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Abstract

Computational modeling of the melt pool dynamics in laser-based powder bed fusion
metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental
mechanisms of defect generation. These processes are accompanied by rapid
evaporation so that the evaporation-induced recoil pressure and cooling arise as major
driving forces for fluid dynamics and temperature evolution. The magnitude of these
interface fluxes depends exponentially on the melt pool surface temperature, which,
therefore, has to be predicted with high accuracy. The present work utilizes a diffuse
interface finite element model based on a continuum surface flux (CSF) description of
interface fluxes to study dimensionally reduced thermal two-phase problems
representative for PBF-LB/M in a finite element framework. It is demonstrated that the
extreme temperature gradients combined with the high ratios of material properties
between metal and ambient gas lead to significant errors in the interface temperatures
and fluxes when classical CSF approaches, along with typical interface thicknesses and
discretizations, are applied. It is expected that this finding is also relevant for other types
of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF
approach is proposed, which is constructed to yield a smoother temperature field in
the diffuse interface region, significantly increasing the solution accuracy. The interface
thickness required to predict the temperature field with a given level of accuracy is less
restrictive by at least one order of magnitude for the proposed parameter-scaled
approach compared to classical CSF, drastically reducing computational costs. Finally,
we showcase the general applicability of the parameter-scaled CSF to a 3D simulation
of stationary laser melting of PBF-LB/M considering the fully coupled
thermo-hydrodynamic multi-phase problem, including phase change.

Keywords: Continuum surface flux model, Multi-phase heat transfer, Laser powder
bed fusion additive manufacturing, Melt pool thermo-hydrodynamics, Finite element
method

Introduction
Metal additive manufacturing by laser-based powder bed fusion (PBF-LB/M) is a promis-
ing technology that offers unique capabilities for the on-demand production of high-
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performancemetal parts with virtually unlimited design freedom [1]. In PBF-LB/M,metal
powder is distributed in thin layers on a substrate and selectivelymoltenwith a laser beam,
forming the so-calledmelt pool. A part is built bottomup, and each layer is recoatedwith a
powder layer fused with the subjacent layer. The resulting stack of layered cross-sections
forms the final part. However, suboptimal process conditions typically lead to quality
degrading defects such as porosity, poor surface finish, and residual stresses. Many of
these defects can be attributed to the dynamics in the close vicinity of the melt pool, such
as keyhole instabilities, spattering, denudation of the melt track, and balling. Computa-
tional models of the melt pool dynamics promise to shed light on fundamental defect
generation mechanisms and to better control part quality. Additionally, they provide a
flexible virtual test environment for newmanufacturing approaches without being limited
to current manufacturing hardware.
In PBF-LB/M, the physics in the vicinity of the melt pool constitutes a highly dynamic

multi-phase thermo-hydrodynamic problem with phase change. At the metal-gas inter-
face, there are large jumps in the material properties, with ratios of the density (∼ 103),
the specific heat capacity (∼ 102), and the conductivity (∼ 103) between the phases. The
laser-induced heating of the metal substrate induces rapid phase changes, includingmelt-
ing, solidification, and evaporation. Particularly, evaporation-induced recoil pressure and
evaporative cooling lead to strong discontinuities in the heat flux and the flow field at the
metal-gas interface and emerge asmajor driving forces for fluid dynamics and temperature
evolution [2]. The magnitude of these interface fluxes depends exponentially on the melt
pool surface temperature, which also influences other important interface effects such as
temperature-dependent surface tension [3]. Therefore, to obtain a realistic prediction of
the melt pool behavior, the melt pool surface temperature has to be predicted with high
accuracy, which is the focus of the present paper.
The computationally demanding thermo-hydrodynamic problem of melt pool dynam-

ics requires highly robust, efficient, and accurate numerical schemes [4]. Most existing
numerical approaches for modeling melt pool dynamics rely on Eulerian frameworks,
including discretization by the finite element method (FEM) [5–11], the finite differ-
ence method [12–14], the finite volume method [15–18], and the lattice Boltzmann
method [19,20]. Alternatively, Lagrangian meshfree modeling approaches have also been
proposed, e.g., based on smoothed particle hydrodynamics [21–24].
For modeling approaches of multi-phase problems, a distinction is typically made

between sharp interfacemethods anddiffuse interfacemethods [25].While sharp interface
methods fully maintain the discontinuity at the interface, thus enabling a highly accurate
representation of the original multi-phase problem [13,14], they require complex modifi-
cations of the numerical schemes to represent complex topology changes such as breakup
and coalescence. In addition, they typically suffer from stability issues at high ratios of
material properties between the phases [26].
To overcome the aforementioned issues of sharp interface methods and for a straight-

forward implementation, diffuse interface methods have been introduced [25]. They
have typically been incorporated in existing melt pool models, including Eulerian frame-
works [6,8–12,15,18,27] as well as meshfree methods [21,23,24]. In addition, the diffuse
interface approach is promising for explicitly resolving the evaporation effects [27], i.e.,
the liquid–gas phase transformation as well as the resulting vapor jet and pressure jump,
which is typically neglected and thus still pending in the field of melt pool modeling.
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In diffuse interface methods, a smooth transition of the properties between the fluids is
assumed together with a regularized representation of interface jump conditions over a
finite but small thickness of the interface region. This assumption introduces an inherent
modeling error and leads to a less accurate representation of the interface compared to
sharp interface methods. Nevertheless, they are mathematically consistent such that the
solution converges to the sharp interface model as the interface thickness decreases and
are considered to provide robust solutions.
A popular choice for regularized modeling of interface fluxes in diffuse methods is the

classical continuum surface flux (CSF) model according to Brackbill et al. [28], which
was originally introduced to model surface tension effects in two-phase flows but is also
employed for other types of interface fluxes, e.g., for heat fluxes in [9]. However, the
usage of classical CSFmodels for interface fluxes, together with high ratios of the material
parameters between the phases, can lead to significant modeling errors. Let us consider
a representative scenario from our intended application to PBF-LB/M: using classical
CSF for modeling laser-induced surface heating in two-phase heat transfer with a high
thermal mass ratio between the solid/liquid metal phase and the gas phase can lead to the
nonphysical effect that the peak temperature is in the gas phase and not at the interface
as expected. As a result, the interface temperature is mispredicted, which directly affects
the accuracy of temperature-dependent interface fluxes, such as the evaporation-induced
recoil pressure and, consequently, the predicted dynamics of the melt pool. However,
although the diffuse interface approach is the most popular choice in computational melt
pool models, the inherent modeling error and the convergence properties, particularly
with respect to the critical interface temperature, have never been quantified so far.
The present work deals with a diffuse interface two-phase model based on a CSF

description of interface fluxes embedded in a finite element framework. In this model,
we aim to improve the accuracy of interface quantities, such as interface temperature and
temperature-dependent interface fluxes, for application to PBF-LB/M characterized by
high ratios of material properties between phases. Our particular focus is on achieving an
accurate prediction of the thermo-hydrodynamic behavior of the melt pool. To this end,
we specify the objectives as follows:

• First, we analyze and critically evaluate the accuracy of classical CSF models for
interface heat flux modeling in two-phase thermal models. To this end, we introduce
novel 1D and 2D benchmark examples representative of laser-induced heating in
PBF-LB/M.

• Second, we propose a parameter-scaled CSF modeling approach. The approach is
inspired by existing approaches of density-scaled CSF models for surface tension in
two-phase flow [29,30]. It is constructed primarily for a regularized representation
of interface heat fluxes to yield a smoother approximation of the temperature field
in the diffuse interface region, which is vital for an accurate and robust numerical
model. The predicted temperature and recoil pressure field errors are studied based
on selected numerical examples with sharp-interface reference solutions.

• Third, we propose to compute regularized temperature-dependent interface fluxes—
such as evaporative cooling or recoil pressure—by evaluating the temperature at the
interfacemidplane. This aims to enhance the accuracy compared to traditional diffuse
methods that use local temperature values to compute regularized interface fluxes.
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In addition, we demonstrate the general applicability of the parameter-scaled CSF as a
proof-of-principle to a 3D simulation of stationary lasermelting considering the fully cou-
pled thermo-hydrodynamic problem, including phase change. To keep the computational
cost feasible for this challenging application, we incorporate novel high-performance
aspects by using matrix-free operator evaluation and adaptive mesh refinement provided
by the deal.II library [31,32].
This article is structured as follows: The section “Review of classical continuum surface

flux modeling” provides a review and evaluates the classical CSF model based on a novel
benchmark example representing a two-phase heat transfer problem of laser-induced
heating during PBF-LB/M with high ratios of the material parameters. In “The parame-
ter-scaled continuum surface flux model” section, we present the novel parameter-scaled
CSF model and assess its strengths compared to the classical CSF model. In “Consistent
formulation of temperature-dependent continuum surface fluxes with improved accu-
racy” section, a novel formulation of temperature-dependent continuous surface fluxes
is presented and compared with standard approaches for evaporation-induced fluxes. In
“Benchmark example: laser-induced heating of a 2D fixed melt pool surface” section, we
introduce a novel benchmark example for computing the heat transfer in a representative
melt pool configuration considering the parameter-scaled CSF and a sharp reference solu-
tion. For demonstrating the general applicability of the presented methods to practically
relevant problems of PBF-LB/M, we show a fully coupled thermo-hydrodynamic simula-
tion of melt pool dynamics by employing the parameter-scaled CSF in “Application of the
parameter-scaled CSF model to a melt pool thermo-hydrodynamics simulation” section.
The results of the previous sections are subject to a discussion of diffuse interface melt
pool models in “Discussion: Suitability of diffuse interface melt pool models” section, and
“Conclusions” section provides a conclusion.

Review of classical continuum surface fluxmodeling
Continuum surface flux (CSF) modeling is a popular numerical method to obtain a
smoothed representation of singular fluxes at the interface between two phases, aim-
ing at improving the robustness of a finite-element-based multi-phase framework. By
employing a smoothed approximation of the Dirac delta function, sometimes called a
regularized Dirac delta function, a continuous flux density is computed, which typically
has support only in a finite but small transition region around the interface midplane.
This enables the application of an interface condition in a continuous manner, which is
consistent with the concept of the FEM, without the need to reconstruct a discrete surface
representation of the sharp interface. These aspects can be particularly useful for complex,
highly dynamically changing interface topologies such as those encountered in melt pool
dynamics.
In the following, we briefly summarize the features of a classical continuum surface

flux model. Based on a convergence study on a novel 1D benchmark example for laser-
induced heating and a comparison with a sharp interface reference solution, we point out
the potential strengths and weaknesses of using the classical CSF approach for melt pool
modeling.
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The classical CSF model

Brackbill et al. [28] proposed one of the first CSF models for representing sur-
face tension of two-phase incompressible flow, which serves as a basis for the
present summary and is denoted as classical CSF. We consider a two-phase domain
� = �g ∪ �� ∪ �� ⊂ {x ∈ R

n} with dimensionality n ∈ {1, 2, 3}, that is occupied by a
gas phase �g and a liquid phase �� as shown in the left panel of Fig. 1. For the sake of
simplicity, we neglect the fluid dynamics in the first part of this work and use the term
liquid phase also for any metal phase that may be molten or solid metal since we assume
that the thermal material properties remain constant. The two phases are separated by a
diffuse interface region �� , referred to as the interface in the following. It is defined as a
narrow band around the interface midplane �(�g) with interface thickness w� > 0. The
signed distance d�(x) of a point x represents the distance to the interface midplane �(�g)

being negative in �g and positive in �� and defining �(�g) as its zero contour. Typically, a
smoothed indicator function ϕ(d�) ∈ [0, 1] is introduced to distinguish between the two
phases, here indicating �g at ϕ = 0 and �� at ϕ = 1, and defining �(�g) as the 0.5 contour
of ϕ(d�). We choose a sine-based interpolation function according to [33,34]

ϕ(d�(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for d� ≤ −w�

2
1
2 + d�

2 + 1
2π sin

(
2πd�

w�

)
for − w�

2 < d� < w�

2

1 for d� ≥ w�

2

, (1)

depicted in the center panel of Fig. 1, but any other continuous interpolation function
is feasible. Note that although the continuity of the first derivative is not a prerequisite,
it is yet an advantage since it signifies a continuous delta function, which fulfills the
first postulate given by Peskin [34]. With (1), a continuous representation of varying
thermo-physical properties between the two phases can be obtained, e.g., by computing
the arithmetic mean of the phase contributions, which is indicated by the subscript (•)a

