
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH ARTICLE

Covoni et al.
Adv. Model. and Simul. in Eng. Sci. (2024) 11:18
https://doi.org/10.1186/s40323-024-00272-4

Advanced Modeling and Simulation
in Engineering Sciences

Application of graph neural networks
to predict explosion‑induced transient flow
Ginevra Covoni1, Francesco Montomoli1*, Vito L. Tagarielli1*, Valentina Bisio1,2, Stefano Rossin2 and
Marco Ruggiero2 

Abstract 

We illustrate an application of graph neural networks (GNNs) to predict the pressure,
temperature and velocity fields induced by a sudden explosion. The aim of the work
is to enable accurate simulation of explosion events in large and geometrically com-
plex domains. Such simulations are currently out of the reach of existing CFD solvers,
which represents an opportunity to apply machine learning. The training dataset
is obtained from the results of URANS analyses in OpenFOAM. We simulate the tran-
sient flow following impulsive events in air in atmospheric conditions. The time history
of the fields of pressure, temperature and velocity obtained from a set of such simula-
tions is then recorded to serve as a training database. In the training simulations we
model a cubic volume of air enclosed within rigid walls, which also encompass rigid
obstacles of random shape, position and orientation. A subset of the cubic volume
is initialized to have a higher pressure than the rest of the domain. The ensuing
shock initiates the propagation of pressure waves and their reflection and diffrac-
tion at the obstacles and walls. A recently proposed GNN framework is extended
and adapted to this problem. During the training, the model learns the evolution
of thermodynamic quantities in time and space, as well as the effect of the boundary
conditions. After training, the model can quickly compute such evolution for unseen
geometries and arbitrary initial and boundary conditions, exhibiting good generaliza-
tion capabilities for domains up to 125 times larger than those used in the training
simulations.

Keywords:  Explosion, CFD, Machine learning, Graph neural networks

Introduction
Many industrial operations are subject to the risk of vapor cloud explosions. These
events potentially cause hazardous levels of pressure in their surroundings [1], involv-
ing the rapid combustion of a premixed cloud of flammable vapour and oxidizer. Once
the premixed cloud ignites, it causes a deflagration flame front that propagates through
the flammable gas mixture; congested environments can result in increased flow tur-
bulence and, consequently, higher mixing, flame speed and radiated pressure waves [2].
Deflagration is a complex phenomenon posing considerable challenges when attempting
its numerical and experimental modelling. Experimental research has been conducted
to measure impulse distribution during explosive blasts [3–5], contributing valuable

*Correspondence:
f.montomoli@imperial.ac.uk;
v.tagarielli@imperial.ac.uk

1 Department of Aeronautics,
Imperial College London,
London SW72AZ, UK
2 Baker Hughes, Via Felice
Matteucci 2, 50127 Florence,
FI, Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-024-00272-4&domain=pdf

Page 2 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18

insights to this area of study, and computational fluid dynamics (CFD) codes can achieve
accurate predictions of deflagration events. However, in the engineering practice it is
often necessary to model very large and geometrically complex domains, as the fluid
and combustion responses are highly sensitive to the geometrical details. In addition,
the discretisation of the event in space and time must be fine, to capture the details of
the fluid’s turbulent combustion. The combination of large and complex domains, fine
meshes and small time increments poses a problem of computational resources when
conducting these simulations. In this study we set out to mitigate this problem by apply-
ing machine learning, specifically graph neural networks (GNNs). We focus on the
propagation, reflection and diffraction of shock-induced pressure waves in complex geo-
metric environments, absent combustion, which we will examine in a companion paper.

Data-driven machine learning techniques have emerged as a natural solution to com-
putational problems in engineering simulations, offering significant improvements in
computation time. Physics-informed machine learning techniques have dominated the
research on the response of fluid systems. The literature [6] presents techniques adopt-
ing observational biases (with training sets carefully built to reflect the physical prin-
ciples that the model will have to obey) [7, 8], inductive biases (where the machine
learning model’s architecture is designed to embed some of the system’s properties, i.e.
symmetry or translation-invariance) [9–14], or learning biases, where the loss function
is constructed to encourage the attainment of physically consistent solutions [15–18]. Of
particular interest for this study are GNNs, which adopt a hybrid approach. GNNs oper-
ate directly on graphs, which bear a resemblance to meshed domains typically employed
in numerical solvers such as CFD. As a result, there has been a growing interest in the
application of GNN-based machine learning algorithms.

When employing deep learning to tackle physical problems, the data under considera-
tion is frequently represented in Euclidean space. Machine learning architectures that
operate effectively on data arranged in a grid-like format have been extensively inves-
tigated [19, 20]. These architectures possess a significant limitation, which is that they
must operate on regular grids. Despite attempts to circumvent this constraint [21], it
has emerged that data from physical simulations can be better handled using geometric
deep learning [22], which aims at generalizing deep learning methods to non-Euclidean
domains, and represented as directed or undirected graph [23]. From here, the devel-
opment of GNNs, that were initially formulated in [24] and further developed in [25,
26]. Due to their ability to directly operate on graphs, GNNs have been intensely studied
in the past decade [27–29] and they recently grew in popularity by being applied to a
vast range of problems using supervised, semi-supervised, unsupervised, reinforcement
learning [10]. In recent years, GNNs have been used in a variety of applications, such
as double pendulum problems and relativity [13], cosmology [12], mass-spring systems
[30], visual images [31, 32], physical systems dynamics prediction [33–35], traffic pre-
diction [36, 37], point clouds [38], image classification [39] and also fluid dynamics [33,
40–44]. In this study we apply the MeshGraphNets [33] algorithm, after suitable modi-
fications, to address the problem at hand. This code has been successful at capturing
several 2D and 3D physical phenomena, including transient compressible flows in two
dimensions, using velocity and density information as inputs. In the present study we

