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Abstract

The article presents the application of inductive graph machine learning surrogate
models for accurate and efficient prediction of 3D flow for industrial geometries,
explicitly focusing here on external aerodynamics for a motorsport case. The final aim is
to build a surrogate model that can provide quick predictions, bypassing in this way the
unfeasible computational burden of traditional computational fluid dynamics (CFD)
simulations. We investigate in this contribution the usage of graph neural networks,
given their ability to smoothly deal with unstructured data, which is the typical context
for industrial simulations. We integrate an efficient subgraph-sampling approach with
our model, specifically tailored for large dataset training. REV-GNN is the chosen graph
machine learning model, that stands out for its capacity to extract deeper insights from
neighboring graph regions. Additionally, its unique feature lies in its reversible
architecture, which allows keeping the memory usage constant while increasing the
number of network layers. We tested the methodology by applying it to a parametric
Navier–Stokes problem, where the parameters control the surface shape of the
industrial artifact at hand, here a motorbike.
Keywords: Computational fluid dynamics, Graph machine learning, External
aerodynamics, Large scale model, 3D surrogate model

Introduction
The knowledge of the behavior and the effects of impacting flows around or within target
objects is one of the main interests in Aerodynamics modeling, in order to aid the design
process in optimizing performance. Computational fluid dynamics (CFD) simulations are
the most established ways to gain proper insight into flowfield behavior. However, they
tend to have both pros and cons. Their limitations are even more explicit for multi-query
problems or when the available computational power is limited. Both these factors are
present in several engineering fields, among which themotorsport one. In fact, in order to
perform shape optimization, a large number of different geometries are in need of being
tested, and the total number of computing hours is usually restricted by computational
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availability and, in the case of sports competitions, also by regulations. The main goal of
this contribution is indeed the investigation of innovative data-driven solutions in search
of a surrogate model capable of tackling the weaknesses of large-scale simulations, such
as:

• Non-negligible running time, especially given the need to run large simulations (sev-
eral millions of cells, enormous memory requirements as a consequence) almost
non-stop (often day and night).

• Limitations on the number of simulations that can be performed.

This setting is particularly relevant in the motorsport scenario but can be extended to a
variety of different situations where a large number of configurations of the system under
study must be performed or a limited computational cost is necessary. This situation
occurs, for example, in shape optimization problems, uncertainty quantification, inverse
problems, and real-time control. Our surrogate model should be able to perform infer-
ences much faster than the consolidated simulation frameworks—finite volume, finite
element—, at the expense of slightly less reliability in accuracy. Overall, a lot of effort
is put into developing an efficient and scalable model, capable of handling specific envi-
ronmental constraints together with a huge amount of data (beyond the size of the case
studies displayed in this research paper).
A possible way to reduce the cost of CFD simulations is given by reduced order models

(ROMs) [1]. The construction of a ROM is usually based on two different phases, a first
one where a set of properly collected high-fidelity solutions are used to determine a low-
dimensional representation of the solution manifold; and a second one, which consists of
the determination of the solution, in the compressed solutionmanifold, for any new value
of the input parameters. The first stage can be conducted using both linear and nonlinear
compression strategies. Fromwhat concerns linear approaches, themost used approaches
are the proper orthogonal decomposition (POD) [2,3] and the reduced basis method [4].
Nonlinear approaches are usually based on machine learning tools such as autoencoders
[5], convolutional autoencoders [6,7], or similar architectures.
The methodology used to perform the second stage distinguishes intrusive ROMs from

non-intrusive ROMs. Intrusive ROMs are based on the idea of projecting the set of equa-
tions on the compressed solution manifold. This type of model has the advantage of
being intrinsically physics-based since the evolution of the latent coordinates into the
compressed solution manifold is retrieved through the minimization of the residual asso-
ciated with the governing equations. On the other side, knowledge of the discretized
equations is necessary. Therefore, access to the source code of the solver used to compute
the high-fidelity solutions is required (hence the intrusive epithet). The speedup that can
be achieved by this type ofmethod is usually limited by the efficiency of the full order solver
and drastically decreases in case of high dimensional problems and high nonlinearities [8].
Non-intrusive methods directly use different regression or interpolation methods to

approximate the map between the evolution of the latent coordinates in the compressed
solution manifold and the input parameters. Possible approaches are based on multi-
variate interpolationmethods like radial basis function techniques [9], or other regression
strategies such as Gaussian progress regression [10] ormachine learningmethods [11,12].
In the present article, our attention is devoted to the development of a surrogate model
that is purely data-driven and that could directly work on motorsport simulations (i.e.
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3D high-dimensional full-order simulations on unstructured grids). In what follows, we
briefly summarize the most promising approaches that fall into this category:

• Gaussian Processes (GP): they can be defined as a (potentially infinite) collection of
random variables (RVs) such that the joint distribution of every finite subset of RVs is
multivariate Gaussian. The main use case is related to the capability to compute the
posterior distribution in a Bayesian setting and infer a function that is expected to
approximate some variables of interest in a region of missing training data. Broadly
speaking, this method tends to have an edge in the context of little amount of training
data available. However, fitting too much data also makes the model extremely slow.
Relying, instead, on a subset of the data would not let us exploit the full capabilities of
our dataset, which is again against our main interest given our need for accuracy. In
spite of that, some variants blending GP and deep learning have recently been studied
in some papers and further research is underway [13–15].

• CNN-like architectures: when dealing with 3D-flowfield prediction, these methods
tend to exploit the fact that the 3D shapes being used are quite easy to model. There-
fore, they often perform some sort of function-mapping from the 3D space into a 2D
one in order to be able to apply the 2D convolutions afterward [16]. Nevertheless, the
primary challenge lies in the mapping process itself, which lacks clear guidelines for
addressing complex 3D geometries.

• Encoder-Decoder-based architectures: generally speaking, these deep learning algo-
rithms encode the input in a low-dimensional space, in order to learn the fundamen-
tal structure of the data. Afterward, they use this synthetic and dense description
to reconstruct the output. Multiple forms of this architecture have been researched
[17,18], also in the context of autoencoders [19], allowing a generative-like process.
In the context of large fluid dynamics simulations, characterized by high Reynolds
number, a lot of attention should be put into making sure that convergence does not
fail and that the model does not overfit the training data either.

