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Abstract

This paper explores the ability of physics-informed neural networks (PINNs) to solve
forward and inverse problems of contact mechanics for small deformation elasticity.
We deploy PINNs in a mixed-variable formulation enhanced by output transformation
to enforce Dirichlet and Neumann boundary conditions as hard constraints. Inequality
constraints of contact problems, namely Karush–Kuhn–Tucker (KKT) type conditions, are
enforced as soft constraints by incorporating them into the loss function during
network training. To formulate the loss function contribution of KKT constraints,
existing approaches applied to elastoplasticity problems are investigated and we
explore a nonlinear complementarity problem (NCP) function, namely
Fischer–Burmeister, which possesses advantageous characteristics in terms of
optimization. Based on the Hertzian contact problem, we show that PINNs can serve as
pure partial differential equation (PDE) solver, as data-enhanced forward model, as
inverse solver for parameter identification, and as fast-to-evaluate surrogate model.
Furthermore, we demonstrate the importance of choosing proper hyperparameters,
e.g. loss weights, and a combination of Adam and L-BFGS-B optimizers aiming for better
results in terms of accuracy and training time.

Keywords: Physics-informed neural networks, Mixed-variable formulation, Contact
mechanics, Enforcing inequalities, Fischer–Burmeister NCP-function

Introduction
Machine learning approaches usually require a large amount of simulation or experimen-
tal data, which might be challenging to acquire due to the complexity of simulations and
the cost of experiments. Also, data scarcity can cause data-driven techniques to perform
poorly in terms of accuracy. This is particularly true when using real-world observations
that are noisy or datasets that are incorrectly labeled, as there is no physics-based feedback
mechanism to validate the predictions. To tackle this problem, physics-informed neural
networks (PINNs) have been developed. PINNs integrate boundary or initial boundary
value problems and measurement data into the neural network’s loss function to com-
pensate for the lack of sufficient data and the black-box behavior of purely data-driven
techniques [1]. In terms of forward problems, PINNs can serve as a partial differential
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equation (PDE) solver even in cases where domains are irregular. This is because PINNs
utilize automatic differentiation and therefore do not require any connectivity of the sam-
pling points, making them a mesh-free method [2]. Moreover, PINNs can break the curse
of dimensionality when approximating functions in higher dimensions [3,4]. Additionally,
PINNs are a good candidate for addressing inverse problems due to the easy integration
of measurement data [5].
To take advantage of these benefits, PINNs have been employed in various fields of

engineering and science including geosciences [6], fluid mechanics [7,8], optics and elec-
tromagnetics [9–11], and industrial applications, e.g., fatigue prognosis of a wind turbine
main bearing [12]. Based on sensor data of a physical object, PINNs can be used in hybrid
digital twins of civil engineering structures [13] and for critical infrastructure protection
[14]. Particularly in solid mechanics, PINNs have been developed for solving problems of
linear elasticity, elastodynamics, elastoplasticity [15], and inverse problems for parameter
identification [16]. Rao et al. [17] propose PINNs in a mixed-variable formulation to solve
elastodynamic problems inspired by hybrid finite element analysis [18]. They introduce
displacement and stress components as neural network output to enforce boundary con-
ditions as hard constraints by deploying additional parallel networks. Also, it is claimed
that a mixed-variable formulation enhances the accuracy and ease of training for the net-
work. Samaniego et al. [19] utilize energy methods to develop PINNs for solving various
examples in computational mechanics, i.e. elastodynamics, hyperelasticity and phase field
modeling of fracture. Lu and colleagues develop physics-informed neural networks with
hard constraints (hPINNs) to perform topology optimization [20]. The authors enhance
the loss formulation with the penalty method and the augmented Lagrangian method to
enforce inequality constraints as hard constraints. Moreover, they deploy output trans-
formation to enforce equality constraints explicitly for simple domains as introduced in
the study of Lagaris et al. [21]. In another study, Haghighat and colleagues utilize PINNs
in the field of solid mechanics to tackle inverse problems and construct surrogate models
[22]. Their approach involves parallel networks based on the mixed-variable formulation
for linear elasticity, and they expand theirmethodology to address nonlinear elastoplastic-
ity problems including classical Karush–Kuhn–Tucker (KKT) type inequality constraints.
They enforce KKT constraints as soft constraints via a sign function, which has discon-
tinuous gradients. As an extension of their previous work on elastoplasticity, Haghighat
et al. [15] deploy PINNs for constitutive model characterization and discovery through
calibration by macroscopic mechanical testing on materials. As an alternative to the sign
function, they adopt the Sigmoid function to enforce KKT constraints, since Sigmoid has
well-defined gradients, but requires an additional hyperparameter.
As far as the authors aremost aware, no previous work has been conducted on PINNs to

solve contact mechanics problems. Here, we focus on the novel application of PINNs for
contact mechanics for small deformation elasticity including benchmark examples, e.g.
contact between an elastic block and a rigid flat surface, as well as the Hertzian contact
problem. To enforce displacement and traction boundary conditions, we deploy PINNs
with output transformation in the mixed-variable formulation inspired by the Hellinger–
Reissner principle [23] in which displacement and stress fields are defined as network out-
puts. Additionally, contact problems involve a well-known set of Karush–Kuhn–Tucker
type inequality and equality constraints sometimes also referred to as Hertz–Signorini–
Moreau conditions in the contact mechanics community. We enforce this given set of
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equations as soft constraints via three different methods: sign-based method, Sigmoid-
based method and a nonlinear complementarity problem (NCP) function, namely the
Fischer–Burmeister function. NCP functions enable reformulating inequalities as a sys-
tem of equations, and have proven particularly robust and efficient for the design of
semi-smooth Newton methods in contact analysis [24–27].
To validate our PINN formulation for contact mechanics, two examples are investi-

gated. The first example involves the contact between an elastic block and a rigid flat
surface where all points in the possible contact area will actually be in contact. The sec-
ond example is the famous Hertzian contact problem, where the actual contact area will
be determined as part of the solution procedure. Furthermore, we illustrate four distinct
PINN application cases for the Hertzian contact problem. In the first use case, we deploy
the PINN as a pure forward solver to validate our approach by comparing results with
a finite element simulation. PINNs can easily incorporate external data, such as mea-
surements or simulations. In the second scenario, we therefore utilize displacement and
stress fields obtained through FEM (in the sense of “virtual experiments”) to enhance the
accuracy of our PINN model. The third application is to deploy PINNs to solve inverse
problems, particularly identifying the prescribed external load in the Hertzian contact
problem based on FEM data. As a fourth and final example, the load (external pressure)
is considered as another network input to construct a fast-to-evaluate surrogate model,
which predicts displacement and stress fields for unseen pressure inputs. In the very active
research field of physics-informed machine learning further advanced techniques, such
as variational PINNs (VPINNs) [28,29] and integrated finite element neural networks (I-
FENNs) [30], have been proposed recently. In particular, VPINNs as a Petrov–Galerkin
scheme as compared to collocation in standard PINNs might be of interest for (non-
smooth) contact problems. However, these recent developments are beyond the scope of
this first study and subject to future work.
The remainder of this article is structured as follows: “Problem formulation” section

summarizes the fundamental equations and constraints of contact mechanics with small
deformation elasticity. Also, the basics of the so-called mixed-variable formulation based
on the Hellinger–Reissner principle are given. In “Physics-informed neural networks for
solid and contact mechanics” section, a generalized formulation of PINNs with output
transformation is outlined in detail, which in principle allows for the solution of arbitrary
partial differential equations (PDEs). We narrow the field of interest down to solid and
contact mechanics problems based on a mixed-variable formulation, and therefore dif-
ferent methods to enforce KKT constraints are explained. Several benchmark examples
are analyzed in “Numerical examples” section, including the Lamé problem of elasticity,
contact between an elastic block and a rigid domain, and the Hertzian contact problem.
“Conclusion” section concludes the paper by summarizing our key findings and providing
an outlook on future research directions.

