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Abstract 

We illustrate an application of graph neural networks (GNNs) to predict the pressure, 
temperature and velocity fields induced by a sudden explosion. The aim of the work 
is to enable accurate simulation of explosion events in large and geometrically com-
plex domains. Such simulations are currently out of the reach of existing CFD solvers, 
which represents an opportunity to apply machine learning. The training dataset 
is obtained from the results of URANS analyses in OpenFOAM. We simulate the tran-
sient flow following impulsive events in air in atmospheric conditions. The time history 
of the fields of pressure, temperature and velocity obtained from a set of such simula-
tions is then recorded to serve as a training database. In the training simulations we 
model a cubic volume of air enclosed within rigid walls, which also encompass rigid 
obstacles of random shape, position and orientation. A subset of the cubic volume 
is initialized to have a higher pressure than the rest of the domain. The ensuing 
shock initiates the propagation of pressure waves and their reflection and diffrac-
tion at the obstacles and walls. A recently proposed GNN framework is extended 
and adapted to this problem. During the training, the model learns the evolution 
of thermodynamic quantities in time and space, as well as the effect of the boundary 
conditions. After training, the model can quickly compute such evolution for unseen 
geometries and arbitrary initial and boundary conditions, exhibiting good generaliza-
tion capabilities for domains up to 125 times larger than those used in the training 
simulations.
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Introduction
Many industrial operations are subject to the risk of vapor cloud explosions. These 
events potentially cause hazardous levels of pressure in their surroundings [1], involv-
ing the rapid combustion of a premixed cloud of flammable vapour and oxidizer. Once 
the premixed cloud ignites, it causes a deflagration flame front that propagates through 
the flammable gas mixture; congested environments can result in increased flow tur-
bulence and, consequently, higher mixing, flame speed and radiated pressure waves [2]. 
Deflagration is a complex phenomenon posing considerable challenges when attempting 
its numerical and experimental modelling. Experimental research has been conducted 
to measure impulse distribution during explosive blasts [3–5], contributing valuable 
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insights to this area of study, and computational fluid dynamics (CFD) codes can achieve 
accurate predictions of deflagration events. However, in the engineering practice it is 
often necessary to model very large and geometrically complex domains, as the fluid 
and combustion responses are highly sensitive to the geometrical details. In addition, 
the discretisation of the event in space and time must be fine, to capture the details of 
the fluid’s turbulent combustion. The combination of large and complex domains, fine 
meshes and small time increments poses a problem of computational resources when 
conducting these simulations. In this study we set out to mitigate this problem by apply-
ing machine learning, specifically graph neural networks (GNNs). We focus on the 
propagation, reflection and diffraction of shock-induced pressure waves in complex geo-
metric environments, absent combustion, which we will examine in a companion paper.

Data-driven machine learning techniques have emerged as a natural solution to com-
putational problems in engineering simulations, offering significant improvements in 
computation time. Physics-informed machine learning techniques have dominated the 
research on the response of fluid systems. The literature [6] presents techniques adopt-
ing observational biases (with training sets carefully built to reflect the physical prin-
ciples that the model will have to obey) [7, 8], inductive biases (where the machine 
learning model’s architecture is designed to embed some of the system’s properties, i.e. 
symmetry or translation-invariance) [9–14], or learning biases, where the loss function 
is constructed to encourage the attainment of physically consistent solutions [15–18]. Of 
particular interest for this study are GNNs, which adopt a hybrid approach. GNNs oper-
ate directly on graphs, which bear a resemblance to meshed domains typically employed 
in numerical solvers such as CFD. As a result, there has been a growing interest in the 
application of GNN-based machine learning algorithms.