• Physics-informed neural networks (PINN): they consist of a deep learning model
enforcing physics constraints in the loss function, often via a differential equation.
Several variants of these methods often try to address these kinds of physics-related
problemswhere the underlying behavioral laws are knownbut an analytical solution is
not available as well as easy computations of an approximate one. In our case, PINN
tries to enforce the behavior of the Navier–Stokes Equations [20,21]; nevertheless,
the complexity of these equations makes it hard to work in this context, too. In fact,
current attempts only deal with very simple applications, both in terms of geometry
and equations.

• GraphNeural Networks (GNN): this recent and yet not-widely adopted deep learning
methodology (mostly applied to 2D mesh data in aerodynamics-related literature
[22,23]) allows to deal also with highly heterogeneous and unstructured 3D data by
training directly on the graph made up of nodes and edges (and related features)
without any further constraint about the space topology like in the CNNs. In this
research article, our proposed methodology will entail the utilization of graph neural
networks to construct a surrogate model for 3D flowfield prediction.
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Over the course of academic research, several neural network models have been built
on top of graphs, with the first powerful neighborhood aggregationmodel being the graph
convolutional networks (GCN) [24]
In the context of fluid dynamics, impressive physics-driven models have lately been

implemented [25]: they show how complex particle-based physical systems, with nomore
than a few thousand particles, can be modeled by blending the latest deep learning break-
throughs in graph machine learning with the physics underpinning the phenomenon of
interest. DeepMind also experimented with mesh-based [26] underlying structures, pre-
senting innovative and inspiring ideas for the field of aerodynamics.
However, additional restraints come into play when working within a specific research

domain coupled with peculiar constraints, such as managing huge graphs.. In fact, real
cases often involve an enormous amount of nodes and edges, an aspect which is hardly
taken into account when dealing, for example, with 2D images. In the majority of cases,
at least a whole 2D image can fit into GPU; for a big 3D graph, it is completely different
as this is not guaranteed at all. Possible solutions to this impediment come from sampling
subgraphs within the original graph and learning their local structure. Transductive learn-
ing would not make it reasonable to proceed in this way; instead, the inductive properties
within the GraphSAGE framework [27] make it feasible. Thus, a fixed-size neighborhood
is sampled before learning in order to properly control the memory footprint of the graph
loaded into the GPU. More recent ways of sampling the nodes for a subgraph have been
experimented in the GraphSAINT sampler [28]. Depending on the research area, the act
of sampling might be a close approximation of reality or a very far one: a relatively small
subgraph will limit the ability of the model to learn long-distance relationships among
the nodes; instead, if we have large enough GPU memory, we can store a sufficiently
big subgraph and use a suitable deep model. Simply adding many GCN layers does not
help: in fact, similarly to the CNNs, we need a mix of ingredients to make the long-
distance relationships worthwhile. For example, skip-connection mechanisms help the
CNN not to disperse the information flow among layers; a similar message-forwarding
procedure has been imagined for GNNs, too: [29] shows how this approach allows adding
many layers while achieving SOTA performances. Nevertheless, memory tends to grow
exponentially as the number of layers increases. That is why most of the authors of this
just-cited research paper later joined forces again and tried to tackle the problem: in [30]
they conceive and explain how revertible connections allow extremely deep architectures
by keeping the memory usage constant while varying the number of layers. This is the
main reason leading us to adopt this graph-based model, called REV-GNN, while also
integrating useful approaches or methodologies presented in other research articles.
A deeper overview of recent cutting-edge and impactful journals deserves attention.

Some have shaped the graph machine learning landscape by proving to be real break-
throughs in recent years. Others have focused on providing valuable insights and inspiring
approaches for specific real-world domains or niche research areas.
Nonetheless, the vast majority of the models we studied share some limitations when we
think about our specific applicationdomain. First of all, thememory tends to explodewhen
designing deep architectures. In addition, they are mostly focused on node classification,
link prediction, or graph regression: thus, their priority is building ’few hopes’ models that
donot needmany layers, unlike our case inwhichwe focus onnode regression. Lastly,most
models are focused on learning some form of short-distance node relationship, which is
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fundamentally different from our needs. Many articles exhibit this pattern because the
motivation behind constructing Graph Neural Networks (GNNs) often stems from real-
world graph structures prevalent across various industry domains. These structures align
with problems that demand improved solutions, such as those found in social networks,
protein structures, transport networks, and more.
Often, in these contexts, the vast majority of the important information is distributed
within the most neighboring nodes; the information residing in farther areas tends to be
muchmore superficial and noisy. This is not our case, as we claim that some long-distance
effects might have a mutual strong impact.
Given the fact that the original GCN architecture poses a lot of limitations because of
its inductive behavior and lack of capability to scale beyond small graphs, we study the
graph attention networks (GAT) [31], which exploit the attention mechanism to tackle
some of the weaknesses of the GCN. They show improved predictive and generalization
capabilities but impose severememory issues when the underlying dataset gets bigger and
bigger. Moreover, GAT only handles homogeneous graphs.
Graph Transformers [32], on the other hand, can overcome this limitation by specializ-
ing in heterogeneous graphs. They also employ the attention mechanism, by integrating
more deeply the idea of the Transformer architecture, famously hyped within the NLP
community. Unfortunately, the benchmark datasets used for testing are small compared
to our graph size, as the model is not necessarily meant to work well with huge graphs. In
addition, as already said, our purpose is directed toward homogeneous graph modeling,
not heterogeneous approaches.
Inductive behavior and high-quality unsupervised node embedding generation are put
in place thanks to GraphSAGE, one of the milestone models within the GNN landscape.
However, empirically, only a few layers of depth are admissible beforememory and training
time explode: thus, it cannot scale to very deepmodels like our REV-GNNmodel is meant
to.
Similarly to GraphSAGE, PinSAGE [33] shares both strong and weak points while also
extending some functionalities. It is characterized by huge engineering efforts by Pinterest
to build on top of the original GraphSAGE algorithm, making the model more practical
and flexible for web-scale recommendation tasks: this is in line with our need to scale to
a huge number of nodes. Another limitation, which was also affecting GraphSAGE, is the
fact that it struggles with long-range node dependencies.
Useful inspiration for the feature engineering side of the REV-GNN model comes from
the Position-aware GNN (P-GNN) [34], which demonstrates enhanced skills in capturing
positions/locations of nodes, after fixing a set of reference anchor nodes. However, as with
previous models, the P-GNN is only benchmarked on small datasets: as a consequence,
its priority is not to address the memory bottlenecks of standard GNNs.
Meaningful help to overcome such issues can be found with the Cluster-GCN [35] and
GraphSAINT models. Both approaches aim at clustering/sampling by breaking down a
large graph into several smaller subgraphs. This approach has the goal of making the
training of big graphs easier; as a result, this method reduces the memory burden. Graph-
SAINT, in particular, is flexible thanks to its subgraph sampling approachwhichwe decide
to combine together with the current REV-GNN model, so that we do not have to store
the whole graph in the GPU memory at the same time. Both methods can scale to more
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Fig. 1 Logical schema of the computational pipeline