Page 3 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18 	

code MeshGraphNets in 3D and we include velocity, density, pressure and temperature
as input variables, to allow physically accurate predictions of the complex pressure, tem-
perature and velocity fields induced by impulsive events in realistic, congested and geo-
metrically complex domains occupied by a compressible fluid.

In the next section we summarise how the model works, in “Assembly of a training
dataset and training of the surrogate” we describe the CFD simulations performed to
create the training dataset, and in “Results and discussion” section we present and dis-
cuss the results.

Methodology
A graph is defined as G = (V ,E) where V = {vi}i=1:Nv represents a set of nodes, with
Nv being the total number of nodes and vi a vector containing the node’s attributes,
while E = {ek , rk , sk}k=1:Ne represents the set of edges connecting the nodes: sk and rk
are the indexes of the sender’s and receiver’s nodes respectively, ek is a vector of edge’s
attributes and Ne represents the total number of edges in the graph [45]. In the pre-
sent study, a node will represent a node of the meshed domain of the simulation, with
the node’s attributes being pressure, temperature and velocity at the node and a Boolean
variable to distinguish the boundary nodes from those on the inner part of the fluid’s
domain. An edge will represent a connection between these nodes, with edge attrib-
utes being the distance and relative displacement vector between the pair of connected
nodes, as proposed in [33]. In Ref. [10], a graph network (GN) framework is introduced
as a generalization of a variety of GNN architectures. A GN block receives as an input a
graph G = (V ,E) and it returns an updated graph, based on a set of computations. The
updated graph is calculated by taking into account the information received at each sin-
gle node from the neighbouring ones via the connections between them (edges) [10, 34].
The GN block thus contains a set of “update” functions φ and “aggregation” functions ρ
[10], defined as follows:

Where E′
i =

{(

e
′
k , rk , sk

)}

rk=i,k=1:Ne [10].

The update functions modify the attributes of nodes and edges; the aggregation func-
tions condense the information needed to compute the updates, receiving as an input
a set of numbers and reducing it to a single value. First, φe is applied to each edge in
order to get per-edge updates, which are then aggregated by ρe→v into a single vector for
all edges projecting into node i . Second, φv is applied to each node to obtain per-node
updates, which are influenced by the single node attributes, as well as the aggregated
information from the edges acting on the node. A schematic of the items involved in the
update and aggregation functions is shown in Fig. 1.

(1)e
′
k = φe

(

ek , vrk , vsk
)

(2)e
′
i = ρe→v

(

E′
i

)

(3)v′i = φv
(

e′i, vi
)

Page 4 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18

From a practical point of view, the update can be implemented using different functions,
including neural networks, leading to the definition of graph neural networks. On the other
hand, aggregation functions are usually implemented via element-wise summations [10]:

An architecture described by the GN formalism is the message-passing neural network
(MPNN), introduced in [41]. It facilitates the calculation of updates that take into con-
sideration message propagation from adjacent nodes, thereby enabling the adjustment of
node attributes to depend on the attributes of nodes located at a considerable distance from
them. This phenomenon is made possible by the transmission of information through the
interconnected edges linking the nodes. A MPNN consists of two phases, namely a pass-
ing one and a readout one, operating on unidirected graphs G with node features vi and
edge features eij. Focusing on the message passing phase, given a message function Km and
a node update function φv

m , the qm+1
i  , quantities at each node after iteration m+ 1 will

depend on messages km+1
v in accordance to [46]:

(4)φe
(

ek , vrk , vsk
)

= NNe

([

ek , vrk , vsk
])

(5)φv
(

e
′
i, vi

)

= NNv

([

e
′
i, vi

])

(6)
ρe→v

(

E′
i

)

=
∑

{k:rk=i}

e′k

(7)km+1
v =

∑

j∈N (i)

Km

(

qmi , q
m
j , eij

)

Fig. 1  Representation of the update and aggregation functions for a graph architecture [10]

Page 5 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18 	

where N (i) represents the neighbours of the node vi . From Eqs. 7 and 8 it can be seen
how, at each message passing time step (i.e. m-th iteration), the influence of nodes fur-
ther away from the one being considered is accounted for in the update of qi . Using the
GN framework, we can see that Km can be represented by the edges update function φe
taking ek , vrk and vsk as inputs, while ρe→v is given again by element-wise summation.
The MPNN involves the repetition of the GN block for m times, which can be inter-
preted in the graph architecture as the collection of information from nodes further
away from the selected one, as sketched in Fig. 2.

