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Abstract

We present a fast high-order scheme for the numerical solution of a volume-surface
integro-differential equation. Such equations arise in problems of scattering of
time-harmonic acoustic and electromagnetic waves by inhomogeneous media with
variable density wherein the material properties jump across the medium interface. The
method uses a partition of unity to segregate the interior and the boundary regions of
the scattering obstacle, enabling us to make use of specially designed quadratures to
deal with the material discontinuities in a high-order manner. In particular, the method
uses suitable changes of variables to resolve the singularities present in the integrals in
conjunction with a decomposition of Green’s function via the addition theorem. To
achieve a reduced computational cost, the method employs a Fast Fourier Transform
(FFT) based acceleration strategy to compute the integrals over the boundary region.
Moreover, the necessary offgrid evaluation of the density and the inter-grid transfer of
data is achieved by applying an FFT-based refined-grid interpolation strategy. We
validate the performance of the method through multiple scattering simulations. In
particular, the numerical experiments demonstrate that the proposed method can
handle high-contrast material properties without any adverse effect on the number of
GMRES iterations.
Keywords: Acoustic, High-order, Nyström method, FFT

Introduction
In the last few decades, the scattering problem, particularly the computational aspects,
has garnered a lot of interest from engineers, scientists, and mathematicians owing to
its vast application base. Producing a meaningful numerical solution to this problem still
remains computationally challenging, particularly where there is a discontinuity or high
contrast in the material properties, and when a high-order accuracy is desired.
In this text, we consider the scatterer � to be an open bounded set in R

2 with a smooth
boundary �, �e ⊂ R

2 being the homogeneous exterior. The scalar scattering problem is
modeled in terms of the Bergmann’s equation [1],

ρ(x)∇ ·
[

1
ρ(x)∇ψ(x)

]
+ κ2(x)ψ(x) = 0, (1)
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where (for the acoustic case) ψ denotes the time-harmonic wave field, κ is the wave
number in the media, and ρ is the material density.1

The exterior field ψe = ψinc + ψs satisfies the Helmholtz’s equation

�ψe(x) + κ2
e ψe(x) = 0, for x ∈ �e, (2)

where ψinc is the incident wave, κe is the wave number in �e, and ψs is the scattered wave
satisfying the Sommerfeld radiation condition [2]. The transmission conditions

ψe = ψ , (3a)
1
ρe

∂ψe
∂n = 1

ρ

∂ψ

∂n , (3b)

are satisfied across the interface �, where n denotes the outward normal and ρe is the
density in �e.
For the two dimensional electromagnetic scattering problem where the electric field is

given by E = (Ex, Ey, Ez) and the magnetic field is given byH = (Hx,Hy, Hz), the problem
can be modeled through transverse magnetic (TM) and transverse electric (TE) modes
[3] as below:

ψ = Ez, ρ = μ in TM-mode,
ψ = Hz, ρ = ε in TE-mode,

}
(4)

where ε and μ are the electric permittivity and magnetic permeability, respectively. Note
that for the two-dimensional electromagnetic problem, the material properties κ , ε and
μ depend only on the x and y variables.
The main difficulty in numerically solving the wave scattering problem remains the fact

that to describe highly oscillatory functions in large domains accurately, a certain fixed
number of points are necessary to resolve a wavelength. The central challenge in directly
solving the differential equation or its variational formulations lies in constructing an
approximating boundary condition to replace the radiation condition, which in itself is a
highly active area of research [4–6]. Generally, the error associated with such boundary
conditions typically dominates the error in the computed solution. Another approach is
to solve an equivalent integral equation [2,7], which is favored for this problem because
the solution of the integral equation inherently satisfies the radiation condition. There
are two main challenges in obtaining the numerical solution of the equivalent integral
equation of the scattering problem, first, singularity present in the kernel of the integral
equation, and, second, quadratic cost per iteration of the linear solver.
A couple of volume-surface integral representations for the scalar scattering problem

can be found in [1,8]. The authors in [8] study the well-posedness of the problem for
different material properties including the piecewise smooth material properties. In this
paper, we solve the equivalent (volume-surface) integral equation (5) presented in [1,
Section 4.3],

ψ(x) = ψinc(x) + (Lψ)(x) = ψinc(x) + (KVψ)(x) + (SFψ)(x), for x ∈ �, (5)

1In [1] the author shows that it is erroneous to consider the Lippmann-Schwinger equation to solve the above scattering
problem. For a constant ρ though the Eq. (1) reduces to the Helmholtz’s equation, which leads to the Lippmann-
Schwinger integral equation.
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where the volume integral operator

(KVψ)(x) :=
∫
�

Ge(x, x′)(Vψ)(x′)dx′, (6)

and, the surface integral operator

(SFψ)(x) :=
∫
�

Ge(x, x′)(Fψ)(x′)ds(x′), (7)

with Vψ = (
κ2
e − κ2) ψ + ρ−1∇ρ · ∇ψ , Fψ =

(
ρe
ρ

− 1
)

∂ψ
∂n , and, the kernel

Ge(x, x′) = i
4H

1
0 (κe|x − x′|) is the radiating Green’s function of Helmholtz’s equation

in two-dimensions.
A significant amount of work addressing the acoustic scattering problem (based on

various formulations of the problem) can be found in the literature, to name a few [9–
14], but most of these studies address the scattering problem where the density remains
constant (ρ = ρe). To the best of our knowledge, only a limited number of works directly
address the problem with a variable density ρ. In [15], Kriegsmann and Reiss have given
a solution to the problem with variable ρ, assuming ρ/ρe � 1. They also assume that ρ

is constant near �, which, in general, need not be true. Although the authors consider
variable material density in [16–18], the solution methodologies work only for spherical
geometry. In [19], Bleszynski et al. address this problem in a three-dimensional setup and
provide a fast algorithm. They also point out the difficulty of the high-contrast problem
(ρ/ρe >> 1), which they address in a later article [20]. Though fast, the method in [20] is
a low-order method. Recently in [21], the authors presented an optimized weak coupling
of boundary element and finite element methods to solve acoustic scattering problems in
three dimensions for homogeneous and inhomogeneous scatterers. In [22], Colton and
Monk have reviewed the progress for the inverse problem with the variable density. This
article proposes a fast high-order method to solve the problem with variable and high-
contrast material properties. In particular, we investigate the performance of our solver
in the high-contrast scenario considered in [20].
The rest of the paper is organized as follows. “Numerical method” presents the pro-

posed solution methodology; in particular, we discuss the numerical schemes used for
high-order approximation of the integral operators and the density derivatives. Next, in
“Computation examples”, we present a variety of computational examples to showcase the
efficacy of the proposed method. A brief discussion on the extension of the methodology
for the corresponding three-dimensional acoustic scattering problem follows in “Exten-
sion to three dimensions”, wherein we demonstrate its effectiveness via some numerical
experiments. Finally, we summarize our conclusions in “Conclusions”.