When employing deep learning to tackle physical problems, the data under considera-
tion is frequently represented in Euclidean space. Machine learning architectures that 
operate effectively on data arranged in a grid-like format have been extensively inves-
tigated [19, 20]. These architectures possess a significant limitation, which is that they 
must operate on regular grids. Despite attempts to circumvent this constraint [21], it 
has emerged that data from physical simulations can be better handled using geometric 
deep learning [22], which aims at generalizing deep learning methods to non-Euclidean 
domains, and represented as directed or undirected graph [23]. From here, the devel-
opment of GNNs, that were initially formulated in [24] and further developed in [25, 
26]. Due to their ability to directly operate on graphs, GNNs have been intensely studied 
in the past decade [27–29] and they recently grew in popularity by being applied to a 
vast range of problems using supervised, semi-supervised, unsupervised, reinforcement 
learning [10]. In recent years, GNNs have been used in a variety of applications, such 
as double pendulum problems and relativity [13], cosmology [12], mass-spring systems 
[30], visual images [31, 32], physical systems dynamics prediction [33–35], traffic pre-
diction [36, 37], point clouds [38], image classification [39] and also fluid dynamics [33, 
40–44]. In this study we apply the MeshGraphNets [33] algorithm, after suitable modi-
fications, to address the problem at hand. This code has been successful at capturing 
several 2D and 3D physical phenomena, including transient compressible flows in two 
dimensions, using velocity and density information as inputs. In the present study we 
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code MeshGraphNets in 3D and we include velocity, density, pressure and temperature 
as input variables, to allow physically accurate predictions of the complex pressure, tem-
perature and velocity fields induced by impulsive events in realistic, congested and geo-
metrically complex domains occupied by a compressible fluid.

In the next section we summarise how the model works, in “Assembly of a training 
dataset and training of the surrogate” we describe the CFD simulations performed to 
create the training dataset, and in “Results and discussion” section we present and dis-
cuss the results.

Methodology
A graph is defined as G = (V ,E) where V = {vi}i=1:Nv represents a set of nodes, with 
Nv being the total number of nodes and vi a vector containing the node’s attributes, 
while E = {ek , rk , sk}k=1:Ne represents the set of edges connecting the nodes: sk and rk 
are the indexes of the sender’s and receiver’s nodes respectively, ek is a vector of edge’s 
attributes and Ne represents the total number of edges in the graph [45]. In the pre-
sent study, a node will represent a node of the meshed domain of the simulation, with 
the node’s attributes being pressure, temperature and velocity at the node and a Boolean 
variable to distinguish the boundary nodes from those on the inner part of the fluid’s 
domain. An edge will represent a connection between these nodes, with edge attrib-
utes being the distance and relative displacement vector between the pair of connected 
nodes, as proposed in [33]. In Ref. [10], a graph network (GN) framework is introduced 
as a generalization of a variety of GNN architectures. A GN block receives as an input a 
graph G = (V ,E) and it returns an updated graph, based on a set of computations. The 
updated graph is calculated by taking into account the information received at each sin-
gle node from the neighbouring ones via the connections between them (edges) [10, 34]. 
The GN block thus contains a set of “update” functions φ and “aggregation” functions ρ 
[10], defined as follows:

Where E′
i =

{(

e
′
k , rk , sk

)}

rk=i,k=1:Ne [10].

The update functions modify the attributes of nodes and edges; the aggregation func-
tions condense the information needed to compute the updates, receiving as an input 
a set of numbers and reducing it to a single value. First, φe is applied to each edge in 
order to get per-edge updates, which are then aggregated by ρe→v into a single vector for 
all edges projecting into node i . Second, φv is applied to each node to obtain per-node 
updates, which are influenced by the single node attributes, as well as the aggregated 
information from the edges acting on the node. A schematic of the items involved in the 
update and aggregation functions is shown in Fig. 1.
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From a practical point of view, the update can be implemented using different functions, 
including neural networks, leading to the definition of graph neural networks. On the other 
hand, aggregation functions are usually implemented via element-wise summations [10]:

An architecture described by the GN formalism is the message-passing neural network 
(MPNN), introduced in [41]. It facilitates the calculation of updates that take into con-
sideration message propagation from adjacent nodes, thereby enabling the adjustment of 
node attributes to depend on the attributes of nodes located at a considerable distance from 
them. This phenomenon is made possible by the transmission of information through the 
interconnected edges linking the nodes. A MPNN consists of two phases, namely a pass-
ing one and a readout one, operating on unidirected graphs G with node features vi and 
edge features eij. Focusing on the message passing phase, given a message function Km and 
a node update function φv

m , the qm+1
i  , quantities at each node after iteration m+ 1 will 

depend on messages km+1
v  in accordance to [46]:
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Fig. 1  Representation of the update and aggregation functions for a graph architecture [10]
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where N (i) represents the neighbours of the node vi . From Eqs. 7 and 8 it can be seen 
how, at each message passing time step (i.e. m-th iteration), the influence of nodes fur-
ther away from the one being considered is accounted for in the update of qi . Using the 
GN framework, we can see that Km can be represented by the edges update function φe 
taking ek , vrk and vsk as inputs, while ρe→v is given again by element-wise summation. 
The MPNN involves the repetition of the GN block for m times, which can be inter-
preted in the graph architecture as the collection of information from nodes further 
away from the selected one, as sketched in Fig. 2.

MeshGraphNets [30] has an Encode-Process-Decode structure as implemented in 
[47], followed by an integrator. The model is a generalization of the previously devel-
oped “Graph Network Simulator” (GNS) framework [48], a learnable simulator adopt-
ing a particle-based representation of physical systems. In the GNS framework, physical 
dynamics is predicted by modelling the interaction between neighbouring particles and 
how quantities are passed from one another. This can be seen as a message-passing on 
a graph, where the particles are the graph nodes and the edges effectively couple neigh-
bouring nodes. MeshGraphNets uses a simulation mesh Mt = (V ,E) , where V  are the 
mesh nodes and E the mesh edges at a given time t . The mesh intrinsically has the same 
structure of a graph, naturally being eligible for the application of GN structures. The 
model is meant to predict dynamical quantities at the mesh nodes at time t +�t from 
knowledge of these quantities at time t (as described by the mesh status Mt ). This allows 
to iteratively predict the system’s status at the time steps subsequent to a given initial 
condition.

The model takes Mt as input, and it is able to estimate Mt+�t through an Encode–Pro-
cess–Decode architecture. The role of each section is sketched in Fig. 3 and described 
below.

•	 Encoder: Mt is encoded into a multigraph G = (V ,E) . This is obtained by defin-
ing the edges’ and nodes’ attributes starting from the simulation mesh. Positional 
features are given as relative values, so that the graph edges eij ∈ EM , contain as 
attributes the relative displacement between neighbouring nodes uij = ui − uj and 
its norm |uij| . Then, the dynamical quantities at the nodes of the mesh ( qti ), where 
qti = (pti ,T

t
i , v

t
i ) , with pti being the pressure at time t at the i-th node, Tt

i  the tem-
perature, vti  the tri-dimensional velocity vector are defined and given as nodes attrib-

(8)qm+1
i = φv

m

(

qmi , k
m+1
v

)

Fig. 2  Representation of the message passing algorithm for a graph. Each node vi is updated by gathering 
information from nodes in its neighbourhood, at a distance depending on the chosen value of m
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utes in vi , together withni , a flag (with value 0 or 1 in this study), distinguishing the 
boundary nodes from the internal ones, so that vti = (qti , ni) . The final step is the 
encoding of all edges and nodes into latent vectors of customizable size, vEi  and eEij . 
This is achieved with 2 multilayer perceptrons (MLPs), ǫM and ǫV  . In this step, the 
simulation mesh is transformed into the input to the machine learning model.

•	 Processor: a sequence of m = 15 identical message passing steps (GN blocks, taking 
advantage of the message passing capabilities) are applied to the eEij and  vEi  obtained 
in the previous step:

where f M and f V  are MLPs with a residual connection.
•	 Decoder: once the edges and the nodes have been processed, the temporal variation 

of the nodes’ attributes over a �t chosen during training, is estimated through an 
additional MLP δV  , applied to the latent node updated features v′Ei  . The model’s out-

put are thus temporal variations of the nodes’ attributes �q
(t+�t)
i  . By summing these 

to the original quantities at the nodes, it is possible to iteratively predict the system’s 
state Mt+�t at subsequent time steps.

