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Abstract

Physical systems whose dynamics are governed by partial differential equations (PDEs)
find numerous applications in science and engineering. The process of obtaining the
solution from such PDEs may be computationally expensive for large-scale and
parameterized problems. In this work, deep learning techniques developed especially
for time-series forecasts, such as LSTM and TCN, or for spatial-feature extraction such as
CNN, are employed to model the system dynamics for advection-dominated problems.
This paper proposes a Convolutional Autoencoder(CAE) model for compression and a
CNN future-step predictor for forecasting. These models take as input a sequence of
high-fidelity vector solutions for consecutive time steps obtained from the PDEs and
forecast the solutions for the subsequent time steps using auto-regression; thereby
reducing the computation time and power needed to obtain such high-fidelity
solutions. Non-intrusive reduced-order modeling techniques such as deep
auto-encoder networks are utilized to compress the high-fidelity snapshots before
feeding them as input to the forecasting models in order to reduce the complexity and
the required computations in the online and offline stages. The models are tested on
numerical benchmarks (1D Burgers’ equation and Stoker’s dam-break problem) to
assess the long-term prediction accuracy, even outside the training domain (i.e.
extrapolation). The most accurate model is then used to model a hypothetical dam
break in a river with complex 2D bathymetry. The proposed CNN future-step predictor
revealed much more accurate forecasting than LSTM and TCN in the considered
spatiotemporal problems.

Keywords: Non-intrusive reduced-order modeling, Deep autoencoders, LSTM, TCN,
CNN, Time-dependent flow problems

Introduction
Efficient numerical simulations of complex dynamical systems are needed to seek solu-
tions at different times or parameter instances, especially in fluid dynamics. These systems
are typically described by a set of parameterized nonlinear partial differential equations
(PDEs). Obtaining numerical solutions using a high-fidelity (finite element, finite vol-
ume, or finite difference type) computational solver may be extremely expensive, as they
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must create high-dimensional renderings of the solution to precisely resolve the spatial-
temporal multifolds and inherent non-linearities. This method thus becomes inefficient
for applications such as optimization and uncertainty quantification, where numerous
simulations are required for such analysis. Reduced-order models (ROMs) are suitable
substitutions for computationally expensive numerical solvers, as these methods gener-
ate a low-ranked structure of the high-dimensional snapshots, which are then utilized to
model the spatiotemporal dynamics of the PDE system. Among the various ROM tech-
niques that have been developed, projection-based ROMs are the type employed most
extensively. The method involves the generation of a reduced set of basis functions or
modes such that their linear superposition effectively overlaps a low-rank approximation
of the solutions. Proper Orthogonal Decomposition (POD) is the most popular method
among the reduced basis class. POD utilizes singular value decomposition (SVD) to gen-
erate an empirical basis of dominant orthonormal modes to obtain an optimum linear
subspace in which to project the system-governing PDEs [1,2]. Availability of the gov-
erning equations is necessary to employ intrusive ROM techniques such as the Galerkin
projection [3], or the Petrov-Galerkin projection [4], which produce an interpretable
ROM defined by high-energy or dominant modes. However, scenarios where the gov-
erning equations are unavailable, require the application of data-driven methods, such
as non-intrusive ROM (NIROM) [5,6]. In a NIROM, the expansion coefficients for the
reduced solution are obtained via interpolation on the reduced basis space spanned by the
set of dominant modes. However, since the reduced dynamics generally belong to non-
linear, manifolds, a variety of interpolation and regression methods have been proposed,
capable of enforcing the constraints characterizing those manifolds. Some of the meth-
ods most often employed are dynamic mode decomposition [7–9], radial basis function
interpolation [10,11] and Gaussian process regression [12,13]. The recent advancements
in machine learning (ML) methods [14] have given rise to revolutionary approaches that
effectively evaluate and expedite existing numerical models or solvers by using online-
offline computational stages. In the offline stage, the ML model updates its weights or
coefficients (training) to learn the system dynamics by using the high-fidelity solutions
obtained by the numerical solver, hence requiring computational power and time. In the
online stage, the model uses the pre-computed/optimized weights (from the training)
to obtain the solution (prediction) for a new set of input instances and does so almost
instantly with minimal computational cost. Various data-driven ML-based frameworks
have been proposed to model the propagation of system dynamics in latent space. Some
of the more highly successful examples involve the use of deep neural networks (DNNs)
[15], long-short-term memory (LSTM) networks [16–19], neural ordinary differential
equations (NODE) [19–21], and temporal convolutional networks (TCNs) [22,23].
Significant work has been carried out recently on predicting solution instances outside