Numerical method
We base our numerical approximation of the solution of Eq. (5) on the Nyströmmethod-
ology. Many of the principal components of the proposedmethod are adaption or modifi-
cation of the works thereof [9,13,23,24]. The method presented in this paper can be seen
as an extension of the work presented in [13] for the solution of the Lippmann-Schwinger
equation, which is a special case of the integral equation (5). The main difficulties in the
fast and accurate computation of the integrals in (5) are the singular (when x′ = x) and the
near-singular (when x′ and x are in close proximity) behavior of the kernel. A specialized
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Fig. 1 Illustrations of the curvilinear patches and the corresponding POU functions for a three patch cover for a
bean shaped scatterer. a Shows the scatterer shape. b Illustrates the POU function for the interior patch whereas
(c) and (d) illustrates two boundary patches. e, f Illustrate the collection of both the boundary patches and all of
the patches, respectively

integration scheme is designed to resolve these issues in conjunction with appropriate
changes of variables. The required offgrid calculations are handled using Fast Fourier
Transform (FFT) based high-order interpolation schemes designed in accordance with
the underlying grid as described in this section below.
The resulting linear system, arising from the Nyström discretization of (5), is solved

using the matrix free GMRES solver [25]. In the following, we describe the numerical
scheme for approximating the integral operators and the density derivatives.

Decomposition of integral operator

We split the closure � of the inhomogeneity � into P overlapping curvilinear patches,
say, {�p}Pp=1, where the pth-patch is homeomorphic to the set (0, 1)× [0, 1), via a smooth,
invertible parametrization ξp = ξp(u, t). By constructing a partition of unity ωp(x) =
ωp(ξp(u, t)), p = 1, . . . , P subordinated to this covering, we rewrite the volume integral (6)
as a sum of integrals over P patches

(KVψ)(x) =
P∑

p=1
(Kp Vψ)(x) =

P∑
p=1

∫
�p

Ge(x, x′)ωp(x′)Vψ(x′)dx′. (8)

Note that when the closure of a patch �p does not intersect the the boundary of the
domain, that is, when �p ∩ � = ∅, the corresponding function ωp and its derivatives
vanish to high-order at both ends in every direction. On the other hand, for the case
when �p ∩ � �= ∅, the corresponding function ωp vanishes at both ends only in the u-
direction. This distinction allows us to employ different approximationmethodologies for
integration over these two sets of patches. In particular, for integration over the patches,
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where the POU functions vanish in every direction, wemake use of the addition theorem-
based integration methodology [9,26] for an accurate O(N logN ) approximation (see
“Interior integration”).
To facilitate this, we classify the patches into the following two sets of patches and the

corresponding indices, namely, (�I ,I) = {(�p, p) : �p ∩ � = ∅} and (�B ,B) = {(�p, p) :
�p ∩ � �= ∅}. Here onward, the patches in �I are called the interior patches and the
patches in �B are called the boundary patches. For p ∈ B, we take the parameter t to
describe the transverse parameter, where the boundary � coincides with t = 0. In view of
this, the set of functions {ωp(u, 0), p ∈ B} serves as a partition of unity for the surface �,
allowing us to decompose the surface integral (7) as

(SFψ)(x) :=
∑
p∈B

(Sp Fψ)(x) =
∑
p∈B

∫
�p

Ge(x, x′)ωp(x′)Fψ(x′)ds(x′),

where �p := �p ∩ �. Thus, using the above patch classification and the surface integral
decomposition, we can write the integral operator (Lψ)(x) as

(Lψ)(x) = (KIVψ)(x) +
∑
p∈B

(KpVψ)(x) +
∑
p∈B

(SpFψ)(x), (9)

where

(KIVψ)(x) :=
∑
p∈I

(KpVψ)(x) =
∫

�

Ge(x, x′)E(x′)Vψ(x′)dx′, (10)

and E(x) := ∑
p∈I

ωp(x) vanishes to the boundary � with high-order. Further, the integrals

(Kp Vψ)(x) and (SpFψ)(x) for p ∈ B can be rewritten, in the parametric space, as

(KpVψ)(x) =
1∫

0

1∫
0

Ge(x, ξp(u′, t ′))ωp(ξp(u′, t ′))Vψ(ξp(u′, t ′))Jp(u′, t ′)du′dt ′, (11)

and

(SpFψ)(x) =
1∫

0

Ge(x, ξp(u′, 0))ωp(ξp(u′, 0))Fψ(ξp(u′, 0)) ∂

∂u′ ξp(u
′, 0)du′, (12)

respectively, where Jp in (11) denotes the Jacobian of the change of variable ξp.
Clearly, in order to achieve high-order approximation of the operator (Lψ), themethod

requires high-order numerical integration schemes to approximate the integrals KIVψ ,
KpVψ , and SpFψ given in (10), (11), and (12), respectively. In addition, the method
requires an accurate numerical differentiation scheme to evaluate the expressions Vψ

and Fψ .
Toward this end, we start by placing a uniform parametric grid

GB
p = {xpij = ξp(i/(NB

u − 1), j/(NB
t − 1)) | 0 ≤ i < NB

u , 0 ≤ j < NB
t }, for p ∈ B, (13)

and

GI
p = {xpij = ξp(i/(NI

u − 1), j/(NI
t − 1)) | 0 ≤ i < NI

u , 0 ≤ j < NI
t }, for p ∈ I , (14)

for each overlapping patch as illustrated in Figure 2.
We denote the set of all the Nyström nodes (that is, the points where the method

computes the unknown) on the whole domain� by G := GB ∪GI ,where GB := ∪p∈BGB
p ,

and GI := ∪p∈IGI
p . Thus, the number of unknowns for the iterative solver is N =



Paul et al. AdvancedModeling and Simulation in Engineering Sciences           (2024) 11:2 Page 6 of 22