Assembly of a training dataset and training of the surrogate
The data to train the model was obtained from a set of 413 CFD simulations conducted 
in OpenFOAM. In these simulations we considered a cubic volume (L = 0.1 m) of atmos-
pheric air surrounded by rigid walls, and containing a rigid obstacle of random position, 
dimension, shape (prism, sphere, cone or cylinder) and orientation (examples are shown 
in Fig. 4). The decision to randomly assign attributes of shape, dimensions, and initial 
high-pressure areas within the domains was made to ensure adequate variability of 
inputs. Python scripts were used for the stochastic selection of these parameters, facili-
tating the automated generation of mesh files (gmsh format). The initial conditions for 
the fluid consisted of vanishing velocity ( v = 0 ) and a uniform temperature and pressure 
(set to standard atmospheric air conditions) applied throughout the entire domain, with 
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Fig. 3  Schematics of the MeshGraphNets algorithm applied to CFD problems
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the exception of a subset of the fluid domain, which was initially assigned a higher pres-
sure compared to the rest of the domain (randomly chosen between 3 and 15 bar). The 
shape of this particular subset was cuboidal with side lengths in the range 8–15 mm, and 
the location of its centroid was chosen randomly. We note that the choice of a cuboidal 
region of high pressure (over a more common spherical region) was made based on the 
simplicity of implementation, but also to further challenge the surrogate model with the 
prediction of the initial time evolution of this cuboidal region. This pressure difference 
induced a shock at t = 0 , triggering the propagation of pressure waves throughout the 
domain. As these waves interacted with the obstacles and walls, their reflection and dif-
fraction occurred, leading to the formation of complex and transient flow conditions.

The gas inside the domain was modelled as a perfect gas with heat capacity ratio 
γ = 1.4 , with the compressible, unsteady Navier–Stokes equations governing the flow 
behaviour. The conservation equations of mass, momentum and energy were solved 
in the unsteady Reynolds-averaged form (URANS) neglecting external forces:

In Eqs. 10–12, ρ represents the density, t the time, v the velocity, p the pressure,  τ 
the viscous stress tensor, H  the enthalpy and κ is the coefficient of thermal diffusivity. 
The bar indicates ensemble averaged quantities, the tilde indicates density averaging, 
while the double prime refers to fluctuations around the density-averaged quantities. 
rhoCentralFoam, part of the C++ CFD toolbox OpenFOAM [49] was employed as 
solver. The k-ω-SST [50] model was used as turbulence closure. The turbulent kinetic 
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Fig. 4  Examples of meshed domains simulated to assemble the training dataset
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energy k was initialized as 3.25 ∗ 10−3 m2

s2
 , while ω  was calculated as ω = k0.5

C0.25
µ L

 , taking 

Cµ = 0.09 and L as 10% of the average cell size �c . No-slip boundary conditions for 
the velocity field were applied on the surfaces of the obstacles and of the cubic enclo-
sure. The integration schemes were of first order in time and second order in space. 
The time step was determined by imposing the Courant-Friedrichs Lewy (CFL) num-
ber to stay below 0.1. Kurganov and Tadmor’s scheme [51] was used for the interpola-
tion of the convective terms, with Van Leer’s flux limiters [52].

For each of the simulation domains, meshing was obtained via the automatic mesh-
ing software Gmsh, with the average cell size �c randomly varying between different 
simulations between 3.0 and 4.2 mm. In 75% of the training simulations, refinement was 
imposed on the cells comprising the initial pressurised box and the obstacle wall, with 
�c varying between 1.5 and 2.5 mm, proportionally to the initial cell size. In the remain-
ing cases, the meshes did not include any refinements. The use of different meshes was 
intended to test the GNN’s expected ability to handle arbitrary meshes. The outputs 
were recorded with a regular time spacing of �t = 2 ∗ 10−6 s.

