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Abstract

We revisit the classical kernel method of approximation/interpolation theory in a very
specific context from the particular point of view of partial differential equations. The
goal is to highlight the role of regularization by casting it in terms of actual smoothness
of the interpolant obtained by the procedure. The latter will be merely continuous on
the data set but smooth otherwise. While the method obtained fits into the category of
RKHS methods and hence shares their main features, it explicitly uses smoothness, via a
dimension dependent (pseudo-)differential operator, to obtain a flexible and robust
interpolant, which can adapt to the shape of the data while quickly transitioning away
from it and maintaining continuous dependence on them. The latter means that a
perturbation or pollution of the data set, small in size, leads to comparable results in
classification applications. The method is applied to both low dimensional examples
and a standard high dimensioal benchmark problem (MNIST digit classification).

Keywords: Kernel based interpolation, Supervised classification, Data analysis

Introduction
Theproblemoffinding a function that explains a given set of data is a fundamental problem
in mathematics and statistics. If the data are assumed to be the discrete manifestation of
a function defined on a continuous (as opposed to discrete) domain of definition, the
problem can be viewed as an approximation problem where the data can be leveraged
to help identify a sensible approximation to the function. Often one resorts the prior
knowledge about the target function to reduce the set of candidates fromwhich to choose
a good approximation, if not the best approximation.Within this framework, an extensive
mathematical knowledge has been obtained over the past several decades along with a
variety of powerful tools (see [1], in particular, for the philosophical approach taken here).
In the current world, where data about almost anything you can imagine or wish for is
available, one of the most interesting and often challening problems consists in extracting
information, knowledge, and structure fromhighdimensional data.Avariety of commonly
used approaches belong to a category referred to as Machine Learning. Neural networks
in all forms and shapes are particularly widespread due to their success in dealing with a
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series of challenging problems. Another class is that of Support-Vector Machines (SVM)
[2], which were very popular before being somewhat superseded by improved neural
networks. While they often use linear classification via hyperplanes, the so-called kernel
trick [3,4] makes it possible for them to capture nonlinear decision boundaries albeit by
working in a higher dimensional (feature) space to which the data is mapped but that
admits an efficient computation of scalar products (via a suitable kernel). A connection
between SVMs and neural networks was discovered in [5] and has since been investigated
by many more authors. The method proposed here is philosophically in the category of
SVMsbut distinguishes itself by directlyworkingwith the data at handwithout embedding
into a higher dimensional feature space. This is made possible by directly looking for a
good approximation in a large space of functions that allows for nonlinear behavior as
opposed to a priori restricting the space of possible approximants by choosing a feature
vector that replaces the data and on which the eventual approximant depends linearly
upon. It will turn out that the end result of the approach taken here bears similarity with
the
We first review a classical method of inexact interpolation that yields a continuous

function approximating a given data set. We do so by taking a PDE perspective that
reveals important features that are exploited in order to obtain the announced stable
method of classification even when the distribution of available data is not uniform in
space and, possibly, noisy. In high dimension, even large data sets are often sparse due
to the so-called curse of dimensionality. Moreover, the data is often supported on lower
dimensional manifolds, where even dense data make up a thin slice of the ambient space.
In the latter case, it is demonstrated in this paper that, while the data may not be sufficient
for the reliable identification of a well-defined global approximant, it can still be used
fruitfully (in a global or local fashion) for data analysis purposes. This is mainly due to
the fact that the proposed method is capable of connecting the dots (data points) into a
manifold by capturing geometric features of the data.
It is widely understood and accepted that a function interpolating discrete data should

be at least continuous so as to provide a certain stability of prediction and resilience in
the face of noise. In learning problems this is sometimes expressed as local constancy,
even if that does not require continuity. Unless the data is known to stem from a very
smooth underlying function, but, typically, even in that case, it should also not be exceed-
ingly smooth, as this would lead to some blurring and reduce its ability to capture sharp
transitions. It would, moreover, be advantageous for the interpolating function to depend
at least continuously on the data set it is constructed from as, in that case, perturbations
(due to measurement errors or to other sources) would not have a large impact on the
outcome of classification based on the inperpolant. This kind of stability is akin to that
discussed in [6] in the context of learning algorithms.
The starting point is a set of data consisting of point/value pairs

D = {
(xi, yi)

∣∣ i = 1, . . . , m
}

wherem ∈ N, xi ∈ R
d and yi ∈ R

n, i = 1, . . . , m, for d, n ∈ N. In order to enforce minimal
regularity on the interpolant function

u : R
d → R

n

we take it from the space

H
d+1
2 (Rd,Rn) = {

u ∈ S ′ ∣∣ [ξ �→ (1 + |ξ |2) d+1
4 û(ξ )] ∈ L2(Rd,Rn)

}
,
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whereS ′ denotes the Schwartz space of tempered distributions, i.e. the topological dual of
the space of smooth, rapidly decreasing functions. Thanks to the general Sobolev inequal-
ity it holds that

H
d+1
2 (Rd,Rn) ↪→ BUC

1
2 (Rd,Rn), (0.1)

where the containing space is that of bounded and uniformlyHölder continuous functions
of exponent 1

2 . In order to obtain stability we may sacrifice some interpolation accuracy
by not necessarily requiring the exact validity of

u(xi) = yi for i = 1, . . . , m. (0.2)

