1

N�
p∑

k=1
Ũp,k(μ)�̃p,k(μ). (55)

The associated SCRBE compliance output approximation is s̃(μ) = f (ũ(μ);μ).
Note that in actual practice, we assemble (54) through a direct-stiffness procedure from

component-local matrix and vector blocks associated with and assembled for each of the
I component instantiations; the procedure is described in detail in [5,12]. The assem-
bly of these component-local quantities constitutes the majority of online computational
cost. However, we need only perform the assembly for each unique component instan-
tiation, as identical (or “cloned”) components may share local matrices and vectors. We
thus realize significant computational savings for systems which consist of instantiations
of many component clones, such that we need only consider Ieff � I effective component
instantiations for this assembly proceedure.
There are two particularly important situations in which different component instantia-

tions are effectively clones in the sense that the component-local matrix and vector blocks
may still be re-used: First, matrix and vector blocks computed for component instantia-
tions which differ only in spatial orientation are (in the case that material properties do
not depend on spatial orientation, such as in isotropic linear elasticity) identical thanks
to cancellation of the mapping Jacobians in the archetype domain bilinear form; sec-
ond, “free” parameters such as component-wide thermal conductivity or Young’s modulus
enter outside the bilinear forms in (18) and (19), and thus the associated matrix blocks
will only differ by a scaling factor. As a result, we often obtain Ieff � I in practice. We
discuss this situation further under “Computational procedures” later in this section.

Port reduction

Framework

While the RB approximation is concerned with component-interior model reduction, we
apply port reduction to reduce the number of degrees of freedom associated with com-
ponent interfaces. For the port reduction procedure we shall consider on each global port
�p only n�

A,p ≤ N �
p port modes as “Active” and thus contributing to the approximation;

for substantial computational savings we require n�
A,p � N �

p . We consider in this sub-
section the generic port reduction framework and in the next subsection our particular
choice of port space basis functions which realizes n�

A,p � N �
p .

Based on the n�
A,p active modes associated with each global port we introduce a port-

reduced skeleton space SPR(�) ⊆ S(�) as

SPR(�) ≡ span{
p,k , 1 ≤ k ≤ n�
A,p, 1 ≤ p ≤ n�} (56)

of dimension

nA ≡
n�∑
p=1

n�
A,p ≤ nSC. (57)

We further introduce a port-reduced approximation ũPR,∗(μ) ≈ uh(μ) as

ũPR,∗(μ) =
I∑

i=1
b̃fi (μi) +

n�∑
p=1

n�
A,p∑

k=1
Ũ∗
p,k(μ)�̃p,k(μ). (58)
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We now choose SPR(�) as our test space such that

a(ũPR,∗(μ), v;μ) = f (v;μ), ∀v ∈ SPR(�), (59)

which leads to the linear-algebraic system

ÃPR,∗(μ)ŨPR,∗(μ) = F̃PR(μ) (60)

of size nA, where

Ã
PR,∗
( p,k),(p′,k′)(μ) = a(�̃p′,k′(μ),
p,k ;μ), (61)

F̃PR
( p,k)(μ) = f (
p,k ;μ) −

∑
i
a(bf ;hi (μi),
p,k ;μ), (62)

for 1 ≤ k ≤ n�
A,p, 1 ≤ k′ ≤ n�

A,p′ , 1 ≤ p, p′ ≤ n� . We then symmetrize as

ÃPR ≡ 1
2
ÃPR,∗(μ) + 1

2
ÃPR,∗(μ)T, (63)

we define the port-reduced SCRBE system as

ÃPR(μ)ŨPR(μ) = F̃PR(μ), (64)

and we define the port-reduced SCRBE field approximation ũPR(μ) ≈ uh(μ) as

ũPR(μ) =
I∑

i=1
b̃fi (μi) +

n�∑
p=1

n�
A,p∑

k=1
ŨPR
p,k(μ)�̃p,k(μ). (65)

The associated port-reduced SCRBE compliance output approximation is s̃PR(μ) =
f (ũPR(μ);μ).
The purpose of port reduction is of course to reduce the size of the Schur complement

system — and thus computational cost — while maintaining accuracy of the approxima-
tion. The size of the system (64), nA, is equal to the total number of active port modes
in the system. In practice, we shall typically invoke only a few port degrees of freedom
on each port such that nA � nSC. A good choice for the port modes χi,j,k is key to
the accuracy of the port-reduced SCRBE approximation, and is the focus of the next
subsection.

Empirical port mode training

To ensure port compatibility we must for each port type develop our port basis on the
associated reference port domain β as discussed under “Port compatibility” above. To this
end we pursue a pairwise training algorithm that provides a port space tailored to the
family of solutions associated with this port type. We shall develop bases for the full port
spaces (6) and not merely the space spanned by “Active” modes; the remaining “Inactive”
modes shall play a role in certification (for residual calculation), which we discuss further
in the “Certification framework” section.
Our port spaces shall consist of three sets of modes. The first set of modes is explicitly

specified and consists of the six modes associated with rigid-body motion.f We include
these six modes for two reasons: first, it simplifies the procedure for specification of
typical Dirichlet boundary conditions, and second, it ensures invertibility of the Schur
complement operator associated with “Inactive” modes, which is a property we require
for our non-conforming error estimation framework.



Eftang and Patera AdvancedModeling and Simulation in Engineering Sciences 2013, 1:3 Page 15 of 49
http://www.amses-journal.com/content/1/1/3

The second set of modes consists of the nβ

pod ≤ N β − 6 modes which shall be the
outcome of our pairwise training algorithm. The third set of modes consists of N β −
nβ

pod − 6 singular Sturm-Liouville eigenmodes restricted to the orthogonal complement
of the first nβ

pod + 6 empirical modes [12]. These modes serve to complete the discrete
port space in a numerically stable fashion.
Recall that the total number of modes associated with the reference port β is N β . We

consider here the case d = 3 and thus β ⊂ R2; each port mode χ̂
β
i , 1 ≤ i ≤ N β , has the

form χ̂
β
i = (χ̂

β ,1
i , χ̂β ,2

i , χ̂β ,3
i ), where the number of degrees of freedom associated with

each field component χ̂
β ,j
i isN β/3.

In the case that β is the square β = [−0.5, 0.5]2, the first six reference port modes are
explicitly defined as

χ̂
β
1 = (1, 0, 0), χ̂

β
2 = (0, 1, 0), χ̂

β
3 = (0, 0, 1), (66)

for the three ports associated with translation; as

χ̂
β
4 (ξ , η) = (−η, ξ , 0) (67)

for the mode associated with pure rotation; and as

χ̂
β
5 (ξ , η) = (0, 0, ξ), χ̂

β
6 = (0, 0, η), (68)

for the two modes associated with flipping. Note these six modes are mutually (L2(β))d-
orthonormal. (If β is not the square β = [−0.5, 0.5]2 we apply Gram-Schmidt orthonor-
malization to these first six modes to recover (L2(β))d-orthonormality.)
The next nβ

pod port modes are the outcome of our pairwise empirical training algo-
rithm. In this algorithm we exploit the fact that within any system, the solution on any
global (shared, say) port is determined completely by the parameter values assigned to
the pair of components sharing the port and the (typically relatively smooth) solution on
all other ports associated with these two components. The purpose of our pairwise train-
ing algorithm is to explore the associated “solution manifold” induced by local parameter
dependence and neighboring ports in a systematic fashion such that the empirical modes
associated with each port type are tailored to all possible component connectivity and all
admissible component parameter values.
For our empirical training algorithm we shall require discrete “Legendre polynomials”

Lβ
i , 1 ≤ i ≤ N β/3, such that the Lβ

i are the eigenvectors of a scalar singular
Sturm-Liouville eigenproblem [16] over β ordered according to increasing eigenvalue; we
shall also require a univariate random variable r with uniform density; and we introduce
an algorithm tuning parameter γ > 1 related to anticipated regularity. We then identify
one or several pairs of components in the component library that may connect through a
global port of the relevant port type β .
The empirical training procedure for each such pair is now given by Algorithm 1: we

sample (solve) each pair Nsample times for different (random) parameters and different
(random but smooth thanks to the parameter γ > 1) boundary conditions on all non-
connected ports (note that we assign random boundary conditions independently to each
vector component); for each such sample we extract the solution on the shared port �p∗

of the relevant type, map it to the reference port β , subtract from this mapped solution its
orthogonal (L2(β))d-projection onto each of the six rigid body modes χ̂

β
i , 1 ≤ i ≤ 6, and
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then finally include the result ζ in a snapshot set Spair associated with the current pair.
Note that in Algorithm 1 (·, ·)L2(β) refers to the vector (L2(β))d inner product.

Algorithm 1 Pairwise training (two components connected at global port �p∗ )
Spair = ∅.
for n = 1, . . . ,Nsamples do

Assign random parameters μi ∈ Di to component i = 1, 2.
On all non-shared ports �p, assign random boundary conditions:

ui|�p =
N β/3∑
k=1

r
1
kγ

Lβ

k , i = 1, 2, 3.

Solve the two-component system; extract solution on shared port �p∗ (mapped to
β):

ζ ← u|�p∗

Subtract the orthogonal projection onto rigid-body modes:
for i = 1, . . . , 6 do

ζ ← ζ − (ζ , χ̂β
i )L2(β)

‖χ̂β
i ‖L2(β)

χ̂
β
i ,

end for
Include the result in the snapshot set:

Spair ← Spair ∪ ζ

end for

After pairwise training of all pairs relevant for one port type, we form the bigger
snapshot set

Stype =
⋃
pair

Spair. (69)

We then perform a data compression step: we invoke the proper orthogonal decom-
position (POD) [17] (with respect to the vector (L2(β))d inner product). The output
from the POD procedure is a set of nβ

pod mutually (L2(β))d-orthonormal POD modes
which are also orthonormal to the six first modes χ̂

β
i , 1 ≤ i ≤ 6, related to rigid-body

motion. We choose these nβ

pod POD modes as our next reference port basis functions
χ̂

β
6+i, 1 ≤ i ≤ nβ

pod; we typically observe rapid (often exponential) convergence [12] of
these POD modes with respect to the input snapshot set Stype.
We refer to all first nβ

pod + 6 port modes as our empirical port modes. If nβ

pod is chosen
such that nβ

pod + 6 < N β , we now complete the discrete space with Sturm-Liouville

singular eigenmodes restricted to the orthogonal complement space (span{χ̂β
i }n

β

pod+6
i=1 )⊥

(of dimensionN β − nβ

pod − 6) as discussed in detail in [12].
We finally note that for our pairwise training approach we may employ the (non-port-

reduced) SCRBE framework or we may use standard FE approximations. The computa-
tional cost associated with empirical training is not critical as the procedure is performed
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offline. For our numerical results in this paper we have used the non-port-reduced SCRBE
framework to calculate empirical modes.

Computational procedures

The computational procedures associated with our port-reduced SCRBE approximation
framework naturally decouple into an offline preprosessing stage and an online evaluation
stage, and we now discuss each in more detail. Note we provide here only descriptions of
each of the offline and online steps involved; for detailed online operation counts we refer
to [12].

Offline

The offline stage is the preprosessing stage — performed only once — in which we con-
struct and prepare the archetype component library. This stage consists of the following
steps.

Off1. Empirical pairwise training by Algorithm 1. For each port type we sample pairs of
components to obtain efficient port space basis functions χ̂

β

k , 1 ≤ k ≤ N β ,
associated with each reference port domain β . In the current implementation, we
employ the non-port-reduced SCRBE [5] (rather than standard global FE) for the
pairwise training.