Problem formulation
Contact mechanics

We consider a 2D contact problem between an elastic body and a fixed rigid obstacle
as illustrated in Fig. 1. In the reference configuration, the elastic body is denoted by �0,
and in the current configuration, it is represented by �t while the rigid obstacle has the
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Fig. 1 Contact problem between an elastic body and a rigid obstacle. a Reference configuration, b current
configuration, c accompanying boundary conditions, illustration of the gap gn , tangential traction tτ and contact
pressure pn

same configuration �r . Figure 1c shows a configuration for which two bodies come into
contact. The surface of the elastic body can be partitioned into three sections: theDirichlet
boundary ∂�u, where displacements are prescribed, the Neumann boundary ∂�σ , where
tractions are given, and the potential contact boundary ∂�c where contact constraints
are imposed. The actual contact surface is a subset of ∂�c and is sought for during the
solution procedure.
Let us consider the boundary value problem (BVP) of small deformation elasticity

∇·σ + b̂ = 0 in �, → (BE) (1)

u = û on ∂�u, → (DBC) (2)

σ · n = t̂ on ∂�σ → (NBC) (3)

where σ denotes the Chauchy stress tensor, u is the displacement vector representing
the so-called primal variable, b̂ denotes the body force vector, and n is the unit outward
normal vector. Prescribed displacements are represented by û on ∂�u, and t̂ denotes pre-
scribed tractions on ∂�σ . Abbreviations BE, DBC and NBC denote the balance equation,
Dirichlet boundary condition and Neumann boundary condition, respectively. The kine-
matic equation (KE) and constitutive equation (CE) for the deformable body are expressed
as

ε = 1
2
(∇u + ∇uT ), → (KE) (4)

σ = C : ε. → (CE) (5)

Here, ε is the infinitesimal strain tensor and C is the fourth-order elasticity tensor. In the
specific case of linear isotropic elasticity, the constitutive equation can be expressed via
Hooke’s law as

σ = λ tr(ε)I + 2με, (6)

where λ and μ are the Lamé parameters, tr(·) is the trace operator to sum strain compo-
nents on the main diagonal and I is the identity tensor.
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The displacement vector u can be obtained for the elastic body by describing themotion
from the reference configuration X to the current configuration x as follows (see Fig. 1a,
b)

u = x − X . (7)

The gap function (GF) gn is defined as a distance measure between elastic and rigid
bodies in the current configuration as

gn = −n · (x − x̂). → (GF) (8)

The term x̂ denotes the so-called closest point projection of x onto the surface of �r (see
Fig. 1b). Since all contact constraints will be defined in the current configuration, pn and
tτ can be obtained by traction vector decomposition (TVD) of the contact traction vector
tc as

tc = pnn + tττ, pn = tc · n, tτ = tc · τ, → (TVD) (9)

where

tc = σ · n on ∂�c. → (CST) (10)

Cauchy’s stress theorem (CST) states that the stress tensor σ maps the normal vector
to the traction vector tc. Note that the boundary vectors n and τ can be computed on the
reference configuration assuming small deformation elasticity (linear elasticity) [31].
For a frictionless contact problem, we define the classical set of Karush–Kuhn–Tucker

(KKT) conditions, commonly also referred to as Hertz–Signorini–Moreau (HSM) condi-
tions, and the frictionless sliding condition (FSC) as

gn � 0, (11)

pn � 0, → (KKT) (12)

pngn = 0, (13)

tτ = 0. → (FSC) (14)

Equation 11 enforces the kinematic aspect of non-penetration as shown in Fig. 1c. If two
bodies are in contact, the gap vanishes, i.e., gn = 0. The term pn denotes the normal
component of the contact traction, i.e., the contact pressure. Correspondingly, Eq. 12
guarantees that no adhesive stresses are allowed in the contact zone. Furthermore, the
complementarity requirement in Eq. 13 necessitates that the gap should be zero when
there is a non-zero contact pressure (point in contact), and the contact pressure should be
zero if there is a positive gap (point not in contact). It should be noted that the tangential
component of the traction vector vanishes for frictionless contact, resulting in Eq. 14.
For additional information regarding more complex contact constitutive laws including
friction, we refer to [24,32–34].
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Fig. 2 Tonti’s diagram of Hellinger–Reissner (HR) principle for contact problems with small strain theory and
frictionless sliding condition

Mixed-variable formulation: the Hellinger–Reissner principle

Inspired by the Hellinger–Reissner principle [18,23], we construct a Tonti’s diagram [35]
to solve contact problems based on two primary variables: displacements u and stresses
σ (see Fig. 2). The secondary (slave) variables are intermediate and they are derived from
the primary variables, i.e., σu and εu.
As shown in Fig. 2, the Tonti diagram summarizes the governing equations of contact

problems with small strain theory and frictionless sliding condition (see Eqs. 1–14). The
stress-to-stress coupling (SS) between the primary variable σ and the secondary variable
σu, defined as σ = σu, ensures that the two master fields remain compatible.

Physics-informed neural networks for solid and contact mechanics
Generic PINNs with output transformation

A generalized formulation for partial differential equations can be expressed in residual
form with accompanying boundary conditions as

R[u(x)] = 0, on �,

B[u(x)] − g(x) = 0, on ∂�.
(15)

Here, R[·] denotes a differential operator acting on a unknown solution u, B[·] is the
boundary operator, g(x) represents the prescribed boundary condition, x are the spatial
coordinates that span the domain � and the boundary ∂�.
Consider a fully-connected L-layers neural network to construct an approximated solu-

tion ũ to the BVP as follows [36,37]

u ≈ ũ := (N L(z; θ))′ , N L(z; θ) : Rd → R
n. (16)
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N L(z; θ) represents the network output in the output layer L, trainable network param-
eters, namely weights and biases, are denoted as θ, (.)′ represents a user-defined output
transformation [20], and z is the network input such that x ⊂ z. Note that z can consist
of spatial coordinates, time, and other additional input parameters. The network output
is calculated using recursive L − 1 element-wise operations between the input layer and
hidden layers as

input layer → N 1(z; θ) = z,
hidden layers → N l(z; θ) = ψ(θl · N l−1(z; θ)), for 2 � l � L − 1,

output layer → N L(z; θ) = θL · N L−1(z; θ),
(17)

where ψ denotes the activation function that adds non-linearity to the layer output.
Output transformation enables the neural network to enforce boundary conditions

explicitly. A user-defined output transformation can be obtained with suitable helper
functions as

ũi(z; θ) = g(z) + s · h(z) · Nui (z; θ), (18)

where g is the prescribed boundary condition, s is a scaling parameter and h is a distance-
to-boundary function fulfilling the following conditions:

h(z) = 0, on ∂�,

h(z) > 0, in � \ ∂�.
(19)

For simple boundaries ∂�, it is relatively easy to define an appropriate distance-to-
boundary function. On the other hand, it can become a quite challenging task in the case
of arbitrary boundaries. One method to find a generalized distance-to-boundary function
is to use NURBS parametrizations [38]. Moreover, the scaling parameter can help the
optimizer avoid getting stuck in local minima by balancing target governing equations
(see “Domination of pn over gn” section).
To ensure that ũ is a reasonable approximation of u, the network parameters must be

determined accordingly to the BVP. As shown in Fig. 3, the overall loss L(θ) consists of
PDE losses LPDEs, boundary condition losses LBCs and experimental data losses LEXPs.
Note that PDE derivatives are calculated using automatic differentiation (AD) [39]. To
minimize the overall loss, the optimization process continues until a prescribed tolerance
ε is reached so that optimal network parameters θ∗ are calculated