Fig. 2 An illustration of the grid placement for a three patch decomposition of a bean shaped domain (given by,
e.g., the blue curve in the top-right subfigure.) The figure shows on the top left—the grid over two boundary
patches; at the top right— grid over the interior-patch region; at the bottom left—union of the grids over the
boundary- and interior-patches; and at the bottom right—the auxiliary polar grid encompassing the domain

card(G) = NB
u ×NB

t ×card(B)+NI
u ×NI

t ×card(I). Note that a separate grid placement
for the surface calculation is not required; instead, the u-direction grid at t = 0 for p ∈ B
does the job, restricting the total number of unknowns to N . Before we describe the
numerical strategy in detail, we point out that the method also uses an “auxiliary” grid in
polar coordinates to approximate the integral in Eq. (10) as described in detail in “Interior
integration”. Note that these auxiliary polar grid points do not contribute to the number
of unknowns N in the iterative solver.
In what follows, we first present the approximation strategy for the surface integral (12),

then extend this strategy to approximate the boundary-patch integral (11). In both cases,
a local floating POU around the target point is used to isolate the singularity, which
localizes the otherwise expensive singular integration calculation and facilitates the use of
the FFT-based equivalent source acceleration strategy [13,27]. For approximation of the
integral (10) over the interior patches, the method relies on a suitable decomposition of
the Green’s function Ge via the addition theorem of the Hankel function [9] to speed up
the otherwise bulky calculation. To efficiently transfer of the data E(x)Vψ(x) back and
forth between the polar grid and the uniform parametric mesh on the interior patches, we
set up two fast high-order FFT-based interpolation schemes discussed later in the text.
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Approximation of the surface integral

The difficulties in numerical approximation of the surface integral (12) are similar for
each p ∈ B; hence it is sufficient to discuss the method for a particular p. First, when
the target point x is sufficiently away from the surface �p, the integrand is smooth and
periodic (owing to the vanishing properties at both end). Thus, an application of the
trapezoidal rule can effect a high-order approximation. On the other hand, when x ∈ �p
or x is close to the surface patch �p, the kernel Ge has a singular or a near-singular (due
to the rapid change in the kernel value) behavior, respectively. To achieve a high-order
accuracy without compromising efficiency, as mentioned above, the method localizes the
singularity using a smooth cutoff function ηu centered at u; in our computation we used

ηu(u′) =

⎧⎪⎪⎨
⎪⎪⎩
1 for γ � γ0,

exp
(
2e−1/x

x−1

)
for γ0 < d < γ1 where x = (d − γ0) / (γ1 − γ0) ,

0 for d � γ1,

(15)

for γ1 > γ0 ≥ 0 and d = |u − u′|. Using ηu we rewrite Eq. (12) as a sum of two integrals

(SpFψ)(x) =
1∫

0

Ge(x, ξp(u′, 0))̃Fpψ(u′)(1 − ηu(u′))du′

+
u+γ1∫

u−γ1

Ge(x, ξp(u′, 0))̃Fpψ(u′)ηu(u′)du′, (16)

where F̃pψ(u′) = ωp(ξp(u′, 0))Fψ(ξp(u′, 0)) ∂
∂u′ ξp(u′, 0). The first integral on the right hand

side (r.h.s.) of (16) has a smooth periodic integrand, and can be effected to a high-order
approximation using the trapezoidal rule. On the other hand, the integrand of the second
integral on r.h.s. of (16) contains a singularity. In order to resolve the singularity, we utilize
a change of variable

u′(τ ) = u + υ(τ ), (17)

where υ(τ ) is an odd function that vanishes at τ = 0 along with M (M ≥ 1) of its
derivatives. One such “change of variable” is

υ(τ ) = τM+1 (18)

for an even, non-negative integerM. This change of variable renders the integrand in (19)
below

τ1∫
−τ1

Ge(x, ξp(u′(τ ), 0))̃Fpψ(u′(τ ))ηu(u′(τ ))υ ′(τ )dτ (19)

smooth with uniformly boundedM derivatives, which vanishes to high-order at the end-
points τ = −τ1 and τ = τ1, where τ1 = υ−1(γ1). Thus, a high-order integration is possible
using the trapezoidal rule (cf. Remark 1). Moreover, the change of variable given by (17)
also resolves the near singularity [11]. Notably, this change of variable necessitates density
values at some offgrid points, which we obtain via the one-dimensional version of the
high-order TrigPoly interpolation introduced in [23].
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Approximation of the boundary-patch integral

The present section provides a concise description of the numerical strategy employed
to approximate the boundary-patch integrals. Similar to the surface calculation, it is suf-
ficient to discuss the methodology for a particular p ∈ B. The difficulties in numerical
approximation of these integrals significantly depend on the position of the target point,
leading to the following three different instances.

Non-singular integral

In case, the target point x resides outside the integrating patch �p, the integrand is
smooth and vanishes at two ends in the u-direction; see Figure 1. A combination of
the trapezoidal rule in the u-variable, and a high-order Newton-Cotes quadrature in the
transverse t-variable, effects a rapid convergence in this case.

Singular integral

Second, we consider the case where the target point x resides within the integrating patch
�p and it coincides with a quadrature point xpij in GB

p (see (13)). Here, we encounter a
singularity at ξp(u′, t ′) = x and a near singularity when these points are in close proximity.
In order to treat the singularity, the method utilizes a one-dimensional floating POU
ηx(u′; t ′) in the u-variable centered at the target point x, leading to

(KpVψ)(x) =
1∫

0

1∫
0

Ge(x, ξp(u′, t ′))Ṽpψ(u′, t ′)(1 − ηx(u′; t ′))du′dt ′

+
1∫

0

Ip(t ′; x, u)dt ′, (20)

where Ṽpψ(u′, t ′) = ωp(ξp(u′, t ′))Vψ(ξp(u′, t ′))Jp(u′, t ′), and

Ip(t ′; x, u) =
∫ τ1

−τ1
Ge(x, ξp(u′, t ′))Ṽpψ(u′, t ′)ηx(u′; t ′)du′. (21)

The first integral on the r.h.s. of (20) is free of singularity and can be treated to a high-
order approximation following the non-singular case described above in “Non-singular
integral”. On the other hand, Ip(t ′; x, u) has a corner type singularity at t ′ = t, which can
be resolved by splitting the second integral in the r.h.s. of (20) at t ′ = t [13], where each
integral piece is approximated to high-order using Newton-Cotes quadrature. The values
of Ip(t ′; x, u) as required at the transverseNewton-Cotes quadrature points are obtained in
a high-order manner using the trapezoidal rule in conjunction with the change of variable
u′ = u′(τ ) given by Eq. (17).