the training domain for a variety of fluid problems with discontinuities, wave propaga-
tion, and advection-dominated flows. Liu et al. [24] presented a predictive data assimila-
tion framework based on the Ensemble Kalman Filter (EnKF) and the DDROM model,
which uses an autoencoder network for the compression of high-dimensional dynamics
to lower dimensional space and then the LSTM method to model the fluid dynamics in
the latent space. The model capabilities were estimated using 2D Burgers’ equation and
flow past a cylinder test case. Maulik et al. [25] proposed a Convolutional Autoencoder
(CAE) for compression and a recurrent LSTM network for the time evolution on the
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reduced space. The CAE-LSTMmodel was capable of reconstructing the sharp profile of
the advecting Burgers’ equationmore accurately than the POD-Galerkin technique. Dutta
et al. [18] utilized an advection-aware (AA) autoencoder network that learns nonlinear
embeddings of the high-fidelity system snapshots using an arbitrary snapshot from the
dataset, and then models the latent space dynamics using LSTM network to make predic-
tions for the linear advection and Burgers’ problem. Cheng et al. [26] used the POD-ANN
model, in which they performed a priori dimension reduction on the high-fidelity dataset
and parameterization with an artificial neural (ANN) network to solve the strongly non-
linear Allen-Cahn equations and the cylinder flow problem. Heaney et al. [27] proposed
an AI-DDNIROM framework, capable of making predictions for spatial domains, sig-
nificantly larger than the training domain, using a domain decomposition approach, an
autoencoder network for low-rank representation, and an adversarial network for mak-
ing the predictions for flow past a cylinder and slug flow problems. Fatone et al. [19]
introduced a µt-POD-LSTM ROM framework that is capable of extrapolation for time
windows around 15% those of the training domain on unsteady advection–diffusion and
unsteady Navier–Stokes equation for new parameter instances. Xu et al. [23] proposed
a multi-level framework comprising a convolution autoencoder (CAE), a temporal CAE
(TCAE), and a multilayer perceptron (MLP), for the purpose of parameterization, and a
TCN network for auto-regressive future state predictions, and evaluated the results on
problems such as Sod’s-shock tube and transient ship waves. Wu et al. [22] developed a
POD and TCN-based neural network for making predictions on the viscous periodic flow
past a cylinder case. Abdedou et al. [28] proposed two CAE architectures to compress the
high-dimensional snapshot matrices obtained from numerical solvers for the Burgers’,
Stoker’s, and shallow-water equations in space and time and performed parameterization
on the compressed latent space. Jacquier et al. [29] employed uncertainty quantification
methods—Deep Ensembles and Variational Inference-based Bayesian Neural Networks
on the POD-ANN order-reduction method to perform predictions within and outside of
the training domain on problems such as shallow water equations for flood prediction,
and generated probabilistic flooding maps aware of model uncertainty. Geneva et al. [30]
presented a physics-constrained Bayesian auto-regressive CAE network that models non-
linear dynamical systems (Kuramoto–Sivashinsky equation, 1D Burgers’, 2D Burgers’)
devoid of training data, using only the initial conditions. This reduces the computation
cost tremendously and provides uncertainty quantification at each time step.
The caveat that remains is a long-term temporal extrapolation forfluidproblemsmarked

by sharp gradients and discontinuities. Our study explores forecasting convolutional
architectures (LSTM, TCN, and CNN) to obtain accurate solutions for time steps dis-
tant from the training domain, on advection-dominated test cases. The high-dimensional
input snapshots matrix is first compressed in space to obtain the reduced latent vectors
before they are passed as a sequence to the forecasting models. Two types of architectures
are first evaluated for space compression—MLP autoencoder and CAE autoencoder, to
identify the one that is more accurate in terms of the reconstruction and preservation of
the input information. A simple convolutional architecture is then proposed and shown
to provide accurate results for the forecasts.
The subsequent sections of the paper are organized as follows. “Methodology” section

describes the dataset structure along with the training and testing strategies, followed by a
presentation of the autoencoders for space compression and the forecasting convolutional
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Fig. 1 Training and validation method

architectures. In “Results anddiscussion” section, themodels are testedon threenumerical
cases which are representative of advection-dominated flows—one-dimensional Burgers’
problem, one-dimensional Stoker’s equations, and two-dimensional shallow-water equa-
tions tomodel a dam-break scenario on a real river. Finally, “Conclusion” section presents
a summary of the results obtained by the models and some concluding remarks.