αa(ϕ) = αg(1 − ϕ) + α�ϕ (2)

where α represents any property associated with the respective values of the two phases,
indicated by the subscripts (•)g for the gas phase �g and (•)� for the liquid phase ��. In
the CSF model, singular interface fluxes f� on �(�g) are transformed into a volume flux
f̃� in �, indicated by a tilde (•̃), by using a smoothed approximation of the Dirac delta
function δε(ϕ) such that

∫

�

f� dS =
∫

�

δε(ϕ) f�
︸ ︷︷ ︸

f̃�

dV (3)

holds. The delta function δε(ϕ) is localized to the diffuse interface region �� , i.e., it only
has non-zero support for −w�

2 ≤ d� ≤ w�

2 . Thus, the delta function has to satisfy

∫ w�
2

−w�
2

δε(ϕ(d�)) dd� = 1. (4)
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Fig. 1 Diffuse interface two-phase domain: (left) The domain � consists of two phases: a gas domain �g and a
liquid domain �� , that are separated by an interface �(�g) characterized as the zero contour of the signed
distance function d� . A narrow band with thickness w� around �(�g) comprises the diffuse interface region �� .
(center) The indicator ϕ(d� ) specifies the phases, being ϕ = 0 in �g and ϕ = 1 in �� with the transition function
according to (1). In �� , ϕ(d� ) transitions smoothly between the two phases, attaining ϕ = 0.5 at �(�g). (right)
Shape of the symmetric delta function δε (ϕ) of the classical CSF model, i.e., the norm of the indicator gradient (5)

This can be obtained by choosing the Euclidean norm of the gradient of the indicator
function

δε(ϕ) = ||∇ϕ||2 (5)

as is typical in classical CSF. The right panel of Fig. 1 shows δε(ϕ) across the interface �� .
The CSF model effectively replaces a sharp interface with an interface region with a finite
but small thickness.

Application of the classical CSF model to interface heat fluxes

In the following, we consider the heat transfer equation in the Eulerian two-phase domain
�, as depicted in the left panel of Fig. 1, which reads in its general form as

(
ρcp

)

eff︸ ︷︷ ︸
cv,eff

(
∂T
∂t

+ u · ∇T
)

= ∇ (keff ∇T ) + q̃� in � × [0, t] (6)

with the temperatureT , the velocity fieldu, the densityρ, the (mass-) specific heat capacity
cp, the conductivity k , and the time t. Here, the subscript (•)eff denotes the effective
material properties for the two-phase mixture. Note that the effective material properties
ρeff , cp,eff , and keff are defined as an interpolation between the two phases according to
(2). The volume-specific heat capacity cv = ρcp is defined as the product of density and
specific heat capacity for all phases, neglecting the temperature-dependent expansion of
gases assuming incompressible flow. The heat transfer equation (6) is supplemented by
an initial condition:

T = T0 in � × [t = 0]. (7)

Dirichlet and Neumann boundary conditions are imposed according to

T = T̄ on �D,T × [0, t] (8)

−keff ∇T · n̂ = 0 on �N,T × [0, t] (9)

with theoutward-pointingunit normal vector n̂ at thedomainboundary ∂� = �D,T ∪ �N,T
with �D,T ∩ �N,T = ∅. The midplane of the liquid–gas interface �(�g) is subject to a pre-
scribed external interface heat flux q� , which we model using the CSF model as a volu-
metric heat flux q̃� = q� δε(ϕ) with the norm of the indicator gradient (5).
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Fig. 2 Classical CSF modeling of an interface heat flux in the 1D heat equation for different ratios in the
volume-specific heat capacity: (upper right) effective volume-specific heat capacity cv,eff = cv,a (2) for the ratios
cv,�
cv,g

∈ {102 , 103 , 104} with the fixed value cv,� = 1 J/m3K; (lower left) continuum surface heat flux q̃� = q� δε

with q� = 1W/m2 and the smoothed approximation of the Dirac delta function δε defined by (5); (lower right)
temperature rate ṪCSF for the different ratios of the volume-specific heat capacities as the result of the continuum
surface heat flux divided by the effective volume-specific heat capacity

For the sake of demonstration andwithout losing generality, we consider the conductive
heat transfer in a 1Ddomain� = {x ∈ R} andneglect the convective term in the following,
defined by the 1D form of the heat equation (6):

(
ρcp

)

eff︸ ︷︷ ︸
cv,eff

∂T
∂t

= ∂

∂x

(

keff
∂T
∂x

)

+ q̃� in � × [0, t]. (10)

In Fig. 2, different quantities are illustrated over the signed distance to the interface
midplane for an interface thickness ofw� = 2μm. The top right panel shows the effective
volume-specific heat capacity cv,eff = cv,a (2) for the ratios cv,�/cv,g ∈ {102, 103, 104} with
the fixed value cv,� = 1 J/(m3K). Note that the three curves mostly overlay each other
because the different values for cv,g are almost indistinguishable at the shown scale. In the
bottom left panel, the continuum surface heat flux q̃� is illustrated.
To visualize the effects that arise when modeling strongly localized interface source

terms such as the laser heat source in PBF-LB/M by means of classical CSF approaches,
the different contributions in (10) shall briefly be discussed. For this purpose, we consider
the Fourier number Fo, which describes the ratio between conductive heat transfer and
heat storage and is defined as

Fo = k τ

ρcp L2
(11)

with the characteristic time and length scales τ and L. In PBF-LB/M, the material is
rapidly heated, and temperature rates are typically in the order of 107 K/s. The heating
process is characterized by short time scales τ , and the Fourier number is typically very
small (Fo � 1). Thus, in the initial phase of the heating process, the conductive heat
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transfer is not significant, and most of the incident laser energy is initially transferred into
internal energy of the respective material point, accompanied by a rapid temperature rise
according to the left-hand side of (10).
Accordingly, when neglecting the conductive heat flux in (10), the initially induced

temperature rate ∂T
∂t , which we denote as ṪCSF, can be approximated by the fraction of the

continuum surface heat flux q̃� and the volume-specific heat capacity cv,eff , as shown in
the bottom right panel of Fig. 2. It can be seen that a decrease of the volume-specific heat
capacity cp,g in the gas phase yields a heavily asymmetric profile of the temperature rate
with extremepeak values in the regionof lowvolume-specificheat capacity.Over time, this
irregular shape of the temperature rate profile induces an error in the temperature profile,
necessitating the choice of a relatively small interface thickness such that the classical CSF
model represents the sharp interface limit with sufficient accuracy. Moreover, the shown
temperature rate profiles across the diffuse interface tend to contain steep gradients,which
requires an extremely fine discretization for an accurate representation.
Note that the resultswithin the interface region, such as the steep temperature gradients,

are inherent artifacts attributed to thediffusemodel andhaveno explicit physicalmeaning.
However, the mathematical formulation of the smeared interface flux can influence the
results in the interface region. Accordingly, a carefully constructed formulation of the
smeared interface flux can effectively mitigate undesired artifacts in the diffuse interface
region.This can improvenumerical robustness and accuracy, enabling the usage of coarser
meshes, as elaborated in “The parameter-scaled continuum surface flux model” section.

Benchmark example: laser-induced heating of a static surface

In the following, we propose a simple yet illustrative benchmark example for assessing the
strengths and weaknesses of CSF approaches for modeling the laser-induced heat flux at
themetal surface, in combinationwith a typically high ratio of thermal properties between
the metal and the inert gas. To this end, we consider a 1D domain � = {x ∈ [−a, a]} with
the length parameter a = 100μm. The interface at the center separates the metal phase
on the left from the gas phase on the right, as illustrated in Fig. 3. Typical dimensions and
process parameters for PBF-LB/M are employed: Initially, the temperature is uniform
at T0 = 500K in the whole domain (7). At the domain boundary, the temperature is
prescribed to T̄ = 500K by means of Dirichlet boundary conditions (8). A surface heat
source q� = 1010 W/m2 acts upon the interface between the two phases and is regularized
using the classical CSF (3). The indicator ϕ is prescribed according to (1) with the signed
distance ofd� = −x and the interface thicknessw� . Thematerial parameters representing
Ti-6Al-4V are listed in Table 1. The resulting ratio of the volume-specific heat capacities
is cv,�/cv,g = 105, and of the conductivities, it is k�/kg = 103 between the two phases. In
this work, we focus exclusively on the PBF-LB/M processes using the material parameters
of Ti-6Al-4V. For this reason, the results are not intended to provide holistic guidelines,
as the discretization is likely to be problem-specific. Issues like non-dimensionalization,
therefore, remain topics of future work. The heat equation (10) is solved using the FEM
with evenly spaced finite elements of size h using linear shape functions and implicit Euler
time integrationwith a time step size oft = 10−9 s. In a convergence study, the temporal
discretization error was checked to be negligible for that time step size.
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Fig. 3 Sketch of the 1D example

Table 1 Representative material parameters for Ti-6Al-4V

Parameter Symbol Value Unit References

conductivity liquid k� 28.63 W/(mK) [35]

conductivity gas kg 0.02863 W/(mK) factor of 103 w.r.t. k�
density liquid ρ� 4087 kg/m3 [36]

density gas ρg 4.087 kg/m3 factor of 103 w.r.t. ρ�

specific heat capacity liquid cp,� 1130 J/(kg K) [35]

specific heat capacity gas cp,g 11.3 J/(kg K) factor of 102 w.r.t. cp,�
viscosity liquid μ� 3.5 × 10−3 kg/(m s) [36]

viscosity gas μg 3.5 × 10−4 kg/(m s) factor of 102 w.r.t. μ�

surface tension coefficient σ 1.493 N/m [36]

laser absorptivity χL 0.35 (−) [2]

boiling temperature Tv 3133 K [37]

latent heat of evaporation hv 8.84 × 106 J/kg calculated using

reference temperature for the sum of

specific enthalpy

T (0)hv
538 K the latent heat of each component

molar mass M 4.78 × 10−2 kg/mol [38]

sticking constant cs 1 (−) [2]

liquidus temperature T� 2200 K numerical value

solidus temperature Ts 1933 K numerical value

parameter that depends on the

mushy zone morphology

Ck 1011 kg/(m3 s) numerical value

parameter to avoid division by zero kC 1 (−) numerical value

In the following, wewill consider two different states of the solution: the steady state and
the state of an instationary simulation at time t = 10−5 s. In the steady state, associated
with a vanishing temperature rate in (10), an analytical solution for the temperature profile
is determined considering a sharp representation of the surface heat flux q� , which reads:

T (x) = (Tmax − T̄ )
a − |x|

a
+ T̄ with Tmax = q�a

k� + kg
+ T0. (12)

The analytical temperature profile resulting from (12) is used as the reference solution to
evaluate the accuracy of theCSF in the steady state. For the instationary case, the reference
solution is determined from a sharp interface solution by applying a surface boundary
condition of q at the discrete liquid–gas interface midplane, which aligns with the mesh.
A finite element size of h = 1.563 × 10−3 μm and a time step size of t = 10−10 s is
employed to ensure a converged reference solution.
In Fig. 4, the left panels show the instationary results at t = 10−5 s and the right panels

the steady state. Figure 4a shows the temperature profiles of these two scenarios at a con-
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Fig. 4 Temperature profile resulting from interface heating with an interface heat source of q� = 1010 W/m2

using the classical CSF model. The instationary reference temperature profile Tref is determined using a sharp
interface approach, and the steady state temperature profile is the analytical solution Tref according to (12)

stant interface thickness ofw� = 6μm for differentmesh refinements. The profiles do not
converge towards the reference solution because the interface thickness remains constant.
In the liquid domain, the temperature profiles are in good agreement with the reference
solution. However, a significant discrepancy in the temperature profile becomes apparent
in the gas domain. In particular, the peak temperature is overestimated. Furthermore, the
chosen interface thickness is too large, manifested by a significant difference compared
to the reference solution, even for the finest mesh. In the steady state, the discrepancy in
the temperature profile becomes smaller since heat is solely transferred by conduction,
which is governed by a lower conductivity ratio (103) compared to the volume-specific
heat capacity (105).
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Figure 4b shows the relative temperature error with respect to the sharp interface ref-
erence solution for different mesh sizes h, including the cases shown in Fig. 4a. Here, the
L2-norm

||(•)||L2 =
√∫

�

(•)2 d� (13)

is employed to measure the error. The resulting number of finite elements across the
interface n� according to

n� = w�

h
(14)

is annotated. Since the interface thickness remains constant, the relative temperature error
converges to a non-zero asymptotic value uponmesh refinement.When doubling n� from
n� = 64 to 128, the change in the relative temperature error falls below 1%. Thus, we
assume that n� = 64 finite elements across the interface are required to obtain a sufficient
mesh resolution for a spatially converged solution. The overall error in the temperature
profile is still significant, which is attributed to the large value of the interface thickness.
In Fig. 4c, we show the relative temperature error for different values of the interface

thickness and for different discretizations of the interface region. Reducing the interface
thickness while ensuring a sufficient mesh resolution leads to convergence to the sharp
interface reference solution. The relative temperature error decreases with a convergence
rate of order O(w1