Offgrid boundary-patch evaluation

Finally we consider the case, when a target point resides in the integrating patch, but
not a quadrature point, that is, x ∈ �p and x /∈ GB

p ; which only happens when the
target point comes from the overlapping region. Such offgrid evaluations are dealt by
interpolation of the precomputed integral values KBVψ := ∑

p∈B
KpVψ at the quadrature

points in GB
p for p ∈ B. Using the properties of a partitions of unity {Wp : p ∈ B} set

over the boundary patches (where the functionsWp vanishes only in the u-direction), we
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can express KBVψ = ∑
p∈B

WpKBVψ . Clearly, WpKBVψ is periodic in the u-direction,

and the precomputed values of KBVψ can be used to set up an FFT-refined polynomial
interpolation [14] for every boundary patch making accurate and efficient evaluations of
KBVψ at offgrid points.

FFT-based equivalent source acceleration of the non-singular surface and boundary-patch

integrals

It is straightforward to see that while the method discussed above for the non-singular
integrals converges with high-order, it has aO(NBN )+O(NNS) computational complex-
ity, where NB and NS are the number of the boundary-patch and the surface unknowns,
respectively. To improve the complexity toO(N logN ), the method utilizes the two-face
equivalent source acceleration strategy introduced in [27] for three dimensional surface
computation and later adapted for volumetric calculation in [11]. Below we provide a
concise description of this acceleration strategy.
We consider a square C of side A containing the domain �, which is then further

partitioned into L2 identical non-overlapping squares Cij (i, j = 1, . . . , L) of sideH = A/L
such that the cells Cij do not admit inner resonance. To accelerate the non-singular
integrals, we split the boundary-patch and the surface integral in (9) into two, namely,
“adjacent” and “non-adjacent” interactions. To precisely define the adjacency, for a grid
point x ∈ Cij which we refer as a “true source” point, we first define the neighbourhood
setN (x)

N (x) = {x′ | x′ ∈ Ckl : |k − i| ≤ 1, |l − j| ≤ 1},

which contain atmost eight neighbouring cells. Two source points x and x′ are considered
to be adjacent if x′ ∈ N (x), and to be non-adjacent if otherwise. Utilising the definition
of neighbourhood set and by ensuring that the support of the cut-off functions ηx(u′; t ′)
and ηu(u′) (see (15)) are contained within the neighbourhood set N (x), the boundary-
patch and the surface integrals can be rewritten as sum of the adjacent and non-adjacent
interaction as follows:

(Kreg
B Vψ

)
(x)

=
∑
p∈B

(∫∫
ξ−1
p (�p∩N (x))

Ge
(x, ξp(u′, t ′)

)
Ṽpψ(u′, t ′)

(
1 − ηx

(
u′; t ′

))
du′dt ′

)

+
∑
p∈B

(∫∫
�p∩N (x)c

Ge
(x, ξp(u′, t ′)

)
Ṽpψ(u′, t ′)dx′

)
, (22)

(SregFψ
)
(x)

=
∑
p∈B

(∫
ξ−1
p (�p∩N (x))

Ge
(x, ξp (

u′, 0
))
F̃pψ(u′)

(
1 − ηu

(
u′)) du′

)

+
∑
p∈B

(∫
�p∩N (x)c

Ge
(x, ξp (

u′, 0
))
F̃pψ(u′)ds(x′)

)
. (23)

The adjacent interactions above in Eqs. (22) and (23) can be approximated to high-order
by employing the quadrature schemes discussed above for the non-singular integrals
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in O(N ) complexity. The non-adjacent interactions, free of the cutoff functions, take a
simpler form of the discrete convolution that reads

Kreg
na,B(x) =

∑
xl∈GB\N (x)

wlGe(x, xl)ϕ(xl), (24)

where ϕ(xl) = Fψ(xl) + Vψ(xl) if xl ∈ GB ∩ �, and ϕ(xl) = Vψ(xl) otherwise. We
point out that the true source values in (24) includes contributions from the non-adjacent
surface calculations. Note that the convolution in (24) can not be computed directly using
FFT as the trues source points xl ∈ GB are irregularly distributed. We also note that
while the contributing sources range only in xl ∈ GB, but the convolution (24) needs
to be computed at additional points which will not lie in the boundary region. We call
these extra points as “virtual source point”, and include them in summation (24) with
zero weight wl , which facilitates an efficient evaluation of the non-adjacent interactions
at all these virtual source locations using FFT-based acceleration strategy that we briefly
describe next for completeness.
The key idea of the acceleration technique is to compute (24) by replacing the true

sources with a certain set of “equivalent sources” distributed uniformly on the two par-
allel faces of the cell Cij (see Fig. 3). Let σm

ij,l and σ d
ij,l (l = 1, · · · , N eq) denote the acoustic

monopoles and dipoles at the Cartesian grid xij,l , respectively. Then, the field induced by
these equivalent sources is

Kreg,eq
ij,B (x) =

N eq∑
l=1

(
σm
ij,lGe

(x, xij,l) + σ d
ij,l

∂Ge
(x, xij,l)

∂v (xij,l)
)
. (25)

Let Kreg,true
ij,B (x) denotes the field induced by true sources, say, given by

Kreg,true
ij,B (x) =

∑
xl∈Cij

wlGe (x, xl)ϕ(xl). (26)

Theunknownsσm
ij,l andσ d

ij,l in (25) are obtainedby solving a over determinant linear system
Aσ = b, where the matrix A is obtained by evaluating (25) at ncoll = 4N eq points located
on the boundary of the adjacent setN (x), and the vector b is obtained by evaluating (26)
at ncoll points. It is well known (see [27]) that the quantityKreg, eq

ij,B (x) provides an accurate
approximation to the field Kreg,true

ij,B (x) generated by true sources in cell Cij . Owing to the
identical geometry of each cell Cij , the QR decomposition of matrix A is obtained once
and stored for repeated use. This whole process requires O (

N 3/2/L3
) + O (

N 3/2/L2
)

operations in total, see [13].
For any x ∈ Cij , the non-adjacent interaction induced by all Cartesian grids can be

obtained by subtracting the adjacent interaction from the whole convolution. To be more
precise, for any x ∈ Cij , the quantity

Kreg,eq
B (x) =

L∑
k=1

L∑
l=1

Kreg,eq
kl,B (x) −

i+1∑
k=i−1

j+1∑
l=j−1

Kreg,eq
kl,B (x) (27)

provides an accurate approximation of the non-adjacent interactions defined in (24). The
convolution on the right-hand side is described over an equidistant Cartesian grid, hence
can be computed using FFT.
Finally, to obtain the field values at the true source and the virtual source locations

within each cell Cij , a Dirichlet problem for the free space Helmholtz equation is solved.
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Fig. 3 An illustration for the acceleration of the non-singular calculations of the boundary-patch integrals,
namely, the boundary-patch non-adjacent interactions presented in “FFT-based equivalent source acceleration of
the non-singular surface and boundary-patch integrals”. The locations xij,� of the equivalent sources on the
parallel faces of cells Cij are depicted by solid black circles. The true source points are shown as red diamonds. The
virtual source points (with zero weights) are shown as green stars. The image also depicts the neighbourhood
N (x) for a target point x

Owing to the non-resonance of each cell this problem is uniquely solvable. The solution
to all these well-posed problems can be obtained efficiently by discretized the plane wave
expansion in a coordinate system local to cell Cij of the form

Kreg,eq
B (x) ≈

ncoll∑
l=1

βl exp
(
iκdl · (x − xij,c

))
, (28)

where dl is the unit vector on the surface of the unit disc centred at xij,c, the centre of
the cell Cij . The coefficients βl are computed by solving an overdetermined linear system
constructed by matching (28) on the Cartesian grid points of the parallel faces of cell Cij .
It was shown in [13] that the acceleration strategy has a computational complexity of
O(N logN ).