than a few layers; though, they still lack the depth that REV-GNN is capable of. Therefore,
they might not be able to capture very long-term relationships.
To address this difficulty, Graph ViT/MLP-Mixer [36] comes into play. It is a very recent
model which captures long-range node and edge dependencies, while at the same time
offering better speed and memory efficiency. Despite competitive results and focusing
on apparently similar needs, the Graph ViT/MLP-Mixer has a very different scope in
terms of model architecture and benchmark datasets. All the datasets used for testing
are made of several graphs, but each of these graphs is extremely small (in the order of
hundreds of nodes). Moreover, the main predictive tasks involve node classification and
graph regression. None of the tasks is comparable to the node regression we need to deal
with. At the same time, the assertions made in the associated article regarding memory
pertain to the efficient training of thousands of small and independent graphs, as opposed
to the context of large graphs.
Therefore, the goal of this research paper is to develop a suitable graphmachine learning

surrogate model in order to greatly improve the time to obtain a prediction compared to
a standard CFD simulation (i.e. RANS).
The dataset consists of academic cases regarding a motorbike. Synthetic but relevant
descriptions of the adopted pipeline framework (summarized in Fig. 1) are provided as
well. Consequently, the structure of the research paper looks like this:

• Section “Creation of the training set”: a brief description of the adopted parametric
high-fidelity model, whose simulations will be assumed as ground truth and so used
as the training set.

• Section“Graph Neural Network application”: main information about dataset,
pre-processing, and sampling methodology. Afterward, the model architecture is
explained, highlighting the aspects of strengths and weaknesses.
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• Section “Numerical results and discussion”: an overview of the main hyperparame-
ters, thorough explanation of the training and inference phase. The final results are
displayed, comparing several models (with different hidden channels and layers) with
the ground truth provided by the CFD simulation.

• Section “Conclusions and outlooks”: a wrap-up of what has been done and accom-
plished throughout the presented article. Aspects to improve, future developments,
and interesting trends are eventually assessed.

Creation of the training set
This section is dedicated to introducing the parametric model used to create the simula-
tions dataset.Wedescribehere thedeformation lawapplied to the industrial artifact—here
amotorbike—, the equations of themodel and themethod to compute its numerical solu-
tion. We highlight here that the proposed approach is agnostic to physics: in principle,
any model can be used to create the solutions database to train the GNN.

Geometry deformation

In order to have a parametric domain, we use Free-Form Deformation applied on a box
on the rear part of the motorbike domain [37]. Such a technique allows to manipulate
the geometry by embedding it into a lattice of points, then moving some of these points
to perturbate the object. In particular, the lattice is defined in [1.6, 1.8] × [−0.2, 0.2] ×
[0.85, 1.05] using just two points per FFD dimension (see Fig. 2).
The deformed configurations are obtained by moving the rear vertices of the box of the

quantitiesμ1,μ2,μ3,μ4, whereμ1 andμ2 are the displacements of the upper and bottom
part along the x coordinates, while μ3 and μ4 are the displacements of the upper and
bottom portion along the z coordinates. 90 parameters µ = [μ1,μ2,μ3,μ4] have been
selected using a uniform distribution in the range [−0.5, 0.5]4, leading to the creation of
90 deformed geometries.

Fig. 2 On the left: base mesh used to embed the motorbike geometry. On the right: the lattice of points used to
perform free-form deformation of the rear part of the motorbike indicated by the red dots
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Full order model

Once the original geometry has been perturbed in order to create several deformed shapes,
full-order simulations are carried out in order tonumerically approximate the quantities of
interest. The CFD simulation is performed using the finite volumemethod on an unstruc-
tured grid composed by ≈ 350,000 cells. It is important to note that, since the deformed
motorbikes, the resulting discrete gridsmay have different topology.We describe the flow
behavior using the Navier–Stokes equations:

⎧
⎨

⎩

∂u
∂t = −∇ · (u ⊗ u) + ∇ · ν

(∇u + (∇u)T ) − ∇p,

∇ · u = 0.
(1)

To compute the solutions, the OpenFOAM open-source library is used [38]. This is a
steady-state solver that employs the SIMPLE algorithm to handle pressure–velocity cou-
pling. The turbulence model is k−ω SST model. Since the computational mesh changes
depending on the deformation parameters, the number of cells is not fixed and varies
among the different geometries. The computational mesh in the undeformed configu-
ration counts 353,996 cells made of polyhedra with different numbers of faces and is
obtained using the snappyHexMesh utility by embedding the stl file of the motorbike
geometry inside a structured mesh. The initial mesh is reported on the left side of Fig. 2
and counts 20 elements along the x-direction and 8 elements along the y and z-directions.
The gradient term is discretized using cellLimited Gauss linear scheme, convective terms
are discretized using a bounded second-order unwinding scheme for what concerns the
velocity field and a first-order bounded scheme for what concerns the κ and ω fields.
Laplacian terms are discretized using a Gauss linear scheme. For more details on the
numerical setting, the interested reader might check [39].