Then, for approximate interpolation, u is determined by minimization of the energy
functional given by

Eα(u) = α

2cd

∫

Rd

∣∣(1 − �)
d+1
4 u(x)

∣∣2 dx + 1
2

m∑

i=1

∣∣u(xi) − yi
∣∣2 (0.3)

= α

2cd
‖u‖2

H
d+1
2

+ 1
2

m∑

i=1

∣∣u(xi) − yi
∣∣2, u ∈ H

d+1
2 (Rd,Rn) (0.4)

for α > 0 andwhere the normalizing constant cd will be explicitly given in the next section
(right below equation (2.6)). For exact interpolation u is determined by minimization of
E0 = ‖ · ‖2

H
d+1
2

with constraints (0.2) that shall be summarized as u(X) = Y. Formally, it
is set

uD,α =

⎧
⎪⎨

⎪⎩

argmin
u∈H d+1

2 (Rd ,Rn)
Eα(u), α > 0,

argmin
u∈H d+1

2 (Rd ,Rn), u(X)=Y

E0(u), α = 0.
(0.5)

While in many practical problems the dimension d can be very large and the constant
cd astronomical, this approach remains viable since the minimizers can be identified by
solving a well-posed m × m linear system of equations for any α ≥ 0. The rest of the
paper is organized as follows. In the next section we provide a detailed description of the
method and obtain some of its basic mathematical properties. In the following section,
we discuss a variety of numerical experiments that showcase the viability and efficacy of
the method.
There are interesting connections between this method and kernel based interpolation

Themethod
In order to derive a concrete method it needs to be shown that minimizers of Ed can
be computed efficiently. We first observe that the functional has a unique minimizer no
matter what the given data set is.

Theorem 2.1 The functional Eα has a unique minimizer uD,α for any given data set D.

Proof Take α > 0 first. Thanks to the embedding (0.1) the functional Eα :
H

d+1
2 (Rd,Rn) → [0,∞) is continuous. It is clearly also strictly convex as a quadratic

functional since the first term is the square of a norm. Strongly lower semi-continuous
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convex functionals on a Hilbert space are known to be weakly lower-semicontinuous and
so is therefore Eα . It is also coercive since closed bounded sets in H

d+1
2 (Rd,Rn) are rela-

tively weakly compact by the Banach-Alaoglu Theorem. A weakly lower-semicontinuous
and coercive functional possesses a minimum, which, by strict convexity, is necessarily
unique. The case α = 0 uses essentially the same argument where the full function space
is replaced by the convex closed subset of functions satisfying u(X) = Y. 	

Now that a unique continuous interpolant uD has been obtained for each given data set
D, it needs to be determined in a usable form. The next step consists in deriving the
Euler-Lagrange equation for uD.

Theorem 2.2 The minimizer uD,α for α > 0 satisfies the equation (system)

α

cd
(1 − �)

d+1
2 u =

m∑

i=1

[
yi − u(xi)

]
δxi (2.1)

in the weak sense, i.e. the equation holds in the space H− d+1
2 (Rd,Rn) or, equivalently it

holds that

α

cd

∫

Rd

[
(1 − �)

d+1
4 u

]
(x) · [

(1 − �)
d+1
4 v

]
(x) dx =

m∑

i=1

[
yi − u(xi)

] · v(xi), (2.2)

for all v ∈ H
d+1
2 (Rd,Rn). Here δx denotes the Dirac distribution supported at the point

x ∈ R
d. If α = 0 it holds that

(1 − �)
d+1
4 uD,0 =

m∑

i=1
λiδxi , (2.3)

in the weak sense for some λi ∈ R
n for i = 1, . . . , m.

Proof Notice that, thanks to (0.1), it holds that δx ∈ H− d+1
2 (Rd,R) for each x ∈ R

d .
Taking variations in direction of any function vek for k = 1, . . . , n, where ek is the kth
basis element of R

n, with arbitrary v ∈ H
d+1
2 (Rd) yields the equations

0 = d
ds

∣∣∣∣
s=0

Eα(uD + svek ) = α

cd

∫

Rd

[
(1 − �)

d+1
4 uD,k

]
(x)

[
(1 − �)

d+1
4 v

]
(x) dx

−
m∑

i=1

[
yik − uD,k (xi)

] · v(xi) for k = 1, . . . , n,

for v ∈ H
d+1
2 (Rd), and where uD,k = (uD)k . The identities amount to the validity of the

system (2.2). The equivalence of the latter with (2.1) follows from
m∑

i=1

[
yi − uD(xi)

] · v(xi) = 〈 m∑

i=1

[
yi − uD(xi)

]
δxi , v

〉
, v ∈ H

d+1
2 (Rd,Rn),

and the fact that the (pseudo)differential operator (1 − �)
d+1
4 is self-adjoint along with

the validity of
∫

Rd

[
(1 − �)

d+1
4 u

]
(x) · [

(1 − �)
d+1
4 v

]
(x) dx
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= 〈
(1 − �)

d+1
4 u, (1 − �)

d+1
4 v

〉 = 〈
(1 − �)

d+1
2 u, v

〉
for u, v ∈ H

d+1
2 (Rd,Rn),

where the latter duality pairing is between the space H
d+1
2 (Rd,Rn) and its dual

H− d+1
2 (Rd,Rn). In the case when α = 0, one takes variations in direction of test C∞

functions with ϕ(X) = � to obtain that

(1 − �)
d+1
2 u = 0 ∈ R

d \ X,

in the sense of distributions. This means that

supp
(
(1 − �)

d+1
2 u

) ⊂ X.