Off2. RB space construction. For each archetype component m, 1 ≤ m ≤ M, we must
train

∑nγ
m

j=1N
γ
m,j + 1 different RB spaces to accommodate the RB approximations

(44) and (45). Each construction of an RB space requires a number of
component-local FE solves (each associated with an RB space basis function), and
thus this step is potentially rather expensive, depending on the component spatial
discretization and parametric complexity Q̂a

m and Q̂f
m in the bilinear and linear

form expansions (1).
Note, however, that the construction of the RB approximation spaces (subsequent
to port space construction) is embarrassingly parallel. Also note that we do not
consider parameters for spatial orientation (because of the mapping Jacobian
cancellations in the archetype domain formulation), and furthermore recall that
components often have “free” parameters such as component-wide thermal
conductivity or Young’s modulus, with which the solutions to (18) and (19)
simply scale linearly. As a result, RB space dimensions are typically rather small
(around ten basis functions often suffice for each RB space), and thus although
this step typically dominates offline cost the computational effort is not onerous:
typically a couple of CPU hours is required for each archetype component.

Off3. Online dataset preparation. For each archetype component we construct data to
enable efficient assembly of the component-local Schur complement matrix and
vector blocks in the subsequent online stage. The computation time depends
stongly on component spatial discretization and parametric complexity, but is
typically between minutes and hours (on a single CPU) for each component. The
online dataset also contains all RB basis functions, which are required for online
global field visualization, if desired.

Off4. Data loading. We finally read the online datasets (typically a few hundred Mb)
for all library components into computer memory to prepare for the online stage.
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Note that with our current implementation of the framework, since we employ the non-
port-reduced SCRBE in step Off1 above, we must first perform a step Off0a (similar to
Off2) and then a step Off0b (similar to Off3) in order to enable the necessary “online” pair
evaluation in Off1.

Online

The online stage is the stage in which we instantiate archetype components, and assemble
and solve our system. This stage consists of the following steps, which in the current
implementation is performed on a single CPU.

On1. Component instantiation. Instantiate I components from the library, assign the
relevant parameter values to each component, and connect components to other
components through ports of the same type to form a system; this step is most
easily effected through a graphical user interface [Additional file 1].

On2. Schur complement system formation. Perform component-local RB solves (of
small RB dimension) associated with all “Active” degrees of freedom to obtain (RB
coefficients for) the RB approximations φ̃i,j′,k′(μi) and b̃ f (μi), assemble the
associated matrix and vector blocks for each component, and assemble the Schur
complement system (64) through a direct-stiffness procedure [5,12].
The entries in the component-local matrix blocks are of the form

Ãi
A,A;( j,k),( j′,k′)(μi) = 1

2
ai(φ̃i,j′,k′(μi),ψi,j,k ;μi) + 1

2
ai(φ̃i,j,k(μi),ψi,j′,k′ ;μi)

(70)

(the symmetrization is performed on the component level) and the entries in the
component-local vector blocks are of the form F̃i

A;( j,k)(μi) = f (ψi, j, k ;μ) −
ai(b̃f (μi), ψi,j,k ;μ); the subscripts A refer to assembly of “Active” component
matrices and vectors. However, thanks to an efficient construction-evaluation
procedure [6], which relies on the affine operator expansions (1), only the RB
coefficients associated with φ̃i,j′,k′(μi) and b̃f (μi) are required for this assembly
step. We emphasize in particular that the underlying component FE
discretization is never invoked.
We recall that parameters related to spatial orientation (component “docking”)
do not appear in the (archetype) bilinear forms due to cancellation of the
associated Jacobians (we demonstrate this for isotropic linear elasticity in the
“Microtruss beam application” section); and moreover, certain parametric
variations such as component-wide conductivity or Young’s modulus are “free” in
the sense that they enter as scalars outside the bilinear forms in (18) and (19). As
a consequence, matrix and vector blocks associated with different component
instantiations are in practice often identical (in the context of “free” parameters
up to a multiplicative constant). We may thus in typical systems often consider
only Ieff � I effectively different (or unique) component instantiations, for which
we perform RB solves and assemble component-local matrices and vectors. The
component-local matrices and vectors for the remaining I − Ieff component
instantiations are then simply copies of the respective data from effectively
identical components. This consideration of component “clones” together with
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the realization of “docking” parameter cancellation and “free” parameters
contribute significantly to the modest computational cost associated with On2.g

The typical computation time is a few seconds.
On3. Evaluate. Solve the “Active” Schur complement system, and evaluate any relevant

derived quantities from the solution vector (for example a compliance output).
The typical computation time is a few seconds.

The computational cost associated with this online stage is dominated byOn2 (when Ieff
is close to I) or On3 (when Ieff � I). However, the offline and online stages above are only
concerned with the port-reduced SCRBE approximation. We consider the computational
procedures associated with a posteriori error estimation in the next section.

Certification framework
Our port-reduced SCRBE approximation is equipped with efficiently computable a
posteriori error bounds and estimators that provide certificates for the error in the
approximation with respect to the underlying global FE discretization. We employ in this
paper the energy-norm and compliance output bound developed in [12], and we present
the main ingredients and certain extensions below. We furthermore sharpen the bounds
by consideration of a multi-reference parameter bound conditioner.
The error in our approximation derives from two sources: port reduction and RB

approximation. Below we first address the error due to port reduction, that is to say, the
case in which the error due to RB approximation is zero. In this case the error bound pre-
sentation simplifies significantly and in particular admits a pure functional interpretation.
We then subsequently perturb the equivalent algebraic interpretation to provide a bound
for the general case in which the error due to RB approximation is non-zero.

Port reduction error contribution

We assume in this subsection only that the only source of error is port reduction and
hence that there is no RB-induced error. We introduce the function

uPR(μ) =
I∑

i=1
bf ;h(μi) +

n�∑
p=1

n�
A,p∑

k=1
UPR
p,k(μ)�p,k(μ) ∈ Xh(�), (71)

which satisfies

a(uPR(μ), v;μ) = f (v;μ), ∀v ∈ SPR(�); (72)

hence uPR(μ) is the port-reduced approximation to uh(μ) obtained in the absence of RB
errors. We note that we may (as in (25)) replace the skeleton space SPR(�) in (72) by the
skeleton space

SPR
symm(�) = span{�p,k(μ), 1 ≤ k ≤ n�

A,p, 1 ≤ p ≤ n�} ⊂ Ssymm(�), (73)

and thus uPR(μ) ∈ Xh(�) also satisfies

a(uPR(μ), v;μ) = f (v;μ), ∀v ∈ SPR
symm(�); (74)

note that uPR(μ) /∈ SPR
symm(�) because of the source bubble terms bf ;h(μi) in (71).
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We define the associated (RB-error-free) error field as

eh0(μ) ≡ uh(μ) − uPR(μ)

=
n�∑
p=1

(n�
A,p∑

k=1
(Up,k(μ) − UPR

p,k(μ))�p,k(μ) +
N�

p∑
k=n�

A,p+1

Up,k(μ)�p,k(μ)

)
, (75)

(in which the subscript 0 refers to the case of zero RB error contribution) and we note
that eh0(μ) ∈ Ssymm(�) because the source bubble contributions from uh(μ) and uPR(μ)

cancel. Our goal is to develop a bound for the energy ‖eh0(μ)‖μ, where

‖ · ‖μ ≡ √
a(·, ·;μ) (76)

is the usual energy norm. From (25) and (74) we see that

a(eh0(μ), v;μ) = f (v) − a(uPR(μ), v;μ), ∀v ∈ Ssymm(�); (77)

this error-residual relationship is the point of departure for our error bound development.
Thanks to coercivity and symmetry of a(·, ·;μ), the error field eh0(μ) admits the

equivalent definition

eh0(μ) = arg min
v∈Ssymm(�)

J (v;μ), (78)

where

J (v;μ) ≡ 1
2
a(v, v) − (

f (v) − a(uPR(μ), v;μ)
)
, (79)

and furthermore ‖eh0(μ)‖2μ = a(eh0(μ), eh0(μ);μ) = −2J (eh0(μ);μ). We now relax the
minimization (78) by consideration of a discontinuous (non-conforming) skeleton space

SNC
symm(�) ≡ SPR

symm(�)

⊕ span{φi,j,k(μ), (nγ

A,i,j + 1) ≤ k ≤ N γ
i,j , 1 ≤ j ≤ nγ

i , 1 ≤ i ≤ I}
≡ span{�′

i(μ), 1 ≤ i ≤ nNC}, (80)

in which the basis functions �′
i(μ), 1 ≤ i ≤ nNC, merely represent a re-indexing of the

basis functions �p,k(μ), 1 ≤ k ≤ n�
p , 1 ≤ p ≤ n� , and φi,j,k(μ), (nγ

A,i,j + 1) ≤ k ≤ N γ
i,j , 1 ≤

j ≤ nγ
i , 1 ≤ i ≤ I. Note that the φi,j,k(μ) represent independent (non-conforming) degrees

of freedom local to component i. The dimension of SNC
symm(�) is

nNC = nA +
I∑

i=1

nγ
i∑

j=1
N γ

i,j − nγ

A,i,j ≥ nSC; (81)

note that SNC
symm(�) ⊇ Ssymm(�). We also define a non-conforming skeleton spaceSNC ⊇

S(�) as

SNC(�) ≡ SPR(�)

⊕ span{ψi,j,k , (nγ

A,i,j + 1) ≤ k ≤ N γ
i,j , 1 ≤ j ≤ nγ

i , 1 ≤ i ≤ I}
≡ span{
 ′

i , 1 ≤ i ≤ nNC}. (82)

Hence for

eNC
0 (μ) ≡ arg min

v∈SNC
symm(�)

J (v;μ) (83)
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(recall the “broken” definition of a(·, ·;μ) in (8)) we must have

J (eNC
0 (μ);μ) ≤ J (eh0(μ);μ) (84)

and thus a(eNC
0 (μ), eNC

0 (μ);μ) ≥ a(eh0(μ), eh0(μ);μ). This first relaxation of (78) not only
provides a bound on the energy of the error field, but also accommodates efficient bound
calculation thanks to the non-conforming space SNC

symm(�).
A second relaxation step is required to obtain a computationally tractable error bound.

To this endwe introduce a bound conditioner, the bilinear form bμ : SNC
symm(�)×SNC

symm →
R, defined as

bμ(·, ·) ≡ a(·, ·;μμ

ref) (85)

for a reference parameter value μ
μ

ref ∈ D. Note that here, bμ(·, ·) depends implicitly on μ

through the parameter-dependent reference parameter μ
μ

ref. In fact, an important inno-
vation of this paper is this multi-reference parameter bound conditioner: in the online
stage, we optimally select μ

μ

ref from a database of a few candidate reference parameters
(through a discrete enumeration procedure); we discuss the selection of μ

μ

ref further in
the “Computational procedures” subsection below. We also define

λmin(μ) ≡ min
v∈SNC

symm(�)

a(v, v;μ)

bμ(v, v)
. (86)

We then introduce a modified functional

Jb(v;μ) ≡ λmin(μ)

2
bμ(v, v) − (

f (v) − a(uPR(μ), v;μ)
)
, ∀v ∈ SNC

symm(�), (87)

and we consider the minimization

ēNC
0 (μ) ≡ arg min

v∈SNC
symm(�)

Jb(v;μ). (88)

By the definition of λmin(μ) in (86) it is clear that Jb(v;μ) ≤ J (v;μ) for all v ∈
SNC
symm(�). Thus in particular, since ēNC

0 (μ) is the minimizer,

Jb(ēNC
0 (μ);μ) ≤ Jb(eNC

0 (μ);μ) ≤ J (eNC
0 (μ);μ) ≤ J (e0(μ);μ), (89)

where the last inequality follows from (84). Consequently, we obtain the energy-norm
error bound

λmin(μ)bμ(ēNC
0 (μ), ēNC

0 (μ)) ≥ a(eh0(μ), eh0(μ);μ) (90)

where the field variable ēNC
0 (μ) ∈ SNC

symm(�) — a presumably rather good approxima-
tion to the original error field eh0(μ) [12] — satisfies the elliptic problem bμ(ēNC