From simulations to graphs

The results of the simulations need a pre-processing step in order to feed the GNNmodel.
This paragraph is dedicated to describing how the training graphs are constructed starting
from the simulation output.
In our work scenario, the conversion from the original mesh-based dataset into a graph

relies on the following action: each cell center is converted into a node of the graph; each
node is then connected to the neighbouring nodes via bi-directional edges (roughly 3–4
edges per node in our datasets) Fig. 3. For any node and edge, additional information
needs to be saved in order to learn and extrapolate the actual physics from the data.
Such information should comprise the distances from a specific point of the domain or
a boundary, (some of) the output values computed during the simulations, or again—for
the edges—the distance between the two nodes linked by the edge itself. The nodes and
edges features used in this contribution are listed in Table 1. Each node has associated 13
features, which are divided into 6 distance measures and 7 output values, while each edge
contains only 1 feature.

Graph Neural Network application
In this section, we focus on the details of the GNN application, firstly providing a sam-
pling strategy to work on large, real-world test cases, and then describing the employed
architecture.
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Fig. 3 An example of the motorbike computational grid (top), a related 2D slice (bottom left), and a 2D slice of
the 3D graph (bottom right). The graph is 3D and is computed from the whole 3D mesh: here we show a 2D slice
just to improve visual clarity

Table 1 Features of the graph and predicted variables

Node features Edge features

Distances Output values

Total tensor dimension |Nodes| × 6 |Nodes| × 7 |Edges| × 1

Description •|Nodes| × 3 → node •|Nodes| × 1 → p •|Edges| × 1 →
distance from the •|Nodes| × 3 → U edge length

origin (0,0,0) •|Nodes| × 1 → k

•|Nodes| × 3 → wall

distance from the •|Nodes| × 1 → νt

closest wall face •|Nodes| × 1 → ω

center

Sampling subgraphs

The huge amount of data at our disposalmakes it necessary to train only part of the dataset
at each iteration. This goal is achieved by sampling techniques which tend to approximate
the full-batch training by extracting subsets, i.e. subgraphs, of the original graph. The
major issues encountered in doing so are the following:

• the suitability of a graph-based sampling technique depends on the characteristics of
the dataset and the model as well

• few already-implemented backend routines are available in PyTorch-Geometric

Tackling these issues is not easy because of the remarkable amount of time needed to
research and fully evaluate the overall context.
These are some relevant considerations:
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• our graph dataset is fully connected, featuring 3–4 edges per node
• correctly predicting the value of a cell (node) depends on extracting enough insight

from the surrounding neighborhood. However, in the aerodynamics context, the
information is probably not highly concentrated around the node itself; instead, it is
spread around as in a heavy-tail normal distribution

• since the dataset is very big and very diversified, few sampled subgraphs are not
enough to learn about the motorbike geometry: a proper exploration of the dataset
must be put in place.

Thus, it looks like we should build a technique to broadly investigate the surroundings
of a node.We believe that a Breadth First Search (BFS) algorithm is a good starting point
to address the above-mentioned issues. The idea is that, given a random starting node, a
full BFS is performed until a pre-specified number of nodes is reached. To achieve that, we
must implement our ownC++ backend sampler and then call it from the Python interface
in PyTorch. One situation that needs to be addressed occurs when two independent BFS
explorations overlap, in the sense that a subset of their explored nodes coincides. In this
case, we decide to consider the subgraphs independently Fig. 4, i.e. we build a separate
subgraph for each BFS by renaming the nodes as they were different from any other
exploration.

Model architecture

Themain purpose of the model is to extract insights out of wide neighboring areas within
the graph: catching long-range relationships is remarkably relevant as minor changes in
the geometry might trigger changes of the flowfield not only in the surrounding envi-
ronment but also farther away. We would like to be able to predict, as best as possible,
these causal effects. Moreover, we would like our model to be sufficiently light in terms
of memory usage in order to handle big (sub)graphs in GPU.

General GNNmodel

Broadly speaking, working with Graph Neural Network (GNN) models implies dealing
with graphs as underlying data structures and consequently taking advantage of them as
heterogeneous sources of insight. The following notations are adopted throughout the
article:
A graph G is represented by a tuple 〈V, E〉, where V = {v1, v2, ..., vN } is an unordered

set of nodes (vertices) and E ⊆ V × V is a set of edges. Let N andM denote the number
of nodes and edges, respectively. For convenience, a graph can be equivalently defined as
an adjacency matrix A ∈ A ⊂ RN×N where aij denotes the link relation between node
vi and vj . In our scenarios, nodes, and edges are associated with a node feature matrix
X ∈ X ⊂ RN×D and an edge feature matrix U ∈ U ⊂ RM×F , respectively. We use GNN
operators that map the node feature matrix X , the adjacency matrix A, and the edge
feature matrix U to a transformed node feature matrix X ′:

fw : X × A × U �→ X ′, (2)

where fw(X,A,U ) is parameterized by learnable parameters w.
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Fig. 4 Independent BFS explorations give birth to independent subgraphs, even if they overlap

REV-GNNmodel

Researching and designing a model that would fulfill our own requirements is not an easy
task. In fact, most of the time, the research papers focus on maximizing certain accuracy
metrics at the cost of training time and memory usage. Using resource-heavy models is
not an issue in their cases as they do not hit environment constraints, i.e. they are far
from running into out-of-memory (OOM) issues because of the tiny dataset they train on.
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Fig. 5 Residual block featuring a skip connection

In our context, the choice of the model cannot be independent of the above-mentioned
limitations. This implies, for example, that some specific message-passing algorithms
are out-of-reach for us: therefore we must rely on graph-convolution techniques which
are suitable for extracting relevant information while not requiring too heavy message
propagations among nodes/edges.
We decided to adopt the implementation of the paper [30].When coupled with the cus-

tom pipeline to handle our specific I/O, the model proposed by this paper addresses most
of the challenges that we intend to face. Among several model categories experimented in
the paper, our attention is drawn to the category that looks more aligned with our desire
to explore the graph relationships in depth. Thus, we focus on a model called REV-GNN,
which stands for reversible-connection graph neural networks [30]. The strong points of
this model are here summarized:

1. presence of residual connections: it allows to extract deeper insights by propagating
the information more effectively across the layers of the network;

2. reversibility of the architecture: since the amount of memory usage is not dependent
on the number of layers anymore, we can again extractmore information fromwider
neighborhood areas;

3. grouped connections: they help to reduce the parameter complexity.