�) with respect to the interface thickness. For n� = 64, the interface
thickness has to be less than w� < 0.248μm or 0.25% of the length parameter a for the
instationary case andw� < 2.32μm or 2.32% of a for the steady state to attain a tolerance
of 1%. To put this in perspective, using a homogeneous mesh in the whole 1D domain in
Fig. 3 supporting a sufficient interface thickness with n� = 64 elements across it, we need
51,625 finite elements for the instationary case and 5510 for the steady state.
Using at least n� = 64 elements over a sufficiently narrow interface is computationally

extremely expensive, especially for 3D melt pool simulations. Hence, when applying clas-
sical CSF modeling to melt pool simulations, the high number of finite elements needed
for an accurate solution yields a very high computational effort. This is the motivation for
using an alternative formulation for computing continuum surface fluxes, as discussed in
the following.

The parameter-scaled continuum surface fluxmodel
To address the poor accuracy and robustness of the classical CSF approach, particularly
for high ratios of the material properties between the two phases, the smeared interface
flux can be weighted considering the distribution of the material properties. Regarding
surface tension modeling, Kothe et al. [29] demonstrated that density-scaled CSF, i.e.,
employing density-scaled delta functions, improves the stability of surface tension force
computations in two-phase flow. In [30], a density-scaled CSF method is proposed to
improve numerical stability and reduce spurious currents due to surface tension forces.
This approach ensures that the magnitude of the surface-tension-induced acceleration
is well-balanced across the interface [30]. It has been used in melt pool simulations to
model interface fluxes such as the laser-induced heat source, surface tension, evaporation-
induced recoil pressure, and cooling, e.g., by [11,39].
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In the following,we generalize the idea of density-scaledCSF approaches to a parameter-
scaledCSFmodel that accounts for diffuse interface fluxes of various physical problems. By
scaling the continuum surface flux proportional to the parameter that correlates with the
inertia of the corresponding equation of the physical problem, we ensure a well-balanced
rate of change across the interface. For the Navier–Stokes momentum equation, the
inertia is proportional to the density; thus, the density-scaled CSF is the special case of the
parameter-scaled CSFmodel when applied to interface forces such as the surface tension.
The inertia of the heat equation (6) is proportional to the effective volume-specific heat
capacity cv,eff = (

ρcp
)

eff . Therefore, we suggest weighting diffuse interface heat fluxes
with cv,eff . As will be shown in the numerical study on two-phase heat transfer below, this
formulation ensures that themagnitude of the temperature rate iswell-balanced across the
interface region—irrespective of the chosen interpolation function for cv,eff between the
phases. In summary, the novelty of the parameter-scaled CSFmodel lies in its applicability
to various physical problems with diffuse interface fluxes.

Parameter-scaled delta functions

In the following, we consider the arithmetic mean interpolation αa(ϕ) according to (2).
Then, the corresponding parameter-scaled delta function δε,a(ϕ) is obtained as follows:

δε,a(ϕ) = δε(ϕ) αa(ϕ) cδ,a with cδ,a = 3
α2
g + αg α� + α2

�

. (15)

Here, δε is the initial smoothed Dirac delta function (5) and the correction factor cδ,a is
chosen such that the parameter-scaled delta function δε,a(ϕ) satisfies (4). Suppose αa(ϕ)
represents the density distribution. In that case, this formulation is identical to a density-
scaled CSF of, e.g., [30], which is beneficial for diffuse interface forces in the momentum
equation of the incompressible Navier–Stokes equation.
The choice of the interpolation function is arbitrary with the restriction that it must

be a continuous function. A frequently employed alternative interpolation type to the
arithmetic mean is the harmonic mean

αh(ϕ) =
(
1 − ϕ

αg
+ ϕ

α�

)−1
, (16)

where αh(ϕ) is the interpolated parameter between the phase values αg and α�. The sub-
script (•)h refers to the harmonic mean interpolation. This interpolation type is typically
employed in a two-phase flow framework with phase change for the density, e.g., [27,40]
and allows the fulfillment of local conservation properties for such models. Here, the
parameter-scaled delta function is chosen according to

δε,h(ϕ) = δε(ϕ) αh(ϕ) cδ,h

with cδ,h = αg − α�

αgα� ln
(

αg
α�

) for αg > 0 ∧ α� > 0 ∧ αg = α�, (17)

where the correction factor cδ,h is chosen such that the parameter-scaled delta function
δε,h(ϕ) satisfies (4).
In the heat equation (6), the thermal mass is proportional to the volume-specific heat

capacity cv = ρcp. For CSF interface fluxes in the heat transfer problem, we propose to
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scale the delta function proportional to the effective volume-specific heat capacity cv,eff (ϕ)
to obtain a well-distributed heating rate. The detailed analysis is shown in Appendix A.
The effective volume-specific heat capacity cv,eff (ϕ) is computed from the product of two
parameters, the density ρeff (ϕ) and the specific heat capacity cp,eff (ϕ). In the case that
we need to consider the interpolation of two individual parameters in the parameter-
scaled delta function, we need to introduce parameter-scaled delta functions with two
parameters for both phases.
For two individual parameters that are interpolated with the arithmetic mean interpo-

lation (2), i.e., αa(ϕ) and βa(ϕ), we propose the parameter-scaled delta-function

δε,a,a(ϕ) = δε(ϕ) αa(ϕ) βa(ϕ) cδ,a,a

with cδ,a,a = 6
2αgβg + αgβ� + α�βg + 2α�β�

, (18)

where the correction factor cδ,a,a is computed such that the parameter-scaled delta func-
tion δε,a,a(ϕ) satisfies (4).
In the case that one parameter is interpolated using the harmonic mean (16), the fol-

lowing parameter-scaled delta function is used:

δε,h,a(ϕ) = δε(ϕ) αh(ϕ) βa(ϕ) cδ,h,a

with cδ,h,a =
⎛

⎜
⎝βg

αg α� ln
(

αg
α�

)

αg − α�

+ (β� − βg)
1
αg

(
ln

(
α�

αg

)
− 1

)
+ 1

α�

(
1
α�

− 1
αg

)2

⎞

⎟
⎠

−1

for αg > 0 ∧ α� > 0 ∧ αg = α�. (19)

Here, α is interpolated according to (16), β is interpolated according to (2) and the correc-
tion factor cδ,h,a is chosen such that the parameter-scaled delta function δε,h,a(ϕ) satisfies
(4).

Application of the parameter-scaled CSF model to interface heat fluxes

Todemonstrate the effect of the parameter-scaledCSF, we consider the heat equation (10)
on a 1D domain with two phases separated by an interface at the origin. At the interface,
a heat flux q� is applied using the parameter-scaled CSF as the volumetric heat flux
q̃� = q� δε,i, where δε,i is the appropriate delta function for the chosen interpolation of the
effective volume-specific heat capacity cv,eff . Table 2 lists the four considered interpolation
types (V1–V4) for the interpolation type and delta function pairs.
The bottom left panel of Fig. 5 shows the resulting continuum surface heat flux q̃�

over the signed distance to the interface midplane, and the top right panel of Fig. 5

Table 2 Cosidered volume-specific heat capacity interpolation types and corresponding
parameter-scaled delta functions δε ,i with their scaling parameters

V1 V2 V3 V4

cv,eff cv,a (2) cv,h (16) ρa · cp,a (2) ρh · cp,a (2), (16)
δε ,i δε ,a (15) δε ,h (17) δε ,a,a (18) δε ,h,a (19)

with αj = cv,j αj = cv,j αj = ρj , αj = ρj ,

βj = cp,i β = cp,i for j ∈ {g, �}
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Fig. 5 Parameter-scaled CSF modeling of an interface heat flux in the 1D heat transfer equation (10) for different
interpolations of the volume-specific heat capacity and corresponding delta functions δε ,i for i ∈ {a; h; a,a; h,a}
according to Table 2. For all cases, the densities of the phases are ρ� = 1 kg/m3 and ρg = 10−2 kg/m3 and the
specific heat capacities are cp,� = 1 J/(kg K) and cp,g = 10−1 J/(kg K) which results in the volume-specific heat
capacities of cv,� = 1 J/(m3kg) and cv,g = 10−3 J/(m3kg): (upper right) effective volume-specific heat capacity
cv; (lower left) continuum surface heat flux q̃� = q� δε ,i with q� = 1W/m2 and a smoothed Dirac delta function
δε ,i ; (lower right) temperature rate ṪCSF due to the continuum surface heat flux as the result of the continuum
surface heat flux divided by the effective volume-specific heat capacity. Due to the significant scale difference, V1
and V3 use the scale on the left y-axis, and V2 and V4 use the scale on the right y-axis to improve readability

shows the effective volume-specific heat capacity cv,eff over the diffuse interface, for the
different interpolation types listed in Table 2. The resulting temperature rate ṪCSF (Fig. 5
bottom right) has a smooth shape without steep gradients for all cases, compared to the
classical CSF in Fig. 2, which is beneficial for discretization with the FEM. The shape of
the temperature rate profile is independent of the interpolation type and the parameter
ratio between the phases, and it follows the shape of the norm of the indicator gradient
(5) multiplied by a constant scaling factor. This is because the parameter-scaled delta
functions are designed to yield this result, which is discussed in detail in Appendix A
and results in the fact that the appropriate parameter-scaled delta function cancels the
interpolation function from the volume-specific heat capacity.
However, themagnitudes of the temperature rates ṪCSF differ between the cases, neces-

sitating the usage of a different y-axis scaled by a factor of 40 for cases V2 and V4, which
involve the harmonic mean interpolation (16). The interpolation of parameters across the
interface thickness involves a modeling error attributed to the diffuse interface model.
Any interpolation type is valid as long as the modeling error vanishes within the limit
of a small interface thickness, making the diffuse interface model mathematically con-
sistent. However, the different interpolation types yield different local and average heat
capacities for finite interface thicknesses, impacting the physical behavior in the inter-
face region. The difference in the magnitude of the temperature rate ṪCSF is due to the
reciprocally proportional effective volume-specific heat capacity cv,eff . For the four cases
V1–V4, the effective volume-specific heat capacity cv,eff differs significantly within the
interface, as seen in the top right panel of Fig. 5. The discrepancies between the four cases
only occur in the diffuse interface region �� , and they vanish in the limit of small inter-
face thicknesses. Although there is a difference in the temperature rate ṪCSF for different



Much et al. AdvancedModeling and Simulation in Engineering Sciences          (2024) 11:16 Page 15 of 40

interpolations of the effective volume-specific heat capacity cv,eff , the spatially integrated
values of both, the external heat flux q� and the internal energy rate

(
ρcp

)

eff
∂T
∂t , remain

constant, as is shown in Appendix B. The magnitude of the temperature rate ṪCSF can
serve as an indicator for the performance of the approach. The following convergence
studies suggest that approaches with a low magnitude of the temperature rate profile
show the best performance.