0 (μ), v) =
λmin(μ)−1(f (v;μ) − a(uPR(μ), v;μ)) for all v ∈ SNC

symm(�). Equivalently, because of the
Galerkin orthogonality in (19),

bμ(ēNC
0 (μ), v) = 1

λmin(μ)

(
f (v;μ) − a(uPR(μ), v;μ)

)
, ∀v ∈ SNC(�). (91)

Thanks to incorporation of the modes related to rigid-body motion in our port space
bases (presuming n�

A,p ≥ 6 on all global ports �p, 1 ≤ p ≤ n�) we expect in general (and
for a particular system, we computationally verify) that (91) is well-posed; for the simpler
class of problems with scalar-valued fields we demonstrate this well-posedness in [12].
The RB-error-free bound given in (90) (together with (91)) is the basis on which we in the
next subsection extend our error estimation framework to the general case of non-zero
RB errors and furthermore to certain outputs of interest.
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In order to implement this error bound, and to facilitate incorporation of RB-induced
error contributions, we now interpret the error bound (90) in terms of algebraic quanti-

ties. To this end, we first note that, for any v(μ) = ∑n�

p=1
∑N�

p
k=1 Vp,k(μ)�p,k(μ) — that is,

for any v(μ) ∈ Ssymm(�) with coefficients V(μ) —we have

a(v(μ), v(μ);μ) = V(μ)TA(μ)V(μ); (92)

we refer to the right-hand side of (92) as the “Schur energy” of V(μ). It shall prove
convenient to introduce the zero-extended solution vectors

ÛPR
0 (μ) ≡

[
UPR(μ)

0

]
∈ RnSC , and Û

PR,NC
0 (μ) ≡

[
UPR(μ)

0

]
∈ RnNC , (93)

in which all but the first nA entries are explicitly set to zero. We also define the error
coefficient vector

E0(μ) ≡ U(μ) − ÛPR
0 (μ) ∈ RnSC (94)

such that the error (75) can be written eh0(μ) = ∑n�

p=1
∑N�

p
k=1 E0;p,k(μ)�p,k(μ). Note here,

we tacitly interpret (without loss of generality) U(μ) such that the first nA entries cor-
respond to the nA active degrees of freedom. The algebraic version of the error residual
equation (77) is

A(μ)E0(μ) = R0(μ), (95)

where the residual vector is given as

R0(μ) = F(μ) − A(μ)ÛPR
0 (μ); (96)

note that, thanks to (92) and the fact that eh0(μ) ∈ Ssymm(�), (95) is equivalent to (77).
We now introduce a non-conforming matrixANC(μ) ∈ RnNC×nNC and vector FNC(μ) ∈

RnNC as

ANC
i,j (μ) = a(�′

j(μ),�′
i(μ);μ), (97)

FNC
i (μ) = f (�′

i(μ);μ) −
I∑

l=1
a(bf ;hl (μl),�′

i(μ);μ), (98)

for 1 ≤ i, j ≤ nNC. Note that a(�′
j(μ),�′

i(μ);μ) = a(�′
j(μ),
 ′

i ;μ) because of the
Galerkin orthogonality in (19), and thus ANC(μ) is indeed the non-conforming ver-
sion of the Schur complement matrix A(μ) in (26); similarly, note that f (�′

i(μ);μ) −∑I
l=1 a(b

f ;h
l (μl),�′

i(μ);μ) = f (
 ′
i ;μ) − ∑I

l=1 a(b
f ;h
l (μl),
 ′

i(μ);μ) because of (18) and
the fact that �′

i(μ) − 
 ′
i vanish on ports, and thus FNC(μ) is the non-conforming version

of the vector F(μ) in (26).
We further define a non-conforming reference matrix

BNC
μ ≡ ANC(μ

μ

ref), (99)

which corresponds to the bilinear form bμ(·, ·). We also introduce a non-conforming
residual vector RNC

0 (μ) ∈ RnNC as

RNC
0;i (μ) = f (�′

i(μ)) − a(uPR(μ),�′
i(μ);μ), 1 ≤ i ≤ nNC; (100)

note that RNC
0 (μ) = FNC(μ) − ANC(μ)ÛPR

0 (μ).
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Next, we introduce a (unknown) coefficient vector ĒNC
0 (μ) ∈ RnNC such that

ēNC
0 (μ) =

nNC∑
i=1

Ē0;i(μ)�′
i(μ). (101)

Thus from (91), (99), and (100) we obtain

ĒNC
0 (μ) = 1

λmin(μ)
(BNC

μ )−1RNC
0 (μ). (102)

Similarly to (92), we note that for any v(μ) = ∑nNC
i=1 Vi(μ)�′

i(μ) — that is, for any
v(μ) ∈ SNC

symm(�) —we have

a(v(μ), v(μ);μ) = V(μ)TANC(μ)V(μ). (103)

Hence in particular, since ēNC
0 (μ) ∈ SNC

symm(�), we obtain

λmin(μ)bμ(ēNC
0 (μ), ēNC

0 (μ)) = λmin(μ)ĒNC
0 (μ)TBNC

μ ĒNC
0 (μ)

= 1
λmin(μ)

RNC
0 (μ)T(BNC

μ )−1RNC
0 (μ). (104)

Further, since eh0(μ) ∈ Ssymm, we may invoke (92) and write

a(e0(μ), e0(μ);μ) = E0(μ)TA(μ)E0(μ). (105)

Finally, we note that λmin(μ) of (86) is the smallest eigenvalue associated with the
generalized eigenproblem

ANC(μ)V(μ) = λ(μ)BNC
μ . (106)

The algebraic interpretation of the port reduction error bound (90) is thus
1

λmin(μ)
RNC
0 (μ)T(BNC

μ )−1RNC
0 (μ) ≥ E0(μ)TA(μ)E0(μ). (107)

We note that the bound (107) necessitates a solve (BNC
μ )−1RNC

0 (μ) of dimension nNC ≥
nSC. However, this solve may be performed efficiently thanks to i) the non-conforming
skeleton space SNC(�) which in a natural way allows component-local elimination of all
degrees of freedom that do not couple at shared global ports; and ii) the quasi parameter-
independent bound conditioner matrix BNC

μ associated with the bilinear form bμ, which
allows offline pre-factorization for all these component-local solves. And furthermore,
in actual practice we invoke not λmin(μ) but rather a computationally tractable eigen-
value lower bound λ̃min,LB(μ) ≤ λmin(μ). We consider computational aspects of our
error estimation framework in more detail in the “Computational procedures” subsection
below.

RB error contribution— A Posteriori error estimators

Wenowmodify (107) in order to obtain an efficiently computable a posteriori error bound
which is also valid in the presence of RB error contributions. First, as we in the SCRBE
context only have access to an approximation of the FE Schur complement system, the
residual can not be computed exactly and we thus instead compute a residual approxima-
tion together with bounds on associated RB-error-induced residual perturbation terms.
Second, we introduce a lower bound (valid under an eigenvalue proximity assumption)
for the eigenvalue λmin(μ) which is based on the solution to a port-reduced eigenprob-
lem, an approximate eigenproblem residual, and bounds on associated RB-error-induced
eigenproblem residual perturbation terms.
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Moreover, in the presence of RB error contributions the error in the Schur energy is not
equal to the energy of the error in the field, and thus in addition to a bound on the former
we require a bound on additional RB perturbation terms to obtain a bound for the latter.
Further, we develop in this section, from our Schur energy error bound, a new bound on
port-restricted compliance outputs. For this output bound wemust take into account that
we in this paper (in contrast to in [12]) employ SPR(�) rather than S̃PR

symm(�) ⊂ S̃symm(�)

(the former being a port-reduced version of the latter, which is defined in (51)) as our
skeleton space. Finally, we introduce asymptotically rigorous error estimators, by which
we reduce computational cost by neglecting typically very small quadratic RB error bound
contributions.
To begin, we define the error field as

eh(μ) ≡ uh(μ) − ũPR(μ). (108)

It is again convenient to introduce the zero-extended solution vectors,

ÛPR(μ) ≡
[
ŨPR(μ)

0

]
∈ RnSC , and ÛPR,NC(μ) ≡

[
ŨPR(μ)

0

]
∈ RnNC , (109)

in which the solution ŨPR(μ) of (64) is extended by nSC − nA and nNC − nA zeros,
respectively. We may then write

eh(μ) =
I∑

i=1
(bh;fi (μi) − b̃h;fi (μi)) +

n�∑
p=1

N�
p∑

k=1

(
Up,k(μ)�p,k(μ) − ÛPR

p,k(μ)�̃p,k(μ)
)
,

(110)

and we note that eh(μ) is not a member of Ssymm(�) because of the errors in the RB
bubble approximations. We also define a vector of error coefficients as

E(μ) ≡ U(μ) − ÛPR(μ). (111)

We first develop a bound for the error in the Schur energy norm,
√
E(μ)TA(μ)E(μ),

through perturbations of the left-hand side of (107). We subsequently modify this bound
to obtain a bound on ‖eh(μ)‖μ; note the former is not equivalent to the latter because
eh(μ) is not a member of Ssymm(�).
The usual error-residual relationship still holds in the presence of RB error contribu-

tions. In this case the relevant error-residual equation is

A(μ)E(μ) = R(μ), (112)

where the residual vector is given as

R(μ) = F(μ) − A(μ)ÛPR(μ). (113)

The difference between (95) and (112) is rather subtle: the former features the resid-
ual associated with the RB-error-free solution vector ÛPR

0 (μ) (never computationally
realized), while the latter features the residual associated with the RB-error-affected
SCRBE solution vector ÛPR(μ) (computed in practice). The non-conforming version of
the residual is

RNC(μ) ≡ FNC(μ) − ANC(μ)ÛPR(μ). (114)

Next, we redefine our quasi parameter-independent (due to online reference param-
eter selection) bound conditioner matrix BNC

μ from the previous subsection as BNC
μ =
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ÃNC(μ
μ

ref); note that any SPDmatrix may serve as our bound conditioner, and thus the RB
approximations now present in BNC

μ do not necessitate modifications to the error bound
expression (and therefore the BNC

μ of the previous subsection did not bear a subscript 0).
Henceforth, the eigenproblem (106) is interpreted with this redefined BNC

μ as the right-
hand side matrix, and λmin(μ) is interpreted as the associated smallest eigenvalue. In the
presence of RB error contributions, (107) now becomes

RNC(μ)T(BNC
μ )−1RNC(μ)

λmin(μ)
≥ E(μ)TA(μ)E(μ). (115)

To bound the error in the Schur energy, we must thus, based on residual and eigenvalue
approximations, develop upper and lower bounds for the numerator and denominator,
respectively, of the left-hand side of (115).
We first consider the approximation to the non-conforming residual RNC(μ). As we

do not have access to FNC(μ) and ANC(μ) as defined in (97) and (98), but rather to RB-
approximated versions F̃NC(μ) ≈ FNC(μ) and ÃNC(μ) ≈ ANC(μ), we introduce our
approximation based on F̃NC(μ) ≈ FNC(μ) and ÃNC(μ) ≈ ANC(μ) as

R̃NC(μ) = F̃NC(μ) − ÃNC(μ)ÛPR,NC(μ) (116)

such that R̃NC(μ) = RNC(μ) + δRNC(μ). Here,

δRNC(μ) = F̃NC(μ) − FNC(μ) + (ANC(μ) − ÃNC(μ))ÛPR,NC(μ) (117)

is an RB-error-induced perturbation term. We may readily from standard RB error
bounds [5,6] develop bounds on these perturbation quantities; we introduce a vector σ (μ)

such that, for any μ ∈ D,

σ i(μ) ≥ |δRNC
i (μ)|, 1 ≤ i ≤ nNC. (118)