It is know that compactly supported distributions are of finite order and thus it must hold
that (1 − �)

d+1
2 u is a finite linear combinations of δxi , i = 1, . . . , m, and derivatives of

them. Notice, however, that ∂lδx /∈ H− d+1
2 (Rd) for l = 1, . . . , d and so no derivatives can

be present in the linear combination. This yields the claim. 	


Lemma 2.3 Let uD,α be theminimizer of Eα for the data setD. ThenuD,α ∈ C∞(Rd\X,Rn),
regardless of the regularization parameter α ≥ 0.

Proof This regularity will readily follow from the reprentation of the solution discussed
next. 	


The minimization of E0 or a variety of similar functionals has long been recognized to
provide an answer to the so-called universal approximation property in the context of
learning. It indeed can be shown that

uD,0 → f as |X| → ∞,

if the values Y = {
yi

∣∣ i = 1, . . . , m
}
are those Y = f (X) of a function f belonging to a

variety of (suitably chosen) functions spaces, such as Cc(Rd,Rn) (compactly supported
continuous functions) or Lp(Rd,Rn) for p ∈ [1,∞). The convergence takes place in the
space’s natural topology as X becomes a finer and finer, not necessarily regular, discrete
grid that fills the whole domain. The curse of dimensionality, however, limits the applica-
bility of this approximation procedure as the size of any finite “filling” grid is exponential
in the ambient dimension.
A reason the above approach or, more in general, kernel based approximation or inter-

polation has found widespread use, is its ability to bridge the gap between finite and
infinite dimensional spaces. This property amounts in the case at hand in the possibility
of computing the continuous variable solution uD,α by solving finite dimensional systems.

Theorem 2.4 The minimizer uD,α , α > 0, is completely determined by its values uX,α =
uD,α

∣∣
X

= (
uD,α(xi)

)
i=1,...,m, on the set of arguments X = {

xi
∣∣ i = 1, . . . , m

}
. The latter can

be determined by solving the well-posed linear system

(
α + MD

)
uX,α = MDY, (2.4)

where the matrix MD ∈ R
m×m is given by

Mij = exp
(−2π |xi − xj|), i, j = 1 . . . , m.
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It then holds that

uD,α(x) = 1
α

m∑

j=1

[
yj − uj

X,α
]
exp

(−2π |x − xj|), (2.5)

for any x ∈ R
d. For α = 0, it holds that

� = M−1
D

Y, i.e. that λi =
m∑

j=1

[
M−1

D

]
ijy

j

Proof The Fourier transform of the Laplace kernel is known. Indeed

Fd
[
exp(−2πε| · |)](ξ ) = cdε

(
ε2 + |ξ |2) d+1

2
, (2.6)

where cd = 
(d + 1)/π
d+1
2 . For the purposes of this paper the parameter ε is set to be 1.

The right-hand side of the above identity is the symbol of the pseudo-differential operator
cd(1 − �)− d+1

2 . Now, equation (2.1) is equivalent to

α u =
m∑

j=1

[
yj − u(xj)

]
cd(1 − �)−

d+1
2 δxj =

m∑

j=1

[
yj − u(xj)

]
exp

(−2π | · −xj|),

where the second equality sign follows from (2.6) andwell-knownproperties of the Fourier
transform. It only remains to evaluate this identity on the argumentsX to obtain the finite
linear system. When α = 0, representation (2.3) entails that

uD,0 =
m∑

j=1
λj exp

(−2π | · −xj|),

and therefore that

Y = uD,0(X) = MD�,

as claimed. 	


Proposition 2.5 The matrix M is invertible and it holds that

uX,α → Y as α → 0.

Proof The fact thatM is invertible is a consequence of the fact that exp(−2π | · − · |) is a
positive kernel as follows from its Fourier transform and the well-known characterization
of positivity. Continuity of the inversion function inv

inv : GLm → GLm,M �→ M−1,

then shows that

uX,α = (α + MD)−1MD → M−1
D

MDY = Y as α → 0.

	


Remark 2.6 The proof of Lemma 2.3 is now obvious since the explicit representation of
uD,α reveals that singularities are only found on the set X.
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Remark 2.7 The convergence uX,α → uX,0 as α → 0 implies convergence uD,α to uD,0
in the topology of H

d+1
2 (Rd,Rn) and hence, uniform convergence as well, thanks the

embedding (0.1).

Remark 2.8 Since the continuous minimization problem (0.5) has a unique solution, the
linear system (2.4) is assured to be solvable and, in fact, well conditioned also in parameter
ranges of interest (but of course not in general). It also follows that its solution uX, as well
as its extension uD to R

d , depend continuously on the data D since the forcing term in
(2.1) depends continuously on D. The latter follows from the linear dependence on Y and
the fact that Dirac distributions depend continuously on the location of their support in
the topology of H− d+1

2 (Rd), again a known consequence of (0.1).