θ∗ = arg min
θ

L(θ). (20)

For each loss term, the inner loop sums up themean squared error contributions of data
points collected inside the domain or on the boundary. Specifically, {zirp}Nrp

irp=1 denotes

the collocation points in the domain, {zibp}Nbp
ibp=1 are the boundary points corresponding

to the prescribed boundary conditions, and {ziep}Nep
iep=1 represents the points on which

measurement data u∗ is available. As the PDE residualRmight have multiple terms and
usually more than one boundary condition is defined, we use a lower index to explicitly
point out that the inner summation is done for a given specific component, i.e. Rin=1.
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Fig. 3 The general representation of a physics-informed neural network for a BVP

Consequently, the outer loop sums up the weighted contributions coming from individual
components of the loss function. The terms {win}Nn

in=1, {wibc }Nbc
ibc=1 and {wie }Ne

ie=1 denote
the loss weights for the individual components of LPDEs, LBCs, LEXPs, respectively. We
observe that the weighting of loss terms can be quite crucial for the convergence of the
overall loss, since it avoids the optimizer expanding greater efforts on loss components
that have a larger order of magnitude compared to others. It should be noted that the
identical collocation points {zirp}Nrp

irp=1 are employed in the calculation of every component
of LPDEs. However, the boundary and experimental points may vary in each LBCs and
LEXPs contribution.

Application of PINNs to solid and contact mechanics

In the context of solid and contact mechanics problems, we use PINNs with output
transformation in a mixed-variable formulation. In the mixed-variable formulation for
quasi-static problems without additional network input parameters (i.e. z = x), a fully-
connected neural network (FNN)maps the given spatial coordinates x to the displacement
vector u and stress tensor σ. In other words, the displacement and stress fields are chosen
as the quantities of interest that the FNN approximates as (see Fig. 4)

ũ := (Nu(x; θ))
′

and σ̃ := (Nσ(x; θ))
′
. (21)

Combining the information provided in Fig. 3 for losses of general PINNs with the
governing equations of solid mechanics, we obtain the total loss LE for linear elasticity
(without contact) in the mixed-variable formulation with additional experimental data as

LE = LPDEs + LDBCs + LNBCs + LEXPs, (22)
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Fig. 4 Physics-informed neural networks in the mixed-variable form to solve quasi-static solid and contact
mechanics problems without additional network parameters

where

LPDEs =
Nm∑

in=1
win

1
Nrp

Nrp∑

irp=1

[[∇ · σ̃
(
xirp

)
+ b̂

(
xirp

)]
in

]2+

Nn∑

in=Nm+1
win

1
Nrp

Nrp∑

irp=1

[[
σ̃

(
xirp

)
− C : ε̃

(
xirp

)]
in

]2
,

LDBCs =
Nbc,D∑

ibc,D=1
wibc,D

1
Nbp,D

Nbp,D∑

ibp,D=1

[[ũ
(
xibp,D

)
− û

(
xibp,D

)]
ibc,D

]2
,

LNBCs =
Nbc,N∑

ibc,N=1
wibc,N

1
Nbp,N

Nbp,N∑

ibp,N=1

[[
σ̃

(
xibp,N

)
· n − t̂

(
xibp,N

)]
ibc,N

]2

LEXPs =
Ne,u∑

ie,u=1
wie,u

1
Nep,u

Nep,u∑

iep,u=1

[[ũ
(
xiep,u

)
− u∗ (

xiep,u
)]

ie,u

]2+

Ne,σ∑

ie,σ=1
wie,σ

1
Nep,σ

Nep,σ∑

iep,σ=1

[[
σ̃

(
xiep,σ

)
− σ∗ (

xiep,σ
)]

ie,σ

]2
.

(23)

Here, termsLDBCs andLNBCs denote losses for Dirichlet and Neumann BCs, respectively,
and the LEXPs term represents losses due to additional experimental data. In the mixed-
variable formulation, the LPDEs term is constructed in a composite form to fulfill both
the balance equation (BE) and the stress-to-stress coupling (SS) as depicted in Fig. 2.
The index Nm is used to distinguish the loss weights related to BE and SS. Since stress
components are directly defined as network outputs, traction or Neumann BCs can be
imposed as hard constraints using output transformation. Moreover, it is sufficient to
calculate first-order derivatives of the neural network outputs with respect to the inputs,
since the governing equations in the mixed-variable formulation contain only first-order
derivatives. An alternative to themixed-variable formulation is the classical displacement-
based formulation in which only u is considered as the network output. However, such
an approach requires second-order derivatives for evaluating the balance equation, and
traction BCs can not be enforced as hard constraints [17,40].
Next, we construct the composite (total) loss function LC for linear elasticity including

contact as follows:

LC = LE + LFS + LKKT. (24)
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The first additional loss term

LFS = w(fs)|tτ |∂�c (25)

enforces the frictionless sliding condition in the contact zone ∂�c (see Eqs. 9 and 10). For
simplicity, we denote the mean squared error (MSE) as | · |, which can be calculated as
1
n

∑n
i=1(·)2. The second additional term LKKT will be elaborated in the next section.

While the various ways of evaluating the normal gap gn are a matter of intense discus-
sions, especially within discretization schemes such as the finite element method [34,41],
a very simple gap calculation is sufficient here due to the fact that we only consider contact
problems between an elastic body and a rigid flat surface. The normal gap is consistently
expressed by evaluating the orthogonal projection of the elastic body onto the rigid flat
surface.

Enforcing the Karush–Kuhn–Tucker inequality constraints

There are several methods available to enforce inequality conditions in general. The direct
approach is to formulate loss functions of inequalities and impose them as soft con-
straints with fixed loss weights [15,22]. However, setting large loss weights can cause an
ill-conditioned problem [20]. On the other hand, when small loss weights are chosen,
the estimated solution may violate the inequalities. To tackle this problem, authors in
[20] suggest penalty and augmented Lagrangian methods, well-known from constrained
optimization, which construct loss formulations with adaptive loss weights. In the follow-
ing, we investigate three methods to enforce KKT conditions of normal contact problems
based on soft constraints.

Sign-basedmethod

One possible way to enforce KKT conditions is to use the sign function [22], which leads
to

LKKT = Lg̃n�0 + Lp̃n�0 + Lp̃ng̃n=0

= w(KKT)
1

∣
∣1
2
(
1 − sign(g̃n)

)
g̃n

∣
∣
∂�c

+ w(KKT)
2

∣
∣1
2
(
1 + sign(p̃n)

)
p̃n

∣
∣
∂�c

+
w(KKT)
3

∣
∣p̃n g̃n

∣
∣
∂�c

.