The first mentioned point 1. is related to the concept of skip connections as shown in
Fig. 5: besides feeding the information from layer i to layer i + 1, the same (unchanged)
information from layer i is also forwarded to layer i + k , where k > 1, bypassing a whole
block of layers. This trick, which can be written as X ′ = fw(X,A,U ) + X , allows to train
much deeper networks, by reducing the influence of issues that often arise such as explod-
ing and vanishing gradients. Moreover, the whole training tends to reach convergence
more easily. Fig. 5 displays the residual block, which can be successfully implemented in
the context of graph convolutions by taking inspiration from the ResNets in the field of
CNNs.
However, the memory complexity, which is O(LND), is still linear with respect to the

number L of GNN layers. Since thememory footprint of the network parameters is usually
negligible, we focus onmemory consumption induced by the activations. The reversibility
2. of the architecture addresses this issue by making it feasible to add many layers without
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Fig. 6 The effect of grouped VS non-grouped connections across the channel dimension (image taken from [40])

falling into the risk of running into OOM issues. Grouped reversible GNNs only need to
save the output node features of the last GNNblock inGPUmemory for backpropagation.
This is because the full architecture is built in a standardized way which allows easy
reconstruction. If we consider C groups across the channel dimension like in Fig. 6, we
obtain < X1, X2, ..., XC > representing a partition of the feature matrix X , where Xi ∈
R
N×D

C . A fixed schema is used for the forward pass:

FORWARD PASS :
X ′
0 =

C∑

i=2
Xi

X ′
i = fwi (X

′
i−1, A, U ) + Xi i ∈ {1, 2, ..., C}

(3)

where we must remember that a REV-GNN block maps the inputs into the outputs as
shown below:

< X1, X2, ..., XC > �→ < X ′
1, X

′
2, ..., X

′
C > . (4)

Similarly, the fixed schema for the backward pass is:

BACKWARD PASS :

Xi = X ′
i − fwi (X

′
i−1, A, U ) i ∈ {2, ..., C}

X ′
0 =

C∑

i=2
Xi

X1 = X ′
1 − fw1 (X ′

0, A, U )

(5)

In practice, the REV-GNN architecture interchanges the following two steps:

REV-GNN Architecture :
1.) X̂i = Dropout(ReLU(Norm(X ′

i−1)))

2.) X̃i = GraphConv(X̂i, A, U )
(6)

Specifically, it adopts a modified version of the dropout layer in which the dropout pat-
tern is shared across layers in order to keep thememory consumptionO(ND). In [30], the
authors show the remarkable differences arising when comparing this architecture, whose
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Fig. 7 Memory footprint: reversible VS non-reversible (images taken from [30])

memory footprint is independent of the number of layers L, with previous architectures
which lack reversibility and grouping but are still endowed with residual connections.
Figure 7 highlights this major divergent behavior among architectures.

Nevertheless, the largest drawback related to this architecture is due to the training time.
Thementioned tweaks introduced to address memory consumption do not interfere with
the time it takes to train the model in the context of multiple layers as well as channel
dimensions. Therefore, the training itself tends to be quite slow. Though the overall
analysis of the REV-GNN fits our goals, we will use it anyway. We will experiment with
multiple settings in the choice of hyperparameters in order to prevent the training time
from turning into an excessive burden for the overall process.

Training phase

The characteristic steps of the training procedure are described in this section, and sum-
marized in the Algorithm 1. Related training parameters are elucidated in Table 2.

After loading some geometries (in the form of graphs) from the disk into CPUmemory,
our algorithm samples subgraphs and concatenates them into a single graph (this resulting
graph is potentially much smaller than the original one, according to the user needs) and
then trains the model on that. A training performed on subgraphs sampled from a big
graph tends to converge to a training performed directly on the same big graph (i.e.
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Algorithm 1 Simplified Pipeline for Training (Pseudocode)
epoch ← 0
max_epochs ← 900
max_steps ← 90
num_start_nodes ← 1
up_to_num_nodes ← 353996
while epoch < max_epochs do

step ← 0
while step < max_steps do

if step is a multiple of a user-chosen number then
flush the previous graph geometries contained in the CPU;
load new geometries into the CPU based on available memory;
initialize a new dataloader with the current loaded geometries;

end if
sample num_start_nodes source nodes;
run a BFS from each source node, totaling up_to_num_nodes each;
concatenate the edge lists related to each BFS-visited subgraph;
concatenate the edge and node features as well;
move the concatenated graph to GPU
train the REV-GNNmodel on this concatenated graph;
step++

end while
epoch++

end while

Table 2 Table of training parameters

Hyperparameters Value Description

max_epochs 900 Total number of epochs for the training phase

num_gpus 1 Number of gpus used

up_to_num_nodes 353996 Total number of nodes contained in the subgraph we sample (in

this downsized situation, we decide to sample a subgraph which is

almost as big as the full graph)