MeshGraphNets [30] has an Encode-Process-Decode structure as implemented in
[47], followed by an integrator. The model is a generalization of the previously devel-
oped “Graph Network Simulator” (GNS) framework [48], a learnable simulator adopt-
ing a particle-based representation of physical systems. In the GNS framework, physical
dynamics is predicted by modelling the interaction between neighbouring particles and
how quantities are passed from one another. This can be seen as a message-passing on
a graph, where the particles are the graph nodes and the edges effectively couple neigh-
bouring nodes. MeshGraphNets uses a simulation mesh Mt = (V ,E) , where V are the
mesh nodes and E the mesh edges at a given time t . The mesh intrinsically has the same
structure of a graph, naturally being eligible for the application of GN structures. The
model is meant to predict dynamical quantities at the mesh nodes at time t +�t from
knowledge of these quantities at time t (as described by the mesh status Mt ). This allows
to iteratively predict the system’s status at the time steps subsequent to a given initial
condition.

The model takes Mt as input, and it is able to estimate Mt+�t through an Encode–Pro-
cess–Decode architecture. The role of each section is sketched in Fig. 3 and described
below.

•	 Encoder: Mt is encoded into a multigraph G = (V ,E) . This is obtained by defin-
ing the edges’ and nodes’ attributes starting from the simulation mesh. Positional
features are given as relative values, so that the graph edges eij ∈ EM , contain as
attributes the relative displacement between neighbouring nodes uij = ui − uj and
its norm |uij| . Then, the dynamical quantities at the nodes of the mesh ( qti ), where
qti = (pti ,T

t
i , v

t
i) , with pti being the pressure at time t at the i-th node, Tt

i the tem-
perature, vti the tri-dimensional velocity vector are defined and given as nodes attrib-

(8)qm+1
i = φv

m

(

qmi , k
m+1
v

)

Fig. 2  Representation of the message passing algorithm for a graph. Each node vi is updated by gathering
information from nodes in its neighbourhood, at a distance depending on the chosen value of m

Page 6 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18

utes in vi , together withni , a flag (with value 0 or 1 in this study), distinguishing the
boundary nodes from the internal ones, so that vti = (qti , ni) . The final step is the
encoding of all edges and nodes into latent vectors of customizable size, vEi and eEij .
This is achieved with 2 multilayer perceptrons (MLPs), ǫM and ǫV  . In this step, the
simulation mesh is transformed into the input to the machine learning model.

•	 Processor: a sequence of m = 15 identical message passing steps (GN blocks, taking
advantage of the message passing capabilities) are applied to the eEij and vEi obtained
in the previous step:

where f M and f V are MLPs with a residual connection.
•	 Decoder: once the edges and the nodes have been processed, the temporal variation

of the nodes’ attributes over a �t chosen during training, is estimated through an
additional MLP δV  , applied to the latent node updated features v′Ei  . The model’s out-

put are thus temporal variations of the nodes’ attributes �q
(t+�t)
i  . By summing these

to the original quantities at the nodes, it is possible to iteratively predict the system’s
state Mt+�t at subsequent time steps.

Assembly of a training dataset and training of the surrogate
The data to train the model was obtained from a set of 413 CFD simulations conducted
in OpenFOAM. In these simulations we considered a cubic volume (L = 0.1 m) of atmos-
pheric air surrounded by rigid walls, and containing a rigid obstacle of random position,
dimension, shape (prism, sphere, cone or cylinder) and orientation (examples are shown
in Fig. 4). The decision to randomly assign attributes of shape, dimensions, and initial
high-pressure areas within the domains was made to ensure adequate variability of
inputs. Python scripts were used for the stochastic selection of these parameters, facili-
tating the automated generation of mesh files (gmsh format). The initial conditions for
the fluid consisted of vanishing velocity ( v = 0 ) and a uniform temperature and pressure
(set to standard atmospheric air conditions) applied throughout the entire domain, with

(9)e
′E
ij ← f M

�

e
E
ij , v

E
i , v

E
j

�

, v′Ei ← f V



vEi ,
�

j

e
′E
ij





Fig. 3  Schematics of the MeshGraphNets algorithm applied to CFD problems

Page 7 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18 	

the exception of a subset of the fluid domain, which was initially assigned a higher pres-
sure compared to the rest of the domain (randomly chosen between 3 and 15 bar). The
shape of this particular subset was cuboidal with side lengths in the range 8–15 mm, and
the location of its centroid was chosen randomly. We note that the choice of a cuboidal
region of high pressure (over a more common spherical region) was made based on the
simplicity of implementation, but also to further challenge the surrogate model with the
prediction of the initial time evolution of this cuboidal region. This pressure difference
induced a shock at t = 0 , triggering the propagation of pressure waves throughout the
domain. As these waves interacted with the obstacles and walls, their reflection and dif-
fraction occurred, leading to the formation of complex and transient flow conditions.