Methodology
Dataset

The dataset is comprised of T solution vectors/snapshots: vi with ns nodes (vi ∈ R
ns ) at

time-steps i ∈ {1, 2, ..., T } obtained using a high-fidelity PDE solver. For the autoencoder
models, the output is the reconstruction of the input, therefore the training and validation
input and output data are snapshot vectors vi. For the forecasting models (Fig. 1), N sam-
ples are used for training; in each sample, the input is a sequence of nt snapshots (lookback
window = nt ): V = [vi−nt+1, ..., vi−1, vi], with V ∈ R

ns×nt , and the corresponding output
is the vector at the time-step immediately after the sequence end—vi+1 ∈ R

ns .
For extrapolative testing (Fig. 2), a sequence of nt vectors from the start of the dataset,

V = [v1, ..., vnt−1, vnt ] ∈ R
ns×nt is fed to the model to produce the vectors at all the

subsequent time-steps: [vnt+1, vnt+2, ..., vT ] ∈ R
ns×(T−nt ) in an auto-regressive manner,

i.e, first only a single subsequent snapshot vnt+1 is predicted, which is then concatenated
with previous nt − 1 vectors and passed to the forecasting model to produce vector vnt+2.
This process is repeated in accordance with the desired number of subsequent solution
vectors.

Non-intrusive reduced-order modeling

Non-intrusive ROMs (NIROMs) bypass the governing equations and utilize the full-order
model solutions to develop a data-driven model, which compresses the full-order data
(snapshot) into a reduced-order (latent) space. The method most widely adopted to per-
form this utilizes deep neural network architectures called autoencoders [31].
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Fig. 2 Autoregressive testing method for forecasting models

An autoencoder learns the approximation of the identity mapping, χ : vi → viae such that
vi ≈ viae and χ :Rns → R

ns , where ns is the number of nodes in the solution vector vi. This
process is accomplished using a two-part architecture. The first part of the autoencoder
network is the encoder χe, which maps a high-dimensional input vector vi to a low-
dimensional latent vector zi: zi = χe(vi; θe) and zi ∈ R

m (m � ns). The second part
is called a decoder, χd , which maps the latent vector zi to an approximation viae of the
high-dimensional input vector vi: viae = χd(zi; θd). The combination of these two parts
yields an autoencoder network (Fig. 3) of the form χ : vi → χd ◦ χe(vi). The autoencoder
model is trained by computing optimal values of the parameters (θe, θd) that minimize the
reconstruction error over all the training data [18]:

θe, θd = argminL(vi, viae) (1)

whereL(vi, viae) is a chosen measure of discrepancy between vi and its approximation viae.
The restriction (dim(zi) = m) � (n = dim(vi)) forces the autoencoder model to learn the
salient features of the input data via compression into a low-dimensional space and to
then reconstruct the input, instead of directly learning the identity function. Autoencoder
architectures are generally comprised of MLPs (called AAs) [18], convolutional neural
network autoencoders (called CAEs) [23,25,28], or a combination of both. While small-
sized problems can be effectively modeled via an MLP architecture, problems involving
data of high spatial complexity require CAE autoencoders for effective and accelerated
spatial compression. The architecture of an MLP autoencoder, with two fully connected
dense layers (hidden layers) in the encoder network and a mirrored decoder network,
is shown in (Fig. 4). The Convolution autoencoder consists of two convolution layers,
each followed by batch normalization, swish activation, and an average pooling layer, as
described in (Fig. 5).

Forecasting techniques

The dataset “Dataset” post compression by the encoder (χe) produces N samples of the
form:Z = [zi−nt+1, ..., zi−1, zi] ∈ R

m×nt , zi+1 ∈ R
m, which are used to train the following

forecasting models.
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Fig. 3 Autoencoder architecture

Fig. 4 MLP autoencoder architecture

Fig. 5 Convolutional autoencoder architecture
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Long short-termmemory (LSTM)

LSTM [32] is a special type of recurrent neural network (RNN) that is well-suited for
performing regression tasks based on time series data. The main difference between the
traditional RNN and the LSTM architecture is the capability of an LSTMmemory cell to
retain information over time and an internal gating mechanism that regulates the flow of
information in and out of thememory cell [33]. The LSTM cell consists of three parts, also
known as gates, that have specific functions. The first part called the forget gate, chooses
whether the information from the previous step in the sequence is to be remembered or
can be forgotten. The second part called the input gate, tries to learn new information
from the current input to this cell. The third and final part, called the output gate, passes
the updated information from the current step to the next step in the sequence. The basic
LSTM equations for an input vector vi are:

input gate : ζin = αs ◦ Fin(vi) (2)

forget gate : ζfor = αs ◦ Ffor(vi) (3)

cell state : ci = ζfor � ci−1 + ζin � (αt ◦ Fa(vi)) (4)

output gate : ζout = αs ◦ Fout (vi) (5)

output : hi = ζout ◦ αt (ci) (6)