We next consider the approximation to the eigenvalue λmin(μ). Again, as we do not in
practice have access to ANC(μ), and furthermore as we wish to avoid solution of a full
eigenproblem of dimension nNC, we consider an approximation λ̃PRmin(μ) to λmin(μ) given
as the smallest eigenvalue associated with the port-reduced SCRBE eigenproblem

ÃPR(μ)V(μ) = λ̃PR(μ)BPR
μ V(μ); (119)

here, BPR
μ denotes the block of BNC

μ associated with “Active” degrees of freedom. We
denote by VPR

min(μ) the eigenvector associated with λ̃PRmin(μ), and we assume the nor-
malization VPR

min(μ)TBPR
μ VPR

min(μ) = 1. We also introduce an approximate eigenproblem
residual

R̃NC
eig (μ) = ÃNC(μ)V̂PR

min(μ) − λ̃PRmin(μ)BNC
μ V̂PR

min(μ), (120)

in which V̂PR
min(μ) ∈ RnNC is a zero-expanded version of VPR

min(μ) ∈ RnA . Note that the
exact eigenproblem residual is given as RNC

eig (μ) = ANCV̂PR
min(μ) − λ̃PRmin(μ)BNC

μ V̂PR
min(μ),

and we may thus define a vector of RB perturbation terms δRNC
eig (μ) such that

RNC
eig (μ) = R̃NC

eig (μ) + δRNC
eig (μ). We may then develop bounds on these RB-error-

induced perturbation quantities — we introduce a vector σ eig(μ) such that, for any
μ ∈ D,

σ eig,i(μ) ≥ |δRNC
eig,i(μ)|, 1 ≤ i ≤ nNC. (121)

We now obtain a computable eigenvalue lower bound in
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Lemma 1. Let C > 0 be such that

δRNC
eig (μ)T(BNC

μ )−1δRNC
eig (μ) ≤ C‖δRNC

eig (μ)‖22, (122)

assume that

|λPRmin(μ) − λmin(μ)| ≤ |λPRmin(μ) − λ(μ)|, (123)

for all λ(μ) which satisfy (106) (with the redefined BNC
μ ), and let

λmin,LB(μ;C) ≡ λ̃PRmin(μ)

−
√
R̃NC
eig (μ)T(BNC

μ )−1R̃NC
eig (μ) + 2σ eig(μ)T|(BNC

μ )−1R̃NC
eig (μ)| + C‖σ eig(μ)‖22.

(124)

Then

λmin,LB(μ;C) ≤ λmin(μ). (125)

Proof. We refer to ([12], Proposition 1) for the proof, and we note that a similar residual-
based eigenvalue bound has been developed in [18] for the standard eigenproblem.

With the residual approximation R̃(μ), associated RB error bounds σ (μ), and the eigen-
value lower bound λmin,LB(μ;C) above, we may now obtain a computable bound for the
left-hand side of (115) and thus the error in the Schur energy norm in

Proposition 1. Let C > 0 be a computable constant such that

δRNC(μ)T(BNC
μ )−1δRNC(μ) ≤ C‖δRNC(μ)‖22, (126)

δRNC
eig (μ)T(BNC

μ )−1δRNC
eig (μ) ≤ C‖δRNC

eig (μ)‖22. (127)

Then define

�U(μ;C) ≡
√
R̃NC(μ)T(BNC

μ )−1R̃NC(μ) + 2σ (μ)T|(BNC
μ )−1R̃NC(μ)| + C‖σ (μ)‖22

λmin,LB(μ;C)
.

(128)

Then if the assumption (123) holds, we have√
E(μ)TA(μ)E(μ) ≤ �U(μ;C). (129)

Proof. We merely note here that the numerator in (128) is an upper bound for the
numerator in (115), and that λmin,LB(μ;C) ≤ λmin(μ) is a lower bound for the denomina-
tor in (115). We refer to ([12], Appendix A) for the detailed proof.

We proceed to bound the energy of the error in the field. Since eh(μ) is not a member
of Ssymm(�), a small modification to (128) is necessary to obtain a bound for ‖eh(μ)‖μ.
To this end, we introduce additional RB perturbation terms

�bf (μ) ≡
I∑

i=1

(
bf ;hi (μ) − b̃fi (μ)

)
(130)

��A(μ) ≡
n�∑
p=1

n�
A,p∑

k=1
ŨA,p,k(μ)

(
�p,k(μ) − �̃p,k(μ)

)
; (131)
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we also introduce an RB error bound [6] κ(μ) such that, for any μ ∈ D,

κ(μ) ≥ ‖�bf (μ) + ��A(μ)‖μ. (132)

We then introduce our bound for the energy of the error field in

Proposition 2. Define �u(μ;C) as

�u(μ;C) ≡
√(

�U(μ;C)
)2 + κ(μ)2. (133)

where κ(μ) is given in (132). Then if the assumption (123) holds, we have

‖eh(μ)‖μ ≤ �u(μ;C). (134)

Proof. We refer to ([12], Appendix A) for the proof.

Next, we develop a bound for the error in port-restricted compliance outputs. To this
end we introduce a matrix σA(μ) ∈ RnA×nA such that

σA,i,j(μ) ≥ |Ai,j(μ) − Ãi,j(μ)|, 1 ≤ i, j ≤ nA. (135)

We then state

Proposition 3. Let

�s(μ;C) ≡ (
�U(μ;C)

)2 + |ŨPR(μ)|TσA(μ)|ŨPR(μ)| (136)

(in which | · | denotes entry-wise absolute value and not vector modulus). Assume that
the source f (·;μ) is restricted to ports such that bf ;hi (μi) = 0, 1 ≤ i ≤ I. The error in a
port-restricted compliance output s̃PR(μ) = f (ũPR(μ);μ) can then be bounded as

|sh(μ) − s̃PR(μ)| ≤ �s(μ;C) (137)

Proof. We provide here a full proof as in the present paper (skeleton space SPR(�)) the
proof is different from a related proof in [12] (skeleton space S̃symm(�)).
We first note that

eh(μ) = �b f (μ) + ��A(μ) +
n�∑
p=1

N�
p∑

k=1
Ep,k(μ)�p,k(μ); (138)

note in the port-restricted output case considered here, �bf (μ) = 0. For the compliance
output error, we may then write (using symmetry of a(·, ·;μ))

sh(μ) − s̃PR(μ) = a(uh(μ), eh(μ);μ)

= a(eh(μ),uh(μ);μ) = a(eh(μ), eh(μ);μ) + a(eh(μ), ũPR(μ);μ), (139)

and thus by (138) (and again symmetry of a(·, ·;μ))

sh(μ) − s̃PR(μ) = E(μ)TA(μ)E(μ) + a(��A(μ),��A(μ);μ)

+ 2
n�∑
p=1

N�
p∑

k=1
a(�p,k(μ),��A(μ);μ) + a(eh(μ), ũPR(μ);μ). (140)

We note that eh(μ) is not Galerkin-orthogonal to ũPR(μ) because ũPR(μ) (even in the
case bf ;hi (μi) = 0) is not a member of the skeleton test space SPR(�). We thus do not
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obtain equality between the compliance output error and the squared energy of the error
field in (139). This is the key difference between the compliance output error bound result
here and in [12]; in [12], we invoke the skeleton space S̃PR

symm(�) ⊂ S̃PR(�) (the latter is
defined in (51)) of which ũPR(μ) is a member (for port-restricted compliance such that
b̃fi (μ) = 0), and thus we directly obtain this equality.
We next note that��A(μ)|�i vanish on all ports and thus is a member of the FE bubble

space associated with instantiated component i. From the Galerkin orthogonality (19) we
then conclude that the third term on the right-hand side of (140) is equal to zero, and we
obtain

sh(μ)− s̃PR(μ) = E(μ)TA(μ)E(μ)+a(��A(μ),��A(μ);μ)+a(eh(μ), ũPR(μ);μ) (141)

We now consider the two right-most terms on the right-hand side of (141) (we omit the
μ-dependence for simplicity of exposition). We first obtain

a(��A,��A) + a(eh, ũPR)

=
n�∑
p=1

n�
A,p∑

k=1

n�∑
p′=1

n�
A,p∑

k′=1
ŨPR
p,kŨ

PR
p′,k′a(�p,k − �̃p,k ,�p′,k′ − �̃p′,k′)

+
n�∑
p=1

n�
A,p∑

k=1

n�∑
p′=1

n�
A,p∑

k′=1
ŨPR
p,kŨ

PR
p′,k′a(�p,k − �̃p,k , �̃p′,k′)

+
n�∑
p=1

N�
p∑

k=1

n�∑
p′=1

n�
A,p∑

k′=1
Ep,kŨ

PR
p′,k′a(�p,k , �̃p′,k′), (142)

by the expression for eh(μ) in (138) (for �bf (μ) = 0) and the definition of ��A(μ) in
(131). For the first two terms on the right-hand side of (142) we obtain

n�∑
p=1

n�
A,p∑

k=1

n�∑
p′=1

n�
A,p∑

k′=1
ŨPR
p,kŨ

PR
p′,k′a(�p,k − �̃p,k ,�p′,k′ − �̃p′,k′)

+
n�∑
p=1

n�
A,p∑

k=1

n�∑
p′=1

n�
A,p∑

k′=1
ŨPR
p,kŨ

PR
p′,k′a(�p,k − �̃p,k , �̃p′,k′)

=
n�∑
p=1

n�
A,p∑

k=1

n�∑
p′=1

n�
A,p∑

k′=1
ŨPR
p,kŨ

PR
p′,k′a(�p,k − �̃p,k ,�p′,k′)

=
n�∑
p=1

n�
A,p∑

k=1

n�∑
p′=1

n�
A,p∑

k′=1
ŨPR
p,kŨ

PR
p′,k′a(�p′,k′ ,�p,k − �̃p,k) = 0, (143)

where in the second step we invoke symmetry of a(·, ·;μ) and in the final step the Galerkin
orthogonality (19). For the last term on the right-hand side of (142) we obain

n�∑
p=1

N�
p∑

k=1

n�∑
p′=1

n�
A,p∑

k′=1
Ep,kŨ

PR
p′,k′a(�p,k , �̃p′,k′)

=
n�∑
p=1

N�
p∑

k=1

n�∑
p′=1

n�
A,p∑

k′=1
Ep,kŨ

PR
p′,k′a(�p,k ,�p′,k′) = ETAÛPR, (144)
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where we again exploit Galerkin orthogonality with respect to �p′,k′(μ) − �̃p′,k′(μ).
We note that A(μ)E(μ) = A(μ)(U(μ) − ÛPR(μ)) = F(μ) − A(μ)ÛPR(μ). With (141),

(142), (143), and (144) (and symmetry of A(μ)) we then obtain

sh(μ) − s̃PR(μ) = E(μ)TA(μ)E(μ) + E(μ)TA(μ)ÛPR(μ)

= E(μ)TA(μ)E(μ) + (
F(μ) − A(μ)ÛPR(μ)

)T
ÛPR(μ). (145)

In the case of a port-restricted compliance, we have bf ;hi (μi) = b̃fi (μi) = 0 and
thus also F(μ) = F̃(μ). It is furthermore straightforward to show that (F̃(μ) −
Ã(μ)ÛPR(μ))TÛPR(μ) = 0 because the port-reduced SCRBE solution vector ŨPR(μ)

(that is, the non-zero coefficients of ÛPR(μ)) satisfies (64) exactly. We thus obtain in this
case

(
F(μ) − A(μ)ÛPR(μ)

)T
ÛPR(μ) = (

F̃(μ) − A(μ)ÛPR(μ)
)T
ÛPR(μ)

= (
F̃(μ) − Ã(μ)ÛPR(μ) + Ã(μ)ÛPR(μ)

− A(μ)ÛPR(μ)
)T
ÛPR(μ)

=
((
Ã(μ) − A(μ)

)
ÛPR(μ)

)T
ÛPR(μ). (146)

From (145) and (146) (and symmetry of Ã(μ) and A(μ)) we then conclude that

sh(μ) − s̃PR(μ) = E(μ)TA(μ)E(μ) + ÛPR(μ)T
(
Ã(μ) − A(μ)

)
ÛPR(μ), (147)

which, with the triangle inequality and (135), yields the desired result.