num_start_nodes 1 Number of randomly sampled source nodes for BFS explorations

(subgraph sampling): if number == n, it means that n independent

BFS will be performed and the resulting subgraphs aggregated in a

sinle edge list

max_steps 90 Total number of training iterations per epoch

accum_steps 5 Number of gradient accumulation steps

full-batch mode with no sampling) only after a sufficiently high number of iterations
[41]. Therefore, a subgraph-based REV-GNN model typically requires a lot of epochs to
achieve good results. Since most real-world situations involve very demanding graphs,
whose sizes often exceed the GPU size, the user would lean towards the subgraph-based
training approach regardless of the increased required time. Our procedure has been built
in a scalable way, in order to handle the whole training on large graphs by moving only
the generated (and concatenated) subgraphs to GPUmemory for training. In this context,
more iterations will be required for convergence, but eventually, a similar level of accuracy
can be achieved.
Given the fact that one motorbike geometry can fit into the only GPU at our dis-
posal (num_gpus=1), for the purpose of this article we prefer to speed up the process
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by training one full geometry per iteration. This translates into a single BFS (defined
by num_start_nodes=1) which is performed until up_to_num_nodes=353,996 nodes are
reached, which corresponds to the full size of each of our geometries. We specify that the
approach is developed such that the workload can be distributed among several GPUs,
making it possible to scale the algorithm to large, industrial problems: after the completion
of the training step, the gradients are gathered (summed) in order to perform a step of the
optimizer.We prefer to accumulate the gradient for accum_steps steps before performing
an optimizer step, to better help convergence.
Concerning the computation of the loss function, we adopt an l1 loss, which looks more
stable (compared to a l2 loss) in the prediction across the whole 3D case. To calculate it,
we first compute the absolute value of the difference between the node prediction and
the target values; then, we sum each component (rescaled by a normalization constant)
in order to have an aggregate number for every single node in the graph. At this point,
we average all these node values and obtain a measure of our loss. The above-mentioned
normalization constant refers to previously computed statistics (gathered across all the
training geometries) consisting of some numbers (one per variable to predict, i.e. 7 in
our context) which, once multiplied by its own variable, yields the normalized version of
the variable itself. A possible alternative to this might be applying a multi-task learning
approach (aggregating loss computations coming separately from each variable), which
might be explored in future works.

Inference phase

Algorithm 2 Simplified Pipeline for Inference (Pseudocode)
set_left_nodes ← initialize_set ( idx for idx from 1 to num_nodes )
final_pred ← init_zero_matrix (size = num_nodes × num_tasks)
step ← 0
while set_left_nodes is not empty do

sample a source node among the ones within set_left_nodes;
perform a BFS until reaching a total of up_to_num_nodes nodes;
infer on the BFS-visited graph via the trained REV-GNNmodel;
sum the predictions to final_pred;
for each node, update a counter if the node was part of the graph;
remove the BFS-visited nodes from set_left_nodes;

end while
divide each row of final_pred by the times the node has been predicted;

After the model is fully trained, we might want to perform an inference on a new
geometry. The Algorithm 2 describes how the inference works, while the Table 3 gives
insights into the architecture settings, valid for both inference and training.
The main difference between training and inference is that here is that in the latter we

want to have a procedure that is mathematically guaranteed to evaluate all the nodes in
the graph geometry. In fact, while in the training phase, this is not that relevant, it must
be ensured in the prediction. The key is creating a set, called set_left_nodes, containing
all the indexes of the nodes that we still have not visited: as soon as we explore the graph
via BFS, we can store the predictions and remove the visited nodes from the set, until all
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Table 3 Table of model architecture parameters for training and inference

Hyperparameters Value Description

conv_encode_edge True Whether or not the edge information should be encoded in the

convolution

Block Res+ Graph backbone block to be chosen among the following types:

{res+, res, dense, plain}

gcn_aggr max The aggregator of GENConv to be chosen among the following

types: {mean, max, add, softmax, softmax_sg, power}

Norm Batch the type of normalization layer to be chosen among the following

types: {batch, layer}

Backbone rev gcn backbone to be chosen among the following types: {deepergcn,

weighttied, deq, rev}

of the nodes have been visited (and, thus, a prediction has been performed for each of
them). Since some of the nodes might be visited more than once, we keep summing the
just performed predictions to the previous ones, so that, in the end, we can divide each
node prediction by the number of times a node has been predicted (average of predictions
per node). To better clarify, at each inference step, the new predictions update (i.e. are
summed to) the array containing the sumof the previous predictions, which is represented
by final_pred in 2; after the last inference step, the final_pred vector contains the sumof all
the predictions performed on each node. At this point, we just take the average prediction
according to the number of times an inference has been performed on a specific node.
This is also a way tomake convergence smoother, as the inference on a node coming from
different sampled subgraphs might be slightly different, due to this non-deterministic
sampling procedure.

Numerical results and discussion
After training, we test the model on 10 different geometries not seen during training.
We investigate the forecasted flowfield variables, in particular velocity and pressure. In
fact, our analysis focuses on the Total pressure Coefficient (CpT ), which is a function of
velocity and pressure defined by the following general equation:

CpT = p − p∞ + 1
2ρU

2

1
2ρ∞U2∞

, (7)

where p is the fluid static pressure, ρ is the fluid density and U is the 3-dimensional
velocity vector. Moreover, p∞ is the freestream static pressure, ρ∞ is the freestream fluid
density andU∞ is the freestreamflowvelocity (in our case inlet velocity). Sincewe simulate
an incompressible fluid, then our 7 can be simplified. In particular, since ρ is constant,
instead of p we use p

ρ
. Given the incompressible fluid assumption, we can conventionally

fix p = 0 (outlet pressure value). As a consequence, Eq. 7 becomes:

CpT = p + 1
2U

2

1
2U2∞

, (8)
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Table 4 For each model, we display a metric that is based on the L1-norm of the CpT residuals,
accounting for all the test geometries

8 hidden channels 16 hidden channels 32 hidden channels

8 layers 0.124881 ± 0.001269 0.088454 ± 0.001328 0.055246 ± 0.001795

16 layers 0.112793 ± 0.001493 0.071492 ± 0.001587 0.048296 ± 0.002411

32 layers 0.105534 ± 0.001447 0.062148 ± 0.001642 0.041300 ± 0.003315

The metric appears in the form μ ± σ . In particular, μ = 1
10

∑10
j=1

1
nj ‖ε‖1j and σ =

√

1
10

∑10
j=1

(
1
nj ‖ε‖1j − μ

)2
, where

‖ε‖1j = ∑nj
i=1 |εij | is the L1-norm of the CpT residuals for the j-th geometry. εij represents the difference between the CpT of

the model and the CpT of the CFD simulation, respectively, for the i-th node of the j-th geometry of the test set; i = 1, ..., nj
where nj represents the total number of nodes in the j-th geometry, while j = 1, ..., 10