Here, F refers to a linear transformation defined by a matrix multiplication and bias
addition, that is, F (vi) = Wvi + b, where W ∈ R

h×ns is a matrix of layer weights (h is
number of neurons in the LSTM cell), b ∈ R

h is a vector of bias values, and vi ∈ R
ns is the

input vector to the LSTM Cell. Also, αs and αt denote sigmoid and hyperbolic tangent
activation functions, respectively, which are standard choices in an LSTM network, and
x � y denotes a Hadamard product of two vectors x and y. The sequence of snapshot
vectors of nt time-steps: V = [vi−nt+1, ..., vi−1, vi], with V ∈ R

ns×nt trains the LSTM
network, with recurrence over time (Fig. 6), to predict the subsequent vector vi+1. The
core concept of an LSTM network is the cell state ci, which behaves as the “memory” of
the network. It can either allow greater preservation of past information, reducing the
issues of short-term memory, or it can suppress the influence of the past, depending on
the actions of the various gates during the training process.

Temporal Convolution Network (TCN)

The TCN is based on two principles [34]: the network produces an output of the same
length as the input, and there can be no leakage from the future into the past. To verify
that the first principle is respected, the TCN uses a 1D fully-convolutional network (FCN)
where each hidden layer has the same length as the input layer, and zero padding of
length (k − 1) is added to keep subsequent layers the same length as previous ones. To
respect the second principle, the TCN uses causal convolutions (achieved by padding
only on the starting side of input sequences), where the output at time i is convolved only
with elements from time i and earlier in the previous layer (Fig. 7). A TCN also makes
use of dilated convolutions that enable an exponentially large receptive field. For an input
sequence,V ∈R

ns×nt and a kernelK with learnableweights,K ∈ R
k (k is the kernel size),

the element O(s) with s ∈ {0, 1, ..., nt − k + 1} produced by the dilated 1D convolution is:
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Fig. 6 LSTM recurrence on vector sequence

O(s) =
k−1∑

j=0
V (s + j ∗ d) × K (j) (7)

where d is the dilation factor and k is the kernel size. When using dilated convolutions,
d is increased exponentially with the depth of the network (eg., d = 2l at level l of the
network), ensuring that some filter hits each input within a large effective history.
In the TCN model employed here, a generic residual block is used in place of a convo-

lutional layer. A residual block contains a branch leading to a series of transformations
obtained by layers of TCNs, whose outputs are added to the inputV of the block to obtain
Orb:

Orb = Activation(V + F (V )) (8)

Within a residual block (Fig. 8), the TCN has two layers of dilated causal convolution with
weight normalization and non-linearity, with a leaky rectified linear unit (leaky ReLU). To
account for different input–output widths during addition operations, a 1D convolution
(kernel size = 1 and channels = ns) is used to ensure the element-wise addition operator
(⊕) receives tensors of the same shape.
When convolving along the temporal axis, this (standard) TCNmodel uses information

available from all the prior time steps (due to the large receptive field) to evaluate the next
time step, as sketched in Fig. 7. Themodel takes in a sequence of nt vectors corresponding
to a look-back window of size nt : V = [vi−nt+1, ..., vi−1, vi], with V ∈ R

ns×nt . The filters
convolve along the temporal axis for all the ns vector nodes since the nodes are passed in as
channels. However, the results produced from thismodel “Results and discussion” section
do not propagate beyond the training domain. Therefore, anothermodel is proposed here,
where the dilated convolutions of the TCNmodel convolve along the spatial axis and thus
use the information available from the neighboring nodes to determine the future time-
step value of the node. This model takes in a sequence of nt vectors corresponding to a
look-back window of size nt in a transposed manner, such that the nt solution vectors
are on separate channels: VT ∈ R

nt×ns , where V = [vi−nt+1, ..., vi−1, vi]. This model
produces significantly better results than the TCN on a temporal axis, but the causal
padding and dilations employed are of no significancewhen the convolution filter operates
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Fig. 7 a 1D dilated filters convolving on the temporal dimension of vectors, b 1D CNN filters convolving on the
spatial dimension of vectors

along the spatial axis. Another architecture for modeling the system dynamics, with 1D
convolutions and without any dilations or causal paddings, is therefore proposed in the
following section.