The gas inside the domain was modelled as a perfect gas with heat capacity ratio
γ = 1.4 , with the compressible, unsteady Navier–Stokes equations governing the flow
behaviour. The conservation equations of mass, momentum and energy were solved
in the unsteady Reynolds-averaged form (URANS) neglecting external forces:

In Eqs. 10–12, ρ represents the density, t the time, v the velocity, p the pressure, τ
the viscous stress tensor, H the enthalpy and κ is the coefficient of thermal diffusivity.
The bar indicates ensemble averaged quantities, the tilde indicates density averaging,
while the double prime refers to fluctuations around the density-averaged quantities.
rhoCentralFoam, part of the C++ CFD toolbox OpenFOAM [49] was employed as
solver. The k-ω-SST [50] model was used as turbulence closure. The turbulent kinetic

(10)
∂ρ

∂t
+ ∇ ·

(

ρṽ
)

= 0

(11)
∂(ρṽ)

∂t
+∇ ·

(

ρṽ ⊗ ṽ
)

= −∇p+∇ ·
(

τ̃ − ρv′′ ⊗ v′′
)

(12)
∂

(

ρH̃
)

∂t
+∇ ·

(

ρṽH̃
)

= −∇ ·
(

κ∇T − ρv′′H ′′
)

+∇ ·
(

ṽ · τ + v′′ · τ
)

+
∂p

∂t

Fig. 4  Examples of meshed domains simulated to assemble the training dataset

Page 8 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18

energy k was initialized as 3.25 ∗ 10−3 m2

s2
 , while ω was calculated as ω = k0.5

C0.25
µ L

 , taking

Cµ = 0.09 and L as 10% of the average cell size �c . No-slip boundary conditions for
the velocity field were applied on the surfaces of the obstacles and of the cubic enclo-
sure. The integration schemes were of first order in time and second order in space.
The time step was determined by imposing the Courant-Friedrichs Lewy (CFL) num-
ber to stay below 0.1. Kurganov and Tadmor’s scheme [51] was used for the interpola-
tion of the convective terms, with Van Leer’s flux limiters [52].

For each of the simulation domains, meshing was obtained via the automatic mesh-
ing software Gmsh, with the average cell size �c randomly varying between different
simulations between 3.0 and 4.2 mm. In 75% of the training simulations, refinement was
imposed on the cells comprising the initial pressurised box and the obstacle wall, with
�c varying between 1.5 and 2.5 mm, proportionally to the initial cell size. In the remain-
ing cases, the meshes did not include any refinements. The use of different meshes was
intended to test the GNN’s expected ability to handle arbitrary meshes. The outputs
were recorded with a regular time spacing of �t = 2 ∗ 10−6 s.

The evolution of thermodynamical quantities during each pair of consecutive times in
a simulation represented a unit training datapoint, with data at the initial time serving as
an input and those at the final time as an output. The dataset comprised approximately
61,500 datapoints.

Following a preliminary study, the results presented below used 64 as the encoding
dimension, which is half of what used in Pfaff et al. [33]. A summary of this preliminary
study is reported in Appendix. The number of message-passing steps was set to 15, con-
sistent with the original model [33]. Input standardization was applied to the input data.
The model was trained on a single NVIDIA RTX 6000 GPU for 260 epochs by minimiz-
ing the mean square error (MSE) for the standardized values of pressure, temperature
and velocity changes over �t , defined as:

Adams optimization with a decaying learning rate starting at 10–3 and progressively
reducing to 10–9 was employed. The machine learning architecture was constructed
using TensorFlow [53], TensorFlow Probability and dm-sonnet libraries, employing rag-
ged tensors to manage the variability in input dimensions.

Results and discussion
Following training, the surrogate model was used to simulate explosion events and its
predictions were compared to those of a new set of 38 simulations; these were set up
as the CFD analyses described above and used for training, but they modelled unseen
geometric domains, containing multiple obstacles. The fields of pressure, temperature
and velocity were initialised at t = 0 ; the surrogate model was then used to predict the
next time step, iteratively advancing the solution. Cell sizes and initial pressures were
randomly selected within the range of those present in the training dataset. The bound-
ary condition v = 0 was enforced at the appropriate boundary nodes at all times; this

(13)
1

NV
∗

NV
∑

i=1

(

(

�pi −�p̂i
)2

+
(

�Ti −�T̂i

)2
+

(

�vi −�v̂i

)2
)

.

Page 9 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18 	

choice was made for computational convenience, however the trained model was able to
satisfy the boundary constraints on velocity effectively even in absence of the constraint
( v = 0 ), albeit with an unavoidable small numerical error; by imposing vanishing veloc-
ity at the appropriate boundaries this error was avoided, and the model showed excellent
predictions of the pressure, temperature and density fields at the boundaries, indicating
that it had effectively learned the physics of the reflection and diffraction of a pressure
wave at a wall. A qualitative comparison of the pressure fields predicted by CFD simula-
tions and surrogate model is provided in Fig. 5.

Any error of the surrogate model tends to accumulate over time, as shown in Fig. 6a–c,
which displays the average error in pressure, temperature and velocity components over
the time duration t = 0.1 ms of the 38 test simulations. This error in the predicted physi-
cal quantities remained low for the relatively long duration of the simulations. Maxi-
mum errors are shown in Fig. 6d–f; these were higher but still within acceptable limits.
The maximum errors are calculated as the average of the maximum errors of all the 38
test simulations (the maximum was evaluated for each test case and these were aver-
aged over the 38 test cases). We note that their evolution in time was not monotonic; the
reasons for this were not investigated further here considering the high accuracy of the
surrogate predictions.

To further and more explicitly illustrate the level of accuracy of the surrogate model,
for two selected points shown in Figs. 7, 8, 9, 10, 11 present time histories of the pre-
dicted thermodynamic quantities; the predictions are from two selected geometrical
domains and at two selected points within these domains. In all cases, the surrogate
model predicts histories of pressure, temperature and velocity extremely close to the
CFD predictions.