(26)

Here, {w(KKT)
i }3i=1 represent the lossweights on the correspondingKKTcondition. Figure 5

illustrates that 1
2
(
1 − sign(g̃n)

)
g̃n contributes to the loss component Lgn�0 when the gap

gn is less than zero. On the other hand, 1
2
(
1 + sign(p̃n)

)
p̃n contributes to Lpn�0 if the

contact pressure pn is positive. Note that the sign function has gradient jumps, which is
typically not a desired feature in the context of optimization.
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Fig. 5 An illustration of the sign-based function depending on gap gn and contact pressure pn

Fig. 6 An illustration of the sigmoid-based function depending on gap gn and contact pressure pn for different δ
values

Sigmoid-basedmethod

An alternative approach to circumvent discontinuous gradients is to use the Sigmoid
function [15] to obtain LKKT as

LKKT = Lg̃n�0 + Lp̃n�0 + Lp̃ng̃n=0

= w(KKT)
1

∣∣ 1
1 + eδg̃n

g̃n
∣∣
∂�c

+ w(KKT)
2

∣∣ 1
1 + e−δp̃n

p̃n
∣∣
∂�c

+
w(KKT)
3

∣
∣p̃n g̃n

∣
∣
∂�c

,

(27)

where δ is the steepness parameter that controls the transition between zero and non-
zero loss contributions. As depicted in Fig. 6, the Sigmoid function avoids gradient jumps
through exponential regularization term. However, when δ is chosen too small, e.g. δ = 1,
then significant unphysical loss function values are obtained for g̃n > 0 and p̃n < 0. On
the other hand, setting δ too large recovers the sign-based implementation. Therefore, a
parameter study must be conducted to find the optimal parameter δopt .
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Fig. 7 The Fischer–Burmeister NCP function depending on gap gn and contact pressure pn as a 3D plot (a) and
as a 2D contour plot (b)

A nonlinear complementarity problem function: Fischer–Burmeister

Nonlinear complementarity problem (NCP) functions are developed based on reformu-
lating inequalities as equalities [42]. One popular choice of NCP function is the Fischer–
Burmeister function [43] expressed as

φFB(a, b) := a + b −
√
a2 + b2 = 0 ⇐⇒ a � 0, b � 0, ab = 0. (28)

By setting a = g̃n and b = −p̃n in the Fischer–Burmeister function, we obtain LKKT as
follows

LKKT = w(KKT)∣∣φFB(g̃n,−p̃n)
∣
∣
∂�c

= w(KKT)
∣∣∣g̃n − p̃n −

√
g̃2n + p̃2n

∣∣∣
∂�c

. (29)

The Fischer–Burmeister function is a particularly suitable choice for typical loss calcu-
lations based on themean squared error (MSE), since (φFB)2 is continuously differentiable
also at a = b = 0 as reported [44]. As shown in Fig. 7, the largest loss contribution
comes from section IV in which both excessive penetrations, i.e. gn � 0, and large adhe-
sive stresses, i.e. pn � 0, are present. We refer to [42–45] for more details about the
Fischer–Burmeister function. Note also that having fewer loss terms generally eases the
optimization process as well as parameter tuning, and in contrast to the previous variants
in “Sign-based method” and “Sigmoid-based method” sections only one single loss weight
is required in the case of the Fischer–Burmeister NCP function.

Algorithmic challenges

Domination of pn over gn
The Fischer–Burmeister NCP function reduces a set of inequality constraints into a single
equation. However, it might cause domination of one term over another. As explained in
the previous sections, gn is derived from the displacement field u and pn is derived from
the Cauchy stress field σ. Depending on the chosen problem parameters, e.g., stiffness,
the estimated quantities u and σ might have different scales, and then so do gn and
pn. As illustrated in Fig. 8, when gn and pn have similar scales, there is no domination.
But increasing pn causes domination of pn over gn. In terms of optimization, the neural
network will then expand more effort into minimizing the large-scale quantity pn, which
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Fig. 8 Domination of pn over gn : a no domination, b intermediate domination and c strong domination

might cause unacceptable violations of constraints related to gn. To tackle this problem,
non-dimensionalization techniques can be used to ensure that pn and gn have similar
scales [46].

Importance of output scaling

Output scaling is a functionality of output transformation that can prevent the optimizer
to get stuck in local minima. In the context of solid and contact mechanics, the PINNs
estimate the displacement field u and the stress field σ as neural network outputs. Assum-
ing that no transfer learning is used, the first estimations of outputs are done randomly
due to random initialization of the neural network parameters. Also, there are well-known
and popular methods that generate initial network estimations following a normal distri-
bution with a mean of zero and a standard deviation of one [47], e.g.,Glorot initialization.
However, using such initialization methods could cause convergence issues because of
the output quantities having similar magnitudes. This issue can be explained through the
example of the SS loss term (see Eq. 23)

LSS =
Nn∑

in=Nm+1
win

1
Nrp

Nrp∑

irp=1

[[
σ

(
xirp

)
− C : ε

]
in

]2
. (30)

Minimization of LSS requires the condition σ = C : ε to hold. In case very large values
of the material properties are chosen, e.g. Young’s modulus, the term C : ε will initially
dominate σ, which means a large loss contribution has to be handled by the optimizer.
Therefore, to minimize the loss, either a significant increase in σ or a significant decrease
in u is required. Such large increments in the optimization procedure are troublesome, as
the gradient of the employed tanh() activation function tends to zero for large function
arguments, which is also referred to as the vanishing gradient problem [48]. To ease
optimization, the network output u can be scaled by the inverse of the Young’s modulus,
i.e. by 1

E . This ensures that the initial magnitudes of both terms in the SS condition are
comparable, which summarizes the benefits of output scaling in a nutshell.

Numerical examples
In the following, we investigate three numerical examples. The first example is the well-
known Lamé problem of elasticity, which is considered as a preliminary test without
contact to verify that our PINN framework works as expected, including in particular the
hard enforcement of DBC and NBC with output transformation. Afterward, our investi-
gation focuses on examining two contact examples: a contact problem between a simple
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square block and a rigid flat surface, and the Hertzian contact problem. The main differ-
ence between the two contact examples is the fact that the actual contact area has to be
identified by the PINN in the Hertzian example, while the potential and actual contact
areas are the same in the case of the square block and the rigid flat surface. Note that 2D
plane strain conditions are considered throughout the entire section and body forces are
neglected.
All numerical examples have the following common settings. The PINN maps spa-

tial coordinates x = (x, y) as inputs to transformed mixed-form outputs (ũ, σ̃) =
(ũx, ũy, σ̃xx, σ̃yy, σ̃xy). Networks are initialized using the Glorot uniform initializer, and the
tanh function is chosen as activation function.Models are first trained using the stochastic
gradient descent optimizer Adam [49] with a learning rate, lr = 0.001, for 2000 epochs,
and then we switch to the limited memory BFGS algorithm including box constraints (L-
BFGS-B) [50] until one of the stopping criteria is met [51,52]. Our workflow is developed
based on the DeepXDE package [53] and we refer to the DeepXDE documentation for
default L-BFGS-B options. Note that training points are generated by GMSH, since it has
strong capabilities in mesh generation and visualization, and provides boundary normals
at arbitrary query points [54].
As a common error metric, we report the vector-based relative L2 errors for displace-

ment Eu
L2 and stress fields Eσ

L2 as follows

Eu
L2 =

√∑
i
∑Ntest

j=1
(
ũi(xj) − ui(xj)

)2

√∑
i
∑Ntest

j=1
(
ui(xj)

)2
for i = (x, y),

Eσ
L2 =

√∑
i
∑Ntest

j=1
(
σ̃i(xj) − σi(xj)

)2

√∑
i
∑Ntest

j=1
(
σi(xj)

)2
for i = (xx, yy, xy).

(31)

Here, ũi and σ̃i denote PINN solutions and ui and σi denote reference solutions that are
obtained analytically or numerically. Also, the index j = (1, . . . , Ntest) runs over the test
points that are generated using structured meshes. We refer to Appendix 3 for an error
comparison between vector-based and integral-based error measurements.