Investigation of the parameter-scaled CSF model on the laser-induced heating benchmark

example

For evaluating the performance of the parameter-scaled CSF for modeling interface heat
fluxes, we reconsider the 1D benchmark example illustrated in Fig. 3 and described in
“Benchmark example: laser-induced heating of a static surface” section. Since the insta-
tionary case showed worse accuracy than the steady-state for the original smoothed Dirac
delta function, we focus only on the instationary case from this point on. Figure 6 shows
the instationary results at t = 10−5 s for two cases listed in Table 2, considering the inter-
polation type via an arithmetic mean (2) with the case V1 in the left column and V3 in the
right column.
The cases V2 and V4, which involve the harmonic mean interpolation (16), are not

discussed in detail in the following. They have been tested in the same fashion as discussed
below but performed not as well as V1 and V3, requiring finer mesh resolution and
narrower interface thicknesses to achieve the same accuracy, see Appendix C. This is
attributed to the increase of gradients in the interface region for the relevant measures
shown in Fig. 5.
In Fig. 6a, the temperature profiles over the domain are shown at a constant interface

thickness of w� = 6μm for different mesh refinements. For V1, the temperature profile
follows the reference solution quite well for all shown mesh refinements, with a visible
discrepancy only within the diffuse interface. V3 yields an increase in the temperature
in the whole domain, which is more pronounced in the domain with a low value for the
volume-specific heat capacity. This increase in the overall temperature distribution is
attributed to the increased temperature rate of V3, as shown in the bottom right panel
of Fig. 5. The change in temperature rate does not affect the energy rate, as discussed in
Appendix B. Essentially, the difference in the interpolation yields a visible decrease of the
effective volume-specific heat capacity cv,eff across the interface; see the top right panel
of Fig. 5. This results in a higher temperature rate at the same energy rate as V1 and
a higher overall temperature because the spatial average of the heat capacity is slightly
lower. For both cases, the temperature profiles aremuch closer to the reference solution as
compared to the classical CSF, shown in the left panel of Fig. 4a. As desired, the modeling
error introduced by approximating the sharp interface problem with a CSF approach
could be significantly reduced by using the proposed parameter-scaled delta functions
compared to the standard delta function. Moreover, the interpolation of the volume-
specific heat capacity cv,eff (ϕ) as one single parameter seems to additionally reduce this
modeling error as compared to a separate interpolation of the parameters ρeff (ϕ) and
cp,eff (ϕ) (with cv,eff (ϕ) = ρeff (ϕ) cp,eff (ϕ)).
Figure 6b shows the relative temperature error to the sharp interface reference solution

for the different mesh refinements, including the cases shown in Fig. 6a, indicated by
the element size h, at the constant interface thickness of w� = 6μm. The number of
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Fig. 6 Temperature profile resulting from interface heating with an interface heat source of q� = 1010 W/m2

using the parameter-scaled CSF approaches V1 and V3, described in Table 2. The reference temperature profile
Tref is determined using a sharp interface approach

finite elements across the interface n� (14) is annotated. In comparison with the classical
CSF, shown in the left panel of Fig. 4b, the relative temperature error follows a similar
profile with an asymptotic trend, but the magnitude of the relative temperature error is
approximately one order lower for V3 and almost two orders lower for V1. Doubling the
number of finite elements across the interface ton� = 64 changes the relative temperature
error by less than 1% for V1. At n� = 16, the relative temperature error to the reference
solution already meets the tolerance level of 1% for the chosen interface thickness of
w� = 6μm. While the difference between two discretizations with the same interface
thickness can be attributed to the spatial discretization error, the remaining error in
the asymptotic limit of fine discretizations represents the modeling error of the diffuse
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interface approach. In sum, these results confirm that the parameter-scaled CSF performs
significantly better at the given diffuse interface thickness compared to the classical CSF,
which never meets 1% tolerance at this interface thickness. For the case V3, n� = 64 finite
elements across the interface are required to attain a change in the relative temperature
error by less than 1%.
Figure 6c shows the L2-norm of relative temperature error for different values of the

interface thickness w� and for different discretizations of the interface region. For V1,
the relative temperature error decreases with a convergence rate of order O(w1

�) with
respect to the interface thickness for small values of the interface thickness. To achieve a
1% tolerance, using V1 with n� = 32, the interface thickness has to obey w� < 10.3μm
or 10.3% of the length parameter a, which is about 41 times less restrictive compared to
the result obtained by the classical CSF model, see “Benchmark example: laser-induced
heating of a static surface” section. For V3, the convergence behavior of the relative
temperature errorwith respect to the interface thicknessonly reaches theorderO(w1

�) for a
sufficient discretization of the interface region. If the interface is insufficiently discretized,
the convergence rate tends to decrease. This may be due to the fact that the distribution
of the volume-specific heat capacity cv,eff is not centered around the interface midplane,
as can be seen in the top right panel of Fig. 5. For V3 with n� = 64, the tolerance of 1%
is achieved with an interface thickness of w� < 2.4μm or 2.4% of a, about ten times less
restrictive than the classicalCSFmodel in “Benchmark example: laser-inducedheating of a
static surface” section. Using a homogeneous mesh in the whole 1D domain that supports
a sufficiently small interface thickness sufficiently resolved, for V1 622 finite elements
and for V3 5338 finite elements are required. Both cases show a significant improvement
compared to the classical CSF, where the corresponding discretization results in 51,625
finite elements. Note that for V1, the 1% tolerance is attained in a range of the interface
thickness, where the convergence order of O(w1

�) is not yet established. For reaching
a tolerance of 0.1%, the interface thickness has to be less than w� < 0.32μm for V1
and w� < 0.188μm for V3. Here, the convergence order of O(w1

�) is attained for V1.
In comparison, the classical CSF model would require an interface thickness of w� <

0.0245μm to reach the 0.1% tolerance. This value is extrapolated from the data shown
in the left panel of Fig. 4c, assuming the linear trend holds. Here, the improvement is a
reduction in interface thickness by a factor of 13 for the V1 case and by a factor of 8 for
the V3 case.
In conclusion, the introduced parameter-scaledCSFmodel performs significantly better

than the classical CSF, discussed in “Benchmark example: laser-induced heating of a static
surface” section. For subsequent experiments, we use n� = 128, which aims to minimize
the errors due to inadequate resolution across the interface, which reduces the number
of free parameters in the investigations. From Fig. 6b and Fig. 6c, one could conclude
that using less resolution across the interface, e.g., n� = 8 or n� = 16, might be a
more efficient balance between mesh resolution and accuracy; in fact, the 3D example in
“Application of the parameter-scaled CSF model to a melt pool thermo-hydrodynamics
simulation” section below uses n� ≈ 10. The criterion for the required interface thickness
to predict the temperature field with a given level of accuracy is less restrictive by at least
one order of magnitude for the proposed parameter-scaled CSF procedure compared to
classical CSF approaches. This has the potential to drastically reduce computational costs
because a larger interface region can accurately be discretized with larger finite elements,
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which allows for much coarser finite element meshes and the use of larger time step
sizes. Notably, in higher dimensions and with regular element aspect ratios, the savings
become even more significant. For 3D problems with a constant discretization resolution
in the interface thickness direction, the number of points within the diffuse interface
region scales quadratically with the interface thickness, underlining the importance of
this result. For high heat capacity ratios, the classical CSF amplifies the temperature in the
domain with a low heat capacity. This leads to challenges in themodeling of temperature-
dependent interface fluxes, e.g., evaporation-induced effects, which are discussed in the
following section. The parameter-scaledCSF can reduce such temperature changes across
the interface, with case V1 providing the best result. Thus, we will only consider case V1
for modeling interface heat fluxes in the following.

Consistent formulation of temperature-dependent continuum surface fluxes
with improved accuracy
A multitude of physical effects govern the dynamics of the melt pool during PBF-
LB/M [41,42]. The laser heat source drives the rapid temperature rise, especially at the
metal surface where the laser impacts. When reaching the boiling temperature, evapora-
tion effects emerge at the interface anddominate themelt pool dynamics [43]. Evaporation
is characterized by a mass flux across the interface, the intensity of which is determined
by the interface temperature. Specifically for heat transfer, the following two effects have
a significant impact to be investigated in the following: First, the vapor mass flow induces
evaporation-induced cooling due to the latent heat of the phase change from liquid to
gas, modeled as a temperature-dependent interface flux. Second, the evaporative mass
flux causes convective heat transfer. In a sharp interface setting, the jump in material
properties, such as conductivity, typically yields a jump in the heat flux and accordingly a
kink in the temperature profile. This kink results in a temperature peak with steep tem-
perature gradients, given the extreme interface heat sources and high ratios in material
properties typical for PBF-LB/M. Diffusely approximating that sharp peak usually yields
steep gradients within the diffuse interface region. Hence, the temperature can vary sig-
nificantly across the finite-thickness interface region in regularized models, and diligent
care is required to compute regularized interface fluxes that depend on the temperature
with high accuracy.
In the following, we present a novel approach, the interface value (IV) method, for

computing temperature-dependent regularized interface fluxes based on temperature
evaluation at the interface midplane, aiming at improved temperature predictions. We
evaluate its accuracy compared to a standard, continuous evaluation (CE) method using
local temperature values across the interface thickness. For the evaluation, we extend
the two-phase heat transfer simulations, discussed in sections “Review of classical contin-
uum surface fluxmodeling” and “The parameter-scaled continuumsurface fluxmodel”, by
evaporation-induced effects, representing the thermal behavior ofmelt pool dynamics. As
an additional measure of accuracy with regard to the fully coupled thermo-hydrodynamic
melt pool problem to be presented in “Application of the parameter-scaled CSF model
to a melt pool thermo-hydrodynamics simulation” section, we compute the evaporation-
induced recoil pressure from the temperature in a post-processing step for this analysis.
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Formulation of a consistent interface midplane temperature-dependent continuum

surface flux model

In a sharp interface setting, the temperature is evaluated directly at the interface to com-
pute the temperature-dependent surface flux, making the calculation trivial. However, in
diffuse interface models with temperature-dependent regularized surface fluxes, where
a finite interface thickness is introduced over which the temperature varies, different
evaluation possibilities arise. In this section, we present a novel approach by restricting
the temperature input to the interface midplane to improve the accuracy of regularized
temperature-dependent surface fluxes. This approach is inspired by existing curvature
evaluation approaches for regularized surface tension computations in two-phase flow
models to reduce spurious currents [44,45].
A temperature-dependent interface flux f�(T ) is assumed to be modeled using a CSF

approach. In the interface value (IV) method, we propose to compute the temperature-
dependent interface flux based on the interface temperature

T�(x) = T (x�(x)). (20)

We use closest point projection [46] to determine, for a given point x within the diffuse
interface, the associated closest point x�(x) on the interface midplane �(�g) at which the
interface temperature T (x�(x)) is then evaluated. This algorithm is described in detail
in [27] in a similar context. We note that due to the non-local computational procedure
required for the projection algorithm, the computational complexity of obtaining the
interface temperature is higher compared to the direct local computation. The algorithmic
complexity increases, especially when considering a parallelized MPI-based implementa-
tion using domain decomposition and for largemeshes, as is the case in 3D. The employed
restriction of the temperature input to the interface midplane, used for computing the
temperature-dependent continuum surface flux

f̃IV(x) = f�(T�(x)) δε,i(ϕ(x)) (21)

ensures a constant distribution of the interface temperature across the interface thickness.
The interface value method is denoted with the subscript (•)IV, and δε,i(ϕ) is the delta
function of the chosen CSF modeling approach.
For the evaluation of the IV method, as a more straightforward alternative, we consider

a continuous evaluation (CE) method, where the local temperature value T (x) within
the diffuse interface is used to compute temperature-dependent continuum surface flux
distribution:

f̃CE(x) = f�(T (x)) δε,i(ϕ(x)). (22)

We denote this variant with the subscript (•)CE.