The evolution of thermodynamical quantities during each pair of consecutive times in 
a simulation represented a unit training datapoint, with data at the initial time serving as 
an input and those at the final time as an output. The dataset comprised approximately 
61,500 datapoints.

Following a preliminary study, the results presented below used 64 as the encoding 
dimension, which is half of what used in Pfaff et al. [33]. A summary of this preliminary 
study is reported in Appendix. The number of message-passing steps was set to 15, con-
sistent with the original model [33]. Input standardization was applied to the input data. 
The model was trained on a single NVIDIA RTX 6000 GPU for 260 epochs by minimiz-
ing the mean square error (MSE) for the standardized values of pressure, temperature 
and velocity changes over �t , defined as:

Adams optimization with a decaying learning rate starting at 10–3 and progressively 
reducing to 10–9 was employed. The machine learning architecture was constructed 
using TensorFlow [53], TensorFlow Probability and dm-sonnet libraries, employing rag-
ged tensors to manage the variability in input dimensions.

Results and discussion
Following training, the surrogate model was used to simulate explosion events and its 
predictions were compared to those of a new set of 38 simulations; these were set up 
as the CFD analyses described above and used for training, but they modelled unseen 
geometric domains, containing multiple obstacles. The fields of pressure, temperature 
and velocity were initialised at t = 0 ; the surrogate model was then used to predict the 
next time step, iteratively advancing the solution. Cell sizes and initial pressures were 
randomly selected within the range of those present in the training dataset. The bound-
ary condition v = 0 was enforced at the appropriate boundary nodes at all times; this 

(13)
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.
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choice was made for computational convenience, however the trained model was able to 
satisfy the boundary constraints on velocity effectively even in absence of the constraint 
( v = 0 ), albeit with an unavoidable small numerical error; by imposing vanishing veloc-
ity at the appropriate boundaries this error was avoided, and the model showed excellent 
predictions of the pressure, temperature and density fields at the boundaries, indicating 
that it had effectively learned the physics of the reflection and diffraction of a pressure 
wave at a wall. A qualitative comparison of the pressure fields predicted by CFD simula-
tions and surrogate model is provided in Fig. 5.

Any error of the surrogate model tends to accumulate over time, as shown in Fig. 6a–c, 
which displays the average error in pressure, temperature and velocity components over 
the time duration t = 0.1 ms of the 38 test simulations. This error in the predicted physi-
cal quantities remained low for the relatively long duration of the simulations. Maxi-
mum errors are shown in Fig. 6d–f; these were higher but still within acceptable limits. 
The maximum errors are calculated as the average of the maximum errors of all the 38 
test simulations (the maximum was evaluated for each test case and these were aver-
aged over the 38 test cases). We note that their evolution in time was not monotonic; the 
reasons for this were not investigated further here considering the high accuracy of the 
surrogate predictions.

To further and more explicitly illustrate the level of accuracy of the surrogate model, 
for two selected points shown in Figs. 7, 8, 9, 10, 11 present time histories of the pre-
dicted thermodynamic quantities; the predictions are from two selected geometrical 
domains and at two selected points within these domains. In all cases, the surrogate 
model predicts histories of pressure, temperature and velocity extremely close to the 
CFD predictions.

Figure 12 illustrates the geometry of a selected test simulation, highlighting a particu-
lar rectangular plate representing one of the faces of a cuboidal rigid obstacle. The his-
tories of average and maximum pressure on such plate are shown in Fig. 13, as predicted 
by CFD simulations or surrogate model. Again, the surrogate makes predictions very 
close to those of detailed CFD simulations.