A proposed Convolution Neural Network (CNN) for time forecasting

A convolutional layer convolves filters with trainable weights on the input vector vi [31].
Such filters are commonly referred to as convolutional kernels. In a convolutional neural
network, the inputs and outputs can havemultiple channels. For a convolutional layerwith
nin input channels and nout output channels, the total number of convolutional kernels
is nk = ni × no. Each kernel slides along the spatial direction and the products of kernel
weights and vector nodes are computed at all sliding steps. For an input vector vi and a
kernel K , the corresponding output feature map O(s) with s ∈ {0, 1, ..., ns − k + 1} (where
k is the kernel size) is given by:
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Fig. 8 Residual Block (left) and architecture of CNN and TCN (right). For TCN, the input vector V ∈ R
ns×nt and

c = ns . For CNN, the input vector V ∈ R
nt×ns and c = 1

O(s) =
k−1∑

j=0
vi(s + j) × K (j) (9)

Zero padding of size (k−1)/2 is added to both sides of the output featuremap tomaintain
the spatial dimension as ns.
The proposed forecasting model of CNN takes in a sequence of vectors with nt time-

steps in a transposed manner as its input: VT ∈ R
nt×ns , where V = [vi−nt+1, ..., vi−1, vi],

so that the filter convolves on the spatial dimension of size ns, and the nt vectors lie on
separate channels, as shown in Fig. 7. The CNN architecture (Fig. 8) consists of X residual
blocks (X is a hyperparameter), in which the input to each block, after transformation (to
make the channels equal) from a 1D Convolution layer (kernel = 1 and channels = 1) is
added to the output from the block. A residual block consists of two convolution layers,
each followed by a weight normalization and a leaky ReLU activation layer.

Metrics

To evaluate the performance of the previous architectures, the followingmetrics are used:
Mean Squared Error (L2 norm): The average of the square of the difference between the
actual vi and predicted values v̂i over N samples:

MSE =
∑N

i=1(vi − v̂i)2

N
(10)

Mean Absolute Error (L1 norm): The average of the difference between the two vectors vi
and v̂i over N samples:

MAE =
∑N

i=1 ‖vi − v̂i‖
N

(11)

Relative L2 Norm Error: The relative L2 norm error (referred as error) is calculated as:

RelativeError =
√∑N

i=1(vi − v̂i)2
√∑N

i=1 v2i
(12)
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Table 1 Burgers’ problem: training, validation and testing
dataset

Dataset Samples Input Output

Training 1 [z1 , ..., znt−1 , znt ] znt+1

2 [z2 , ..., znt , znt+1] znt+2

... ... ...

150 [z150 , ..., znt+148 , znt+149] znt+150 (training end)

Validation 151 [z151 , ..., znt+149 , znt+150] znt+151

... ... ...

160 [z160 , ..., znt+158 , znt+159] znt+160

Testing 1 [z1 , ..., znt−1 , znt ] [znt+1 , ..., z249 , z250]

Results and discussion
The capability of the autoencoders (MLP-AE and CAE) to efficiently transform high-
dimensional vectors to a low-dimensional space, and that of the forecasting models
(LSTM, TCN, and CNN) to accurately model the system dynamics were tested using
advection-dominated flow problems.

1D Burgers’ problem

The test case involves the one-dimensional Burgers’ equation, which is a non-linear
advection–diffusion PDE. The equation along with the initial and Dirichlet boundary
conditions are given by

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂t2

(13)

x ∈ [0, L], u(0, t) = 0 (14)

u(x, 0) ≡ u0 = x

1 +
√

1
t0 exp(Re

x2
4 )

(15)

where the length L = 1m and themaximum timeTmax = 2 s. The solutions obtained from
the above equations produce sharp gradients even with smooth initial conditions if the
viscosity ν is sufficiently small, due to the advection-dominated behaviour. The analytical
solution to the problem is given by:

u(x, t) =
x

t+1

1 +
√

t+1
t0 exp(Re x2

4t+4 )
(16)

where t0 = exp(Re8 ) and Re = 1/ν. The high-fidelity solution vectors are generated by
directly evaluating the analytical solution over a uniformly discretized spatial domain
containing 200 grid points (ns = 200) at 250 uniform time-steps (T = 250) for two
different values of Re: 300 and 600. The solution vectors obtained are then used to train
the autoencoder and forecasting models “Dataset” section. For the autoencoder training,
200 solution vectors are chosen at random time steps, and the remaining 50 are used
for validation. For the forecasting model, the training set is comprised of the first 150
compressed samples, each sample containing nt consecutive solution vectors (i.e. look
backwindow=nt ), wherent is a hyperparameter. The validation set consists of subsequent
10 samples. For testing, nt latent vectors from the start of the dataset are fed to the
forecasting model to predict the subsequent time steps via auto-regression (Table 1).