Remark 2.9 Depending on the data set D, the values uX will be close or not so close to
the prescribed values

{
yi

∣∣ i = 1, . . . , m
}
. Thus, if uD is considered an interpolant of the

data, it will not be exact, but only approximately capture the data. In many applications,
some of which are considered in next section, this is a small price to be paid for the gain
in robustness that the approach guarantees.

Remark 2.10 Using directly that 1
cd (1 − �)− d+1

2 uD = ∑m
i=1 λiδxi for some λ ∈ R

m, it is
possible to derive a system of equations for λ using that uD = ∑m

i=1 λi exp
(−2π |x − xi|).

Indeed it must hold

α

m∑

i=1
λiδxi =

m∑

i=1

(
yi − uD(xi)

)
δxi ,

which yields the system
(
α + M

)
λ = Y.

This shows that uD(xi) = yi − αλi and, in particular, reiterates the point about the
convergence as α → 0. In practice, it is more convenient to work with this system in
order to compute uD.

While the parameter α ≥ 0 plays an important role, it will be dropped from the notation
from now on. The understanding is that its value can be inferred from the context and
that, whatever its value is, it is kept fixed. In this paper we are particularly focussed on the
case n = 1 and on the trivial value set Y = 1, where yi = 1 for i = 1, . . . , m.

Definition 2.11 If Y = 1, we say that uD is the (continuous) signal generated by the data
X. We sometimes denote it by uX or uX,1.

The signal is the inexact interpolation of the characteristic function of the data set1.
It can be strong, if uX(xi) � 1, i = 1, . . . , m. This is the case, as was observed above,
when X is a fine and locally filling discretization of the ambient space, such as when
approximating a set of positive measure by a set of discrete points. More often, however,
the signal will be weak in the sense that uX(xi) is significantly less than 1 for i = 1, . . . , m.
In this paper we contend that the usefulness of the signal uX does not only stem from
its approximation or interpolation properties, but also (and perhaps mainly) from the

1We observe, in particular, that, if the data set discretizes a set S of measure 0, then then its characteristic function χS
is the trivial function and of not much use.
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fact that most of its level sets are very smooth due to Proposition 2.3 and, in fact, deliver
smooth manifold approximations of X that can effectively be employed as stable decision
boundaries in supervised classification problems. Superlevel sets of the signal are reliable
approximations with positive measure of any discrete data set that prove robust against
noise. They, in a sense, connect the dots and capture the shape of the data. Thus the main
philosophical difference between the traditional view point, that considers the data as the
manifestation of a function that needs to be reconstructed, and the view point taken in
this paper is that here the data set itself is approximated by themostly smooth (super)level
sets of a function that may not even fit the data well at all. We are indeed more interested
in the level surfaces generated by the data’s signal than we are in its values. It will be
shown that data signals, whether they are strong or weak, can be succesfully exploited in
this sense. The practical experiments run in the next section will make use the following
proposition.

Proposition 2.12 Let X0 = X1∪̇ X2∪̇ · · · ∪̇ XN (the notation means that the union is
disjoint) be a given data set consisting of N ∈ N subsets (or classes). For

D0 = {
(xi, 1)

∣∣ i = 1, . . . , |X0|
}
,

Dl = {
(x, 1)

∣∣ x ∈ Xl
} ∪ {

(x, 0)
∣∣ x ∈

⋃

k �=l
Xk

}
, l = 1, . . . , N,

it holds that

uD0 =
N∑

l=1
uDl .

Proof The signal uD0 and the signals uD1 , . . . , uDN relative to X0, are solutions of the
linear equations

Ad u + u
∣∣
X0

· δX0 = Yl · δX0 , l = 0, . . . , N,

where Ad = α
cd (1 − �)

d+1
2 and where

u
∣∣
X0

· δX0 =
|X0|∑

i=1
u(xi)δxi , Yl · δX0 =

|X0|∑

i=1
yilδxi .

The claim therefore follows from the fact that
N∑

l=1
Yl = Y0.

	


Remark 2.13 Notice that signals do not, however, behave additively, in the sense that

uX1 + uX2 �= uX1∪X2 ,

in general, even when X1 ∩ X2 = ∅

If one is given a labeled data set X0, where N is the number of labels and Xl , l = 1, . . . , N
are the subsets consisting of the data corresponding to label l, i.e. L(x) = l for x ∈ Xl , then
oneobtains a classification algorithmby computing the relative signalsuXl for l = 1, . . . , N
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and assigning any unlabeled datum z ∈ R
d to the class that exhibits the strongest relative

signal, that is,

L(z) = argmaxl uXl (z). (2.7)

Remark 2.14 An important aspect of theproposedapproach (andof kernel basedmethods
as well) is that the fundamental solution

G(x) = exp
(−2π |x|), x ∈ R

d, (2.8)

of the (pseudo)differential operator 1
cd (1−�)

d+1
2 used to obtain the finite linear system is

essentially dimension independent. It depends on it only through the Euclidean distance
function, which is a minimal ingredient that can hardly be avoided. It would of course
be extremly difficult to work directly with the (pseudo)differential operator or the energy
functional in high dimension. An application to the well-known MNIST classification
problem will be discussed in the next section using an approach based on the signal
generated by the training data. In that case one has that d = 784.

Remark 2.15 Just as for exact interpolation anddue to the fact there are no constraints like
e.g. boundary conditions, themethod is completely local. Thismeans that an approximant
can be computed based on a subset of the original data set that is confined or restricted to
a subregion of interest. This feature will be exploited in theMNIST classification problem.