Lamé problem of elasticity

In the first example, we study a benchmark example without contact, namely the well-
known Lamé problem of a cylinder, subjected to an internal pressure p (see Fig. 9a). Since
the problem is geometrically axisymmetric and the internal pressure is applied to the
entire inner boundary, only a quarter of the annulus is considered. The analytical solution
for the stress and displacement field can be derived in polar coordinates {r,α} as [55]

σrr = R2
i p

R2
o − R2

i

(
1 − R2

o
r2

)
,

σαα = R2
i p

R2
o − R2

i

(
1 + R2

o
r2

)
,

σrα = 0,

ur = (1 + ν)pR2
i R

2
o

E(R2
o − R2

i )

(
1 + r

R2
o

)
.

(32)
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Fig. 9 The Lamé problem of elasticity. a The full problem under internal pressure, and b the equivalent problem
due to the axisymmetrical nature of both geometry and loading, and accompanying boundary conditions

Table 1 The structure of hidden layers, number of training and test points, performance
measurements, and errors for the Lamé problem of linear elasticity

Hidden

layers

# Training

points

# Test

points

Training

time (s)

Prediction

time (s)

EuL2 (%) Eσ
L2
(%)

Lamé problem

of elasticity

3× 50 330 7104 27.15 0.001 0.017 0.043

Here, Ri and Ro are the inner and outer radius of the annulus, respectively, p represents
the internal pressure applied on the inner radius, E is the Young’s modulus and ν is the
Poisson’s ratio. For our specific setup, we setRi = 1,Ro = 2, p = 1,E = 2000, and ν = 0.3.
Note that our formulation is based on Cartesian coordinates. Thus, polar transformation
is performed to compare results.
To solve the Lamé problem, we deploy a PINN in the mixed variable formulation (see

Eq. 39). The following output transformation is applied to enforce displacement and trac-
tion BCs as hard constraints on the edges numbered 1 and 3:

ũx = x
E
Nux , ũy = y

E
Nuy , σ̃xy = xyNσxy . (33)

As can be seen in Fig. 9, the constructed output transformation fulfills the displacement
boundary conditions at x = 0 and y = 0. Also, the displacement outputs are scaled by 1/E
to ease the optimization process (see “Importance of output scaling” section). Traction
boundary conditions are enforced as hard constraints for edges numbered 1 and 3, which
lets us represent zero shear stresses there. Since traction boundary conditions on edges 2
and 4 contain a coupling of normal and shear stresses, we enforce them as soft constraints.
The employed PINN is a fully connected neural network consisting of 3 hidden layers

of 50 neurons each as indicated in Table 1. We train the network using 330 training
points, of which 262 are located within the domain and the remaining 68 points are on
the boundary.We refer to the introductory paragraph of Numerical examples” section for
further settings of both network and optimizer.
Figure 10a, b show a comparison of the normalized stress and displacement solutions

in radial direction. Relative L2 errors for displacements and stresses are calculated on test
points as 0.017% and 0.043%, respectively. While the network is trained with Adam, the
convergence rate decreases along with epochs as shown in Fig. 10c. Applying L-BFGS-B
just after Adam increases the convergence rates and leads to a further significant reduc-
tion of PDE and NBC losses. The average MSE for the PDE loss reaches approximately
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Fig. 10 Results for the Lamé problem of linear elasticity. a Comparison of normalized stresses obtained from the
analytical solution and the predicted values, b comparison of normalized displacements, and c evolution of the
MSE for the cumulative PDE loss and NBC loss

Table 2 Additional version of the Lamé problem with a challenging parameter set, selected scaling
constants and computed L2 errors

Parameter Scaling constant Error

E ν p ũx , ũy σ̃xy , σ̃yy , σ̃xy EuL2 (%) Eσ
L2
(%)

210 × 109 0.25 1.5 × 105
p

E
p 0.023 0.048

1.06e−7, while the average MSE for the NBC loss is approximately 1.48e−8 when all
stopping criteria are met. We observe that deploying Adam and L-BFGS-B optimizers in
a sequential order is one of the key points to obtain a good accuracy since Adam avoids
rapid convergence to a local minimum, which has also been mentioned in [52]. Using a
standard multi-core workstation as hardware, training takes 27.15 s and prediction takes
0.001 s.
An additional version of the Lamé example is generated to demonstrate that PINNs

with output transformation (see Eq. 18) can effectively tackle problems with large-scale
parameters, e.g. E = 210 × 109, ν = 0.25 and p = 1.5 × 105. As provided in Table 2,
relativeL2 errors for displacements and stresses are computed on test points as 0.023% and
0.048%. These results are very similar to the Lamé example with small-scale parameters
since appropriate scaling constants are chosen, which dispels the commonmisconception
that PINNs cannot handle very different magnitudes of the parameters involved. Thus,
problems characterized by varying scales including those introduced by nonlinear contact
terms can be effectively addressed through PINNs with proper output scaling. We refer
to Appendix 2 for a comparison of the normalized stress and displacement solutions in
radial direction, and the evolution of the cumulative PDE loss and NBC loss.

Contact between an elastic block and a rigid surface

The second example is a contact problem between a linear-elastic block and a rigid flat
surface as depicted in Fig. 11a. The elastic block is subjected to an external pressure on its
top surface and constrained in the horizontal direction on its left surface. The analytical
solution [56] can easily be derived as follows
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Fig. 11 Contact problem between an elastic block and a rigid flat surface, a geometry, supports and loading,
and b an equivalent system including all relevant boundary conditions

ux = −p
E

ν(1 + ν)x, uy = p
E
(1 − ν2)y,

and

σyy = −p, σxy = 0.

For our specific setup, we set the material parameters as E = 1.33, ν = 0.33, the edge
length of the square block as l =1 and the pressure as p=0.1.
Similar as before, we apply the following output transformation to enforce displacement

and traction boundary conditions on the edges numbered 1, 2 and 3 as

ũx = xNux , σ̃xx = (l − x)Nσxx ,

σ̃yy = −p + (l − y)Nσxy , σ̃xy = x(l − y)(l − x)Nσxy .
(34)

These output transformations can easily be derived based on Fig. 11b. For instance, the
normal stress σyy in the loading direction is equal to −p at y = l. Thus, we choose
g(x) = −p, and h(x) = (l − y) so that the requirements given in Eq. 19 are fulfilled.
On the other hand, the contact constraints at the bottom edge are enforced as soft con-
straints using the three different methods that have been explained earlier in “Enforcing
the Karush–Kuhn–Tucker inequality constraints” section: the sign-based method, the
Sigmoid-basedmethod and the Fischer–Burmeister NCP function. For the Sigmoid-based
method, we choose δgn = 10 and δpn = 100. For training, 514 points are used (434 points
lie within the domain and 80 points lie on the boundary), and 11,827 points are used for
testing.
As illustrated in Fig. 12, all of the investigated methods correctly capture that uy is

linearly distributed and close to zero at the bottom due to the soft enforcement of contact
constraints. The maximum absolute error for the displacement component uy, denoted
by Euy

abs,max, is larger for the sign-based formulation compared to the two other methods
(see Table 3). Meanwhile, the normal stress component, σyy, is close to − 0.1 and the
shear stress component σxy is close to zero. Since the traction boundary condition in
y-direction on the top surface and the shear stress boundary conditions are enforced as
hard constraints, absolute errors in the corresponding regions are zero for all cases. The
sign-based formulation also performs worst in terms of the errors Eσyy

abs,max and Eσxy
abs,max.