Bhatt et al. AdvancedModeling and Simulation in Engineering Sciences          (2023) 10:17 Page 12 of 35

Table2 Burgers’ problem: hyperparameters for the AE and CAE networks

Hyperparameters MLP AE Convolutional CAE

Encoder layers [100, 75] [8, 32]

Latent dimension (m) 10, 25, 50 12, 25, 50

Activation relu, swish relu, swish

Loss function MSE MSE

Learning rate 10−3 , 3 × 10−4 10−3 , 3 × 10−4

Model parameters (m = 50) 57,060 2018

Autoencoders for spatial compression

Twotypesof autoencoder architectures “Non-intrusive reduced-ordermodeling” section—
MLP (referred to as AE) and Convolutional (referred to as CAE) are proposed for the
compression of solution vectors—vi ∈ R

ns to latent vectors zi ∈ R
m by the encoder

χe. Sequences formed from these latent vectors ([zi−nt+1, ..., zi−1, zi] ∈ R
m×nt ) are

utilized to train the forecasting models—LSTM, TCN and CNN. The trained models
are then used to forecast the latent vectors at subsequent time steps to the sequence
([znt+1, znt+2, ..., zT ] ∈ R

m×(T−nt )) given as input to the forecasting model. The latent
vectors are then reconstructed into solution vectors ([vnt+1, vnt+2, ..., vT ] ∈ R

ns×(T−nt ))
using the decoder χd . The heat map plots obtained by stacking these reconstructed solu-
tion vectors along the x-axis (spatial nodes-ns along y, time-steps-nt along x), are illus-
trated for both autoencoder models in Appendix: Table 14). Separate compression and
forecasting models were used for cases—Re = 300 and Re = 600.
Both architectures, AE and CAE, are capable of efficiently compressing the solution

vectors to latent vectors with few modes and fine reconstruction/decompression. How-
ever, only CAE compression followed by CNN autoregression produces accurate results
on extrapolation. This is because the proposed CAE architecture is devoid of any dense
layer (single layer of neurons), and therefore even during compression, the local spatial
information in the vector remains preserved. This consistency facilitates the modeling of
latent dynamics by the CNN model, as it convolves on the spatial axis of the input and
utilizes information from the neighboring cells at the provided time steps to predict nodal
values at subsequent time steps.
The hyperparameters for the AE and CAE architectures are listed in Table 2, where

encoder layers denote the number of neurons in the two dense encoder layers of AE,
and the number of channels in the convolution layers of CAE. The decoders of both
autoencoders are mirrored structures of their encoders.
In the subsequent sections, the results of the forecastedmodel are produced using com-

pression via the CAE, with 2 layers having 8 and 32 channels in the encoder respectively
and a Latent dimension of 50. The kernel size of the 1D convolution is 3, each layer has a
padding of size 1. All the hidden layers use swish activation.

LSTMmodel

WhenLSTM“Long short-termmemory (LSTM)” section is used as the future step predic-
tor, it takes in a sequence of nt (lookback window) latent vectors (spatial dimension =m)
obtained by compression from the encoder network (Z ∈ R

m×nt ) to produce the latent
vector for the next time-step (zi+1 ∈ R

m). The LSTM model consists of multiple LSTM
layers stacked together, each having a hidden dimension equal to the latent dimension of
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Table3 Burgers’ problem: hyperparameters for the LSTM network

Hyperparameters Values

Sequence length (nt ) 5, 10, 20

LSTM layers 1, 2, 3

hidden/latent dimension (m) 12,25,50

Activation tanh

Loss function MSE

Learning rate 5 × 10−4

Max model parameters (nt = 10) 20,400

Min model parameters (nt = 10) 1248

Table4 Burgers’ problem: hyperparameters for the TCN network

Hyperparameters Values

Sequence length (nt ) 5, 10, 20

TCN block channels [32, 32], [64, 64], [32, 32, 32], [64,64,64]

Latent dimension (m) 12, 25, 50

Kernel size (k) 3, 5, 7, 9

Activation tanh

Loss function MSE

Learning rate 1 × 10−4

Max model parameter (nt = 10,m = 50) 78,322

Min model parameters (nt = 10,m = 50) 17,554

the solution vectors. Various sets of hyperparameters considered for the LSTM network,
for both Re 300 and 600 are summarized in Table 3.
The models are trained in batches of size 15, and the loss values for both training

and validation converge in 3000 epochs. The model with the least validation loss has a
lookback window of size 10 and a single LSTM layer with hidden dimension 50 (latent
dimension) for both Re 300 and 600. The extrapolation (Fig. 9) and error plots (Fig. 10)
obtained from these models show that the LSTM model accurately predicts the solution
vectors for time-steps within the training domain (i <= 150), but the solution does not
change for time-steps outside the training domain, and so the relative error increases
drastically, reaching 35% for Re= 300 and 50% for Re=600 at time-step 200.