Remark 2.16 It is well-known that the parameter α > 0 has a regularizing effect that can
be used to deal with noisy data when performing interpolation. It turns out that it also
helps smooth out the level sets of uD. This is also illustrated in the next section.

Remark 2.17 It is sometimes convenient to modify the decay rate of the exponential
“basis” functions, especially if the data undergoes some initial normalization. This can be
done without significant consequences other than a slight modification of the objective
functional or, equivalently, of the corresponding differential operator. Indeed, for γ > 0
and using the well-known scaling and translation properties of the Fourier transform Fd ,
it holds that

( 1
cd

(1 − γ 2�)
d+1
2

)
u
( ·x − y

γ

) = 1
cd

F−1
d

(
1 + γ 2| ·ξ |2) d+1

2 Fd
(
τy σ1/γ u

)

= 1
cd

F−1
d

((
1 + |γ ·ξ |2) d+1

2 exp
(−i

y
γ

· γ ·ξ
)
γ n û(γ ·ξ )

)

= 1
cd

F−1
d

[
γ nσγ

(
exp

(−i
y
γ

· ·ξ
)(
1 + | ·ξ |2) d+1

2 û
)]

= σ1/γ
( 1
cd

(1 − �)
d+1
2 u

)(·x − y
γ

)

=
( 1
cd

(1 − �)
d+1
2 u

)( ·x − y
γ

)
.

Here we use the notation û = Fd(u) for the Fourier transform of the function u as well as
·x and ·ξ as place holders for the independent variables x and ξ in order to distinguish a
function from its values. Furthermore τy denotes translation, that is,

(
τyu

)
(·) = u(· − y),
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and σγ scaling, or
(
σγ u

)
(·) = u(γ ·). Replacing u by exp

(−2π | · |) and y = xi for any
i = 1, . . . , m it is seen that

1
cd

(1 − 4π2�)
d+1
2 exp

(−| · −xi|
) = δxi .

Thus the use of the modified exponentials merely corresponds to an inconsequential
modification of the Euler-Lagrange equation (or its generating functional).

Related approaches
In this section we highlight some important connections between the point of view just
described and well established frameworks.

Reproducing kernel Hilbert spaces (RKHS)

When α = 0, it can be seen that H
d+1
2 is a RKHS with kernel K given by the fundamental

solution G of (1 − �)
d+1
2 via K (x, y) = G(x − y). Indeed, it holds by construction that

(
K (·, y)∣∣u)

H
d+1
2

= (
(1 − �)

d+1
4 K (·, y)∣∣(1 − �)

d+1
4 u

)
L2

= 〈
(1 − �)

d+1
2 K (·, y), u〉 = 〈δy, u〉 = u(y), ∀ u ∈ H

d+1
2 .

As δx1 , . . . , δxm are linearly independent vectors when the points are distinct and (1 −
�)

d+1
2 is an isomorphism between H

d+1
2 and H− d+1

2 , the functions K (·, x1), . . . , K (·, xm)
are linearly independent and thus H

d+1
2 is a fully interpolating RKHS according to the

definition given in [7]. It follows, in particular, that equation (2.4) is the equation that
determines the minimal norm interpolant for the data (X,Y). In applications it is more
common to start with a positive definite kernel (see [7] for a definition). While this may
make little difference from a purely pragmatic point of view, it somewhat obfuscates the
exact nature of the corresponding RKHS space and its norm. It is our contention that
the norm can be chosen in a way as to shape the features of the associated kernel and
interpolation. The discriminating power of the method arguably owes more to the choice
of norm (and, hence, kernel) than to any adjustable parameter that may be present in the
kernel function. The commonly used polynomial, exponential, and sigmoid kernels are all
smooth in contrast to the kernel chosen here which has a carefully chosen regularity that
determines the properties of the corresponding interpolant. The RKHS space is chosen
as large as possible compatible with the continuity requirement discussed earlier.

Kernel support vector machines (K-SVM)

There is also a connection to SVM that use the kernel trick in order tomaintain the idea of
linear separation but to apply it to a feature vector generated by a special nonlinear trans-
formation of the data set X. As the method reduces to computations involving only the
scalar product of feature vectors, that can be easily computed via a kernel, this procedure
does not render the method impractical (the feature vectors typically live in a possibly
much higher dimension than the original data). In this paper, the motivation is rather to
allow all nonlinear functions of a large function space to compete in order to interpolate
the “data manifold” via their level sets. The choice of space is made in order to ensure
the possibility of sharp (but continuous) transitions while maintaining the smoothness
of (almot all) level sets. Notice that the choice of kernel in K-SVM is a straighforward
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trick that, however, conceals potential difficulties due to the increased dimensionality
not necessarily present in the original data. We refer to [8, Section 12.3.4] for a more
detailed discussion and only point out here that a choice of kernel may not necessarily
be aligned with the structure of the data and make it hard for the method to identify the
“data manifold” in the presence of noise.