Table 5 For each model, we display a metric that is based on the L2-norm of the CpT residuals,
accounting for all the test geometries

8 hidden channels 16 hidden channels 32 hidden channels

8 layers 0.045317 ± 0.001580 0.025068 ± 0.001421 0.010147 ± 0.001498

16 layers 0.037635 ± 0.001770 0.016534 ± 0.001557 0.008142 ± 0.001728

32 layers 0.033002 ± 0.001690 0.012337 ± 0.001524 0.006335 ± 0.001969

The metric appears in the form μ ± σ . In particular, μ = 1
10

∑10
j=1

1
nj ‖ε‖22j and σ =

√

1
10

∑10
j=1

(
1
nj ‖ε‖22j − μ

)2
, where

‖ε‖2j =
√

∑nj
i=1 |εij |2 is the L2-norm of the CpT residuals for the j-th geometry. εij represents the difference between the

CpT of the model and the CpT of the CFD simulation, respectively, for the i-th node of the j-th geometry of the test set;
i = 1, ..., nj where nj represents the total number of nodes in the j-th geometry, while j = 1, ..., 10

Test error

For the testing phase, every single model variation (determined by hidden channels and
layers) goes through the same evaluation procedure in order to obtain a pair of values
(i.e. CpT mean and standard deviation) which stand for the final metric for that specific
model.
The model performs an inference on one geometry at a time and, for each of the 10 test
geometries, the CpT residuals are computed for each node and averaged across all nodes
within the geometry. Afterward, the mean and standard deviation of the above 10 values
are calculated: thus, we end up withmean ± std. The results for this metric are gathered
in Table 4, while in Table 5 we display an estimate, across the test geometries, of the MSE
(mean square error).
Wecannotice that the residuals get smaller ifwe increase thenumberof layers.However,

this is not as big as the increasing accuracy by varying the number of hidden channels,
which significantly boosts the performance.
However, it is worth drawing attention to the 32 hidden channels column: it looks like the
variance of the model increases a bit more rapidly, especially for the {16, 32} layer models.
This is to be expected, as the model seems to be starting to experience some overfitting
phenomenon. This is a signal that, in our context, a model with a number of layers or
hidden channels greater than 32 is probably to be avoided given the likelihood of lower
generalization capabilities.
A collage of slices (at x = 0.5) of one of the test geometries 8 further highlights what

Table 4, 5 have already emphasized: the depicted CpT errors show a generally stronger
performance for the models characterized by higher expressivity (i.e. more hidden chan-
nels) and a more marginal benefit by varying network layers.
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Fig. 8 Image collage of slices with x = 0.5, depicting the CpT. Comparison of all models defined by {8, 16, 32}
hidden channels (hc) and {16, 32} layers (ly). Each model prediction (central) is juxtaposed with the ground truth
on the left (assumed to be the RANS simulation) and the delta on the right

Table 6 Training time (in hours) on an Nvidia Quadro P5000 16 Gb, at varying network
specifications

8 hidden channels 16 hidden channels 32 hidden channels

8 layers 51.6 74.1 126.3

16 layers 91.0 132.3 233.7

32 layers 165.8 256.5 465.3

While Fig. 8 draws our attention to analyzing the sensitivity in behavior and perfor-
mance for each variant of the model with regard to layers and hidden channels, the
Figs. 9, 10, 11, 12, 13 focus on the same model while varying the slice cut.
In particular, all the mentioned visual comparisons (slice images) are taken by slicing the
final-CpT -prediction 3D case on the x axis: therefore, the interpretation is that the reader
is looking at the motorbike frontally as if it was coming straight against him/her. The
leftmost slice image represents theCpT output coming out of the CFD simulations, taken
as ground truth; the image in the middle shows the CpT computed after the inference
performed by our graphmachine learningmodel; finally, the rightmost image outlines the
node-wise difference between the CFD and ML model.

Comparison of the network dimension

In the previous sections, we explained that 9 models in total were trained and tested, each
of them coming from all the possible combinations of {8, 16, 32} hidden channels and
{8, 16, 32} layers. Table 6 displays the amount of training time in hours on the GPU at our
disposal, for each single trained model.
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Fig. 9 Test Image: slice x = 0.0 of model with 32 layers and 32 hidden channels

Fig. 10 Test Image: slice x = 0.5 of model with 32 layers and 32 hidden channels

Fig. 11 Test Image: slice x = 1.0 of model with 32 layers and 32 hidden channels
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Fig. 12 Test Image: slice x = 1.5 of model with 32 layers and 32 hidden channels

Fig. 13 Test Image: slice x = 2.0 of model with 32 layers and 32 hidden channels

What we can notice in Table 6 is that increasing the number of hidden channels and
layers is computationally expensive. The training is indeed expected to take quite some
time: as a reward, we can have a much faster inference compared to running full CFD
simulations (typically less than 1min using the same architecture to infer a new geometry).
It is worth paying attention to the fact that increasing the number of hidden channels, as
said in the previous section, is more beneficial performance-wise compared to increasing
the number of hidden channels. Moreover, it appears to be even less computationally
expensive as a marginal surge in the number of hidden channels takes less to train than
the same surge in number of layers. This suggests that increasing the number of hidden
channels should probably be the first move, as long as we do not experience overfitting
effects.
Figure 14 shows the loss curves for all the 9 models, within a single plot. Models with

the same number of hidden channels share the line shape (dotted, dashed, or continuous),
while models with the same number of layers share the color.
The leftmost plot represents the training loss while the one in the middle stands for the
validation loss, computed epoch by epoch while training. The validation loss is only for
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Fig. 14 Training and validation losses for several models with different configurations of layers and hidden
channels. As far as the legends are concerned, “ly” stands for layers while “hc” stands for hidden channels. For test
values, please refer to Tables 4, 5

monitoring and has been computed on a single geometry different from the ones used for
training. This is also clear by looking at the increased variance of themodels characterized
by a higher number of hidden channels, a behavior that we already discussed in Tables 4, 5.
Finally, the rightmost plot is nothing more than a zoom-in on the validation loss of the 32
hidden channel models, to better appreciate the loss function directions, as we propose
an opposite overlapping of the colored lines.