Investigation of temperature-dependent CSF modeling for evaporation effects

In this section, we evaluate the strengths and weaknesses of the IV method and the CE
method based on two benchmark cases. Therefore, we solve the two-phase heat transfer
equation according to (6) and incorporate evaporation effects relevant for PBF-LB/M.
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Preliminary to the numerical study, we introduce evaporation-related model equations
commonly used in the benchmark examples of this section as well as in part in sec-
tions “Benchmark example: laser-induced heating of a 2D fixed melt pool surface” and
“Application of the parameter-scaled CSF model to a melt pool thermo-hydrodynamics
simulation”. We consider the interface heat flux on the liquid–gas interface �(�g)

q� = q(�g)L + q(�g)v (T ) on �(�g) (23)

consisting of the laser heat source q(�g)L , specified individually for the benchmark exam-
ples in this section and in sections “Benchmark example: laser-induced heating of a 2D
fixed melt pool surface” and “Application of the parameter-scaled CSF model to a melt
pool thermo-hydrodynamics simulation”, and the evaporation-induced heat loss q(�g)v (T ).
According to [47], the evaporation-induced heat loss is defined as

q(�g)v (T ) = −hv ṁ
(�g)
v (T ) on �(�g) (24)

with the specific latent heat of evaporation hv.We determine the vapormass flux ṁ(�g)
v (T )

at the liquid–gas interface �(�g) by the model proposed by Knight [48] and later used by
Anisimov and Khokhlov [49] according to

ṁ(�g)
v (T ) = 0.82 cs p

(�g)
v (T )

√
M

2π R T
on �(�g) , (25)

with the molar mass M and the molar gas constant R. The sticking constant cs typ-
ically takes a value close to one, i.e., cs = 1 for metals [2]. The evaporation-induced
recoil pressure p(�g)v (T ) is determined via the phenomenological model by Anisimov and
Khokhlov [49]:

p(�g)v (T ) = 0.54 pa exp
(

− h̄v
R

(
1
T

− 1
Tv

))

on �(�g). (26)

Here, pa = 105 Pa is the atmospheric pressure, h̄v is the molar latent heat of evaporation,
and Tv is the boiling temperature.
Instead of consistently resolving the evaporation-induced vapor/gas flow, most existing

melt pool models only consider the fluid dynamics within the melt pool and account for
the interaction between the melt and vapor phase via phenomenological models for the
corresponding thermal and mechanical interface fluxes, applied as Neumann boundary
conditions on themelt pool surface [2,6,50]. For the heat transfer equation (6), thismeans
that if we neglect the convective heat transfer resulting from the evaporation-induced
vapor/gas flow, i.e., u · ∇T = 0, the expression for the evaporation-induced cooling
q(�g)v (T ) (24) needs to be adapted for this case. Since the vapor flow is not resolved in such
phenomenological models, an additional term is required to account for the enthalpy
transported by the vapor mass flux, defined as:

q(�g)v (T ) = −(hv + h(T )) ṁ(�g)
v (T ) on �(�g) with h(T ) =

∫ T

T (0)
hv

cp(T̄ ) dT̄ . (27)

Here, T (0)
hv is the reference temperature for the specific enthalpy h(T ).
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In the benchmark cases discussed within this section, we investigate the heat transfer
problem with and without evaporation-induced convective heat transfer, requiring an
expression for the evaporation-induced cooling either according to (24) or according to
(27).
The evaporation-induced cooling q(�g)v (T ) represents a temperature-dependent inter-

face flux. In a CSF model, these quantities need to be determined within the diffuse
interface region �� , where the temperature may have varying values in principle. We
distinguish between the two presented variants to evaluate the temperature within the
diffuse interface. The IV method (21) applied to evaporative cooling reads as

q̃(�g)v,IV(x) = q(�g)v (T�(x)) δε,i(ϕ(x)). (28)

The CE method (22) applied to evaporative cooling reads as

q̃(�g)v,CE(x) = q(�g)v (T (x)) δε,i(ϕ(x)). (29)

In (28) and (29), δε,i is the respective delta function for the volume-specific heat capacity
interpolation type as listed in Table 2. This choice is made for consistency reasons to have
the same delta function for distributing both the laser heat source and the evaporation-
induced cooling across the interface thickness.
In a coupled thermo-hydrodynamic model of PBF-LB/M (cf. Application of the param-

eter-scaled CSFmodel to a melt pool thermo-hydrodynamics simulation), the recoil pres-
sure is the dominating mechanical force acting on the melt pool surface. According to
(26), it scales exponentially with the temperature, i.e., it is very sensitive with respect to
modeling and discretization errors in the temperature field. Therefore, in the benchmark
examples of this section, we calculate the recoil pressure error in a post-processing step.
The recoil pressure force f(�g)v (T ) acting on the liquid–gas interface �(�g) is calculated
according to

f(�g)v (T ) = p(�g)v (T ) n(�g)� on �(�g), (30)

where the normal vector n(�g)� is the unit normal vector of the interface midplane �(�g),
pointing into ��. For the continuum surface flux representation of the recoil pressure
force, we choose to scale the parameter-scaled delta function with the density because
interface forces apply to the momentum equation (43) and the linear momentum is pro-
portional to the density. This approach is equivalent to the well-established density-scaled
delta function δε,ρ(ϕ),whichbalances the linearmomentumof the incompressibleNavier–
Stokes equations [30]. Application of the IV method (21) to the recoil pressure yields

f̃(�g)v,IV(x) = f(�g)v (T�(x)) δε,ρ(ϕ(x)), (31)

and similarly of the CE method yields (22) in

f̃(�g)v,CE(x) = p(�g)v (T (x)) δε,ρ(ϕ(x))
︸ ︷︷ ︸

p̃(�g)v (x)

n(�g)� (x). (32)
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Laser-induced heating benchmark example with evaporation-induced cooling

The 1D benchmark example illustrated in Fig. 3 and described in “Benchmark example:
laser-induced heating of a static surface” section is used to evaluate the influence of
evaporation-induced cooling q(�g)v (T ) (27) on the temperature. From the temperature, the
phenomenological recoil pressure p(�g)v (T ) (26) is computed in a post-processing step. In
the heat equation (10), the flux term is determined with the parameter-scaled CSF model
q̃� = q� δε,a with a delta function weighted proportional to the effective volume-specific
heat capacity cv,eff (ϕ) that is interpolated across the interface as one material property
using the arithmetic mean interpolation (2). Thus, the parameter-scaled CSF corresponds
to case V1, as listed in Table 2. According to (23), the flux term contains the constant
laser heat source of q(�g)L = 1010 W/m2 and the evaporation-induced cooling. We assume
that the interface is stationary and the evaporation-induced cooling has to be modeled
according to (27). We discuss both the continuous evaluation (CE) (29) and the interface
value (IV) method (28) for modeling the evaporative cooling. All material parameters are
listed in Table 1. To exclude discretization errors in this investigation, n� = 128 finite
elements across the interface thickness are considered.
Figure 7 shows the instationary result at t = 10−5 s for the CE and IV method. The

relative temperature error with respect to the sharp interface reference solution, shown
in the left panel, decreases with a convergence rate of order O(w1

�) for small values of
the interface thickness w� , which is a similar convergence behavior as the benchmark
example without evaporation-induced cooling, discussed in “Investigation of the parame-
ter-scaled CSF model on the laser-induced heating benchmark example” section. For CE,
the interface thickness is required to be less than w� < 2.01μm or 2.01% of the length
parameter a to achieve a tolerance of 1%, about five times finer than for the example with-
out evaporation-induced cooling. A slight improvement is achieved by the IV method,
where the interface thickness is required to be less than w� < 2.54μm or 2.54% of a,
about four times finer than for the example without evaporation effects. These values,
however, are attainted in a range of interface thicknesses, where the convergence order of
O(w1

�) is not yet established. To achieve a tolerance of 0.1%, for CE, the interface thickness
only needs to be twice as fine as the benchmark example without evaporation-induced
cooling and about 1.5 times finer for the IV method.
The right panel of Fig. 7 shows the relative error in the recoil pressure with respect to

the reference solution. To obtain the absolute value of the recoil pressure using CE, we
integrate the continuously evaluated recoil pressure p(�g)v (T ) in (26) over the thickness of
the diffuse interface:

p(�g)v,CE =
∫ w�

2

−w�
2

p̃(�g)v (d�) dd� . (33)

For IV, we determine the recoil pressure according to (26) based on the interface value of
the temperature p(�g)v,IV = p(�g)v (T�). The reference solution of the recoil pressure p(�g)v,ref =
p(�g)v (T�,ref ) is determined based on the interface value of the sharp interface reference
temperature solution T�,ref = Tref (x�). According to the plot in the right panel of Fig. 7,
the relative error in the recoil pressure decreases with a convergence rate of order O(w1

�)
with respect to the interface thickness for both the CE and the IV method. CE achieves
a tolerance of 1% with an interface thickness less than w� < 0.0926μm or 0.1% of the
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Fig. 7 Error measures for the instationary temperature profile at t = 10−5 s resulting from interface heating with
an interface laser heat source of q� = 1010 W/m2 and evaporation-induced heat loss according to (27) using the
parameter-scaled CSF approach V1, described in Table 2 for the continuous evaluation (CE) method and the
interface value (IV) method. The interface region is resolved by a constant number of n� = 128 finite elements,
ensuring a converged solution with respect to spatial discretization. The reference temperature profile Tref is
determined using a sharp interface approach: (left) relative error in the temperature profile for different diffuse
interface thicknesses w� ; (right) relative error in the phenomenological evaporation-induced recoil pressure (26)
for CE according to (33) and for the IV p(�g)v,IV = p(�g)v (T� ). The reference recoil pressure is determined with the

interface value of the reference temperature profile p(�g)v,ref = p(�g)v (T�,ref )

length parameter a. This value is 22 times smaller than achieving the same accuracy of the
relative temperature error, representing a significant decrease in the required interface
thickness when changing the error measure. The 1% tolerance for the relative error in the
recoil pressure is achieved at an interface thickness of w� < 0.192μm or 0.2% of a when
using the IV method. Here, the decrease in the required interface thickness due to the
change in the error measure is approx. 13 times.
In conclusion, introducing evaporation effects demands a much finer spatial discretiza-

tion of the interface region since the exponential nature of the formulation for the phe-
nomenological recoil pressure (26) requires a precise temperature at the interface. Since
the thermal problem is driven by an interface heat flux modeled by CSF, the tempera-
ture profile in the diffuse interface region is subject to a significant modeling error due
to the diffuse interface assumption and an additional spatial discretization error. It is
demonstrated that accuracy gains can be achieved for predicted temperature-dependent
interface fluxes if the temperature is evaluated at the interface midplane instead of using
local values across the interface thickness.

Laser-induced heating benchmark example with evaporation-induced cooling and convective

heat transfer

In a coupled thermo-hydrodynamicmelt pool simulation, taking into account evaporation-
inducedflow, convective heat transfer occurs due to the evaporation-induced velocity field
in the gas domain. The velocity exhibits a jump at the interface due to the phase transition,
where the fluid density decreases by orders of magnitude across the interface as the metal
evaporates.
In this example, we study the effect of the evaporation-induced convective heat transfer

based on the benchmark example illustrated in Fig. 3. Therefore, we consider the heat
equation (6) in the 1D form:

(
ρcp

)

eff︸ ︷︷ ︸
cv,eff

(
∂T
∂t

+ u
∂T
∂x

)

= ∂

∂x

(

keff
∂T
∂x

)

+ q̃� in � × [0, t]. (34)
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Based on the simplifying assumption of an incompressible flow, the requirement of mass
conservation directly yields the result that the velocity is inversely proportional to the
effective density [27]. In our example, the evaporated volume is assumed to be compen-
sated by a prescribed inflow velocity on the liquid side of the interface to yield a spatially
fixed interface location. With these assumptions, the evaporation-induced convection
velocity in the 1D domain can be analytically calculated as

u(x) = ṁ(�g)
v (T�)

ρh (ϕ(x))
in �. (35)