Ridge regression

Another related method admitting solutions that can be described by kernels is that of
ridge regression. The connection appears when α > 0. In kernel ridge regression [8] a
data interpolant is looked for in the form

u(x) = λ · h(x) + λ0,

where λ ∈ R
n and h = (h1, . . . , hn) is a vector of basis functions, by minimizing a measure

of the error with a regularizing term given as a multiple of |λ|2. In that case, if one
defines the kernel Kn(x, y) = ∑n

j=1 hj(x)hj(y), a solution can be found in the form u =
∑m

i=1 λiK (·, xi) leading to a system very much like (2.4). Formally letting n tend to ∞, one
would obtain a problem in infinite dimensions if the functions hj were chosen to be the
eigenfunctions of some kernel (where available). The penalizing norm would, however,
converge to an L2-type norm 2 and, moreover, a discrete set of eigenfunctions may not
be available in general, as it is the case for the Laplace kernel used here. It is interesting
to observe that the method described in this paper, like RKHS methods (α = 0), finds
an infinite dimensional problem that necessarily has a solution which can be obtained by
solving a finite dimensional one.
In the general category of data-smoothing models one can also find those developed

and studied by Wahba and her school, see [9] for a nice account, where, starting with the
one dimensional case, the functional

1
m

m∑

i=1

(
yi − u(xi)

)2 + λ

∫ b

a

∣∣uxx
∣∣2 dx

is used to generate piecewise cubic polynomials as interpolants on an interval [a, b] ⊂ R.
The method was also extended to include other interpolants by using other differential
operators and made practical for moderate dimensions by a clever (and not immediately
obvious) use of tensor products. The approach taken in this paper is similar in spirit but
is truly ambient dimension independent.

Numerical experiments
In this section a series of experiments are performed to illustrate the effectiveness of the
method described in the previous section. First we consider two dimensional problems
to highlight important aspects and in order to motivate and justify the use of the method
in a high dimensional context. The section then concludes with an application to the
classification of the MNIST data set.

Stability of signals’ level sets

Working in the context of approximating measurable functions, simple functions play
an important role as they are the building block of any measurable function. While the

2unless one uses weighted norms.
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approximation property is well-known we present a few examples to illustrate the efficacy
of the use of the data signal’s level sets for classification purposes. First we will consider
situations where the approximation is good, then examples when it is rather poor. It will
be shown that, in all cases, i.e., regardless of how good the approximation is, the signal’s
level sets still provide very useful information. This observation is crucial since it opens
the door to applications to high dimensional data, where it is inconceivable that the data
arguments X provide a fine grid of even a small portion of the ambient space.

Characteristic functions of sets of positive measure

Take the three subsets of R
2

S1 = {
x ∈ R

2 ∣∣ |x| ≤ .6
}
, (4.1)

S2 = {
x ∈ R

2 ∣∣ |x1| + |x2| ≤ .7
}
, (4.2)

S3 = {
r(θ )

(
cos(θ ), sin(θ )

) ∈ R
2 ∣∣ .4 ≤ r(θ ) ≤ .6 + .1 cos(4θ ), θ ∈ [0, 2π )

}
, (4.3)

and consider the associated characteristic function χSj for j = 1, 2, 3. The first data set
consists of the values of these functions on a regular grid, that is,

Dm,j = {(
xi,χSj (x

i)
) ∣∣ i = 1, . . . , m2}, j = 1, 2, 3,

for Xm = {
(kh − 1, lh − 1)

∣∣ 0 ≤ k, l ≤ m − 1
}
and h = 2/(m − 1), which amounts to a

uniform discretization of the box B = [−1, 1] × [−1, 1]. In Fig. 1 some level lines of the
interpolant uDm,j are shown for the three functions χSj , j = 1, 2, 3, and for different values
of the regularizing parameter α > 0 and m = 16. While the size of the data set clearly
correlates with the “accuracy” of the interpolation, the approximating function does an
excellent job at generatingmeaningful and smooth level sets. Their smoothness is affected
mainly by the parameter α and the their proximity to the level sets corresponding to the
highest values.
It follows that if a characteristic function has to be recovered or inferred from a data

set, thresholding based on the interpolant uDm,j is an effective strategy and the decision
boundary

[
uDm,j = .5max(uDm,j )

]
is a solid choice across a range of values of the regular-

ization parameter. Figure 2 depicts the same experiments using the denser data sets D32,j
for j = 1, 2, 3.
In Figs. 3 and 4, it is shown how themethod performs in the presence of data corruption.

In Fig. 3 2% of the data is misclassified, whereas the misclassification rate in Fig. 4 is 5%.
By this we mean that a mistake is made, with the given probability, when a value is
assigned to an argument by evaluating the corresponding characteristic function. These
examples clearly demonstrate the usefulness of the regularizing parameter which leads
to data signals whose decision level sets are more stable in the presence of classification
errors.