We do not in the present paper consider bounds on more general outputs.
We reiterate that Lemma 1, Proposition 1, Proposition 2, and Proposition 3 all pro-

vide rigorous bounds under the eigenvalue proximity assumption given in (123). These
bounds necessitate computation of a bound C for Rayleigh quotients associated with
(BNC

μ )−1, for which we may choose C = 1/λmin(BNC
μ ), where λmin(BNC

μ ) is the smallest
eigenvalue associated with BNC

μ . Unfortunately, this choice for C is typically a rather pes-
simistic Rayleigh quotient bound,h and furthermore calculation of λmin(BNC

μ ) requires
considerable (albeit, as discussed in the next section, not onerous) computational cost.
However, we note that the terms which multiply C in (124) and (128), as well as the term
κ(μ)2 in (133), are quadratic in RB error bound contributions and thus presumably small
compared to the terms that are linear in RB error bound contributions.
We thus introduce asymptotically rigorous error estimators, in which we choose to

neglect these terms: we set C = 0 in (124) and (128) to obtain a Schur energy error
estimator �U(μ; 0); we then obtain an estimator for the energy of the error field as

�u;0(μ) ≡ �U(μ; 0), (148)

in which we also neglect the term κ(μ)2 in (133); and finally we obtain an estimator for
the port-restricted compliance output error as

�s;0(μ) ≡ �s(μ; 0). (149)

In actual practice, RB errors are typically rather small, and we shall thus for our large-
scale numerical results in this paper employ the error estimators (148) and (149).
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Computational procedures

The main computational costs associated with our a posteriori error estimation frame-
work derive from the two non-conforming solves (BNC

μ )−1R̃NC
eig (μ) and (BNC

μ )−1R̃NC(μ)

required in (124) and in the numerator of (128), respectively, and from the calculation of
the smallest eigenvalue λ̃PRmin(μ) of (119). We now discuss the former in more detail; for
the latter we employ an implementation of a Krylov-Schur (inverted spectrum) iterative
solver from the SLEPc library [19].
For our discussion here it is convenient to first introduce a particular interpretation of

the non-port-reduced SCRBE system matrix and right-hand side as

Ã(μ) =
[
ÃA,A(μ) ÃA,I(μ)

ÃI,A(μ) ÃI,I(μ)

]
, F̃(μ) =

[
F̃A (μ)

F̃I (μ)

]
. (150)

Here, the matrix block ÃA,A(μ) = ÃPR(μ) is the “Active” matrix block which we invoke
for our port-reduced SCRBE approximation, the blocks ÃI,A(μ) and ÃI,A(μ) correspond
to couplings between the “Active” and “Inactive” degrees of freedom, and the block ÃI,I(μ)

is associated only with “Inactive” degrees of freedom. Note that the interpretation (150)
simply corresponds to a particular ordering of (54).
In the particular case of only two instantiated components, the systemmatrix Ã(μ)may

be written as

Ã(μ) =
[
Ã1
A,A(μ1) + A2

A,A(μ2) Ã1
A,I(μ1) + Ã2

A,I(μ2)

Ã1
I,A(μ1) + A2

I,A(μ2) Ã1
I,I(μ1) + Ã2

I,I(μ2)

]
, (151)

where each submatrix Ãi
∗,∗′(μ) is a matrix block associated with instantiated component

i, i = 1, 2. The non-conforming matrix ÃNC(μ) for this two-component system is then

ÃNC(μ) =
⎡
⎢⎣
Ã1
A,A(μ1) + Ã2

A,A(μ2) Ã1
A,I(μ1) Ã2

A,I(μ2)

Ã1
I,A(μ1) Ã1

I,I(μ1) 0
Ã2
I,A(μ2) 0 Ã2

I,I(μ2)

⎤
⎥⎦ . (152)

Note that the difference between (151) and (152) is that the latter does not couple
“Inactive” port degrees of freedom.
For the computation of the residual approximation R̃NC(μ) in (116) we note that

R̃NC(μ) =
⎡
⎢⎣
R̃A(μ)

R̃1
I (μ)

R̃2
I (μ)

⎤
⎥⎦

=
⎡
⎢⎣
F̃A(μ)

F̃1
I (μ1)

F̃2
I (μ2)

⎤
⎥⎦ −

⎡
⎢⎣

ÃA,A(μ) Ã1
A,I(μ1) Ã2

A,I(μ2)

Ã1
I,A(μ1) Ã1

I,I(μ1) 0
Ã2
I,A(μ2) 0 Ã2

I,I(μ2)

⎤
⎥⎦

⎡
⎢⎣
ŨPR(μ)

0
0

⎤
⎥⎦

=
⎡
⎢⎣

F̃A(μ) − ÃA,A(μ)ŨPR(μ)

F̃1
I (μ1) − Ã1

I,A(μ1)ŨPR(μ)

F̃2
I (μ2) − Ã2

I,A(μ2)ŨPR(μ)

⎤
⎥⎦ =

⎡
⎢⎣

0
F̃1
I (μ1) − Ã1

I,A(μ1)ŨPR,1(μ)

F̃2
I (μ2) − Ã2

I,A(μ2)ŨPR,2(μ)

⎤
⎥⎦ ,

(153)

where ŨPR,i(μ) is extracted from ŨPR(μ) for the degrees of freedom associated with
component i. Note that the first nA entries in the residual vector are zero, and that we
may obtain the local residuals R̃i

I(μ) by component-local evaluation. The eigenproblem
residual approximation R̃NC

eig (μ) admits a similar procedure.
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We now consider the system BNC
μ z(μ) = R̃NC(μ), which we may write as⎡

⎢⎣
B1
A,A + B2

A,A B1
A,I B

2
A,I

B1
I,A B1

I,I 0
B2
I,A 0 B2

I,I

⎤
⎥⎦

⎡
⎢⎣
zA(μ)

z1I (μ)

z2I (μ)

⎤
⎥⎦ =

⎡
⎢⎣
R̃A(μ)

R̃1
I (μ)

R̃2
I (μ)

⎤
⎥⎦ , (154)

and we note that[
B1
A,A + B2

A,A − B1
A,I(B

1
I,I)

−1B1
I,A−B2

A,I(B
2
I,I)

−1B2
I,A

]
zA(μ)

= R̃A(μ) − B1
A,I(B

1
I,I)

−1R̃1
I (μ) − B2

A,I(B
2
I,I)

−1R̃2
I (μ).

(155)

Wemay thus obtain z(μ) by consideration of a second Schur complement: we first solve
smaller local problems associated with each of the two components, and then a global
problem of size nA for zA(μ); we finally recover z(μ) by standard back-substitution as
ziI(μ) = (Bi

I,I)
−1(R̃i

I(μ)−Bi
I,AzA(μ)). The extension of this procedure to a system with an

arbitrary number of components and ports is straightforward.
An important innovation of this paper for our error bound framework is a multi-

reference parameter bound conditioner. In fact, the system reference parameter value
μ

μ

ref shall be chosen online, based on a database of component-local reference parame-
ter values μ̂t

m,ref, 1 ≤ t ≤ nm,ref, 1 ≤ m ≤ M. The component-local reference matrices
Bi∗,∗ in (154) and (155) are thus chosen online from a database of nm,ref precomputed
component-local matrices B̂m,t∗,∗ associated with the parameter values μ̂t

m,ref ∈ D̂m. For our
numerical results of this paper, we choose the component reference parameters to mini-
mize the Euclidean distance between μ

μ

ref and μ. This multi-reference parameter bound
conditioner procedure significantly sharpens our error bound through a closer-to-unity
smallest eigenvalue λ̃PRmin(μ) (and associated eigenvalue bound) at only minor additional
computational cost (note a related approach is considered in [14] in a different context).
The computational efficacy of our error bound framework is thus realized largely

through the quasi parameter-independent and non-conforming operator BNC
μ . As for

the SCRBE approximation framework, the computational procedures associated with the
error bound framework naturally decouple into offline and online stages. We consider
these stages as extensions of the offline and online approximation computational stages
discussed earlier, and we now discuss each in more detail (we again refer to [12] for
detailed online operation counts).

Offline

Off5. Online dataset preparation. For each archetype component we construct data to
enable efficient assembly of the matrix blocks Ãi

I,A(μ) required for residual
calculation in (153) (the matrix blocks Ãi

A,A(μ) are also required for residual
calculation; however the associated data is already constructed in Off3). Note that
the blocks Ãi

A,I(μ) and, more importantly, the blocks Ãi
I,I(μ), are not required for

residual calculation. Hence the cost of this stage scales quadratically in nA but
only linearly in nI.

Off6. Bound conditioner preparation. For each archetype component m, 1 ≤ m ≤ M,
we choose (manually) nm,ref (typically only a few) reference parameter values
μ̂t
m,ref and compute associated bound conditioner reference matrices B̂m,t

I,I , B̂
m,t
AA,

and B̂
m,t
A,I , 1 ≤ t ≤ nm,ref.
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We also perform and store the Cholesky factorization of each of the B̂m,t
I,I , and we

precompute the terms B̂m,t
A,I (B̂

m,t
I,I) )

−1B̂m,t
I,A required for assembly of the left-hand

side of (155).
Off7. Data loading. We finally read the online datasets and error bound conditioner

data (typically a few Gb combined) for all library components into computer
memory to prepare for the online stage.

Online

On4. Port-reduced eigenproblem. We compute the smallest eigenvalue and associated
eigenvector associated with (119) using a Krylov-Schur algorithm [19].

On5. Matrix and vector block assembly. Assemble component matrix and vector
blocks Ãi

I,A(μ) and vectors F̃i
I(μ) for each unique component instantiation; note

that the “Active” component matrix and vector blocks Ãi
A,A(μ) are already

assembled in On2. As in On2, we exploit “cloned” component instantiations to
effectively reduce the number of component instantiations to Ieff � I.

On6. Residual calculation. Given the solution vector Û(μ), the eigenvalue λ̃PRmin(μ), and
the associated (normalized and zero-expanded) eigenvector V̂PR

min(μ), we
calculate R̃NC(μ) and R̃NC

eig (μ) locally on each component.
On7. Non-conforming solves. We first choose the reference parameter value

μ
μ

ref = (μ̂
t1
M(1),ref, . . . , μ̂

tI
M(I),ref) (156)

(where 1 ≤ ti ≤ nM(i),ref) from the database of candidate component reference
parameter values such that the Euclidean distance between each μi and μ̂

ti
M(i),ref

is minimized. We then compute (BNC
μ )−1RNC(μ) and (BNC

μ )−1RNC
eig (μ) through

component-local elimination of “Inactive” degrees of freedom as indicated in
(155). Note that this step is particularly efficient thanks to the preparation in Off6.

On8. Calculation of λmin(BNC
μ ). In the case that we wish to employ a rigorous error

bound (we choose C = 1/λmin(BNC
μ ) rather than C = 0), we must also compute

λmin(BNC
μ ). Note that we may compute λmin(BNC

μ ) rather efficiently through
(typically) a few inverse power iterations, and hence only a few additional
non-conforming solves. This procedure is applicable for λmin(BNC

μ ) but not for
λmin(ÃNC(μ)) because the latter would have required expensive online formation
of the Ãi

I,I(μ) component-local matrix blocks.

The computational cost associated with this online stage is typically dominated by On4
and On7. However for systems in which almost all components are unique — that is, Ieff
close to I — the cost of matrix assembly in On5 is considerable. In any event, the error
estimation online computational cost discussed here is typically larger than the approxi-
mation online computational cost discussed earlier (we report actual timings in the next
section).