For calculating the velocity, we apply a density interpolation based on the harmonic mean
ρh (16), as suggested in [27,40] to satisfy the conservation ofmass in diffuse interfacemod-
els for incompressible two-phase flow with resolved evaporation. The convection velocity
(35) is calculated from the temperature at the interface midplane T� = T (x�). The heat
flux q̃� in the heat equation (34) contains the laser heat source q(�g)L = 1010 W/m2 and
the evaporation-induced heat loss q̃(�g)v,IV (28) for which we use the IV method as the most
accurate method from “Laser-induced heating benchmark example with evaporation-in-
duced cooling” section. Since we consider evaporation-induced convective heat transfer
across the interface by (35), the evaporation-induced cooling is determined by (24), with-
out considering the specific enthalpy term, in contrast to the example in “Laser-induced
heating benchmark example with evaporation-induced cooling” section. The heat fluxes
aremodeled as volume fluxes in the interface region via the parameter-scaled CSFmethod
q̃� = q� δε,a, weighted proportional to the effective volume-specific heat capacity cv,eff .
The volume-specific heat capacity is interpolated across the interface as one material
property using the arithmetic mean interpolation (2) cv,eff = cv,a Thus, the parameter-
scaled CSF formulation is equivalent to the case V1, described in Table 2. The remaining
problem description is adopted from “Benchmark example: laser-induced heating of a
static surface” section, and the material parameters are listed in Table 1.
In Fig. 8, the instationary result at t = 10−5 s is shown with relative error measures

compared to the reference solution. The reference solution is determined with a sharp
interface model, and the velocity profile u(x) used to determine the reference solution
is constant within the phases, namely u(x) = ṁ(�g)

v (T�,ref )/ρg in the gas domain �g

and u(x) = ṁ(�g)
v (T�,ref )/ρ� in the liquid domain �� with a jump at the interface. The

relative temperature error to the sharp interface reference solution is shown in the left
panel. With a convergence order of O(w1

�), the error decreases for small values of the
interface thickness. The interface thickness has to be smaller than w� < 0.103μm or
0.1% of the length parameter a to achieve a tolerance of 1%, which is smaller by a factor of
25 as compared to the case without the convection in “Laser-induced heating benchmark
example with evaporation-induced cooling” section.
The right panel in Fig. 8 shows the relative error in the recoil pressure with respect to

the sharp interface reference solution. Here, the convergence order of O(w1
�) is attained

for small values of the interface thickness, but the tolerance of 1% is only reached with an
interface thickness ofw� < 0.0129μm or 0.013% of a, which is 15 times finer, than reach-
ing the same tolerance in the example without convective heat transfer in “Laser-induced
heating benchmark example with evaporation-induced cooling” section.
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Fig. 8 Error measures for the instationary temperature profile at t = 10−5 s resulting from interface heating with
an interface laser heat source of q� = 1010 W/m2 and evaporation-induced heat loss according to (28) using the
parameter-scaled CSF approach V1, described in Table 2 and the interface value (IV) method. The interface region
is resolved by a constant number of n� = 128 finite elements, ensuring a converged solution with respect to
spatial discretization. The reference temperature profile Tref is determined using a sharp interface approach: (left)
relative error in the temperature profile for different diffuse interface thicknesses w� ; (right) relative error in the
phenomenological evaporation-induced recoil pressure (26) using the IV mothod p(�g)v,IV = p(�g)v (T� ). The element
Péclet number Pe (36) of the gas phase is annotated

Introducing the convective heat transfer across the interface, resulting from the vapor
mass flux, makes themodel more complex, and the interface thickness needs to be refined
to remain at the same level of accuracy. Temperature-dependent interface fluxes, such
as the recoil pressure, require a precise interface temperature. In the diffuse interface
region, the error introduced by the CSF model persists, and a significant refinement of
the interface thickness is required to retain the tolerance in the interface temperature.
The element Péclet number Pe describes the ratio between convective heat transfer and

conductive heat transfer in an element and is defined as follows:

Pe = ρcp u h
k

. (36)

In the plot in the right panel of Fig. 8, the element Péclet numbers Pe of the gas phase are
given for some simulations with different interface thicknesses. The Péclet number is very
small, indicating that the problem is dominated by conduction in element scale. Since the
problem is not dominated by convection, no stabilization is required.

Benchmark example: laser-induced heating of a 2D fixedmelt pool surface
In the following benchmark example, the parameter-scaled CSF and IV methods are
applied to a 2D domain with an interface geometry that mimics a PBF-LB/M melt pool
surface. Since this study focuses on modeling the laser heat source term in the case of
curved interfaces, a spatially fixed interface geometry and a vanishing velocity field in the
entire problem domain are considered. A concave, semi-circular interface with rounded
edges represents a vapor depression. The left panel of Fig. 9 shows a schematic sketch
of the setup. The domain � = {x ∈ [−a, a]2} with a length parameter a = 100μm is
occupied by a gas phase �g and a liquid phase �� that are separated by the interface.
The interface midplane �(�g) is symmetric about the y-axis and characterized by a center
radius r = 50μm and a bead radius b = 10μm as shown in the left panel of Fig. 9. We
consider the conductive heat transfer according to the heat equation (6). No convective
heat transfer is considered as the velocity u remains zero. The indicator ϕ is defined by
(1) using the signed distance d�(x) to the interface midplane �(�g), which is negative in
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Fig. 9 2D fixed melt pool surface: (left) sketch; (center) Cartesian finite element mesh of the small interface
approach with local refinement in the interface region. The coarser mesh of the approach with the large interface
thickness is indistinguishable at the shown scale due to local mesh refinement. (right) finite element mesh with
element edges coinciding with the interface midplane �(�g)

�g and positive in �� according to:

d�(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

||x|| − r for |x| < r + b ∧ y < 0

min
{||x|| − r, b − y

}
for |x| ≥ r + b ∧ y < 0

b − y for |x| ≥ r + b ∧ y ≥ 0

b − √
(r + b − |x|)2 + y2 for |x| < r + b ∧ y ≥ 0

. (37)

The diffuse interface region �� is characterized as a narrow band centered around the
interface midplane �(�g) with a thickness corresponding to the interface thickness w� .
Typical material parameter values for Ti-6Al-4V are employed and are listed in Table 1.
The volume-specific heat capacity cv,eff (ϕ) is interpolated across the interface as one
material property corresponding to case V1 listed in Table 2. The liquid–gas interface is
subject to an interface heat flux q� that, according to (23), comprises the laser heat source
q(�g)L (x) and the evaporation-induced cooling q(�g)v (T ). No vapor flow is resolved in this
example, i.e., the evaporation-induced cooling is modeled according to (27). Using the
parameter-scaled CSF, the interface heat source q� is modeled as a volumetric heat flux
q̃� = q� δε,a(ϕ) within the diffuse interface region �� . The laser heat source models a
spatially fixed laser with a Gaussian profile [47]

q(�g)L (x) = χL PL
2

r2Lπ
〈n(�g)� eL〉 exp

(

−2
(
dL(x)
rL

)2
)

on �(�g) (38)

with the absorptivity χL, the laser power PL = 250W, and the laser radius rL = 70μm.
dL(x) is the distance between the point x and the laser beam center line defined by the
laser position pL at the origin and the laser direction eL corresponding to the negative
y-direction. The Macauley bracket 〈•〉 yields the argument’s value for positive inputs
and zero otherwise. Initially, the temperature is uniform at T0 = 500K. At the top and
bottom boundaries, the temperature is prescribed to T̄ = 500K (8), and the left and right
boundaries are adiabatic according to (9).
The temperaturefield is computedby solving theheat equationusing theFEMwithbilin-

ear quadrilateral elements and the implicit Euler time integration scheme. We employ a
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Cartesian grid with a base element size of hmax = 3.125μmand use localmesh refinement
in the vicinity of the diffuse interface region.
Fourdifferent approaches arediscussed in the following. In thefirst approach,weemploy

the CE method to compute the evaporation-induced cooling q(�g)v (T ) according to (29)
along with a small interface thickness of w� = 0.1μm and consistently a fine mesh for
a sufficient interface resolution. Here, the finite element size near the interface is locally
refined to hmin = 3.052 × 10−3 μm to have approximately n� ≈ 32 finite elements across
the interface, ensuring a converged solution with respect to spatial discretization. The
resulting mesh containing 4,744,480 cells is shown in the center panel of Fig. 9. The 1D
benchmark example in “Laser-induced heating benchmark example with evaporation-in-
duced cooling” section, which employed the same governing equations and the same
parameter-scaled CSF case, informed the choice of the spatial discretization parameters
to obtain an accuracy of 1% for the recoil pressure.
For the secondapproach,weemploy the IVmethod to compute the evaporation-induced

cooling q(�g)v (T ) according to (28) and an adequate interface thickness of w� = 0.2μm,
according to the 1Dbenchmark example, see Fig. 7. Toobtain a sufficient spatial resolution
of the interface region of approximately n� ≈ 32, the finite element size near the interface
is locally refined to hmin = 6.104 × 10−3 μm. The resultingmesh contains 2,367,454 cells.
For the third and fourth approaches, we employ a larger interface thickness, resulting

in a coarser mesh where the element size is locally refined to hmin = 0.3906μm in the
vicinity of the interface. The element size is chosen to a value that is deemed feasible
to be employed in 3D melt pool simulations with reasonable computational effort. The
interface thickness is set to w� = 12.5μm resulting in n� ≈ 32 finite elements across
the interface and 38,619 finite elements in the mesh. For the third approach, we employ
the CE method for computing evaporation-induced cooling q(�g)v (T ) according to (29),
and for the fourth approach, we instead employ the IV method according to (28). For all
approaches, the time step size is set tot = 10−9 s, for which the temporal discretization
error was checked to be sufficiently small in a convergence study.
The reference solution is determined from a sharp interface method. A fitted finite

element mesh is used where element edges coincide with the interface midplane �(�g),
as shown in the right panel of Fig. 9. Since the interface is fixed, the element edges
remain aligned with the interface midplane throughout the simulation for a constant
mesh. The sharp interface flux q� = q(�g)L (x) + q(�g)v (T ) from (38) and (27) is applied to
the element egdes coinciding with �(�g). In the vicinity of the interface, the element size
is approximately h ≈ 0.047μm; in the far field, it is approximately h ≈ 2μm. A time
step size of t = 10−10 s is employed. In a convergence study, the spatial and temporal
discretization errors were checked to be sufficiently small.
The instationary temperature solution at t = 10−5 s is shown in Fig. 10. For all

approaches, thepeak temperature remains close to themetal surface rather than artificially
heating the ambient gas, even in the concave cavity of the melt pool vapor depression. In
the following, we compute the relative temperature error based on the L2-norm (13), i.e.,
||T−Tref ||L2/||Tref ||L2 . To assess the recoil pressure error, we compare the L1-normof the
recoil pressure distribution between the diffuse interface approaches and the sharp ref-
erence solution; the latter is computed to ||p(�g)v,ref ||L1 = ∫

�(�g) p(�g)v (Tref (x))dx = 8.79N/m
with (26). For the diffuse interface approaches we compute the L1-norm of the recoil pres-
sure according to ||p̃(�g)v ||L1 = ∫

�
p̃(�g)v dxwith (32). The temperature profile using the small
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Fig. 10 Temperature field solution of the 2D fixed melt pool surface benchmark example at t = 10−5 s: (left)
temperature field solution obtained for the small interface thickness using the CE method for the
evaporation-induced cooling (29) in the domain � with the interface midplane �(�g) indicated with a black
contour; (right) temperature profiles for all approaches along the y-axis, i.e., the vertical center line of the domain,
compared to the sharp interface reference solution

interface thickness replicates the reference solution very accurately with a relative error
of 0.358% for the first approach with the CE method and 0.359% for the second approach
with the IV method. Here, the L1-norm of the recoil pressure is ||p̃(�g)v ||L1 = 8.92N/m
and ||p̃(�g)v ||L1 = 8.93N/m each, which deviates by 1.4% and 1.6% from the reference
solution, respectively. Both error measures are in the same order of magnitude as those
obtained for the 1D benchmark example in “Laser-induced heating benchmark example
with evaporation-induced cooling” section with similar discretization parameters. The
accuracy is slightly degraded due to the increased complexity of the 2D curved interface
geometry. For the approaches with the large interface thickness, the relative temperature
error to the reference solution is 3.71% for the approach with the CE method and 2.05%
for the approach with the IV method. Considering that the number of finite elements
was cut by a considerable factor compared to the small interface thickness approaches,
the accuracy of the temperature is still relatively high. However, the approach with the
large interface thickness and the CEmethod underestimate the recoil pressure by 85.3% to
||p̃(�g)v ||L1 = 1.29N/m. Using the IV method along with the large interface yields a recoil
pressure that is underestimated by 73.8% to ||p̃(�g)v ||L1 = 2.3N/m. Due to the relatively
large interface thickness, the interface temperature is inaccurate, and the exponential
nature of the formulation for the phenomenological recoil pressure (26) amplifies the inac-
curacy. Although the temperature profile appears to be accurate for most of the domain,
the large error in the evaporation-induced recoil pressure confirms that the accuracy is
mainly influenced by the temperature in the interface region.
The benchmark example in this section increases the complexity of the example in

“Laser-induced heating benchmark example with evaporation-induced cooling” section
by raising the dimensionality to two and having a curved geometry that mimics the shape
of the melt pool while employing the same governing equations and diffuse interface
methods. It is found that the parameter-scaled CSF translates well to higher dimensions
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and helps to obtain a highly accurate temperature fieldwhile employing an adequate inter-
face thickness. Besides investigating the interface thickness that is sufficient according to
the 1D studies in “Laser-induced heating benchmark example with evaporation-induced
cooling” section, we investigated approaches with a spatial resolution that we deem feasi-
ble for 3D melt pool thermo-hydrodynamics simulations with reasonable computational
effort. With the resulting large interface thickness, the error in the temperature profile
seems relatively small when considering the entire domain. However, even though the
temperature accuracy is still relatively high, it leads to a large discrepancy in the recoil
pressure due to the exponential relationship between temperature and recoil pressure.