Interior integration

We first note that the integration over the interior patches can be re-written as

(KIVψ)(x) :=
∑
p∈I

(KpVψ)(x) =
∫
BR

Ge(x, x′)E(x′)Vψ(x′)dx′, (29)

whereBR ⊃ � is a circular region of radiusR containing� and E(x) := ∑
p∈I

ωp(x) vanishes
to the boundary �. As mentioned earlier in “Numerical method” to approximate the
integral over BR in Eq. (29), we employ a quadrature that relies upon decomposition of the
kernel. In particular, using the addition theorem for the Hankel function H1

0 (κe|x − x′|)
[2], in polar coordinates x = (r cos θ , r sin θ ) and x′ = (r′ cos θ ′, r′ sin θ ′), the Eq. (29)
yields

(KIVψ)(x) =
∞∑

�=−∞

R∫
0

Jκe,�(r, r′)
[ 2π∫

0

EVψ(r′, θ ′)e−i�θ ′
dθ ′

]
r′dr′ei�θ

≈
F∑

�=−F

R∫
0

Jκe,�(r, r′)
[ 2π∫

0

EVψ(r′, θ ′)e−i�θ ′
dθ ′

]
r′dr′ei�θ ,
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where, denoting the �-th order Bessel and Hankel function of the first kind by J� and
H1

� , respectively, and Jκe,�(r, r′) = i
4H

1
� (κe max(r, r′))J�(κe min(r, r′)). Clearly, we have a

logarithmic singularity as r → 0 and a jump discontinuity at r′ = r due to the presence
of Jκe,�(r, r′) in the integrand. Note that, owing to the presence of the factor E(x), the
integrand EVψ(r, θ ) is smooth in R

2.
For any fixed r ∈ [0, R], the evaluation of the angular integral amounts to computing

the �th Fourier coefficients of a smooth and 2π periodic function. An accurate and high-
order approximation can be effected using the trapezoidal quadrature rule, which can be
accomplished by one time application of the FFT. Thus, we place a uniform grid along the
angular direction whereas we place a piecewise Chebyshev grid (see Fig. 2) for the radial
integration as described in below.
Denoting the �th Fourier coefficient of g by (g)�, we have

(KIVψ)(x) ≈ −i
4

F∑
�=−F

[
J�(κer)
Y�(κeR)

I1
� (R) + iI1

� (r) + iI2,polar
� (r) + iI2,log

� (r)
]
, (30)

where

I1
� (r) =

r∫
0

Y�(κer)J�(κer′)(EVψ)�(r′)r′dr′, (31)

I2,polar
� (r) =

R∫
r

J�(κer)Y
polar
� (κer′)(EVψ)�(r′)r′dr′, (32)

I2,log
� (r) =

R∫
r

J�(κer)Y
log
� (r′)(EVψ)�(r′)r′dr′, (33)

and Y�(κer′) = Y polar
� (κer′) + Y log

� (r′) with Y log
� (r) = (2/π ) log(r/2)J�(r) and Y polar

� (r) =
O(r−�) as r → 0. Clearly, the integrands in I1

� (r) and I2,polar
� (r) are smooth, except the

logarithmic singularity present in Y log
� at the origin.

For approximation of the integralsI1
� (r) andI2,polar

� (r), the radial interval [0, R] is broken
into Ni equilength subintervals and a Chebyshev grid is set on each of these subintervals.
Let [a, b] be one such subinterval and z(r) := (2r − a− b)/(b− a) maps the interval [a, b]
to the standard interval [−1, 1]. We approximate (EVψ)�(r) via a truncated Chebyshev
series

(EVψ)�(r) =
Nc−1∑
n=0

cn�Tn(z(r)), (34)

where cn� ∈ C are the corresponding Chebyshev coefficients. An O(Nc logNc) computa-
tion of the coefficients cn� is possible via an implementation of discrete cosine transform
(DCT ). The procedure requires the values (EVψ)�(r) at the points rj = z−1(βj), where
z−1(β) = ((b−a)β+b+a)/2maps the standard Chebyshev interval [−1, 1] to the interval
[a, b] and βj = cos (π (j + 0.5)/Nc), for j = 0, 1, . . . , Nc − 1, are the Chebyshev points in
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the standard interval [−1, 1]. Using (34) we reexpress (31) and (32) as

I1
� (rj) =

Nc−1∑
n=0

cn�Pnj�, (35)

I2,polar
� (rj) =

Nc−1∑
n=0

cn�Q
polar
nj� , (36)

where the integral moments

Pnj� =
rj∫

0

Y�(κerj)J�(κer′)Tn(z(r′))r′dr′, (37)

Qpolar
nj� =

R∫
rj

J�(κerj)Y
polar
� (κer′)Tn(z(r′))r′dr′, (38)

need to be computed only once at the beginning of each run and stored for future use as the
integrands are known analytically. Storing thesemoments requiresO(NcNrFNi) memory,
whereNr = Nc+1 (see [26]).Onecanuse ahigh-orderquadrature, for example,Clenshaw-
Curtis quadrature, to approximate the moments in Eqs. (37) and (38). Once the moments
are available, an accurate approximation of the radial integral can be obtained by adding
and subtracting scaled values of these moments. The integral I2,log

� can be approximated
efficiently by first, resolving the logarithmic singularity present in Y log

� using integration
by parts and then, utilizing the approximated values of I1

� (rj) [9].
Transfer of data between the polar grid and the uniform parametric grid.Themethod uses
two FFT-based interpolation strategies to evaluate the density Vψ on the polar grid as
required by the integration strategy described above in this section and to transfer the
computed integral values to the solver on the uniform parametric grid. First, (for interpo-
lation ofVψ onto the polar grid)—since the POU is smoothly vanishing in every direction
for each interior patch, we use an FFT-refined local polynomial interpolation strategy in
both u- and v-directions. And secondly, (for interpolating the computed integral values
KIVψ onto the parametric grid)—we set a piecewise Chebyshev interpolation along the
radial direction and a refined FFT-based polynomial interpolation along the angular direc-
tion. Since the local polynomial interpolation scheme has an O(1) cost, the interpolation
strategies described above have the same computational complexity ofO(N logN ) as the
FFT procedure.