Fig. 5  Predictions of the pressure field by CFD simulations and the surrogate model. The field at a time 
5.6 ∗ 10−5 s in a selected evaluation simulation is shown
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Fig. 6  a Average error in pressure; b average error in temperature; c average errors in velocity; d maximum 
error in pressure; e maximum error in temperature; f maximum errors in velocity

Fig. 7  a First domain where the fluid domain is evaluated at points 1 and 2; b second domain where the 
fluid domain is evaluated at points 1 and 2
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It is important to note that the trained model uses a simple loss function without dif-
ferentiating weights between terms or including physically bounding terms. Remark-
ably, it achieves great accuracy despite its simplicity and minimal tuning. Incorporating 
additional terms in the loss function to account for physical laws (for example adding 
the residuals of governing equations) would ensure adherence to these laws. We shall 
explore the possible computational advantages (higher accuracy) and disadvantages 
(challenging training processes) of physics-informed approaches in future studies.

To assess the model’s generalisation capability, additional testing was conducted, 
predicting pressure wave propagation on larger and more complex domains. An addi-
tional set of simulations was conducted, modelling cubic domains of size L = 0.25 m and 
L = 0.5 m, containing three regions of initially higher pressure (therefore three sources of 
impulsive loading, at pressures of 6, 7.5 and 8.5 bar) and 8 obstacles, resulting in a highly 
congested environment and complex loading. These domains were discretised by struc-
tured meshes of different cell sizes Δc. An example of such domains and the correspond-
ing initial conditions are shown in Fig. 14.

Figure  15 summarises the findings, presenting the average and maximum errors in 
predictions of thermodynamical quantities in 3 different simulations, of geometry iden-
tical to that in Fig. 14 (apart from a scale factor) and three different combination of size 
L and cell size c, as indicated. We recall that the average cell size was 3.5 mm in the train-
ing simulations. The surrogate model demonstrates outstanding generalisation capabil-
ity, with low errors in all cases, of similar magnitude as the errors displayed in Fig. 6 for 

Fig. 8  Comparison of the actual and predicted a) pressure, b) temperature, c) velocity components, d) 
velocity magnitude for point a-1 (Fig. 7)
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Fig. 9  Comparison of the actual and predicted a pressure, b temperature, c velocity components, d velocity 
magnitude for point a-2 (Fig. 7)

Fig. 10  Comparison of the actual and predicted a pressure, b temperature, c velocity components, d 
velocity magnitude for point b-1 (Fig. 7)
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smaller (L = 0.1 m) and geometrically much simpler domains. The accuracy of the surro-
gate model is higher when meshes similar to those used for training are used.

In Fig. 16 we provide examples of the computational cost of the CFD simulations and of 
the surrogate model’s (SM) predictions. We plot the computational time required to com-
pute one time increment of length tstep = 2∗10−6 s for simulations with different numbers 
of nodes ( NV  ); the speed of the CFD simulations in OpenFOAM is compared to that of 

Fig. 11  Comparison of the actual and predicted a pressure, b temperature, c velocity components, d 
velocity magnitude for point b-2 (Fig. 7)

Fig. 12  Geometry and initial conditions for a selected test simulation. The highlighted rectangle represents a 
plate over which maximum and average pressure are predicted
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the surrogate model, executed either on a GPU (single NVIDIA T4) or on a CPU. The data 
are fitted by a power-law of type tstep = A(NV )

m . Least-square fits of such equation to the 
data gave A = 3.432 ∗ 10−4,m = 1.084;A = 3.272 ∗ 10−4,m = 0.978;A = 1.35 ∗ 10−3,m = 0.707; for 
the CFD simulations, SM on CPU, and SM on GPU, respectively. Assuming that such 
power-laws are valid at large number of nodes than those investigated here, the above 
data suggest computational speed-ups of approximately 50 for a simulation with 106 
nodes and of more than 100 for a simulation with 107 nodes, intended as the time to per-
form a CFD simulation divided by the time to perform a corresponding surrogate pre-
diction. The details of the type of hardware used in both CFD simulations and surrogate 
predictions, as well as the choice of parameters in the CFD simulations and surrogate 
models (e.g. the CFL number) can obviously affect the speed-ups recorded in this study. 
It is clear however that the surrogate model allows savings in computational time of a few 
orders of magnitude compared to CFD simulations, and the savings are higher in very 
large simulations. This can be game-changing in industrial applications, where defla-
grations and detonations of entire industrial plants need to be simulated with high spa-
tial and temporal resolution. Our future work will therefore aim at including additional 
physics in the surrogate model, namely combustion, deflagration and its transition to 
detonation.