Conclusions and outlooks
In this article, we applied some graphmachine-learning surrogate models capable of han-
dling distributed and large geometries (potentially millions of nodes) while providing a
sufficiently accurate inference of the 3D flowfield variables for a new motorbike case. In
order to achieve that, we first researched and found a suitable model whose capabilities
aligned with our needs; then, we further adapted it to our own necessities and created
a proper pipeline to efficiently deal with I/O operations. Once everything was correctly
integrated, we set the hyperparameters and trained a different model for any combina-
tion of the {8, 16, 32} hidden channels and {8, 16, 32} layers. We plotted the training and
validation loss, together with a direct visual comparison of 2D slices extracted from the
3D flowfield.
The best results in terms of validation loss and, visually, in terms of CpT delta (node by

node CpT difference between each model and the CFD ground truth) tend to be towards
themodels made of 32 hidden channels, which are themost expressive. The training time,
as we can see in Table 6, is higher as well for such models. The variance of the validation
loss is larger as well: thus, further increasing (> 32) the number of hidden channels



Roznowicz et al. AdvancedModeling and Simulation in Engineering Sciences           (2024) 11:6 Page 23 of 26

would probably make the model predictions a bit too fluctuating and very expensive from
the training time perspective. Once trained, all of these models perform a prediction in
between 20 s and 1min (varying according to the number of hidden channels and layers),
definitely less than RANS simulations.
Overall, the work donemarks a promising beginning for further graphmachine learning

research and applications in the context of 3Dflowfieldmodelling in aerodynamics. Strong
attention should be drawn to controllingmemory, aiming at shorter training and inference
times, and, in particular, to building more scalable models. In fact, our models work well
with geometries of medium to large size (up to a few million nodes), but struggle when
dealing with extra-large cases, which are prevalent in the F1 contexts.
At the same time, finding and adding more features might be beneficial to reduce the
degree of overfitting.
Additionally, itwouldbe valuable to explore various researchdomainswithin the context

of graph machine learning, in order to improve the generalization capabilities of the
aerodynamics models. Some possible ideas would revolve around injecting some physics
awareness into the models themselves (i.e. PINN), which might help in achieving more
stable training and inference. Even though estimating the impact of any action is difficult
without first experimenting, some approaches might involve tweaking the loss function
by embedding some physical constraints, whichmight be based upon some approximated
form of the Navier–Stokes equations.
An alternative solution might be to directly act on the message-passing algorithms which
allow for information aggregation among the nodes of the graph in aGNNmodel: enabling
some kind of physical enforcement might teach the model not to brutally learn vertex
embeddings by replicating the output of a CFD simulation, but rather learn to replicate
the behaviour leading to that output.
The intuition that we would like to convey here is that, even though we cannot fully
reproduce physics, we would like our models to be at least “gently” guided by the actual
underlying physical phenomena. If the model is guided in the correct direction, there
might be a chance that it manages to reconstruct the meaning of the original equations
via model weights rather than via actual equations.
Furthermore, we are confident our work is well-positioned to become a helpfulmethod-

ology especially in repetitive frameworks, like shape optimization and optimal control,
allowing for a faster procedure thanks to the quick inference time. Speeding up such pro-
cesses would be of immense value. In spite of not having proper time and conditions to
present the details in the current work, we believe the reader is deserving of a high-level
idea.
In a high-performing environment such as motorsport, the geometry optimization pro-
cess is multi-step and entails an elevated level of domain expertise and specialized roles.
Currently, the optimization flow in an Motorsport Team comprises the following steps,
within an iterative process:

1. Aerodynamicists have intuitions about a specific geometry that should be better than
the current baseline geometry. They ask CAD designers to implement the update as
a new 3D CAD geometry.

2. After the change is implemented, A CFD simulation is performed on top of the 3D
model of the F1 car geometry which is under evaluation
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3. Simulated variables (velocity, pressure, . . .) are visualized on single 2D-slices of the
3D domain (often in the form of an aggregate metric, like the CpT)

4. The 2D slices of the current geometry are compared to the ones of the previous
geometry: this allows aerodynamicists to validate whether the change to the car
structure is actually worth it. They use their domain expertise to keep the car well
attached to the ground, by inspecting vortex formation and several small details.
If monitored metrics and aerodynamicists’ evaluations agree on the improvement,
then the new geometry becomes the current baseline

Within this process, our model would support the aerodynamicists’ decision making,
allowing them to test several geometries quickly without running full and lengthy CFD
simulations continuously.
Elucidating the process is useful to prove that each single environment has its own set of
constraints. For example, in the motorsport industry, the level of detail might be over-
whelming, thus it requires specific professionals to do relevant ’manual’ inspection and
assessment. In other fluid dynamics domains, theremight bemore automatized processes
for shape optimization given fewer concerns about regulation, security or safety. In such
sectors, the optimization process can become much more automatized if the right tools
are put in place for the specific needs.
If you intend to optimize upon a specific metric, you might employ a suitable remeshing
algorithm,whichmightmakeuseof generativeAI solutions.This algorithmmightproduce
interpolation-basedmesh variations of input geometries, aiming to producemore optimal
shapes. Each geometry can be quickly inferred via our model; the reference metric can
be computed, hoping that a better and better value is obtained; improvements can keep
being produced until a certain threshold is met.
As we believe this process is heavily dependent on the needs of the specific company or
institute, we will develop this in-depth analysis in a future work of ours.
Ultimately, we are convinced that everything we have done up to now is well posed for
an extension toward dynamic integration, in order to compute the transient response. If
we were to put the derivative in time, then there would be the possibility of extending the
current framework with temporal autoregression.
We acknowledge the fact that staticmodeling assumes a steady-state condition, neglecting
the effects of temporal changes and leading to potentially lower accuracy. Moreover,
they may not provide a realistic representation of experimental observations when the
system behavior is inherently dynamic. That is why transientmodeling would allow better
validation against experimental data.
More and more research articles are heading in this direction and our future work will
also be contributing to such a dynamic integration.
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