Computation of density derivatives

The last important component of the algorithmwe discuss is the computation of the den-
sity derivatives. We have utilized the Lower Degree Chebyshev (LDC) method proposed
in [24] for efficient computation of the density derivatives without significant degradation
in accuracy. The basic idea of the LDC algorithm is to first, approximate the function via
a low order Chebyshev polynomial expansion from the given approximated data, then
compute the Chebyshev coefficients for the derivative iteratively. The data on the cor-
responding Chebyshev grid point are again computed by use of FFT refined polynomial
interpolation. A suitable degree is used in the polynomial interpolation to obtain desired



Paul et al. AdvancedModeling and Simulation in Engineering Sciences           (2024) 11:2 Page 14 of 22

accuracy in the density values at the underlying Chebyshev points. Once these values are
obtained, the Chebyshev coefficients are evaluated by one application of Discrete Cosine
Transform (DCT) and the Chebyshev coefficients for the derivative are then obtained by
the recurrence formula [28]. For a detailed discussion and rigorous theoretical analysis of
the LDC algorithm we refer the readers to [24].

Remark 1 (Expected convergence rate) The rate of convergence depends on several
parameters including the degree of interpolating polynomial, the degree of approximat-
ing Chebyshev polynomial, the order of the Newton-Cotes quadrature, the value of M
(cf. Eq. 18) etc.

Computational examples
This section demonstrates the performance of themethod through several computational
examples. The relative error reported in the tables are obtained using the following for-
mulae

ε∞(ψ) =
max

1≤n≤N

∣∣ψexact(xn) − ψapprox(xn)
∣∣

max
1≤n≤N

∣∣ψexact(xn)
∣∣ ,

and

ε2(ψ) =

⎛
⎜⎜⎜⎝

N∑
n=1

∣∣ψexact(xn) − ψapprox(xn)
∣∣2

N∑
n=1

|ψexact(xn)|2

⎞
⎟⎟⎟⎠

1
2

,

where ψexact(x) and ψapprox(x) denotes the analytical/refined-grid solution and the com-
puted solution at the point x, respectively. The numerical “Order” of convergence pre-
sented in the tables in this document is obtained as– Order = log2(εN /ε2N ), where
εN denote the relative error corresponding to N number of discretization points. “Iter”
denotes the number of iteration required for the linear solver to converge up to the given
tolerance level.
Unless mentioned otherwise, in all the examples presented in this section, we used
—a three patch covering of the obstacle, that is, P = 3 in (8),
—a 5-point Newton-Cotes quadrature for integration over the boundary-patch region,

and
—the plane wave incident field exp(iκex · d) with d = (1, 0).
All of the numerical experiments reported in this paper were run on a computer with

2.6 Ghz Intel Xeon Processor with 256 Gb of memory. The two-dimensional results were
run on a single thread, whereas for the three-dimensional computations multi-threading
was used.

Remark 2 Note that the sizes of thepolar grid are suppressed in the convergence studies as
addition theorem based calculation in this case, due to vanishing density EVψ , converges
super-algebraically [29] and significantly faster than the convergence rate of the other
components of themethod. The size of the polar grid need not be increased with the same
ratio as the parametric grid to maintain the polynomial convergence rate.

Example 1 (Forward map convergence) For our first numerical experiment, we consider
the convergence study of the forward map computation (i.e. convergence study for the
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Table 1 Convergence study for the forward map of the operator Lψ for a unit disc with
κ/κe = √

2.0 and ρ/ρe = 1.0 using 5-point Newton-Cotes quadrature for integration in the
t-direction over the boundary region

NB
u NB

t NI
u NI

t ε2 Order ε∞ Order

17 9 17 17 1.92 × 10−1 − 2.72 × 10−1 −
33 17 33 33 4.12 × 10−2 2.22 7.34 × 10−2 1.89

65 33 65 65 5.78 × 10−3 2.83 1.35 × 10−2 2.44

129 65 129 129 2.56 × 10−4 4.50 3.65 × 10−4 5.21

257 129 257 257 4.53 × 10−6 5.82 5.37 × 10−6 6.09

Table 2 Convergence study for scattering in the setting of Example 2. The 5-point Newton-Cotes
quadrature is used for integration in the t-direction over the boundary region

NB
u NB

t NI
u NI

t Iter ε2 Order ε∞ Order

17 9 17 17 3 4.20 × 10−1 − 5.98 × 10−1 −
33 17 33 33 6 7.40 × 10−2 2.51 6.01 × 10−2 3.32

65 33 65 65 10 5.94 × 10−3 3.64 4.57 × 10−3 3.72

129 65 129 129 14 1.37 × 10−4 5.43 1.1 × 10−4 5.38

257 129 257 257 18 4.86 × 10−6 4.85 3.92 × 10−6 4.81

proposed quadrature for approximation of the operatorLψ). In this example, we consider
a unit disc scatterer centered at the origin with constant material properties, namely
κ = √

2, κe = 1, and ρ = ρe = 1.0 in which case the integration can be evaluated
analytically. The convergence study presented in the Table 1 demonstrate a high-order
convergence rates.

Example 2 (Scattering by a lossymedium.) For the second exercise, we consider a circular
inhomogeneity of radius one centered at the origin with lossy medium (modeled using
complex valued material properties), namely, κ = √

3 + i
√
2 with κe = 1, ρ = 2 and

ρe = 1. Table 2 presents a convergence study by comparing the approximated solution
against theMie series solution. The results presented in Table 2 demonstrate a high-order
convergence of the approximated solution.

Example 3 (High contrast medium) For this experiment, we consider an example with a
high-contrast between the material values across the interface of the unit disk scattering
obstacle. In particular, we consider κ/κe = 10−04 (with κ = 10−04 and κe = 1) and
ρ/ρe = 103 ( with ρ = 103 and ρe = 1); the same ratios as in the article [20]. We present
the convergence study in Table 3. A quick comparison between Tables 2 and 3 shows that
the two scenarios presented by these tables require a similar number of GMRES iterations
to converge and produce similar errors in the solution. This exemplifies the robustness of
the method presented above.