TCNmodel

Similar to the LSTM, the TCN model “Temporal Convolution Network (TCN)” section
takes in a sequence ofnt latent vectors obtained by compression from the encoder network
(Z ∈ R

m×nt ) to produce the latent vector for the next time-step (zi+1 ∈ R
m), with the

dilated convolutions operating on the temporal axis, and the latent dimension passed as a
channel. The TCNmodel consists of multiple TCN blocks, each with the same kernel size
andnumber of channels, butwith dilations increasing by a factor of 2 in subsequent blocks.
The hyperparameters for the TCN network for both Re 300 and 600 are summarized in
Table 4.
When models are trained in batches of size 15, the training and validation losses reach

their minimum values in 4000 epochs. The model with the least validation loss takes in
sequence with lookback window 10 and latent dimension 50. For Re 300, the best model
has 3 temporal blocks, each having 64 channels, whereas, for Re 600, it has 2 TCN blocks
with kernel size 3 and 64 channels each. The extrapolation (Fig. 11) and error plots (Fig. 12)
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Fig. 10 Burgers’ problem: L2 relative error of the autoregressive predictions with increasing time for Re = 300 (a)
and Re = 600 (b) for the LSTM model

Table5 Burgers’ problem: hyperparameters for the CNN network

Hyperparameters Values

Sequence length (nt ) 5, 10, 20

CNN block channels [50, 50], [100, 100], [200, 200]

Latent dimension (m) 12,25,50

Kernel size (k) 3, 5, 7, 9

Activation tanh

Loss function MSE

Learning rate 1 × 10−4

Max model parameters (nt = 10,m = 50) 370,001

Min model parameters (nt = 10,m = 50) 25,001

obtained from these models indicate that the TCNmodel accurately predicts the solution
vectors for time steps within the training domain (i <= 150), but stops being accurate
after the end of training so that the error increases to 40% for Re= 300 and 50% for Re= 600.
However, if the same model architecture operates on the input sequence, such that the
dilated 1D convolutions propagate along the spatial axis, with each solution vector on a
separate channel, then accurate forecasts are produced, even outside the training domain.
This encourages the development of a simpler predictive/forecasting model, devoid of
dilations and causal padding since the exponentially increasing receptive field serves no
purpose when operating along the spatial axis.

CNNmodel

The proposed CNN model “A proposed Convolution Neural Network (CNN) for time
forecasting” section takes in a sequence of nt latent vectors obtained by compression from
the encoder network (ZT ∈ R

nt×m) to produce the latent vector for the next time-step
(zi+1 ∈ R

m), with 1D convolutions operating on the spatial axis (latent dimension) and
nt latent vectors on separate channels. The CNN model consists of two residual blocks,
thus compressing the spatial dimension to 50 in the latent vector. Each block possesses
the same kernel size and number of channels. The hyperparameters for the CNN network
for both Re=300 and 600 are summarized in Table 5.
The model with the least validation loss has a lookback window of size 10, and each of

its blocks has a kernel size of 3 and 50 channels for both Re= 300 and 600. Training and
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Fig. 12 Burgers’ problem, L2 relative error of the auto-regressive predictions with increasing time for Re = 300 (a)
and Re = 600 (b) for the TCN model (over time)

validation loss converges in 3000 epochs for batch size 15. It is clear from the extrapolation
(Fig. 13) and error plots (Fig. 14) that the CNN model accurately models the latent
dynamics, and predicts solution vectors accurately for time steps beyond the training
domain. The error values increase with time, due to the accumulation of errors, since
each subsequent time step is predicted auto-regressively; i.e., using previously predicted
time steps that contain slight errors. Still, the error reaches a mere 2.5% for Re= 300 and
3.5% for Re= 600, which is significantly less than that produced by other models.