Microtruss beam application
We consider here application of our port-reduced SCRBE framework to structural anal-
ysis of a microtruss beam. The particular beam we consider is in practice manufactured
from microcylinders that are welded together in a three-dimensional square array con-
figuration to form a larger but light-weight truss structure; see Figure 3. Many examples
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Figure 3 Microtruss structure. The system has I = 408 instantiated components, 224 of which are of type
component 1 and 184 of which are of type component 2.

of microtruss structures exist in literature and in engineering, and our choice here is
only one of numerous possibilities. We refer to [20-22] for analyses and manufacturing
considerations for such structures, including the particular type we consider here.
The microtruss structure is a good fit for our methodology. First, the structure admits

a very natural decomposition into components, and the macroscale beam is comprised of
many identical or similar instantiations of the same component archetypes; thus typically
we may obtain Ieff � I which implies particularly effective treatment by the port-reduced
SCRBE. Second, the behavior of the macroscale beam as a function of component param-
eters and system topology is non-trivial, and furthermore the solution may exhibit large
localized stresses within the components; hence the fidelity of a full FE discretization —
provided by the port-reduced SCRBE framework at a fraction of the cost — is desired.
Third, it is often of interest to assess performance in off-design conditions in particular in
the presence of inevitable flaws, in which not just natural periodicity but departures from
periodicity — well within the capabilities of the SCRBE — are important.

Archetype component library

Before we introduce our components, we consider the non-dimensionalization of the
equations of isotropic linear elasticity for a “generic” archetype (and thus entities below
bear ˆs). To this end we first define the non-dimensional tensor Ĉ as

Ĉijkl ≡ ν

(1 + ν)(1 − 2ν)
δijδkl + 1

2(1 + ν)
(δikδjl + δilδjk), 1 ≤ i, j, k, l ≤ 3, (157)

in which ν is the Poisson ratio (we choose ν = 0.3 for steel); the dimensional elasticity
tensor is then given as the product ÊdimĈijkl, where Êdim is the Young’s modulus. The
associated stress tensor σ̂ dim(ûdim), given the dimensional displacement ûdim, is defined
as σ̂ dim

ij (ûdim) = ÊdimĈijkl∂ûdimk /∂ x̂diml .
We shall consider either homogeneous Dirichlet boundary conditions, or (port) trac-

tions. In the latter case the boundary conditions are enforced through the stress tensor
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as σ̂ dim
ij êdimj = κ̂

tr;dim
i (êdimj denotes the canonical vectors) for a specified traction vector

κ̂
tr;dim.
To derive non-dimensional equations we introduce the dimensionless variables x̂ =

x̂dim/L̂dim,0, û = ûdim/L̂dim,0, Ê = Êdim/Êdim,0, σ̂ = σ̂ dim/Êdim,0, and κ̂
tr = κ̂

tr;dim
/Êdim,0,

where L̂dim,0 is a characteristic length, and Êdim,0 is a characteristic Young’s modulus. The
non-dimensional traction boundary conditions then become σijnj = κ tr

i . Below, all our
equations take a non-dimensional form.
We now introduce our (non-dimensional) archetype component library, which consists

of the two three-dimensional isotropic linear-elastic components illustrated in Figure 4;
note Ldim,0 in Figure 4 is the characteristic length used in our non-dimensionalization.
The first archetype, component 1, is a “Steinmetz cylinder,” and has four circular

ports: the left and right ports are of type port 1 and the top and bottom ports are of
type port 2. For both port types, the reference port space dimension is N β = 219 (73
mesh nodes). The FE discretization for component 1 hasN1 = 115,443 degrees of free-
dom in linear hexahedral elements. Note in Figure 4 that the mesh is significantly refined
where the weld stub meets the cylinder base in order to resolve potentially high stress
concentrations in this area.
The archetype parameter vector for this component is

μ̂1 = (Ê1, κ̂ tr
1,top), (158)

where Ê1 = Êdim1 /Êdim,0
1 is a Young’s modulus scaling parameter and κ̂

tr
1,top is a directional

traction applied on the top port. The archetype bilinear and linear forms associated with
component 1 are, for all ŵ, v̂ ∈ X̂h

1 , given as

â1(ŵ, v̂; μ̂1) = Ê1
∫

�̂1

∂ŵi

∂ x̂j
Ĉijkl

∂ v̂k

∂ x̂l
, (159)

f̂1(v̂; μ̂1) = κ̂
tr
1,top,i

∫
γ̂1,top

v̂i, (160)

where γ̂1,top denotes the boundary associated with the top port. For the bound condi-
tioner reference matrix blocks we consider a single reference parameter value μ̂1

1,ref =
Ê11,ref = 1 (thus n1,ref = 1).

Figure 4 The (dimensional) archetype components for the microtruss library: component 1 (left)
and component 2 (right). The port radius for port 1 and port 2 is rdim1 = 0.7405Ldim and
rdim2 = 0.55Ldim , respectively.



Eftang and Patera AdvancedModeling and Simulation in Engineering Sciences 2013, 1:3 Page 35 of 49
http://www.amses-journal.com/content/1/1/3

We note that Q̂a
1 = 1; the Young’s modulus parameter Ê1 is “free” in the sense that it

enters outside the integral of (19). As a result, we may consider any value of Ê1 with only
a single RB basis function in each of the RB approximation spaces. For f̂1 we note that
Q̂f
1 = 3; however, as f̂1 is port-restricted, we obtain b̂f ;h1 = 0.
We also note that â1 in (159) does not reflect the rigid-body mapping parameters

required to “dock” instantiations of component 1 to the correct position in the sys-
tem frame. To demonstrate this property more explicitly we consider the mapping T1 =
T rot
1 T def

1 , in which, for component 1, T def
1 is pure translation; we introduce an asso-

ciated rotation matrix Q ∈ R3×3 and a translation vector T ∈ R3. For any coordinate
x̂ ∈ �̂1, we thus have xi = Qij(x̂ + T)j, 1 ≤ i ≤ 3, where x = (x1, x3, x3) ∈ �1 and �1 is
the instantiated component domain; note that the Jacobian of the mapping, Q, is unitary
and thus detQ = 1.
On �1, the instantiated component bilinear form reads, for any w, v ∈ X1,

a1(w, v;μ) = E1
∫

�1

∂wi

∂xj
Cijkl

∂vk

∂xl
d�1, 1 ≤ i, j, k, l ≤ 3. (161)

Here, C is the elasticity tensor on the instantiated domain (i.e., in the system coordinates)
such that [23]

Cijkl = Qii′Qjj′Qkk′Qll′ Ĉi′j′k′l′ (162)

for Ĉ defined in (157). We recall from the Section “Component-based static condensa-
tion” that we apply T rot to the dependent variables, and thus for any function v ∈ X1 we
write vi = Qijv̂j, where v̂ = (v̂1, v̂2, v̂3) ∈ X̂1. Starting from (161), we obtain in this case,
for w, v ∈ X1,

a1(w, v;μ1) = E1
∫

�̂

(
Q−1

jj′
∂wi

∂ x̂j

)
Cij′kl′

(
Q−1

ll′
∂vk

∂ x̂l

)
(detQ) d�̂ (163)

= E1
∫

�̂

(
Q−1

jj′ Qi′i
∂ŵi

∂ x̂j

)
Ci′j′k′l′

(
Q−1

ll′ Qk′k
∂ v̂k

∂ x̂l

)
d�̂ (164)

= E1
∫

�̂

(
Q−1

jj′ Qi′i
∂ŵi

∂ x̂j

)
Qi′i′′Qj′j′′Qk′k′′Ql′l′′ Ĉi′′j′′k′′l′′

(
Q−1

ll′ Qk′k
∂ v̂k

∂ x̂l

)
d�̂

(165)

= E1
∫

�̂

∂ŵi

∂ x̂j
(Qi′iQi′i′′)(Q

−1
jj′ Qj′j′′)(Qk′kQk′k′′)(Q−1

ll′ Ql′l′′)Ĉi′′j′′k′′l′′
∂ v̂k

∂ x̂l
d�̂

(166)

= E1
∫

�̂

∂ŵi

∂ x̂j
(QTQ)ii′′(Q

−1Q)jj′′(Q
TQ)kk′′(Q−1Q)ll′′ Ĉi′′j′′k′′l′′

∂ v̂k

∂ x̂l
d�̂

(167)

= E1
∫

�̂

∂ŵi

∂ x̂j
Ĉijkl

∂ v̂k

∂ x̂l
d�̂ (168)

= â1(ŵ, v̂;μ1). (169)
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The key point in (163)–(169) is that the representation of the instantiated bilinear form in
archetype coordinates does not require parameters related to the rotation JacobianQ due
to the cancellations in (167) and the fact that detQ = 1. For our RB approximations we
employ the archetype domain for all computations and thus the RB spaces do not need to
take these “docking” parameters into account. Furthermore the matrix and vector blocks
for component instantiations that differ only in spatial orientation are identical, which
thus contributes to the realization of Ieff � I in an instantiated system.
We next consider our second archetype, component 2, which is a short cylinder stub.

It has two ports of type port 1 and may thus connect to the left and right ports of
component 1. The reference port space dimension is again N β = 219. The FE dis-
cretization for component 2 has N2 = 3,504 degrees of freedom in linear hexahedral
elements. The parameter vector for this component is

μ̂2 = (Ê2, L̂2, κ̂ tr
2,left, κ̂

tr
2,right), (170)

where Ê2 = Êdim2 /Êdim,0
2 is a Young’s modulus scaling parameter, L̂2 = L̂dim2 /L̂dim,0 ∈

[ 0.5, 2] is a length scaling parameter, and κ̂
tr
2,left and κ̂

tr
2,right are directional traction applied

on the left and right ports, respectively. The archetype bilinear and linear forms associated
with component 2 are, for all ŵ, v̂ ∈ X̂2(�̂2), given as

â2(ŵ, v̂; μ̂2) = Ê2
(∫

�̂2

∂ŵi

∂ x̂j
Ĉijk3

∂ v̂k

∂ x̂3
+

∫
�̂2

∂ŵi

∂ x̂3
Ĉi3kl

∂ v̂k

∂ x̂l

)

+ Ê2
L̂2

∫
�̂2

∂ŵi

∂ x̂3
Ĉi3k3

∂ v̂k

∂ x̂3
+ Ê2L̂2

∫
�̂2

∂ŵi

∂ x̂j
Ĉijkl

∂ v̂k

∂ x̂l
, (171)

f̂2(v̂; μ̂2) = κ̂
tr
2,left,i

∫
γ̂2,left

v̂i + κ̂
tr
2,right,i

∫
γ̂2,right

v̂i, (172)

where, in (171), j and l take only the values 1, 2, and where, in (172) γ̂2,left and γ̂2,right are
the boundaries associated with the left and right port, respectively. We note that Q̂a

2 = 3
and that Q̂f

2 = 6. Note that the bilinear form depends on the dilation parameter L̂2, but not
on spatial orientation of the component; we may show this by reverse application of the
arguments in (163)–(169) to each of three terms in (171). For the bound conditioner refer-
ence matrix blocks we consider three parameter values μ̂1

2,ref = (Ê12,ref, L̂
1
2,ref) = (1, 0.75),

μ̂2
2,ref = (Ê22,ref, L̂

2
2,ref) = (1, 1), and μ̂3

2,ref = (Ê32,ref, L̂
3
2,ref) = (1, 1.5) (thus n2,ref = 3).