Sample data

Finally we demonstrate that the method offers a degree robustness when the data argu-
ments are randomly sampled from a uniform distribution supported on the box B. The
resulting decision boundaries of half maximal value are depicted in Fig. 5 along with the
sampled argument data sets Xm. The sampling rate clearly affects the smoothness of the
level sets, a deterioration that is to some extent counteracted by the regularization.
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Fig. 1 Level lines of the signal uDm,j form = 16, j = 1, 2, 3, and α = 0.1, 1.0, 2.0. Depicted are the data set (blue
dots correspond to the value 1 while magenta dots to the value 0) and three level lines corresponding to levels at
20%, 50%, and 80% of the signal’s maximal value, respectively. Darker lines correspond to higher levels. The
parameter α grows from left to right. The boundary of the set Sj appears as a dashed black line

Fig. 2 Level lines of the signal uDm,j form = 32, j = 1, 2, 3, and α = 0, 1, 1, 2. Depicted are the data set (blue dots
correspond to the value 1 while magenta dots to the value 0) and three level lines corresponding to levels at 20%,
50%, and 80% of the signal’s maximal value, respectively. Darker lines correspond to higher levels. The parameter
α grows from left to right. The boundary of the set Sj appears as a dashed black line
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Fig. 3 Decision boundary of the signal uDm,j form = 16, j = 2, 3, and a = 0, 1, 1, 2 with 2% data corruption rate.
Depicted are the data set (blue dots correspond to the value 1 while magenta dots to the value 0) and the level
line corresponding to 50% of the signal’s maximal value. The parameter α grows from left to right. The boundary
of the set Sj appears as a dashed black line

Fig. 4 Decision boundary of the signal uDm,j form = 32, j = 2, 3, and a = 0, 1, 1, 2 with 5% data corruption rate.
Depicted are the data set (blue dots correspond to the value 1 while magenta dots to the value 0) and the level
line corresponding to 50% of the signal’s maximal value. The parameter α grows from left to right. The boundary
of the set Sj appears as a dashed black line

Fig. 5 Level lines of 20%, 50%, and 80%, increasingly dark, of the signal’s maximal value for regularizations
parameter α = .1, 1, 2., from left to right. The number of randomly sampled points, also depicted with the
associated value color-coded (with blue representing the value 1, while magenta the value 0), is 1024 as in the
denser regular grids of previous examples
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Fig. 6 From left to right, the data set pairs (Ck , Sk ), k = 1, 2. They can be thought as different samplings of the
same pair of “continuous” sets

Classification

Continuity of the interpolant and its level sets (almost all of them actually smooth) are
obtained at the cost of approximate interpolation. Such an approximation can still be
accurate when the argument data set covers the function’s domain of definition uniformly
and the value set is accurate, but the real advantage of this method is its applicability
to incomplete data and/or noisy data sets. This point is further reinforced with the next
series of experiments, where the data build a lower dimensional manifold of the ambient
space and its signal is weak, that is, information about the underlying function is limited
to sets of zero measure, or the data is not deterministic (in its argument set) but only has
a probability distribution for its location.
Consider the data setsDk , k = 1, 2, consisting of points belonging to two distinct classes:

points along a circle and points on the union of two segments with two different densities
as depicted in Fig. 6. For k = 1, 2, denote the circular data sets by

Ck = {
cik

∣∣ i = 1, . . .mCk

}

and the union of segments data sets by

Sk = {
sik

∣∣ i = 1, . . .mSk
}

In the spirit of the previous examples, we create two pairs of data sets

DCk = {
(cik , 1)

∣∣ i = 1, . . .mCk

} ∪ {
(sik , 0)

∣∣ i = 1, . . .mSk
}
and

DSk = {
(sik , 1)

∣∣ i = 1, . . .mSk
} ∪ {

(cik , 0)
∣∣ i = 1, . . .mCk

}
, k = 1, 2

and compute the associated signals uDCk
and uDSk

, k = 1, 2. Figure 7 shows the level sets

[uDCk
= .5max(uDCk

)
]
and [uDSk

= .5max(uDSk
)
]
, k = 1, 2.

for different values of the regularization parameter.
The region in their interior (i.e. the one containing the corresponding data set) can be

considered as a smooth fattening of the data set to a set of positive measure. It can be
obtained for any data set regardless of the intensity of its signal.
Next we turn our interest to the question of classification: given a point z ∈ R

2 that
needs to be classified, we use the decision algorithm defined by (2.7). This gives

L(z) = argmaxl=1,2 uDl (z),

which, in this case, yields the level lines (hypersurfaces in higher dimension)

[
uD1 = uD2

]
(4.4)
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Fig. 7 The 50% of maximum level lines for the signals uDC and uDS of the data sets based on the two data
classes Ck and Sk for k = 1, 2. The first two rows correspond to k = 1 and the second two to k = 2. Withing each
row, from left to right, the regularization parameter is α = .1, 1, 2

Fig. 8 The decision boundary computed according to (4.4) for two classes depicted in the same image. The kth
row corresponds to the class pair (Ck , Sk ), k = 1, 2. Notice how the decision boundary is affected by the “density”
of the data sets and not very strongly affected by the regularization parameter. The latter is, from left to right,
α = .1, 1, 2
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Fig. 9 The decision regions computed according to (2.7) for three classes of normally distributed points
depicted using different colors in the same image. The average of each class is plotted as a large disk. The first row
shows three different realization of the same three normal distributions and the computed decision regions. The
first image in the second row is based on the same distributions as the first row but the sample size is increased,
the second and third show the decision regions for different choices of means and covariance matrices. In all but
the last example the covariance is taken to be diagonal. In the third and the last image, one of the sample points is
outside the computational box where the data signals are generated and hence generated an unshaded region

as the decision boundary. This is illustrated in Fig. 8 for the classification problem of the
two class pairs (Ck, Sk ) for k = 1, 2 introduced above.
If the data pairs (Ck, Sk ), k = 1, 2, are considered the ground truth, then the above

decision boundary is arguably optimal. If, on the other hand, it is known that the actual sets
are the continuous circle and the union of two segments, then the data are only a sampling
of these sets. In this case, the decision boundarymay be biased by the relative oversampling
of the one set compared to the other. This is evident when one compares the decision
boundaries of Fig. 8. In concrete situations, if information about the dimensionality of the
ground truth is known, this effect can bemitigated by using comparable sampling rates for
the different classes (see next section for an example of this procedure) or by normalizing
the data fidelity term to read 1