Application of the parameter-scaled CSFmodel to amelt pool
thermo-hydrodynamics simulation
In the following, the parameter-scaledCSFmethod is employed in a 3D, fully coupledmelt
pool thermo-hydrodynamics simulation. Based on this proof-of-principle experiment, we
show that the parameter-scaled CSF method provides a robust framework for 3D simu-
lations of melt pool dynamics using realistic parameter values and temperature regimes.
For example, using the classical CSF models for interface flux modeling, we could not
achieve convergence of the nonlinear Navier–Stokes and/or the nonlinear heat transfer
solver, considering the highmaterial property ratios between the phases. Stationary laser-
induced heating of a bare Ti-6Al-4V plate is considered, recreating the experimental setup
by Cunningham et al. [51]. A similar scenario was investigated in [47] with a smoothed
particle hydrodynamics framework.
For the heat transfer in the melt pool, we consider the heat Eq. (6). The volume-specific

heat capacity cv,eff is interpolated across the liquid–gas interface as one material prop-
erty according to (2), corresponding to case V1 listed in Table 2. The conductivity keff is
interpolated across the interface according to (2). The liquid–gas interface is subject to an
interface heat flux q� that comprises the laser heat source q(�g)L (38) and the evaporation-
induced cooling q(�g)v (T ), the latter according to (27) since no vapor flow is explicitly
resolved in this example. The interface heat source q� is modeled as a volumetric heat
flux q̃� = q� δε,a(ϕ) within the diffuse interface region �� using the parameter-scaled
CSF. We determine the evaporation-induced cooling q(�g)v (T ) based on the local value of
the temperature according to (29), corresponding to the CE method. While this assump-
tion may result in a less accurate solution, as discussed in “Consistent formulation of
temperature-dependent continuum surface fluxes with improved accuracy” section, it is
instrumental in avoiding the high computational costs in 3D associatedwith the extension
algorithm.Our immediate focuswill be optimizing the extension algorithm’s performance
to use it in large-scale 3D simulations in the future. For capturing the interface between the
liquid and the solid domain, we use a regularized level set function −1 ≤ φ ≤ 1 [32,52],
the initial condition of which is determined from the initial signed distance to the interface
midplane according to

φ(x) = tanh
(
3 d�(x)
w�

)

in � × {t = 0}. (39)

Via the solution of the advection equation

∂φ

∂t
+ u · ∇φ = 0 in � × [0, t], (40)
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the temporal evolution of the level set is determined. To maintain the regularized charac-
teristic shape of the level set function, reinitialization, according to [52], is also performed.
The signed distance to the interface midplane is obtained from the regularized level set
function (39) by:

d�(φ) = w�

6
log

(
1 + φ

1 − φ

)

. (41)

The latter can be used to calculate the indicator function according to (1). The flow
velocity u and pressure p of the melt pool are governed by the incompressible Navier–
Stokes equation, composed of the continuity equation and momentum balance equation

∇ · u = 0 in � × [0, t] (42)

ρeff

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + μeffu + f̃(�g)v + f̃(�g)σ + fd in � × [0, t] (43)

with the viscosity μ, the recoil pressure force f(�g)v , the surface tension f̃(�g)σ , and the Darcy
damping term fd. Here, the density ρeff and the viscosityμeff are interpolated individually
across the liquid–gas interface according to (2). The recoil pressure force f(�g)v modeled
as a continuum surface force with the density-scaled CSF model and the CE method
according to (32). Similarly, the surface tension is modeled as a density-scaled continuum
surface force in the sense of [29] according to

f̃(�g)σ (φ) = σκ
(�g)
� (φ)n(�g)� (φ)δε,ρ(ϕ(φ)) (44)

with the surface tension coefficientσ and the curvature κ
(�g)
� (φ) of the liquid–gas interface.

Tomodel themelting and solidification of themetal, we employ a temperature-dependent
Darcy damping force [53] to the liquid domain that inhibitsmotionwhere the temperature
is below the melting point. By inhibiting velocities in the fluid, a rigid solid domain is
modeled [6]. The Darcy damping term fd in (43) is determined according to

fd = −Ck

(
1 − f 2�
f 3� + kC

)

u with f� = 1 − fs (45)

with the liquid fraction f�, the parameterCk that depends on themushy zonemorphology,
and a parameter kC to avoid division by zero. The solid fraction fs is determined by

fs(T,ϕ) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ for T ≤ Ts

ϕ
T�−T
T�−Ts

for Ts < T < T�

0 otherwise

(46)

with the liquidus temperatureT� and the solidus temperatureTs. Typical material param-
eter values for Ti-6Al-4V are employed, listed in Table 1. The values for T�,Ck, and kC are
chosen to achieve a sufficiently smooth transition between the mobile liquid phase and
the rigid solid phase.
We consider the 3D cuboid domain � = {x | x, y ∈ [−a, a], z ∈ [−b, b]} with the length

parameters a = 400μm and b = 300μm. The initial metal-gas interface coincides with



Much et al. AdvancedModeling and Simulation in Engineering Sciences          (2024) 11:16 Page 31 of 40

the xy-plane, characterized by the initial signed distance of d(x) = −z. The fluid is initially
at rest (u0 = 0, p0 = 0) and the initial temperature is uniform at T0 = 500K (7). At the
bottom (z = −b) and top (z = b) boundaries, no-slip conditions for the incompressible
Navier–Stokes equations are assumed, and the temperature is prescribed to T̄ = 500K by
a Dirichlet boundary condition (8). Along the vertical boundaries, we assume slip condi-
tions for incompressible Navier–Stokes equations and adiabatic boundary conditions for
the heat equation. Themetal surface is exposed to a spatially fixed laser heat source with a
Gaussian profile according to (38) considering a laser power of PL = 156W, a laser radius
rL = 70μm, and the laser beam direction eL corresponding to the negative z-direction
with a characteristic point along the laser beam axis pL at the origin.
To solve the governing Eqs. (6), (40), (42), (43), we employ spatial discretization by

the FEM with a Cartesian mesh and linear shape functions for the level-set, the pressure
and the temperature. To ensure inf-sup stability, we use quadratic shape functions for the
velocity field. Using adaptivemesh refinement, the grid with a base element size of hmax =
23.1μm is locally refined to a hmin = 2.89μm in the vicinity of the diffuse interface region.
Employing an interface thickness ofw� = 30μmresults in about n� ≈ 10 elements across
the interface. We employ operator splitting, considering a weakly partitioned solution
scheme for solving the coupled system of equations. For the individual subproblems,
implicit time-stepping schemes are considered. A detailed description of the employed
numerical two-phase flow framework and solution strategy is given in [27,32]. For the
present example, a constant time step size of t = 10−8 s is considered.
Figure 11 presents sectional view snapshots from the simulation, depicting the tem-

perature distribution in the liquid domain at different time steps. Typical characteristics
for PBF-LB/M processing in the keyhole mode can be observed: Upon attaining the boil-
ing temperature, the evaporation-induced recoil pressure increases, and a stable vapor
depression forms. As the vapor depression grows, instabilities start to form due to fluctu-
ations in the recoil pressure and in conjunction with the surface tension. The oscillations
increase until they become unstable, and the melt pool transitions to highly dynamic and
chaoticmotion. In this simulation, themelt pool becomes unstable at approx. t = 0.12ms.
This behavior is also seen in experiments by Cunningham et al. [51]. The results indicate
that the present model is capable of replicating important characteristics of melt pool
behavior.
It should be noted that the results of this simulation do not claim high accuracy. Extrap-

olating the results from “Benchmark example: laser-induced heating of a 2D fixed melt
pool surface” section, the discretization and interface thickness chosen for the present 3D
simulation suggest that the recoil pressure is likely to be very inaccurate. A further critical
aspect is related to the simplifiedmodeling of the laser energy absorption (seeTable 1). For
the laser absorptivity, we considered χL = 0.35, which Khairallah et al. [2] calibrated on a
similar computational melt pool model to show the best agreement with an experiment.
However, calibrating the absorptivity may contribute to compensating for the inaccuracy
of diffuse interface models. In addition, this simplified absorption model does not replace
the realistic consideration of the overall laser impact, e.g., via a ray-tracing model, which
is particularly relevant in the keyhole regime and a pending feature of our model.
In this section, a highly dynamic melt pool simulation based on the experimental setup

by Cunningham et al. [51] is used to demonstrate the robustness and applicability of the
parameter-scaled CSFmodel to a challenging, practically relevant problem type. It should
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Fig. 11 Sectional view of the fully coupled 3D melt pool thermo-hydrodynamics simulation of stationary
laser-induced heating of a bare Ti-6Al-4V plate: time-series illustrating the melt pool shape with the temperature
field of the liquid domain

be noted that when we applied the classical CSF approach to the same problem, we could
not achieve convergence of the involved nonlinear solvers for the Navier–Stokes/heat
transfer equations, which may be due to the high gradients induced by the classical CSF
approach as shown in “Reviewof classical continuumsurfacefluxmodeling” section.Using
the parameter-scaled CSF, the simulation reproduces key characteristics of the behavior
in the experiment.

Discussion: suitability of diffuse interfacemelt pool models
In this study, we address a fundamental question in computational melt pool modeling:
the accuracy of diffuse interface approaches for reliable predictions ofmelt pool dynamics.
Diffusemodels arewidely favored for their inherent robustness and straightforwardmath-
ematical formulation but have not been thoroughly evaluated for their inherent modeling
errors and convergence properties (see [4]) to the best of our knowledge. Particularly, their
accuracy in capturing critical phenomena in PBF-LB/Mmelt pool dynamics related to the
interface temperature, such as evaporation-induced effects, has been underexplored. To
this end, we systematically investigated the accuracy of continuum surface flux (CSF)
methods for capturing interface effects in two-phase heat transfer modeling, focusing on
realistic material property ratios representative of PBF-LB/M. In addition, we proposed
novel approaches to enhance the accuracy of such models.
In Sections “Review of classical continuum surface flux modeling”, “The parameter-s-

caled continuum surface fluxmodel”, “Consistent formulation of temperature-dependent
continuum surface fluxes with improved accuracy” and “Benchmark example: laser-in-
duced heating of a 2D fixedmelt pool surface”, we investigated the accuracy of CSFmeth-
ods with respect to the chosen discretization parameters—interface thickness and mesh
resolution—for two-phase heat transfermodeling on reduced-order benchmark examples
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representative of PBF-LB/M.Compared to classical CSFmodeling in the sense of Brackbill
et al. [28], our proposed parameter-scaled CSF approach improves the temperature pre-
diction accuracy by one order of magnitude for given discretization parameters. However,
accurate modeling of interface dynamics in PBF-LB/Mmelt pool simulations necessitates
precise consideration of interface temperature-dependent effects, including evaporation-
induced cooling and recoil pressure. This accuracy is directly related to the temperature
in the interface region, which is particularly prone to inherent modeling errors asso-
ciated with diffuse interface approaches. Our analysis demonstrated that errors in the
recoil pressure—which is one of the major driving forces for melt pool dynamics—are
about one order of magnitude higher than errors in temperature due to the underlying
exponential dependence. Therefore, to achieve sufficiently accurate predictions of the
overall melt pool dynamics for application scenarios with realistic temperature fields and
material parameters, it is imperative to employ very small interface thickness values and
correspondingly fine mesh resolutions within the interface region. Consequently, more
efficient implementations and the use of high-performance computing infrastructures at
a larger scale are required.
There exists a large variety of PBF-LB/M melt pool models, e.g., based on finite dif-

ference, finite volume, finite element, lattice Boltzmann, or meshfree discretizations,
which mostly utilize diffuse interface approaches. Often, an insufficient agreement of
such models with experimental measurements is reported, as thoroughly analyzed, e.g.,
in [2,5,11,54]. In many cases, this problem is addressed by fitting model parameters such
as the laser absorptivity to match experimental measurements. In contrast, the results
of the present study suggest that the extreme temperature gradients close to the melt
pool surface, as typical for PBF-LB/M, in combination with an insufficient resolution of
the diffuse interface domain, might also be a potential explanation for this shortcoming.
While criticalmodel parameters such as laser absorptivity are often unknown a priori, thus
requiring careful calibration, such a calibration procedure can, of course, not compensate
for potential discretization errors due to insufficient interface resolution in general sce-
narios. Thus, for future research, detailed investigations on the accuracy of the different
existing types of diffuse and sharp interface approaches, when applied to PBF-LB/Mmelt
pool modeling, are recommended.