Pairwise empirical port mode training

We now discuss the pairwise empirical port mode training for our library com-
ponents. For the port 1 type we consider the three component pairs shown in

Figure 5 Component pairs used for empirical training of port 1.
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Figure 5: a pair with two instantiations of component 2, a pair with one instan-
tiation of component 1 and one instantiation of component 2, and a pair with
two instantiations of component 1 connected via side ports (port 1). For the
port 2 type we consider the single pair of instantiations of component 1 con-
nected via a port 2 type port as shown in Figure 6; note that when we consider a
large microtruss structure we shall always “weld” our cylinders in this particular cross
configuration.
We then execute Algorithm 1 for each pair; for the boundary condition regularity

parameter in Algorithm 1 we choose γ = 3. For the training of port 1 we extract
Nsamples = 150 different port samples in Spair from each of the three pairs; recall that
we subtract the projection onto the six modes χ̂

β
i , 1 ≤ i ≤ 6, related to rigid-body

motion from all snapshots. We then combine all 450 modes in Stype, and perform a POD
over these 450 modes to compress the data to nβ

pod = 44 POD modes. We then obtain
nβ

pod + 6 = 50 empirical modes, which we complement by N β − 50 = 169 eigen-
modes (restricted to the orthogonal complement space) to complete the discrete space
(note in practice we shall always use less than 50 modes for the port-reduced SCRBE
approximation).
The approach for the training of port 2 is identical except we perform POD

over Nsamples = 300 different port samples (with the projections onto the rigid
body modes subtracted) extracted from the single component pair. We choose the
same number of POD modes (nβ

POD = 44) and thus empirical modes for this port
type.
We shall use these empirical port modes for most of our numerical results below. How-

ever we shall also compare these results to results obtained using more standard (and in

Figure 6 Component pairs used for empirical training of port 2.
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particular non-empirical) “Legendre” port eigenmodes. In this latter case, the reference
port modes χ̂

β

k are given as

χ̂
β
1 = (Lβ

1 , 0, 0), χ̂
β
2 = (0, Lβ

1 , 0), χ̂
β
3 =(0, 0, Lβ

1 ),

χ̂
β
4 = (Lβ

2 , 0, 0), χ̂
β
5 = (0, Lβ

2 , 0), χ̂
β
6 = (0, 0, Lβ

2 ), . . .
(173)

where the Lβ
i , 1 ≤ i ≤ N β/3, are the eigenvectors of a scalar singular Sturm-Liouville

eigenproblem over β ordered according to increasing eigenvalue.

Numerical results

We now present numerical results for our three-dimensional linear-elastic microtruss
library to demonstrate our port-reduced SCRBE approximation and error estimation
framework. Our implementation is in C++ and is based on the library libMesh [24,25].
In our current implementation offline calculations are performed in parallel, while online
calculations are limited to a single core.
The offline computation time for our microtruss library is about five hours using up to

24-cores on an AMDOpteron 6238 workstation computer. In offline stages Off4 and Off7
we load all required data into memory to prepare for the online stage. An (upper bound
for) the online memory footprint for this library is 1.5Gb.

Cylindrical cantilever beam

We shall first consider a cylindrical cantilever beam system, for which we may compare
our compliance output results to standard (Euler-Bernoulli) beam theory [26]. Hence this
system provides an opportunity to confirm both the validity of the SCRBE framework —
in terms both of approximation and certification— as well as the fidelity of the underlying
FE “truth” component discretization.
Our cantilever system is of total length l = 8L and consists of I = 8 instantiations

of component 2 of individual length Li = L, 1 ≤ i ≤ I; we consider Ei = 1, 1 ≤
i ≤ I, and thus here Ieff = 1. We prescribe zero Dirichlet conditions on the left-most
port of the system and we apply a unity-magnitude tangential traction on the right-most
port as shown in Figure 7; the deformations in Figure 7 show the displacement field, and
the colors indicate the Von Mises stressesi with higher stresses in red. The output for
this system is the average displacement over the right-most port in the direction of the

Figure 7 Side view of cantilever beam system consisting of I = 8 instantiations of component 2.
Each component is of length L (in the figure L = 1.9), and the system is subject to a unity tangential traction
κ tr
right on the right-most port. The colors indicate Von Mises stresses with high magnitudes in red.
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specified traction and is thus equal to compliance normalized by port area.We use n�
A,p =

20 empirical port modes on all global ports �p, 1 ≤ p ≤ n� .
We report in the second, third, and fourth columns of Table 1 the port-reduced SCRBE

compliance output approximation s̃PR(μ), the relative error in s̃PR(μ) with respect to the
FE “truth” compliance output sh(μ), and the effectivity of the compliance output estima-
tor,�s;0(μ), respectively.We note that the error in the output approximation is very small,
and that the error estimator is relatively sharp; note that for large values of L the term
|ŨPR(μ)|TσA(μ)|ŨPR(μ)| dominates in (136) and causes the effectivity to increase some-
what. We emphasize that our error estimator is for all these cases indeed an error upper
bound: the effectivities are greater than unity.
We report in the fourth and fifth columns of Table 1 the theoretical maximum deflec-

tion sEB(μ) as predicted by classical Euler-Bernoulli beam theory,j and the relative
difference between s̃PR(μ) and sEB(μ). The theoretical predictions match the computa-
tional results reasonably well, and in particular become increasingly accurate for larger
L (the analytical results are valid in the limit of a long cantilever). Furthermore the dis-
crepancy is for larger L sufficiently small that we deem our component FE discretization
sufficiently rich.
Next, we consider the behavior of our port-reduced SCRBE compliance output approx-

imation and associated error estimator as functions of n�
A,p empirical port modes for

a fixed length parameter L = 1.3. In Figure 8 we report the relative compliance error
|sh(μ) − s̃PR(μ)|/s̃PR(μ), the relative error estimator �s;0(μ)/s̃PR(μ) given in (149),
and the relative error bound �s(μ;C)/s̃PR(μ) given in Proposition 3 realized for C =
1/λmin(BNC

μ ). We make several observations: first, the relative error decreases very fast
and is of order 10−4 already for n�

A,p = 10. Second, the error estimator is always
greater than the error and is furthermore reasonably sharp — the effectivity is O(10) —
for n�

A,p ≤ 18; at n�
A,p = 18 the RB error bound contribution |Ũ(μ)|TσA(μ)|Ũ(μ)|

becomes the dominating term in (136) and thus adding additional port modes will
not reduce the error estimator.k Third, the rigorous error bound is reasonably sharp
only for small n�

A,p: the term ‖σ (μ)‖22/λmin(BNC
μ ) in (128) dominates from an early

point not because of large RB error bound contributions per se but because C =
1/λmin(BNC

μ ) is a pessimistic estimate for the Rayleigh quotient associated with BNC
μ

and σ (μ).
We also compare our empirical port approximation to the more standard eigen-

mode (Legendre) port approximation introduced in (173). In Figure 9 we report for the

Table 1 Results for variable L for the cylindrical cantilever beam system using n�
A,p = 20

empirical port modes on each port

l = 8L s̃PR(μ)
sh(μ)−s̃PR(μ)

s̃PR(μ)

�s;0(μ)

|sh(μ)−s̃PR(μ)| sEB(μ)
s̃PR(μ)−sEB(μ)

s̃PR(μ)

4.0 1.6504e+2 8.4e-5 1.7e+1 1.5562e+2 5.7e-2

5.6 4.3969e+2 3.8e-5 6.8e+0 4.2702e+2 2.8e-2

7.2 9.2362e+2 2.8e-5 2.3e+1 9.0758e+2 1.7e-3

8.8 1.6767e+3 2.4e-5 4.5e+1 1.6571e+3 1.2e-3

10.4 2.7584e+3 2.2e-5 3.3e+1 2.7352e+3 8.4e-3

12.0 4.2281e+3 1.8e-5 2.5e+1 4.2018e+3 6.2e-3

13.6 6.1450e+3 1.3e-5 1.7e+2 6.1165e+3 4.6e-3

15.2 8.5671e+3 2.0e-5 3.5e+2 8.5392e+3 3.3e-3
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Figure 8 Relative compliance output error, relative output error estimator, and relative output error
bound as functions of n�

A for the cantilever beam (L = 1.3), using empirical port spaces.

Legendre case the relative compliance error, the relative error estimator, and the rela-
tive error bound superposed on the results for the empirical case (in gray). From the
two error curves (squares) we note that the empirical port mode approximation is more
than an order of magnitude better than the Legendre approximation for small n�

A,p, and
for larger n�

A,p the error in the Legendre approximation decreases significantly only for
certain eigenmodes whereas the empirical approximation converges in a more regular

Figure 9 Relative compliance output error, relative output error estimator, and relative output error
bound as functions of n�

A for the cantilever beam (L = 1.3), using Legendre port spaces (superposed
on the results for empirical port spaces).
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fashion. We also note that the error estimator (triangles) and bound (asterisk) for the
empirical approximation is about an order of magnitude smaller than the estimator and
bound for the Legendre approximation, respectively.
Finally, we consider in Figure 10 and Figure 11 the relative compliance output error esti-

mator �s;0(μ)/s̃PR(μ) for empirical and Legendre port modes as functions of L for three
different values of n�

A,p; note the results for the latter case are superposed on the results
for the former case in Figure 11. We note that for L far from the reference parameter val-
ues (recall L̂12,ref = 0.75, L̂22,ref = 1.0, L̂32,ref = 1.5) only the empirical port modes provide
a good approximation; in fact using empirical port modes we obtain even for n�

A,p = 10 a
relative error estimator smaller than 0.013 for all sampled values of L. Again, we empha-
size that these error estimates indeed provide bounds on the error: for all cases the relative
error with respect to the FE discretization is smaller than 10−4 as reported in the second
column of Table 1.
For the remainder of our numerical results we exclusively employ the error estimator

(136) or (148) rather than the respective rigorous bound.

Microtruss structure

We shall now consider a larger microtruss beam. Our first microtruss system, system 1,
is an array of of I = 408 components (224 of which are of archetype component 1 and
184 of which are of archetype component 2). We illustrate the system assembly process
in Figure 12 and Figure 3; note that this procedure is efficient thanks to a graphical user
interface that allows “cloning” of smaller subsystems which we may interconnect to form
the final system [Additional file 1]. Note in actual (engineering) practice, this microtruss
beam may be manufactured from Nrods = 40 rods that are welded together.
To the final system shown in Figure 3 we apply zero Dirichlet boundary conditions on

the 32 bottom ports; we apply homogeneous Neumann boundary conditions on the 80
side ports; we apply a unity-magnitude tangential traction (Neumann) κ tr

top on the 32 top
(red) ports in the z-direction. The size of the non-port-reduced Schur complement system

0.5 1 1.5 2
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10
−2

10
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L
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Figure 10 Cantilever beam relative compliance error estimator as a function of L for different n�
A,p

using empirical port spaces.
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Figure 11 Cantilever beam relative compliance error estimator as a function of L for different n�
A,p

using Legendre port spaces (superposed on the results for empirical port spaces).

is in this case nSC = 147, 168. Note that system 1 refers to a particular topology config-
ured with particular Dirichlet boundary conditions; we shall thus consider system 1 for
many different system parameter values. In particular, we denote by Lz and Lx the length
of all component instantiations of component 2 which are oriented in the z-direction
and x-direction, respectively, as indicated for Lz in Figure 3.
We first demonstrate the ability of the port-reduced SCRBE framework to provide

FE-fidelity field approximations at low computational cost. For our first calculation we
consider the parameter values Ei = 1, 1 ≤ i ≤ I, Lz = 1.1, and Lx = 1. We show
(qualitatively) the solution fields in Figure 13 and Figure 14: the displacement field is
shown in Figure 13 as a deformation of the original geometry (compare to the original
geometry in Figure 3); a closeup of the Von Mises stress field near a “weld” is shown
in Figure 14. The high-stress concentrations (red) are typically isolated to areas where a
weld meets the cylinder base. Note that this high-stress, near-singular, area of the field
is located somewhat close to the ports but nevertheless well within the interior of the

Figure 12 Assembly of the microtruss structure by component and subsystem “cloning” using a
graphical user interface.
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Figure 13 Displacement field shown as deformation for parameter values Lx = 1, Lz = 1.1, Ei = 1,
1 ≤ i ≤ I.