Moreover, L2 relative errors show that the Fischer–Burmeister NCP function performs
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Fig. 12 Predictions of the displacement component uy , stresses σyy and σxy with corresponding absolute errors

E
uy
abs , E

σyy

abs , E
σxy

abs . The contact constraints LKKT are enforced via three different methods: a sign-based method, b
Sigmoid-based method and c the Fischer–Burmeister NCP function. Absolute error is defined as E∗

abs = abs(∗̃ − ∗)

Table 3 The structure of hidden layers, performance measurements, and errors for the contact
example between an elastic block and a rigid surface

Hidden layers Training time (s) Prediction time (s) EuL2 (%) Eσ
L2
(%) E

uy
abs,max E

σyy

abs,max E
σxy

abs,max

(a) 5 × 50 20.15 0.388 0.382 0.154 2.66e−4 4.34e−4 1.11e−4

(b) 5 × 50 20.14 0.389 0.090 0.094 8.23e−5 1.51e−4 6.30e−5

(c) 5 × 50 18.20 0.383 0.024 0.031 2.71e−5 6.10e−5 2.55e−5

Three different methods to enforce the KKT constraints are compared: (a) sign-based, (b) Sigmoid-based and (c)
Fischer–Burmeister

best, i.e. with errors being up to one order of magnitude smaller than for the sign-based
and Sigmoid-based variants. Additionally, it is observed that all investigated methods
require similar computing time for training and prediction. Overall, it can be concluded
that the Fischer–Burmeister NCP function yields the best results in terms of accuracy and
computing time.

Hertzian contact problem

In this example, we consider a long linear elastic half-cylinder (E = 200, ν = 0.3) lying on
a rigid flat surface and being subjected to a uniform pressure p = 0.5 on its top surface as
shown in Fig. 13a. The analytical solution for the contact pressure pc is given as [57,58]

pc = 4Rp
πb2

√
b2 − x2 with b = 2

√
2R2p(1 − ν2)

Eπ
. (35)

Here, b is the width of the contact zone, and R is the radius of the cylinder. For the chosen
set of parameters (p = 0.5, E = 200, ν = 0.3, R = 1), b can be calculated as 0.076.
An analytical solution is available only for the contact pressure. Reference solutions for
displacement and stress fields within the half-cylinder are obtained with well-established
FEM algorithms. The FEM simulations are performed with our in-house multi-physics
research code BACI [59].
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Fig. 13 The Hertzian contact problem between an elastic half-cylinder and a rigid flat surface a domain under
uniform pressure on top and making use of symmetry, b accompanying boundary conditions

Table 4 The structure of hidden layers, number of input neurons, training and test points, and loss
weights are given for different cases of the Hertzian contact problem

Hidden

layers

# Input

neu-

rons

# Train-

ing

points

# Test

points

Loss weights

Case 1 5 × 50 2 47935 26185 wKKT=103

Case 2, 3 5 × 50 2 47935 26185
wKKT = 103 , wEXPs

1 = 104 , wEXPs
2 = 104 ,

wEXPs
3 = 10−1 , wEXPs

4 = 10−1 , wEXPs
5 = 10−1

Case 4 8 × 75 3 1946 604 wKKT = 104

The remaining loss weights are set as 1. See Appendix 1 for a detailed explanation of loss weights

The following output transformation is applied to enforce displacement and traction
BCs as hard constraints on the edges numbered 1 and 2 (see Fig. 13b)

ũx = −x
E

Nux , ũy = 1
E
Nuy , σ̃yy = −p + (−y)Nσyy , σ̃xy = xyNσxy . (36)

As for the Lamé problem, we scale the displacement field with the inverse of the Young’s
modulus 1/E. Additionally, only one non-zero helper function g(x) = −p is required for
σ̃yy. The traction BC on edge 3 and the contact constraints on edge 4 are enforced as
soft constraints. To define the potential contact area, we set α = 15◦ (corresponding to
b = 0.259),which extendswell beyond the actual contact area.Moreover, KKTconstraints
are enforced using the Fischer–Burmeister method.
In the following, we investigate four distinct PINN application cases for the Hertzian

contact problem:Case 1: PINNs as pure forwardmodel/PDE solver,Case 2: PINNs as data-
enhanced forwardmodel,Case 3: PINNs as inverse solver for parameter identification, and
Case 4: PINNs as a fast-to-evaluate surrogate model. We refer to Table 4 for information
on network architecture, and training and test points. To facilitate reproduction of the
results, the table also reports the weights of individual loss terms.

Case 1: PINNs as pure forwardmodel/PDE solver

In the first use case, we deploy PINNs as a pure forward solver for contact problems to
validate our approach. Training takes a total of 4049.8 s and the prediction time is 0.091 s.
Note that FE simulation of the same test case requires 19.2 s, a considerably longer dura-
tion compared to the prediction time of a trained PINN since the most time-consuming
aspect of PINNs is the training process. Displacement and stress components obtained
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Fig. 14 PINNs as pure forward solver for the Hertzian contact problem. Comparison of stress and displacement
components obtained by PINN and FEM

Fig. 15 Comparison of contact pressure distributions pc (x) obtained by analytical solution, PINN and FEM for
case 1

through PINN and FEM are compared with contour plots in Fig. 14. Errors for displace-
ment and stress fields are quantified using the relative L2 norm. As summarized in Table
5, we obtain a relative error Eu

L2 = 2.24% for the displacement field and a relative error
Eσ
L2 = 3.74% for the stress field. Furthermore, the contact pressure distributions obtained

via analytical solution, PINN and FEM are compared in Fig. 15. Since the zero traction
boundary condition and the KKT constraints on the curved surface, numbered as edge 3
in Fig. 13, are not enforced as hard but soft constraints, the PINN result can only resolve
the kink at x = ±0.076 in an approximate manner depending on the chosen set of train-
ing points. Consequently, the contact pressure pc reduces to zero smoothly and slightly
violates the zero traction boundary condition in the non-contact zone. Accordingly, the
rather large error values Eσ

L2 aremostly related to this violation of the zero traction bound-
ary conditions andKKTconstraints close to the kink. Readers familiar with FEMmodeling
of contact problems will notice that a quite similar phenomenon occurs for mesh-based
numerical methods where the transition between contact and non-contact zones can-
not be perfectly resolved either and might even cause spurious oscillations in the case of
higher-order interpolation functions [24,60,61].
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Table 5 Comparison of relative L2 errors, training and
prediction time for case 1 and case 2

EuL2 (%) Eσ
L2
(%) Training time (s) Prediction time (s)

∫
�c

p̃c

Case 1 2.24 3.74 4049.8 0.091 0.4993

Case 2 0.11 2.79 7126.7 0.092 0.4978

The term
∫
�c

p̃c denotes an integral of the predicted contact pressure p̃c over the potential contact boundary

Fig. 16 Comparison of contact pressure distributions pc (x) obtained by analytical solution, PINN and FEM for
case 2. a PINNs as a data-enhanced forward solver, b distribution of data points generated through FEM
simulations in the domain and on the boundary

Case 2: PINNs as data-enhanced forwardmodel

One of the key features of PINNs is the capability of easily incorporating external data,
such as measurement or simulation data, into the overall loss function. In this section,
we enhance our PINN model with “artificial” measurement data obtained through FEM
simulations, namely, data points for displacement and stress fields, to achieve better accu-
racy. The incorporated FEM data points are randomly selected, with 100 being selected
within the domain and 100 being chosen along the boundary as depicted in Fig. 16b.
A comparison of the contact pressure pc in the case of data enhancement with analyti-

cal solution and FEM reference solution is given in Fig. 16a. While the PINN accuracy is
significantly improved upon close to the kink at x = ±0.076, the data-enhanced model
underestimates the normal contact pressure around the origin. The relative L2 errors con-
firm this assessment. While Eσ

L2 is only slightly reduced, Eu
L2 benefits dramatically from

data enhancement. As provided in Table 5, the integrated contact pressure is close to the
applied load, p = 0.5, due to the conservation of momentum. To fulfill the momentum
equation, overshooting after the kink is balancedbyundershooting around the origin. Sim-
ilarly, in case 1, overshooting after the kink is balanced by the undershooting from around
x = 0.04 to the kink. Moreover, we observe that results significantly rely on selecting
appropriate additional data loss weights wEXPs (reported in Table 4). So far we identified
the parameters through manual adjustments. In general, we recommend a hyperparam-
eter analysis to determine optimal loss weights. Additionally, the data-enhanced model
requires more training time compared to the pure forwardmodel, which can be explained
by the need to evaluate additional loss terms. However, after training is finished, the more
accurate prediction takes essentially the same time as in case 1.