Figure 12 illustrates the geometry of a selected test simulation, highlighting a particu-
lar rectangular plate representing one of the faces of a cuboidal rigid obstacle. The his-
tories of average and maximum pressure on such plate are shown in Fig. 13, as predicted
by CFD simulations or surrogate model. Again, the surrogate makes predictions very
close to those of detailed CFD simulations.

Fig. 5  Predictions of the pressure field by CFD simulations and the surrogate model. The field at a time
5.6 ∗ 10−5 s in a selected evaluation simulation is shown

Page 10 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18

Fig. 6  a Average error in pressure; b average error in temperature; c average errors in velocity; d maximum
error in pressure; e maximum error in temperature; f maximum errors in velocity

Fig. 7  a First domain where the fluid domain is evaluated at points 1 and 2; b second domain where the
fluid domain is evaluated at points 1 and 2

Page 11 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18 	

It is important to note that the trained model uses a simple loss function without dif-
ferentiating weights between terms or including physically bounding terms. Remark-
ably, it achieves great accuracy despite its simplicity and minimal tuning. Incorporating
additional terms in the loss function to account for physical laws (for example adding
the residuals of governing equations) would ensure adherence to these laws. We shall
explore the possible computational advantages (higher accuracy) and disadvantages
(challenging training processes) of physics-informed approaches in future studies.

To assess the model’s generalisation capability, additional testing was conducted,
predicting pressure wave propagation on larger and more complex domains. An addi-
tional set of simulations was conducted, modelling cubic domains of size L = 0.25 m and
L = 0.5 m, containing three regions of initially higher pressure (therefore three sources of
impulsive loading, at pressures of 6, 7.5 and 8.5 bar) and 8 obstacles, resulting in a highly
congested environment and complex loading. These domains were discretised by struc-
tured meshes of different cell sizes Δc. An example of such domains and the correspond-
ing initial conditions are shown in Fig. 14.

Figure 15 summarises the findings, presenting the average and maximum errors in
predictions of thermodynamical quantities in 3 different simulations, of geometry iden-
tical to that in Fig. 14 (apart from a scale factor) and three different combination of size
L and cell size c, as indicated. We recall that the average cell size was 3.5 mm in the train-
ing simulations. The surrogate model demonstrates outstanding generalisation capabil-
ity, with low errors in all cases, of similar magnitude as the errors displayed in Fig. 6 for

Fig. 8  Comparison of the actual and predicted a) pressure, b) temperature, c) velocity components, d)
velocity magnitude for point a-1 (Fig. 7)

Page 12 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18

Fig. 9  Comparison of the actual and predicted a pressure, b temperature, c velocity components, d velocity
magnitude for point a-2 (Fig. 7)

Fig. 10  Comparison of the actual and predicted a pressure, b temperature, c velocity components, d
velocity magnitude for point b-1 (Fig. 7)

Page 13 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18 	

smaller (L = 0.1 m) and geometrically much simpler domains. The accuracy of the surro-
gate model is higher when meshes similar to those used for training are used.

In Fig. 16 we provide examples of the computational cost of the CFD simulations and of
the surrogate model’s (SM) predictions. We plot the computational time required to com-
pute one time increment of length tstep = 2∗10−6 s for simulations with different numbers
of nodes ( NV  ); the speed of the CFD simulations in OpenFOAM is compared to that of

Fig. 11  Comparison of the actual and predicted a pressure, b temperature, c velocity components, d
velocity magnitude for point b-2 (Fig. 7)

Fig. 12  Geometry and initial conditions for a selected test simulation. The highlighted rectangle represents a
plate over which maximum and average pressure are predicted

Page 14 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18

the surrogate model, executed either on a GPU (single NVIDIA T4) or on a CPU. The data
are fitted by a power-law of type tstep = A(NV)

m . Least-square fits of such equation to the
data gave A = 3.432 ∗ 10−4,m = 1.084;A = 3.272 ∗ 10−4,m = 0.978;A = 1.35 ∗ 10−3,m = 0.707; for
the CFD simulations, SM on CPU, and SM on GPU, respectively. Assuming that such
power-laws are valid at large number of nodes than those investigated here, the above
data suggest computational speed-ups of approximately 50 for a simulation with 106
nodes and of more than 100 for a simulation with 107 nodes, intended as the time to per-
form a CFD simulation divided by the time to perform a corresponding surrogate pre-
diction. The details of the type of hardware used in both CFD simulations and surrogate
predictions, as well as the choice of parameters in the CFD simulations and surrogate
models (e.g. the CFL number) can obviously affect the speed-ups recorded in this study.
It is clear however that the surrogate model allows savings in computational time of a few
orders of magnitude compared to CFD simulations, and the savings are higher in very
large simulations. This can be game-changing in industrial applications, where defla-
grations and detonations of entire industrial plants need to be simulated with high spa-
tial and temporal resolution. Our future work will therefore aim at including additional
physics in the surrogate model, namely combustion, deflagration and its transition to
detonation.