components. Placement of singular or more rapid behavior within the interior of a com-
ponent, when possible, can reduce the number of port degrees of freedom required as
provided by the pairwise training algorithm.
For n�

A,p = 20 and n�
A,p = 25 “Active” port modes we obtain the relative energy-norm

error estimators

‖eh(μ)‖μ

‖ũPR(μ)‖μ

≤ �u;0(μ)

‖ũPR(μ)‖μ

= 0.1139,
‖eh(μ)‖μ

‖ũPR(μ)‖μ

≤ �u;0(μ)

‖ũPR(μ)‖μ

= 0.05641, (174)

Figure 14 VonMises stress field for parameter values Lx = 1, Lz = 1.1, Ei = 1, 1 ≤ i ≤ I.
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respectively (note the inequalities are not confirmed but valid under the assumption that
the error estimators indeed provide error bounds). The port-reduced SCRBE system sizes
are nA = 13, 440 and nA = 16, 800, respectively, and we thus realize in both cases
nA � nSC. For these calculations Ieff = 4 — there are only two unique instantiations
of component 1l and only two unique instantiations of component 2 — and we
thus realize very efficient online computations. The total (for solution and error estimate)
online CPU time is approximately 12.9 seconds for the n�

A,p = 20 calculation and approx-
imately 18 seconds for the n�

A,p = 25 calculation. We report detailed online timing results
in the left and middle columns of Table 2, and we note that for both computations the
certification dominates online cost. In particular, the calculation of the minimum eigen-
value (On4) together with the non-conforming solves (On7) contribute roughly 8/10 of
total cost. Note that as we consider the error estimator rather than the error bound, we
do not execute On8.
We next demonstrate the ability of the SCRBE framework to handle different topologi-

cal configurations, here in the form of a simulated material flaw. To this end, we introduce
a second microtruss system, system 2, which is identical to system 1 except we
assume that three “random” welds are broken such that now we do not couple the
corresponding port 2 ports (top or bottom local ports of component 1). These three
shared global ports are thus split into six non-shared global ports, on which we impose
homogeneousNeumann (zero-stress) boundary conditions. On all other ports the bound-
ary conditions are the same as for system 1. The size of the non-port-reduced Schur
complement system is in this case slightly larger: the non-port-reduced system is of size
nSC = 147,825, and the port-reduced system for n�

A,p = 20 active port modes is of size
nA = 13,500. A closeup of the solution field near a broken weld is shown in Figure 15;
note the low stress concentration at the failed weld compared to neighboring intact welds.
We now consider the compliance output and associated error estimators for system 1

and system 2. The compliance is for these systems the integrated displacement in the
z-direction over all top (red in Figure 3) ports, and is thus effectively a measure of the
microtruss beam directional stiffness. For system 1 and system 2 we then compute
solutions and corresponding compliance outputs for different values of Lz ∈[ 0.5, 2]; we
consider Lx = 1 and Ei = 1, 1 ≤ i ≤ I. We thus effectively consider the directional
stiffness of the microtruss beams as a function of the spacing between rods oriented in
the x-direction.
The results for n�

A,p = 20 are shown in Figure 16. The solid blue and solid red lines
indicate the port-reduced SCRBE system 1 and system 2 output approximation,
respectively; the dashed lines indicate the estimated bounds on the output as provided by

Table 2 Breakdown of majority of online computational cost in seconds for system 1 for
indicated n�

A,p active port modes and Ieff unique component instantiations

Ieff = 4, n�
A,p = 20 Ieff = 4, n�

A,p = 25 Ieff = 80, n�
A,p = 25

On2 0.5 0.6 8.3

On3 1.3 2.5 2.5

On4 6.5 7.8 9.2

On5 0.8 0.9 18.1

On7 3.8 6.2 6.2

Total 12.9 18 44.3
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Figure 15 Solution (displacement and VonMises stress (colors)) near a failed weld for system 2.

the error estimator (149). As expected, system 2 (with the weld failure) is less stiff and
thus exhibits larger top-port displacements than system 1. However, we can not in this
case for larger Lz distinguish between system 1 and system 2 with any confidence
because the (estimated) output bounds overlap.
We next consider the same “parameter sweep,” but now using n�

A,p = 25 empirical port
modes. For system 1 this corresponds to a port-reduced SCRBE system of size nA =
16,800 and for system 2 a system of size nA = 16,875. In Figure 17, we show the outputs
and output bounds for system 1 and system 2, and we note that we are now able to
easily distinguish the two systems.
So far we have for system 1 and system 2 considered only a single system param-

eter Lz and thus Ieff � I. We now consider for system 1 a somewhat more demanding
case in which we also assign “random” Young’s modulus Ejrod ∈[ 0.9, 1.1], 1 ≤ j ≤ Nrods, to
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Figure 16 Parameter sweeps— compliance outputs and (estimated) compliance output bounds—
over Lz ∈ [0.5, 2] for system 1 and system 2 using n�

A,p = 20 “Active” port modes.
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Figure 17 Parameter sweeps— compliance outputs and (estimated) compliance output bounds—
over Lz ∈ [0.5, 2] for system 1 and system 2 using n�

A,p = 25 “Active” port modes.

each of the Nrods = 40 rods of the system; we thus consider here P = 40 system param-
eters (one of the Ejrod scales out) and we obtain in this case Ieff = 80. Because of the
larger Ieff, computational cost increases somewhat as reported in the rightmost column of
Table 2.m For this particular simulation we obtain a relative error field energy estimator
�u;0(μ)/‖ũPR(μ)‖μ = 0.0712 using n�

A,p = 25 empirical port modes.
Finally, we close this section with comparison to standard global FE analysis of

system 1 for system parameters Lx = 1, Lz = 1.1 and Ei = 1, 1 ≤ i ≤ I. We con-
sider n�

A,p = 20, n�
A,p = 25, and n�

A,p = 30, and we report in Table 3 for each case the
relative output error, (sh(μ) − s̃PR(μ))/s̃PR(μ), and the output error estimator effectivity,
�s;0(μ)/(sh(μ)− s̃PR(μ)). For all calculations the relative output error is indeed small, and
certainly within acceptable tolerances in an engineering context. The estimator effectiv-
ities are furthermore greater than unity — our error estimators are indeed error upper
bounds — and moreover, the efficivities show that our estimators are relatively sharp.
The global FE spaceXh(�) for system 1 is of dimensionNFE = 26,381,328. The com-

putation time for a single global FE simulation on a workstation with eight AMDOpteron
6238 cores is 59 minutes for 93 conjugate gradient iterations using an algebraic multi-
grid preconditioner [27] (we employ the BoomerAMG [28] parallel algebraic multigrid
implementation provided by the hypre [29] linear solver library). For n�

A,p = 25, the port-
reduced SCRBE approximation and error estimation requires about 18 seconds on a single
core and we thus obtain a speedup of almost 200 — note that significantly larger speedup
is possible through parallelization of the SCRBE online stage. We finally note that to com-
pute the results in Figure 17, we have for each parameter sweep performed seventeen
evaluations of the port-reduced SCRBE compliance output and associated output bound

Table 3 Relative output error and output error estimator effectivity for system 1 for
parameter values Lx = 1, Lz = 1.1 and Ei = 1, 1 ≤ i ≤ I

n�
A,p = 20 n�

A,p = 25 n�
A,p = 35

sh(μ)−s̃PR(μ)

s̃PR(μ)
4.67978e-4 2.31664e-4 2.5646e-5

�s;0(μ)

sh(μ)−s̃PR(μ)
28.3 14.8 67.6
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estimators in only about five minutes total CPU time. A similar parametric analysis using
a classical FE approach is clearly not equally tractable.

Conclusions
In this paper we have extended the port-reduced static condensation reduced basis ele-
mentmethod to analysis of large-scale component-based structures. In particular we have
demonstrated the applicability and efficacy of the procedure in three-dimensional linear
elasticity analysis of a microtruss structure with hundreds of components.
Through a combination of i) component-interior reduced basis approximations and ii)

port reduction using empirical modes tailored to the component library, we are able to
obtain an accurate online approximation for any component parameter values and any
system topology using very few global degrees of freedom. Moreover, we may estimate
(and rigorously bound in the limit of small reduced basis error contributions) the error
in this port-reduced SCRBE approximation with respect to the underlying global finite
element discretization through efficiently computable a posteriori errorl estimators.
For the microtruss application we consider in this paper, more than twenty-six mil-

lion degrees of freedom in the alternative global FE discretization is reduced to a few
thousand degrees of freedom in the port-reduced SCRBE approximation. The online
computation time is accordingly reduced from about an hour to only seconds, and thus
the approach enables large-scale computation in many-query contexts such as interactive
design or optimization. Further, our computational results for the microtruss structure
indicate applications in stochastic homogenization and material failure identification,
which may require many simulations for (say) random parameters and topology [30].
Another application is vibration analysis of structures as considered in [31].
The presented approach is an alternative to standard FE analysis of large component-

based structures such as bridges, microtrusses, or vehicle or building frames. How-
ever, we may consider any linear elliptic or parabolic [13] parameter-dependent partial
differential equation, and thus problems in (say) heat transfer [32], acoustics [33], and
electromagnetics may be considered as well.

Endnotes
a For non-symmetric, non-coercive, complex-valued, or parabolic problems additional

elements are required for our a posteriori error estimation framework.
b We first apply the inverse map to physical coordinates to obtain reference

coordinates, and then evaluate the function on the reference domain.
c To illustrate this latter application of the mapping, consider for example a vector

field (0, 1) defined on �̂1 in the frame (x̂1, ŷ1) in Figure 1. We then consider this same
vector field over �1 in Figure 2: by application of T rot

1 to the field (0, 1) we obtain an
interpretation in the system frame (x, y) which is consistent with the interpretation on
the archetype domain — the field is parallel to the original x̂1 axis (for �1), and not
parallel to the system x axis.

d We start with the strong formulation on each component; we multiply by a test
function and integrate by parts; we then add the equations on adjacent components and
invoke flux continuity to cancel the corresponding port integral terms. In practice this is
automatically accommodated by the variational formulation (23).

e In this paper, we consider forRm,j only rigid-body transformations; more general
mappings and parametrized port deformations are also possible but is subject of
future work.
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f Note in the scalar-field case this simplifies to only the constant mode.
g Our current implementation does not recognize “free” parameters (Young’s

modulus, conductivity) and thus each set of component clones will contain components
with different spatial orientation but identical (“non-docking”) parameters.

h With the current (L2(β))d−1 orthogonalization of our port space bases, the �2 norm
of the residual coefficients is rather strong. We conjecture that the constant C in (126)
and (127) can be improved by consideration of an orthogonalization which provides a
global Riesz basis (in the limit as the FE discretization parameter h → 0) with respect to
the (H−1(�))d semi-norm.

i The Von Mises stresses are calculated as σVM =
(
1
2

(
(σ11 − σ22)2 + (σ22 − σ33)2+

(σ33 − σ11)2 + 6(σ 2
12 + σ 2

23 + σ 2
31)

) )1/2
.

j The formula for the maximum deflection d(l) of a cantilever beam of length l,
Young’s modulus E, second moment of inertia I, and subject to tangential force P at one
end is d(l) = Pl3/(3EI).

k To reduce the error estimator in this case we would have to reduce the values in
σA(μ) by adding additional RB snapshots to the RB bubble spaces in the offline stage.

l For component 1 all instantiations have identical parameters, but there are two
different component-local matrix blocks because we consider Dirichlet boundary
conditions on all bottom ports of components located at the bottom of the microtruss
structure.

m The Ei correspond to component-wide Young’s modulus, and hence these
parameters are “free” in the sense discussed in the “Model reduction” section. Thus with
a more complete treatment of effectively identical components we would have recovered
Ieff = 4 for this case.

Additional file

Additional file 1: A short video which illustrates the methodology of this paper is published together with
this paper as prscrbe_movie.mp4.
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