Case 3: PINNs as inverse solver for parameter identification

An interesting approach to solve an inverse problem is to simply add the unknown param-
eter to the set of network trainable parameters θ, and it can then be identifiedwith the help
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Fig. 17 Identification of the applied external pressure on the half-cylinder in case of different initial guesses a
po = 0.1, b po = 5, c po = 20

of additional loss terms based on the difference between predictions and observations (see
Eq. 37). In the following, we exemplarily identify the applied external pressure p acting on
the half-cylinder using FEM results as “artificial” measurement data.

�∗ = arg min
�

LC(�) where, � = (p, θ). (37)

Figure 17 shows the convergence behavior of the identified pressure p̃ compared to the
actual pressure p through the number of epochs for different initial guesses p̃o. First, we
start training with a “good” initial guess p̃o = 0.1 being quite close to the actual pressure
p = 0.5, and then we increase it to p̃o = 20 to measure how sensitive the PINN is to the
choice of the initial guess. As depicted in Fig. 17c, convergence can be achieved even when
a relatively large and therefore unphysical initial guess is made. There is a steep increase
in convergence rate after 2000 epochs, which can be explained by the fact that we switch
to the L-BFGS-B optimizer there. As mentioned in “Lamé problem of elasticity” section,
we deploy Adam for 2000 epochs to avoid the optimization process getting stuck in local
minima. Note, however, that switching from Adam to L-BFGS-B introduces oscillations
in the transition region so that transition has to be handled with care. The relative error,
denoted as E, is used to measure the difference between the identified and actual pressure
values, resulting in the same value of 1.2% for all three initial guesses po = 0.1, po = 5,
and po = 20 as provided in Table 6. Additionally, a larger initial guess requires more
computing time and epochs as expected.

Case 4: PINNs as fast-to-evaluate surrogatemodel

In the last use case, the load (applied external pressure) is considered as an additional net-
work input, i.e. z = (x, p) (compare Eq. 16), to construct a fast-to-evaluate surrogatemodel
that is capable of predicting displacement and stress fields for different pressure values.
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Table 6 Comparison of relative errors, training time and number of epochs for the inverse Hertzian
problem used to identify the applied external pressure

Initial guess p̃o Identified p̃f Relative error E(%) Training time (s) # Epochs

Case 3 0.1 0.494 1.2 3472.8 12958

5 0.494 1.2 3762.2 14019

20 0.494 1.2 5394.1 19793

The relative error is defined as E∗ = abs ((∗̃ − ∗)/∗)

Fig. 18 An illustration of the procedure to include the applied external pressure as a neural network input

Since a single network is deployed, the length of each network inputmust be the same.We
sample the three-dimensional input space withN = 1946 training points (N = Nrp+Nbp
(Eq. 23)). While the spatial coordinates x are selected from a two-dimensional mesh (as in
“Case 1: PINNs as pure forwardmodel/PDE solver”, “Case 2: PINNs as data-enhanced for-
wardmodel”, and “Case 3: PINNs as inverse solver for parameter identification” sections),
the third (pressure) component of the input vector is drawn randomly from a uniform dis-
tribution over the considered pressure range. To improve the accuracy of the prediction,
the N sampling points are repeated k times. In the context of network training, we refer
to one instance of the N distinct sampling points as one chunk, so that k is the number
of chunks as depicted in Fig. 18. Indeed, this process increases the computing time and
complexity of the model, since the input size increases from (n, 2) to (n · k, 3). However,
such a method can lead to better accuracy since the network is trained with a larger data
set and also it enables batch training to reduce computational effort [47]. For our specific
example, we sample pressure values from a range of [0.2, 1.0] and we consider only two
different numbers of chunks, namely k = 1 and k = 5.
As shown in Fig. 19, employing a single chunk is insufficient to accurately capture the

influence of the applied external pressure p on the contact pressure distribution pc(x, p).
However, increasing the number of chunks from k = 1 to k = 5 increases the accu-
racy. Table 7 provides the relative L2 errors for the contact pressure distribution pc(x, p)
between the analytical solution and the predictions of surrogate PINNmodels, and it can
be seen that increasing the number of chunks indeed results in improved accuracy of the
surrogate model. Nonetheless, the overall error level of 10–16% even in the case k = 5 is
still too high from an engineering perspective and will be subject to further investigations.
This example is only intended as a very first proof of concept, and we have already iden-
tified several algorithmic modifications that could possibly increase the accuracy of the
surrogate model. For example, we use fixed loss weights even though pressure values in
the input layer vary. Thus, adaptive loss weights should be implemented since the PINN
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Table 7 Comparison of relative L2 errors for the contact pressure distribution pc (x, p) between the
analytical solution and the predictions of our surrogate PINN models. Predictions are based on
unseen pressure values

Applied pressure

p = 0.45 p = 0.98 p = 1.5

Number of chunks k = 1 22.81% 17.23% 16.93%

k = 5 16.30% 11.47% 10.87%

Predictions are based on unseen pressure values

Fig. 19 Comparison of the contact pressure distribution obtained through a PINN-based surrogate model to the
analytical solution. The PINNs are trained using different numbers of chunks

accuracy highly depends on choosing appropriate loss weights. Additionally, the accuracy
of PINNs could be further improved by increasing the number of chunks.

Conclusion
In this study, we have presented an extension of physics-informed neural networks
(PINNs) for solving forwardand inverseproblemsof contactmechanicsunder the assump-
tion of linear elasticity. The framework has been tested on several benchmark examples
with different use cases, e.g. theHertzian contact problem, and has been validated by exist-
ing analytical solutions or numerical simulations using the finite element method (FEM).
As an alternative way of soft constraint enforcement as compared to existing methods,
a nonlinear complementarity problem (NCP) function, namely Fischer–Burmeister, is
explored and exploited to enforce the inequality constraints inherent to contact prob-
lems. This aspect has not been investigated in the context of PINNs so far to the best of
the authors’ knowledge. Besides using PINNs as pure forward PDE solver, we show that
PINNs can serve as a hybrid model enhanced by experimental and/or simulation data
to identify unknown parameters of contact problems, e.g. the applied external pressure.
We even go one step further and deploy PINNs as fast-to-evaluate surrogate models, and
could at least obtain a first proof of concept up to a certain level of accuracy.
A question that has emerged recently is whether data-driven approaches such as PINNs

will replace classical numericalmethods such as FEM in the near future.Within this study,
we only considered benchmark examples that have been developed and solved decades
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ago using the FEM. Even for these simple examples, we came to the conclusion that
deploying PINNs as forward solvers for contact mechanics can not compete with FEM
in terms of computational performance and accuracy. Therefore, we doubt the applica-
bility of PINNs to complex engineering problems without data enhancement. However,
PINNs can be a good candidate for solving data-enhanced forward problems and espe-
cially inverse problems due to the easy integration of additional data. Similarly, PINNs
can break the curse of dimensionality of parametric models, so that more complex surro-
gate models can be generated. Also, it is observed that minimizing multiple loss functions
simultaneously is one of the most significant challenges in training PINNs, and current
optimization algorithms are not tailored to addressing this challenge. Therefore, using
multi-objective optimization algorithms that are particularly designed for PINNs has the
potential to be a gamechanger in improving their overall performance and accuracy. As an
alternative to multi-objective optimization algorithms, it is observed that a proper scaling
strategy via output transformation can be applied to ease the optimization. We believe
that hybrid strategies can be a promising option to construct mixed models to benefit
from the advantages of both classical and data-driven approaches.
This study reveals several possibilities for further exploration and investigation.