Fig. 13  Average (a) and maximum (b) pressure on the rectangular plate highlighted in Fig. 12

Fig. 14  Domain and initial conditions used for the evaluation of the model’s generalisation capabilities

Page 15 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18 	

Fig. 15  Tests on larger and more complex domains. a Average error in pressure; b average error in
temperature; c average error in velocity module; d maximum error in pressure; e maximum error in
temperature; f maximum error in velocity

Fig. 16  Computational time to complete a simulation time increment of tstep = 2∗10−6 s, for CFD
simulations or surrogate model’s predictions, performed on a CPU (SMCPU) or on a GPU (SMGPU). The figure
includes power-law fits of tstep = A(NV)

m
 through the data

Page 16 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18

Conclusions
We demonstrated the potential of GNNs, as implemented in MeshgraphNets and modi-
fied as described above, in predicting the transient flow response to impulsive events
such as explosions. We applied a surrogate model to predict the transient fields of pres-
sure, temperature and velocity following the sudden release of high pressure in finite
regions of a fluid domain. We proposed a strategy to construct the training simulations
to obtain from these suitable training data for a surrogate model.

The proposed surrogate exhibited high predictive accuracy. The model was trained on
the results of URANS simulations of relatively small domains, however it was able to
make accurate predictions also in the case of domains of volume up to 125x that of the
training simulations, geometrically more complex, and with a coarser mesh than that
used in the training simulations, which demonstrates excellent generalisation capa-
bilities. The model also offers computational savings of at least one to two orders of
magnitude compared to the CFD simulations used to train it, depending on the total
number of cells. Such savings are expected to increase considerably as the number of
cells increases.

Appendix
The dimensions used for encoding in the MeshGraphNets model, which determine the
size of the latent vector where nodes’ and edges’ attributes are represented, significantly
influence the model’s complexity. In the work conducted by Pfaff et al. [33] these dimen-
sions were set to 128. Large encoding dimensions are commonly employed in GNNs to
capture relevant information from a higher-dimensional space. By increasing the dimen-
sionality of the problem, the model can assess linear and non-linear relationships among
node features, representing them as vectors in the latent space. Nonetheless, augment-
ing the dimensions of the latent necessitates longer training times and make the model
susceptible to overfitting. The encoding dimensions not only influence the training time
but also impact the memory requirements. While longer training times may be accept-
able, a higher demand for memory can pose challenges during GPU-based training. The
larger memory requirements directly constrain the size of domains that can be utilized,

Fig. 17  Comparison of a Average discrepancy between the evaluated and expected calculated pressure
over time for all the evaluation cases; b maximum discrepancy between the evaluated and expected
calculated pressure at single points over time for all the evaluation cases; for the models comprising 64 and
128 encoding dimensions, trained for 163 and 260 epochs

Page 17 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18 	

Fi
g.

 1
8 

Co
m

pa
ris

on
 o

f a
 a

ve
ra

ge
 d

is
cr

ep
an

cy
 b

et
w

ee
n

th
e

ev
al

ua
te

d
an

d
ex

pe
ct

ed
 c

al
cu

la
te

d
te

m
pe

ra
tu

re
 o

ve
r t

im
e

fo
r a

ll
th

e
ev

al
ua

tio
n

ca
se

s;
b

m
ax

im
um

 d
is

cr
ep

an
cy

 b
et

w
ee

n
th

e
ev

al
ua

te
d

an
d

ex
pe

ct
ed

 c
al

cu
la

te
d

te
m

pe
ra

tu
re

 a
t s

in
gl

e
po

in
ts

 o
ve

r t
im

e
fo

r a
ll

th
e

ev
al

ua
tio

n
ca

se
s;

fo
r t

he
 m

od
el

s
co

m
pr

is
in

g
64

 a
nd

 1
28

 e
nc

od
in

g
di

m
en

si
on

s,
tr

ai
ne

d
fo

r 1
63

 a
nd

 2
60

 e
po

ch
s

Page 18 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18

limiting the number of nodes and cells within each simulation. This limitation arises
from the fact that encoding causes the size of attributes considered for each node to
grow by a multiplicative factor equal to the encoding dimension. For our training data-
set, we observed that the time needed to make one update of the model was 1.67 times
higher when employing 128 encoding dimensions instead of 64.

Figures 16, 17 and 18 show the average discrepancy and the average maximum dis-
crepancy for pressure, temperature and velocity, comparing the performance of the
surrogate model with encoding dimensions 64 and 128; the effect of the number
of epochs is also explored. The results clearly showed that a model using encoding
dimensions 64 may outperform one using dimension 128, at the expense of a longer
training time (Fig. 19).

Author contributions
GC conducted all CFD simulations, coding and machine learning activities and wrote the first draft of the paper. FM and
VT planned the research, supervised GC and wrote the final manuscript. VB provided initial CFD training to GC. SR co-
supervised GC and edited the manuscript. MR funded and managed the research project on behalf of Baker Hughes.

Funding
We are grateful to Baker Hughes for funding and managing the project.

Availability of data and materials
The raw data required to reproduce the findings of this study will be available in the near future from the corresponding
authors upon reasonable request. The code for the surrogate model cannot be shared at present.

Declarations

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Received: 1 April 2024 Accepted: 26 August 2024

References
	1.	 Bjerketvedt D, Bakke JR, Van Wingerden K. Gas explosion handbook. J Hazard Mater. 1997;52(1):1–150.