Example 4 (Tempered growth in computational cost.) We showcase the efficiency of the
method by demonstrating a tempered growth in the computational cost of the proposed
algorithm while maintaining a fixed error level by comparing the approximated operator
against the continuous operator in Eq. (5). In every step while we double our grid size, we
also double the wave number κe to keep the number of points per wavelength unchanged
and avoid any deterioration in the accuracy level. The times required per iteration, as
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Table3 Convergence study for scattering by a disc centered at origin with radius 1

NB
u NB

t NI
u NI

t Iter ε2 Order ε∞ Order

17 9 17 17 2 2.10 × 10−1 − 3.12 × 10−1 −
33 17 33 33 4 5.12 × 10−2 2.03 6.44 × 10−2 2.27

65 33 65 65 5 7.55 × 10−3 2.76 1.16 × 10−2 2.47

129 65 129 129 8 2.77 × 10−4 4.77 2.65 × 10−4 5.45

257 129 257 257 10 4.99 × 10−6 5.79 4.82 × 10−6 5.78

Table4 Tempered growth in computational cost in the setting of Example 4

NB
u NB

t NI
u NI

t ε2 ε∞ κe Time (S)

33 9 33 33 2.79 × 10−2 7.16 × 10−3 4 1.53

65 17 65 65 2.20 × 10−3 2.64 × 10−3 8 6.8

129 33 129 129 4.60 × 10−4 5.93 × 10−4 16 25.7

257 65 257 257 1.02 × 10−4 1.23 × 10−4 32 102.6

Table 5 Convergence study for scattering by a bean shaped scatterer of acoustic size κea = 3, with
κ/κe = 10−4 and ρ/ρe = 103 in the setting of Example 5

NB
u NB

t NI
u NI

t Iter ε2 Order ε∞ Order

9 5 9 9 2 6.52 · 10−1 — 9.60 · 10−1 —

17 9 17 17 4 3.77 · 10−1 0.79 4.58 · 10−1 1.07

33 17 33 33 4 9.27 · 10−2 2.02 1.05 · 10−1 2.12

65 33 65 65 6 6.11 · 10−3 3.92 5.51 · 10−3 4.26

129 65 129 129 9 1.09 · 10−4 5.81 9.72 · 10−5 5.82

presented in Table 4, indicate almost an O(N logN ) computational complexity. The 3-
point Newton-Cotes quadrature is used for this experiment.

Example 5 [(High contrast medium for (relatively) complex geometry.)] In this example,
we consider a bean shaped scatterer described by the parametric representation

x1(θ ) = r cos θ + r2a2

b2
cos 2θ − r2a2

b2
, x2(θ ) = r sin θ (39)

with a = 0.65, b = 1.5, r = 1 and 0 ≤ θ ≤ 2π . In this experiment, we consider κe = 1,
κ = 10−4, ρe = 1 and ρ = 103. The convergence study presented in Table 5 demonstrates
a high-order convergence.

Example 6 (Variable material properties) So far in this article, we have considered only
constant material properties inside the scatterer, although, as mentioned previously it
is not necessarily so. Toward this, we demonstrate the convergence results for variable
material properties in Tables 6 and 7 for the bean shaped scatterer (given by Eq. 39). In
the convergence study presented in Tables 6, only the wave number κ varies within the
scatterer while the interior density ρ remains constant. In Tables 7, on the other hand,
both the wave number and the density vary within the scatterer.

Example 7 (Graphical presentation) In this example, we visualize the scattering for the
plane wave incident field exp(iκex · d) with d = (1/

√
2, 1/

√
2) by a bean shaped scatterer

given by (39) in the setting of Example 5. We consider a lossy medium with exterior wave
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Table 6 Convergence study for scattering by a bean shape with κi = sin(πx1) cos(πx2) and
ρi/ρe = 5, where 5-point Newton-Cotes quadrature is used for integration in the t-direction

NB
u NB

t NI
u NI

t Iter ε2 Order ε∞ Order

9 5 9 9 2 3.43 × 10−1 − 4.23 · 10−1 −
17 9 17 17 2 1.66 × 10−1 1.05 1.97 × 10−1 1.10

33 17 33 33 3 4.79 × 10−2 1.80 3.62 × 10−2 2.44

65 33 65 65 4 2.51 × 10−3 4.25 2.64 × 10−3 3.78

129 65 129 129 6 6.28 × 10−5 5.34 5.86 × 10−5 5.63

Table 7 Convergence study for scattering by a bean shaped scatterer with κea = 6.0,
κi = sin(πx1) cos(πx2) and ρi = 2.0 + sin(πx1) cos(πx2) where 5-point Newton-Cotes quadrature is
used for integration in t-direction over the boundary region

NB
u NB

t NI
u NI

t Iter ε2 Order ε∞ Order

17 9 17 17 4 4.17 × 10−1 − 3.26 × 10−1 −
33 17 33 33 5 6.20 × 10−2 2.74 6.97 × 10−2 2.23

65 33 65 65 7 4.77 × 10−3 3.70 5.20 × 10−3 3.74

129 65 129 129 10 8.07 × 10−5 5.89 1.03 × 10−4 5.66

Fig. 4 Figures for the scattering computation in the setting of Example 7 for the plane wave incident field
exp(iκed · x) with d = (1/

√
2, 1/

√
2), acoustic size κea = 20 and ρ/ρe = 2

number κe = 10. The real and absolute value of the computed scattering field is plotted
in the left and the right graph of Figure 4.

Example 8 (Variable material properties) As a last example of this section, we simulate
the scattering by a bean shaped inhomogeneity given by Eq. (39) with variable material
properties for a plane wave incident field exp(iκed · x) with d = (1, 0) and acoustic size
κea = 20. We consider the interior wave number κ = (sin(πx1), cos(πx2)) and density
ρ = 2.0 + sin(πx1) cos(πx2). The real and absolute value of the computed solution are
plotted in Figure 5.