Fig. 13  Average (a) and maximum (b) pressure on the rectangular plate highlighted in Fig. 12

Fig. 14  Domain and initial conditions used for the evaluation of the model’s generalisation capabilities
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Fig. 15  Tests on larger and more complex domains. a Average error in pressure; b average error in 
temperature; c average error in velocity module; d maximum error in pressure; e maximum error in 
temperature; f maximum error in velocity

Fig. 16  Computational time to complete a simulation time increment of tstep = 2∗10−6 s, for CFD 
simulations or surrogate model’s predictions, performed on a CPU (SMCPU) or on a GPU (SMGPU). The figure 
includes power-law fits of tstep = A(NV )

m
 through the data



Page 16 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci.           (2024) 11:18 

Conclusions
We demonstrated the potential of GNNs, as implemented in MeshgraphNets and modi-
fied as described above, in predicting the transient flow response to impulsive events 
such as explosions. We applied a surrogate model to predict the transient fields of pres-
sure, temperature and velocity following the sudden release of high pressure in finite 
regions of a fluid domain. We proposed a strategy to construct the training simulations 
to obtain from these suitable training data for a surrogate model.

The proposed surrogate exhibited high predictive accuracy. The model was trained on 
the results of URANS simulations of relatively small domains, however it was able to 
make accurate predictions also in the case of domains of volume up to 125x that of the 
training simulations, geometrically more complex, and with a coarser mesh than that 
used in the training simulations, which demonstrates excellent generalisation capa-
bilities. The model also offers computational savings of at least one to two orders of 
magnitude compared to the CFD simulations used to train it, depending on the total 
number of cells. Such savings are expected to increase considerably as the number of 
cells increases.

Appendix
The dimensions used for encoding in the MeshGraphNets model, which determine the 
size of the latent vector where nodes’ and edges’ attributes are represented, significantly 
influence the model’s complexity. In the work conducted by Pfaff et al. [33] these dimen-
sions were set to 128. Large encoding dimensions are commonly employed in GNNs to 
capture relevant information from a higher-dimensional space. By increasing the dimen-
sionality of the problem, the model can assess linear and non-linear relationships among 
node features, representing them as vectors in the latent space. Nonetheless, augment-
ing the dimensions of the latent necessitates longer training times and make the model 
susceptible to overfitting. The encoding dimensions not only influence the training time 
but also impact the memory requirements. While longer training times may be accept-
able, a higher demand for memory can pose challenges during GPU-based training. The 
larger memory requirements directly constrain the size of domains that can be utilized, 

Fig. 17  Comparison of a Average discrepancy between the evaluated and expected calculated pressure 
over time for all the evaluation cases; b maximum discrepancy between the evaluated and expected 
calculated pressure at single points over time for all the evaluation cases; for the models comprising 64 and 
128 encoding dimensions, trained for 163 and 260 epochs
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limiting the number of nodes and cells within each simulation. This limitation arises 
from the fact that encoding causes the size of attributes considered for each node to 
grow by a multiplicative factor equal to the encoding dimension. For our training data-
set, we observed that the time needed to make one update of the model was 1.67 times 
higher when employing 128 encoding dimensions instead of 64.

Figures 16, 17 and 18 show the average discrepancy and the average maximum dis-
crepancy for pressure, temperature and velocity, comparing the performance of the 
surrogate model with encoding dimensions 64 and 128; the effect of the number 
of epochs is also explored. The results clearly showed that a model using encoding 
dimensions 64 may outperform one using dimension 128, at the expense of a longer 
training time (Fig. 19).
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