Conclusions
Many existing computational models for studying melt pool dynamics in PBF-LB/M rely
on a diffuse interface description of the underlying thermo-hydrodynamic two-phase
problem. In such models, the accurate modeling of the temperature is a prerequisite for
the realistic prediction ofmelt pool dynamics as the governing forces, such as evaporation-
induced cooling and recoil pressure, are exponentially related to the interface temperature.
Thus, quantifying the inherent modeling error and the convergence properties of the
diffuse interface approach is needed. For this purpose, we performed a comprehensive
study of thermal two-phase problems representing PBF-LB/M in a diffuse finite element
framework. We considered sharp-interface reference solutions to measure the error in
terms of the temperature field and the resulting evaporation-induced recoil pressure.
We demonstrated that when a classical CSF approach is applied, along with typical

interface thicknesses and discretizations, the extreme temperature gradients beneath the
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melt pool surface, as induced by the localized energy input in PBF-LB/M, combined with
the high ratios of thermal conductivity (∼ 103) and volume-specific heat capacity (∼ 105)
between metal and ambient gas, lead to significant errors in the interface temperature. As
a promising alternative, we propose a novel parameter-scaled CSF approach to obtain a
smoother temperature rate in the diffuse interface region, thus significantly increasing the
solution accuracy. It has been shown that the criterion for the required interface thickness
to predict the temperature field with a given level of accuracy is less restrictive by at least
oneorder ofmagnitude for the proposedparameter-scaled approach compared to classical
CSF. For 3D problems, the number of discretization points within the diffuse interface
region scales quadratically with the interface thickness, given a constant resolution across
the interface,whichunderlines the relevanceof this result in termsof significantly reducing
the computational cost.
Additionally, we showed that evaluating the temperature at the interface midplane for

the computation of temperature-dependent diffuse interface fluxes, instead of using local
values across the interface thickness, yields a more accurate interface temperature and,
consequently, a more accurate recoil pressure.
Notably, our findings extendbeyond thepure thermal problemaswe showcased the gen-

eral applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melt-
ing considering the fully coupled thermo-hydrodynamic multi-phase problem, including
phase change.
Finally, our conclusion that the extreme temperature gradients in PBF-LB/M in com-

bination with an insufficient resolution of the diffuse interface domain might lead to
significant modeling errors of the overall melt pool dynamics is expected to be highly
relevant also for other types of diffuse interface approaches. Thus, detailed investigations
on the accuracy of the different existing types of diffuse and sharp interface approaches,
when applied to PBF-LB/M melt pool modeling, are recommended for future research.
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Appendix A. Continuum surface fluxmodel: temperature rate
Let us consider the heat equation (6) without heat convection

(
ρcp

)

eff︸ ︷︷ ︸
cv,eff

∂T
∂t

= ∇ (keff ∇T ) + q̃� in � × [0, t]. (A1)

The volumetric heat flux q̃� models an interface heat flux q̃� = q� δε,i(ϕ) with a not
yet specified delta function δε,i(ϕ) as a result of the CSF modeling. We assume that the
volumetric heat flux q̃� dominates the problem, which results in a low Fourier number
Fo (11). This allows us to neglect the conductive term if only the short-term behavior of
a problem shall be studied:

cv,eff (ϕ)
∂T
∂t

= q� δε,i(ϕ). (A2)

Note that the effective volume-specific heat capacity cv,eff (ϕ) is interpolated between the
two phases using the indicator ϕ and, for example, the arithmetic mean interpolation
(2). To obtain the temperature rate ∂T

∂t , we divide by the effective volume-specific heat
capacity cv,eff (ϕ) because the thermal mass is proportional to it.

∂T
∂t

= q� δε,i(ϕ)
cv,eff (ϕ)

(A3)

As can be seen from (A3), the temperature rate ∂T
∂t is inversely proportional to the volume-

specific heat capacity. Since the volume-specific heat capacity is an interpolated quantity
within the diffuse interface, using the symmetric delta function, the shape of the profile
of the temperature rate ∂T

∂t is skewed, see the bottom right panel of Fig. 2. We can exploit
the freedom in choosing the delta function δε,i to counteract the skew shape due to the
diffusematerial parameters. Setting the normof the indicator gradient δε(ϕ) (5) as the goal
shape of the temperature rate, we choose the sought-after delta function proportional to
the norm of the indicator gradient δε(ϕ) and the effective volume-specific heat capacity
cv,eff (ϕ), i.e., the thermal mass:

δε,i = δε(ϕ) cv,eff (ϕ) ccorr. (A4)

The correction factor ccorr has to be chosen such that the delta function satisfies the
condition of identity (4). By inserting (A4) in (A3), we obtain

∂T
∂t

= q� δε(ϕ) cv,eff (ϕ) ccorr
cv,eff (ϕ)

= q� ccorr δε(ϕ), (A5)

which meets the goal shape of the temperature rate by the norm of the indicator gradient
δε(ϕ) scaled with a constant pre-factor of q� ccorr. Although the obtained temperature rate
has the goal shape, its magnitude now depends on the correction factor ccorr in addition
to the interface heat flux q� . The correction factor depends on the interpolation type
of the volume-specific heat capacity cv,eff (ϕ), and in “Parameter-scaled delta functions”
section, the formulations for some interpolation types are given. In the bottom right panel
of Fig. 5, it is shown that for a variety of interpolation types, the temperature rate is well
distributed, but the magnitude varies significantly. However, the change in temperature
rate due to a change in the interpolation type does not change the heat flow rate of the
interface heat flux, which is shown in Appendix B.
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Appendix B. Continuum surface fluxmodel: energy rate
Consider a two-phase domain � = �g ∪ �� in which the heat transfer is governed by the
heat equation (6). An interface heat flux q� is imposed at the interface �(�g) between the
two phases. Using the parameter-scaled CSF method, the interface heat flux is modeled
as a volumetric heat flux q̃� = q� δε,i(ϕ) in the diffuse interface region �� ∈ � charac-
terized by the interface thickness w� around the interface midplane �(�g). Here, δε,i is the
appropriate delta function for the chosen interpolation of the effective volume-specific
heat capacity cv,eff , see “Parameter-scaled delta functions” section. The total input heat
flow rate Q̇ resulting from an interface heat flux q� is:

Q̇ =
∫

�

q̃� d� =
∫

�

q� δε,i(ϕ) d�. (A6)

All parameter-scaled delta functions δε,i(ϕ) presented in “Parameter-scaled delta func-
tions” section have support only in the diffuse interface region �� , because they are
proportional to the norm of the indicator gradient δε(ϕ) (5). Thus, the delta function
is zero outside the diffuse interface region �� , and the domain integral in (A6) can be
rewritten as an integral over the diffuse interface

Q̇ =
∫

��

q� δε,i(ϕ) d� =
∫

�(�g)

∫ w�
2

−w�
2

q� δε,i(ϕ(d�)) dd� d� . (A7)

As the interface heat flux q� is constant across the interface thickness and all delta func-
tions have to satisfy (4), (A7) can be rewritten as

Q̇ =
∫

�(�g)
q�

∫ w�
2

−w�
2

δε,i(ϕ(d�)) dd� d� =
∫

�(�g)
q� d�, (A8)

which results in the same expression as in a sharp interface model. This shows that the
CSF model does not alter the input heat flow rate.
In “The parameter-scaled continuum surface flux model” section, in particular in Fig. 5

and Fig. 6a, we observed different temperature rate and temperature magnitudes for
different interpolation types of the effective volume-specific heat capacity cv,eff as a result
from interface heating. As shown above, the total input heat flow rate Q̇ of the CSF
interface heat flux has to be the same for all parameter-scaled delta functions δε,i. In a
next step, the internal energy shall be investigated. As discussed in “Application of the
classical CSF model to interface heat fluxes” section, the heat conduction term in (6) can
be neglected in good approximation if only the short-term behavior is considered. With
this assumption, it can be concluded from the integration of (A2) over the spatial domain
that an unchanged value of the total input heat flux rate Q̇ leads to a rate of change in
internal energy ĖT according to

ĖT =
∫

�

cv,eff (ϕ(x))
∂T (x)

∂t
d� (A9)

that is unchanged, i.e., independent from the chosen interface interpolation and delta
functions, as well since, in this case, ĖT ≡ Q̇ holds. Within the diffuse interface region
�� ∈ �, the effective volume-specific heat capacity cv,eff is determined by the choice of
interpolation between the two phases, which influences itsmagnitude as can be seen in the
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top right panel of Fig. 5. At a constant rate of change in internal energy ĖT , the temperature
rate ∂T

∂t is inversely proportional to the effective volume-specific heat capacity cv,eff .When
changing the interpolation of cv,eff , the temperature rate changes accordingly, resulting
in significant differences as can be seen in the bottom right panel of Fig. 5. The change in
temperature rate influences the temperature magnitudes after some time passed, as can
be seen in Fig. 6a. However, the total energy rate, which contains the product of cv,eff (ϕ(x))
and ∂T (x)

∂t remains unchanged in good approximation as discussed above.

Fig. 12 Temperature profile resulting from interface heating with an interface heat source of q� = 1010 W/m2

using the parameter-scaled CSF approaches V2 and V4, described in Table 2. The reference temperature profile
Tref is determined using a sharp interface approach
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Appendix C. Investigation of the parameter-scaled CSFmodel on the
laser-induced heating benchmark example with harmonic mean interpolation
This section evaluates the performance of the parameter-scaled CSF for modeling inter-
face heat fluxes for the cases V2 and V4 listed in Table 2, which involve harmonic mean
interpolation (16). The same benchmark example and numerical setup are employed for
cases V1 and V3 and described in “Investigation of the parameter-scaled CSF model on
the laser-induced heating benchmark example” section. Figure 12 shows the instationary
results at t = 10−5 s with V2 in the left column and V4 in the right column. In Fig. 12a, the
temperature profiles are shown at a constant interface thickness of w� = 6μm and for
different discretizations of the interface region. Both variants significantly overestimate
the temperature at the given interface thickness, especially for insufficient discretization.
The L2-norm of the relative temperature error to the sharp reference solution for different
element sizes h in the interface, including the values shown in Fig. 12a, at a constant inter-
face thickness of w� = 6μm is shown in Fig. 12b. The number of finite elements across
the interface n� (14) is annotated. For V4, when increasing n� from 256 to 512, the change
in the relative temperature error is less than 1%. ForV2, the change in relative temperature
error is always larger than 1% for the investigated discretizations. In Fig. 12c, the relative
temperature error is shown over the interface thickness w� for different resolutions of
the interface. The convergence behavior of the relative temperature error with respect
to the interface thickness tends to decrease in all cases, which indicates that the inter-
face is insufficiently discretized. Summarizing, the cases V2 and V4 show poor accuracy
compared to V1 and V3, which are discussed in “Investigation of the parameter-scaled
CSF model on the laser-induced heating benchmark example” section. Since V2 and V4
involve harmonicmean interpolation (16), the profile of the effective volume-specific heat
capacity cv,eff is not centered around the interfacemidplane, as can be seen in the top right
panel of Fig. 5, which may contribute to the requirement of a high mesh resolution.
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