Extension to three dimensions
The solution methodology presented in “Numerical method” for the two-dimensional
scattering problem has an algorithmic extension that allows for an approximation of the
solution to the scattering problem in three dimensions. The difficulties in high-order
approximation of the integral operators and evaluating the density derivative in three
dimensions are largely analogous with Spherical Harmonic Transformation replacing the
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Fig. 5 Visualization of the scattering simulation in the setting of Example 8 for a plane wave incident field
exp(iκed · x) with d = (1, 0) by a scatterer of acoustic size κea = 20. The interior wave number
κ = sin(πx1) + i cos(πx2), and the interior density ρ = 2 + sin(πx1) cos(πx2)

Fig. 6 An illustration of the uniform grid placement for a three patch decomposition of a bean shaped domain
in three dimensions. The figure shows on the top left—the domain; top center and top right—the grid over two
boundary patches; at the bottom left—the grid over the interior-patch; and, at the bottom right—union of the
grids over the boundary- and interior-patches

Fourier transformation to approximate the angular integral (cf. Eq. 46) in the interior
computation. Below we succinctly describe some of the salient points of the extension.
As in the two-dimensional case, we begin with a decomposition of the scatterer � into

boundary and interior patches. For instance, Figure 6 provides an illustration for a three
patch decomposition of a bean shaped domain. Subsequently, the integral operator is
decomposed over the boundary and the interior patches as in (9). We note that one can
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write the integral (KpVψ) over a boundary patch (i.e., p ∈ B) as

(KpVψ)(x) =
1∫

0

1∫
0

1∫
0

Ge(x, ξ′
p)Ṽpψ(ξ′

p)du′dv′dt ′, (40)

where ξ′
p = ξp(u′, v′, t ′), Ṽpψ(ξ′

p) = Vψ(ξ′
p)Jp(ξ′

p)ωp(ξ′
p) and Jp is the Jacobian of the

transformation ξp : �p → (0, 1)2 × [0, 1). Again, {ωp(x|t=0), p ∈ B} serves as a partition
of unity for the surface �. Thus, the planar surface integral can be written as

(SFψ)(x) =
∑
p∈B

(SpFpψ)(x), (41)

where

(SpFpψ)(x) =
1∫

0

1∫
0

Ge(x, ξ′
p )̃Fpψ(ξ′

p)du′dv′, (42)

F̃pψ(ξ′
p) = Fψ(ξ′

p)ωp(ξ′
p)J sp(ξ′

p), and J sp is the surface Jacobian. In order to approximate
the integral (42), we again segregate the singular integral using a floating POU centered
at the target point with a circular support. The method then approximates the regular
part of the surface integral using the trapezoidal rule in u and v variable; whereas the
singular integral over the localized circular domain is treated with first, going to the polar
coordinates (r, θ ) centered at (u, v), and then a polynomial change of variable r = τM .
The non-singular integral over a boundary-patch is approximated using a combination
of the trapezoidal rule in the (u, v) variables, and a high-order Newton-Cotes quadrature
in t variable. To approximate the singular integral, first, we change to polar coordinates
(r, θ ) centered at projection of ξ−1

p (x) onto the integration plane (u′, v′, t ′), and then make
a polynomial change of variable r = τM to resolve the singularity. The corner singularity
in t-direction is again treated by splitting the integral in two at t = t ′; see [11] for detail.
For approximation of the interior integral KIVψ , the method relies upon use of the

addition theorem [30] (in spherical coordinates) of Green’s function of the Helmholtz’s
equation in three dimensions [31]. The truncated sum

(KIVψ)F (r, θ ,φ) =
F∑

�=0

�∑
m=−�

(KIVψ)m� (r)Y
m
� (θ ,φ) (43)

approximates the operator

(KIVψ)(r, θ ,φ) =
∞∑

�=0

�∑
m=−�

(KIVψ)m� (r)Y
m
� (θ ,φ), (44)

with high-order [31], where

(KIVψ)m� (r) = iκe

R∫
0

h(1)� (κe max(r, r′))j�(κe min(r, r′))(Vψ)m� (r
′)r′2 dr′, (45)

(Vψ)m� (r
′) =

∫ 2π

0

∫ π

0
V (r′, θ ′,φ′)Ym

� (θ ′,φ′) sin(θ ′)dθ ′dφ′, (46)

and Ym
� are the spherical harmonics of degree � and order m with h(1)� and j� denoting

the first kind spherical Hankel and Bessel functions, respectively. The integrals (Vψ)m� (r
′)

can be seen as the spherical harmonic coefficients of Vψ , and can be computed by an
application of the spherical harmonic transforms [31]. The radial integral can then be
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Table 8 Convergence study for scattering by a sphere of unit radius and centered at origin, with
κi/κe = 10−4 and ρi/ρe = 103

NB
u NB

v NB
t NI

u NI
v NI

t ε∞ Order

8 8 8 8 8 8 2.1 · 10−0 —

16 16 16 16 16 16 1.4 × 10−1 3.81

32 32 32 32 32 32 1.8 × 10−3 6.37

64 64 64 64 64 64 4.16 × 10−5 5.43

Fig. 7 Visualization of the simulation of scattering by a bean shaped scatterer for the plane wave incident field
exp(iκex3) propagating along x3-axis with κ/κe = 10−4 with κe = 5 and ρ/ρe = 103 with ρe = 1. Acoustic size of
the scatterer is 10

expressed in the form of Eq. (30) using spherical Bessel functions and the spherical har-
monic coefficients (Vψ)m� (r

′). Finally, the radial integral can be approximated by expand-
ing the spherical harmonic coefficients in Chebyshev series and utilizing the precomputed
integral moments as in the two-dimensional case; see [31].
In order to demonstrate the high-order convergence of the three dimensional counter-

part of the method, we present a convergence study in Tables 8 for the scattering of plane
wave ψinc = exp(iκex3) by a penetrable spherical inhomogeneity. The material proper-
ties for this study are—κ = 10−04 , κe = 1, ρ = 103 and ρe = 1. The errors presented
in Tables 8 are obtained by comparing the computed solutions against the Mie series
solution. The study clearly exhibits rapid convergence of the computed solutions.
As a final example, we consider simulation of scattering by a bean shaped obstacle in

Figure 7 of the incident wave ψinc = exp(iκex3). The boundary of the scatterer is given by

x21
a21(1 − b3 cos(πx3/R))

+ (b1R cos(πx3/R) + x2)2

a22(1 − b2 cos(π ))
+ x23

a23
= R2.

In our example, a1 = 0.8, a2 = 0.8, a3 = 1, b1 = 0.3, b2 = 0.4, b3 = 0.1 and R = 1.
The largest dimension of the geometry is 2R, along the x3-axis. The absolute value of the
computed solution is displayed in Fig. 7.

Conclusions
In this paper, we present a fast high-order method for solving an integro-differential
equation that arise in problems of wave scattering by penetrable inhomogeneity with
variable density with possible jump in the material properties across the boundary of
the geometry. High-order convergence is achieved using a specialized quadrature for
integration over boundary patches in conjunction with the use of addition theorem (for
the Green’s function) based approximation of the interior integration. The performance



Paul et al. AdvancedModeling and Simulation in Engineering Sciences           (2024) 11:2 Page 21 of 22

of the method is demonstrated through a variety of numerical examples including the
scattering problem for high-contrast medium.
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