2m
∑m

i=1
∣∣u(xi) − yi

∣∣2.
We conclude this sectionwith a classification problem for dataX0 split into three classes

Xl , l = 1, 2, 3, each consisting of a set of points which are normally distributed with mean
pl ∈ R

2 and different covariance matrices. The data set and the corresponding decision
regions computed based on (2.7) are depicted in Fig. 9. In these experiments α = 1.

The MNIST data set

The final application is to the standard machine learning example and toy problem of
digit classification for the MNIST data set.

Remark 2.18 The purpose of this example is to illustrate how the choice of regularizer
allows for the method to be used for data that live in high dimension. There is no effort to
optimize the parameter choices nor to compete with state-of-the-art algorithms. The idea
is rather to show how a theoretically justified and derived method with a small number of
parameters can perform an acceptable job on a high dimensional problem. The method
has its limitations as it assumes that the data classes (almost) lie on separable manifolds.
This may be approximately true for MNIST but is certainly not true for other data sets.
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The data set consists of 28×28 grayscale images of hand-written digits stored as vectors in
[0, 255]784. Here it is considered that the ambient space is simplyR

784. The argument data
is normalized to have unit Euclidean norm, that is, each original vector x is replaced by
x/|x|. In this way themaximal Euclidean distance between any two data points is 2

√
2. The

data set is split into a training set containing 60,000 data points x and their corresponding
label d(x) indicating which digit is represented, and a testing data set of size 10,000. The
labels of the testing data are known but need to be inferred from any knowledge that can
be gleaned from the training set. This an example of when, due to the so-called curse of
dimensionality, the data does not have any hope to fill the ambient space uniformly and
thus, even if one assumed the existence of an underlying function d : R

784 → {0, 1, . . . , 9},
the data would never be sufficient to accurately approximate it. It has to be said of course,
that the testing data mostly does not stray away significantly from the training data and
the different digits in the latter build thin subsets of the ambient space. This fact is
typically captured by saying that the data lives in some lower dimensional manifold(s).
We know from the previous section and from the two dimensional experiments, however,
that the (training) data still generates a significant, if not strong, signal. The classification
method described in the sequel exploits this signal and does not require any kind of
training based on the minimization of non-convex functionals, as is often the case for
machine learning algorithms based on neural nets. It is, in fact, based on the solution of
low dimensional, well-posed linear systems as is about to be explained. First, in order to
strengthen the signal somewhat, the training set is expanded to include rotations by±10◦

and horizontal/vertical translations by ±2 pixels of each image. Then, given a test image
z, the closest 5 training images of each digit class are determined

X = {
xij

∣∣ j = 1, . . . , 50
}
,

where d(xij ) = �j/5�. The idea is now to use system (2.4) in order to produce approximate
interpolants ud := uDd of the characteristic functions of each digit class given by the data
set

Dd = {(
xij , δd,d(xij )

) ∣∣ j = 1, . . . , 50
}
,

where d = 0, . . . , 9, and

δd,d̄ =
⎧
⎨

⎩
1, d = d̄,

0, d �= d̄.

Finally the approximative characteristic functions ud will compete to determine the digit
d(z) to be associated with the test image z via (2.7), in this case

d(z) = argmaxd ud(z).

This approach yields an accuracy of 98.56%3 on the test set. In Table 1 we record the
detailed outcome of the classification, performed with α = 1.5.
Recall that this method is stable and depends continuously on the data set and hence

delivers a robustness that methods with higher classification rates typically do not. More-
over, unlike neural networks, it does not require any training but uses the training set
directly in a fully transparent way.

3For comparison, a classification based on a direct nearest neighbor approach using the extended training set has an
accuracy of 97.86%
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Table 1 MNIST classification results: the kth row of the table indicates in column j how many times
the digit k is assigned the label j by the algorithm

Label

Digit 0 1 2 3 4 5 6 7 8 9

0 973 0 1 0 0 2 3 1 0 0

1 0 1131 2 1 0 0 0 1 0 0

2 4 1 1015 0 1 0 0 10 0 1

3 0 0 1 995 0 8 0 3 3 0

4 0 0 0 0 971 0 4 1 0 6

5 1 0 0 8 0 877 4 1 0 1

6 0 2 0 0 0 1 955 0 0 0

7 0 4 4 0 0 0 0 1020 0 0

8 2 0 3 9 3 2 3 4 946 2

9 1 2 1 4 9 7 0 10 2 973

Remark 2.19 It should be pointed out that the proposed classification method performs
well when the data classes effectively lie on submanifolds the shape of which their relative
signals are able to capture. If the class similarity is not geometric in this sense, this method
will likely not produce satisfactory results if applied to theoriginal data. It is indeedpossible
for general data sets to exhbit classes that share some common feature but are far apart
as points in space. In this case, the dots cannot be easily connected.
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