Although the proposed PINN formulation for benchmark examples demonstrates accept-
able results, further applications, particularly on complex domains including three-
dimensional problems should be analyzed. As an alternative strategy to scaling network
outputs, a non-dimensionalized contact formulation can be implemented. Different NCP
functions other than the Fischer–Burmeister function can be further investigated. The
inverse solver has been applied to identify the applied external pressure, but it can be
extended to also predict internal material parameters. Additionally, a hyperparameter
optimization study can be performed to tune loss weights, network architecture and opti-
mizer parameters. Last but not least, related techniques such as variational PINNs might
overcome the limitations of collocation inherent to PINNs and instead provide a sound
variational framework.
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Appendix 1: Loss formulation for 2D linear isotropic elasticity under plane
strain conditions
The elasticity tensor C under plane strain conditions can be expressed in terms of Lamé
constants λ and μ as

C =
⎡

⎢
⎣
2μ + λ λ 0

λ 2μ + λ 0
0 0 μ

⎤

⎥
⎦ . (38)

Inserting Eq. 38 into Eq. 23 we can obtain the total loss for 2D linear isotropic elasticity
under the plane strain condition as

LE = LPDEs + LDBCs + LNBCs + LEXPs

= w(PDEs)
1

∣∣σ̃xx,x + σ̃xy,y + b̂x
∣∣
�

+ w(PDEs)
2

∣∣σ̃yx,x + σ̃yy,y + b̂y
∣∣
�
+

w(PDEs)
3

∣∣σ̃xx − (λ + 2μ)ε̃xx − λε̃yy
∣∣
�

+ w(PDEs)
4

∣∣σ̃yy − λε̃xx − (λ + 2μ)ε̃yy
∣∣
�
+

w(PDEs)
5

∣∣σ̃xy − 2με̃xy
∣∣
�
+

w(DBCs)
1

∣∣ũx − ûx
∣∣
∂�D

+ w(DBCs)
2

∣∣ũy − ûy
∣∣
∂�D

+
w(NBCs)
1

∣∣σ̃xxnx + σ̃xyny − t̂x
∣∣
∂�N

+ w(NBCs)
2

∣∣σ̃yxnx + σ̃yyny − t̂y
∣∣
∂�N

+
w(EXPs)
1

∣
∣ũx − u∗

x
∣
∣
�e

+ w(EXPs)
2

∣
∣ũy − u∗

y
∣
∣
�e

+ w(exps)
3

∣
∣σ̃xx − σ ∗

xx
∣
∣
�e

+
w(EXPs)
4

∣∣σ̃yy − σ ∗
yy

∣∣
�e

+ w(EXPs)
5

∣∣σ̃xy − σ ∗
xy

∣∣
�e

(39)

including kinematics

ε̃xx = ũx,x, ε̃yy = ũy,y, ε̃xy = 1
2
(ũx,y + ũy,x), (40)

where

ũx ≈ (Nux (x, y))
′
, ũy ≈ (Nuy (x, y))

′
,

σ̃xx ≈ (Nσxx (x, y))
′
, σ̃yy ≈ (Nσyy (x, y))

′
, {σ̃xy = σ̃yx} ≈ (Nσxy (x, y))

′
.

(41)

The out-of-plane stress component σzz is not considered as network output since it can
be calculated in the post-processing.

Appendix 2: Results for the Lamé problem of elasticity with large-scale
parameters
See Fig. 20.

Appendix 3: Additional error comparisons
The vector-based L2 error between the approximated PINN solution f̃ and the analytical
solution f , is denoted as,

Ef
L2 :=

√√
√√√

Ntest∑

j=1

(
f̃ (xj) − f (xj)

)2
. (42)
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Fig. 20 Visualization of results for the Lamé problem of linear elasticity with large-scale parameters. a
Comparison of normalized stresses obtained from the analytical solution and the predicted values, b comparison
of normalized displacements, and c evolution of the MSE for the cumulative PDE loss and NBC loss

Table 8 Comparison of the vector-based and integral-based L2 error for the Lamé problem of
elasticity

Vector-based Integral-based

EurL2 Eσrr
L2

Eσθθ

L2
Eσrθ
L2

ξ
ur
L2

ξ
σrr
L2

ξ
σθθ

L2
ξ

σrθ
L2

1.06e−5 0.012 0.035 0.008 8.80−e6 0.010 0.030 0.006

The evaluated quantities are displacement and stress components in polar coordinates (see “Lamé problem of elasticity”
section for the example setup)

Table 9 Comparison of the vector-based and integral-based L2 error for the contact problem
between an elastic block and the rigid domain

Vector-based Integral-based

EuxL2 E
uy
L2

Eσxx
L2

E
σyy
L2

E
σxy
L2

ξ
ux
L2

ξ
uy
L2

ξ
σxx
L2

ξ
σyy
L2

ξ
σxy
L2

Sign 3.98e−3 1.753e−2 1.05e−2 1.166e−2 5.68e−3 3.92e−3 1.750e−2 1.04e−2 1.156e−2 5.74e−3

Sigmoid 1.91e−3 3.79e−3 5.89e−3 7.419e−3 3.86e−3 1.85e−3 3.75e−3 5.81e−3 7.421e−3 3.91e−3

Fischer–

Burmeister

8.46e−4 8.04e−4 2.28e−3 2.10e−3 1.20e−3 8.20e−4 7.80e−4 2.26e−3 2.08e−3 1.22e−3

Evaluated quantities are displacement and stress component in cartesian coordinates. Three different methods are provided
to enforce KKT constraints (see “Contact between an elastic block and a rigid surface” section for the example setup)

The corresponding integral-based L2 error between the approximated PINN solution f̃
and the analytical solution f , is denoted as,

ξ
f
L2 :=

√
Ntest∫
�
dx

∫

�

(
f̃ (x) − f (x)

)2
dx, (43)

where
∫
�
dx represents the area for Tables 8 and 9, while it represents the arc length for

Table 10, since the contact pressure pc is integrated over the potential contact boundary
∂�c. We refer to “Lamé problem of elasticity”, “Contact between an elastic block and
a rigid surface”, “Hertzian contact problem” sections for the respective number of test
points Ntest. Note that in this first study, we used the vector-based error measure that is
frequently used for PINNs [20,46] and easily implemented. For future studies, we suggest
more expressive integral-based error estimates.
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Table 10 Comparison of the vector-based and integral-based L2 error for the contact pressure pc of
the Hertzian contact problem for different cases (see “Case 1: PINNs as pure forward model/PDE
solver” and “Case 2: PINNs as data-enhanced forward model” sections for the example setup)

Vector-based Integral-based

EpcL2 ξ
pc
L2

Case 1 2.22 2.48

Case 2 0.89 1.27
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