Fig. 19  Comparison of a Average discrepancy between the evaluated and expected calculated velocities
over time for all the evaluation cases; b maximum discrepancy between the evaluated and expected
calculated velocities at single points over time for all the evaluation cases; for the models comprising 64 and
128 encoding dimensions, trained for 163 and 260 epochs

Page 19 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18 	

	2.	 Glassman I, Yetter RA, Glumac NG. Combustion. Academic press; 2014.
	3.	 Oppenheim AK, Soloukhin RI. Experiments in gasdynamics of explosions. Annu Rev Fluid Mech. 1973;5(1):31–58.
	4.	 Edri I, Savir Z, Feldgun VR, Karinski YS, Yankelevsky DZ. On blast pressure analysis due to a partially confined

explosion: I. Experimental studies. Int J Protect Struct. 2011;2:1–20.
	5.	 Rigby SE, Tyas A, Curry RJ, Langdon GS. Experimental measurement of specific impulse distribution and tran-

sient deformation of plates subjected to near-field explosive blasts. Exp Mech. 2019;59(2):163–78.
	6.	 Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics-informed machine learning. Nat Rev

Phys. 2021;3(6):422–40.
	7.	 Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE. Learning nonlinear operators via DeepONet based on the uni-

versal approximation theorem of operators. Nat Mach Intell. 2021;3(3):218–29. https://​doi.​org/​10.​1038/​
s42256-​021-​00302-5.

	8.	 Kashefi A, Rempe D, Guibas LJ. A point-cloud deep learning framework for prediction of fluid flow fields on irregular
geometries. Phys Fluids. 2021;33(2):27104.

	9.	 Mitchell TM. The need for biases in learning generalizations. Department of Computer Science, Laboratory for
Computer Science Research; 1980.

	10.	 Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, et al. Relational inductive biases,
deep learning, and graph networks. 2018.

	11.	 Mallat S. Understanding deep convolutional networks. Philos Trans R Soc A Math Phys Eng Sci.
2016;374(2065):20150203.

	12.	 Cranmer M, Sanchez-Gonzalez A, Battaglia P, Xu R, Cranmer K, Spergel D, et al. Discovering symbolic models from
deep learning with inductive biases. arXiv preprint; 2020. http://​arxiv.​org/​abs/​2006.​11287.

	13.	 Cranmer M, Greydanus S, Hoyer S, Battaglia P, Spergel D, Ho S. Lagrangian neural networks. arXiv preprint; 2020.
http://​arxiv.​org/​abs/​2003.​04630.

	14.	 Raissi M, Perdikaris P, Karniadakis GE. Numerical Gaussian processes for time-dependent and nonlinear partial dif-
ferential equations. SIAM J Sci Comput. 2018;40(1):A172–98.

	15.	 Rao C, Sun H, Liu Y. Physics-informed deep learning for incompressible laminar flows. Theor Appl Mech Lett.
2020;10(3):207–12.

	16.	 Sun L, Gao H, Pan S, Wang JX. Surrogate modeling for fluid flows based on physics-constrained deep learning with-
out simulation data. Comput Methods Appl Mech Eng. 2020;361: 112732.

	17.	 Cai S, Wang Z, Fuest F, Jeon YJ, Gray C, Karniadakis GE. Flow over an espresso cup: inferring 3-D velocity and pres-
sure fields from tomographic background oriented Schlieren via physics-informed neural networks. J Fluid Mech.
2021;915:A102.

	18.	 Mao Z, Lu L, Marxen O, Zaki TA, Karniadakis GE. DeepM&Mnet for hypersonics: Predicting the coupled flow and
finite-rate chemistry behind a normal shock using neural-network approximation of operators. J Comput Phys.
2021;447: 110698.

	19.	 LeCun Y, Bengio Y, et al. Convolutional networks for images, speech, and time series. The handbook of brain theory
and neural networks. 1995;3361(10):1995.

	20.	 Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.
	21.	 Chen LW, Thuerey N. Towards high-accuracy deep learning inference of compressible turbulent flows over aerofoils.

arXiv preprint; 2021. http://​arxiv.​org/​abs/​2109.​02183.
	22.	 Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P. Geometric deep learning: going beyond euclidean data.

IEEE Signal Process Mag. 2017;34(4):18–42.
	23.	 Schmitt T, Goller C. Relating chemical structure to activity: An application of the neural folding architecture. In:

Proceedings of the Workshop Fuzzy-Neuro system/conference engineering applications neural network. 1998. p.
170–7.

	24.	 Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains. In: Proceedings 2005 IEEE international
joint conference on neural networks, 2005, vol. 2; 2005. p. 729–34.

	25.	 Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans Neural
Netw. 2008;20(1):61–80.

	26.	 Gallicchio C, Micheli A. Graph echo state networks. In: The 2010 international joint conference on neural networks
(IJCNN); 2010. p. 1–8.

	27.	 Li Y, Tarlow D, Brockschmidt M, Zemel R. Gated graph sequence neural networks. arXiv preprint; 2015. http://​arxiv.​
org/​abs/​1511.​05493.

	28.	 Scarselli F, Yong SL, Gori M, Hagenbuchner M, Tsoi AC, Maggini M. Graph neural networks for ranking web pages. In:
The 2005 IEEE/WIC/ACM international conference on web intelligence (WI’05); 2005. p. 666–72.

	29.	 Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. Computational capabilities of graph neural networks.
IEEE Trans Neural Netw. 2008;20(1):81–102.

	30.	 Sanchez-Gonzalez A, Bapst V, Cranmer K, Battaglia P. Hamiltonian graph networks with ode integrators. arXiv pre-
print; 2019. http://​arxiv.​org/​abs/​1909.​12790.

	31.	 Raposo D, Santoro A, Barrett D, Pascanu R, Lillicrap T, Battaglia P. Discovering objects and their relations from entan-
gled scene representations. arXiv preprint. 2017; http://​arxiv.​org/​abs/​1702.​05068.

	32.	 Santoro A, Raposo D, Barrett DGT, Malinowski M, Pascanu R, Battaglia P, et al. A simple neural network module for
relational reasoning. arXiv preprint; 2017. http://​arxiv.​org/​abs/​1706.​01427.

	33.	 Pfaff T, Fortunato M, Sanchez-Gonzalez A, Battaglia PW. Learning mesh-based simulation with graph networks; 2021.
	34.	 Sanchez-Gonzalez A, Heess N, Springenberg JT, Merel J, Riedmiller M, Hadsell R, et al. Graph networks as learnable

physics engines for inference and control; 2018.
	35.	 Battaglia PW, Pascanu R, Lai M, Rezende D, Kavukcuoglu K. Interaction networks for learning about objects, relations

and physics. arXiv preprint; 2016. http://​arxiv.​org/​abs/​1612.​00222.
	36.	 Li Y, Yu R, Shahabi C, Liu Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv

preprint; 2017. http://​arxiv.​org/​abs/​1707.​01926.

https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/2006.11287
http://arxiv.org/abs/2003.04630
http://arxiv.org/abs/2109.02183
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1909.12790
http://arxiv.org/abs/1702.05068
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1707.01926

Page 20 of 20Covoni et al. Adv. Model. and Simul. in Eng. Sci. (2024) 11:18

	37.	 Cui Z, Henrickson K, Ke R, Wang Y. Traffic graph convolutional recurrent neural network: a deep learning framework
for network-scale traffic learning and forecasting. IEEE Trans Intell Transp Syst. 2019;21(11):4883–94.

	38.	 Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM. Dynamic graph cnn for learning on point clouds. Acm
Trans On ics (tog). 2019;38(5):1–12.

	39.	 Wang X, Girshick R, Gupta A, He K. Non-local neural networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018. p. 7794–803.

	40.	 Chen J, Hachem E, Viquerat J. Graph neural networks for laminar flow prediction around random two-dimensional
shapes. Phys Fluids. 2021;33(12): 123607.

	41.	 de Avila Belbute-Peres F, Economon TD, Zico Kolter J. Combining differentiable PDE solvers and graph neural net-
works for fluid flow prediction. arXiv e-prints; 2020. arXiv–2007.

	42.	 Lino M, Fotiadis S, Bharath AA, Cantwell CD. Multi-scale rotation-equivariant graph neural networks for unsteady
Eulerian fluid dynamics. Phys Fluids. 2022;34(8): 087110.

	43.	 Xu J, Pradhan A, Duraisamy K. Conditionally parameterized, discretization-aware neural networks for mesh-based
modeling of physical systems; 2021. http://​arxiv.​org/​abs/​2109.​09510

	44.	 Roznowicz D, Stabile G, Demo N, Fransos D, Rozza G. Large-scale graph-machine-learning surrogate models for
3D-flowfield prediction in external aerodynamics. Adv Model Simul Eng Sci. 2024;11(1):6. https://​doi.​org/​10.​1186/​
s40323-​024-​00259-1.

	45.	 Bose NK, Liang P. Neural network fundamentals with graphs, algorithms, and applications. Inc.: McGraw-Hill; 1996.
	46.	 Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for quantum chemistry; 2017.
	47.	 Hamrick JB, Allen KR, Bapst V, Zhu T, McKee KR, Tenenbaum JB, et al. Relational inductive bias for physical construc-

tion in humans and machines. arXiv preprint; 2018. http://​arxiv.​org/​abs/​1806.​01203.
	48.	 Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J, Battaglia PW. Learning to Simulate Complex Physics with

Graph Networks; 2020.
	49.	 Holzinger G. OpenFOAM a little user-manual; 2020. http://​www.​k1-​met.​com
	50.	 Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J.

1994;32(8):1598–605.
	51.	 Kurganov A, Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection-diffu-

sion equations. J Comput Phys. 2000;160(1):241–82.
	52.	 Van Leer B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J

Comput Phys. 1979;32:101–36.
	53.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: large-scale machine learning on hetero-

geneous systems; 2015. https://​www.​tenso​rflow.​org/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2109.09510
https://doi.org/10.1186/s40323-024-00259-1
https://doi.org/10.1186/s40323-024-00259-1
http://arxiv.org/abs/1806.01203
http://www.k1-met.com
https://www.tensorflow.org/

	Application of graph neural networks to predict explosion-induced transient flow
	Abstract
	Introduction
	Methodology
	Assembly of a training dataset and training of the surrogate
	Results and discussion
	Conclusions
	Appendix
	References