1D Stoker’s problem

Stoker’s solution describes the propagation and rarefaction wave resulting from a one-
dimensional dambreak over awet, flat, frictionless bottom. Stoker’s problem is considered
among the most challenging benchmark test case due to its strong hyperbolic behavior
and the discontinuity accompanying the propagation of the front wave resulting from the
initial break. The dynamic is initiated by unequal water levels of both the upstream and
downstream sides located in the middle of the studied domain of 100 m.
The upstream water level is considered as an input random variable whose values are

uniformly sampled within its plausible variability range hup ∈ U (8, 11), whereas the
downstream water depth is kept constant at a deterministic value hds = 1m. The analyt-
ical solution for the water level is given as:

h(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

hup if x ≤ xA(t)
4
9g (

√
ghup − x

2t )
2 if xA(t) ≤ x ≤ xB(t)

c2m
g if xB(t) ≤ x ≤ xC (t)

hds if xC (t) ≤ x

(17)

where x = the axial position, xA(t) = x0 − t
√
ghup, xB(t) = x0 + t(

√
ghup− 3cm) and xC =

x0 + t 2c
2
m(

√
ghup−cm)

c2m−ghds
, in which cm = √

ghm [28]. For each selected value in the generated
sample set of the upstream water level, the analytical solution given above is evaluated
over 1000 nodes (ns = 1000) that contain the computational domain x ∈ [0, 100] m
for all 450 time-steps (T = 450) of the temporal domain t ∈ [0, 3.6]s. Four-hundred
solution vectors, at random time steps, train the autoencoder network, and the remaining
50 vectors are used for the validation. The forecasting models are trained by the first 250
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Fig. 14 Burgers’ problem: L2 relative error of the auto-regressive predictions using the CNN model with
increasing time for Re = 300 (a) and Re = 600 (b)

Table6 Stoker’s problem: training, validation and testing dataset

Dataset Samples Input Output

Training 1 [z1 , ..., znt−1 , znt ] znt+1

2 [z2 , ..., znt , znt+1] znt+2

... ... ...

250 [z250 , ..., znt+248 , znt+249] znt+250 (training end)

Validation 251 [z251 , ..., znt+249 , znt+250] znt+251

... ... ...

260 [z260 , ..., znt+258 , znt+259] znt+260

Testing 1 [z1 , ..., znt−1 , znt ] [znt+1 , ..., z449 , z450]

compressed samples and validated using subsequent 10 samples. During testing, the first
nt latent vectors are utilized to predict vectors at subsequent time steps via auto-regression
(Table 6).

Autoencoder for spatial compression

A similar methodology to the Burgers’ test case is adopted for the training of autoencoder
models, AE and CAE, and forecasting models, LSTM, TCN, and CNN, for Stoker’s prob-
lem. The heat map plots obtained by stacking the predicted solution vectors along the
x-axis (spatial nodes-ns along y, time-steps-nt along x), are illustrated for both autoen-
coder models in Appendix: Table 15.
Both AE and CAE effectively transform the solution vectors to a reduced latent space,

since they produce fine reconstruction for vectors within as well as outside of the train-
ing domain of the autoencoder model. But again, only the CAE-CNN model learns the
latent dynamics accurately enough to predict solution vectors outside the training domain
(extrapolation).
The hyperparameters for the AE and CAE architectures are listed in Table 7.
In the subsequent sections, the results of the forecasted model are produced using

compression via the CAE with 3 layers having 8, 32 and 32 channels respectively in the
encoder anda latent dimensionof 125.Thekernel size of the 1Dconvolution is 5, each layer
has a padding of size 2. All the hidden layers use relu activation. A larger latent dimension
is required for the Stokers’ case due to the discontinuities, as well as a larger domain size
(ns = 1000) as compared to the Burgers case. As the % compression increases, the loss of
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Table7 Stoker’s problem: hyperparameters for the AE and CAE networks

Hyperparameters MLP AE Convolutional CAE

Encoder layers [500, 250] [8, 32, 32]

Latent dimension (m) 25, 50, 125 25,50,125

Activation relu, swish relu, swish

Loss function MSE MSE

Learning rate 10−3 , 3 × 10−4 10−3 , 3 × 10−4

Model parameters (m = 125) 1,265,025 13,634

Table8 Stoker’s problem: hyperparameters for the LSTM network

Hyperparameters Values

Sequence length (nt ) 5, 10, 20

LSTM layers 1, 2, 3

hidden/latent dimension (m) 25, 50, 125

Activation tanh

Loss function MSE

Learning rate 5 × 10−4

Max model parameters (nt = 20) 126,000

Min model parameters (nt = 20) 5200

information increases, leading to inaccurate forecasts as well. As a result, a higher latent
dimension is needed.

LSTM

The LSTM model receives input Z ∈ R
m×nt and predicts zi+1 ∈ R

m “Long short-
term memory (LSTM)” section. The LSTM model has an architecture similar to that of
the Burgers’ case, with multiple LSTM layers having a latent dimension of size 125 as
their hidden dimension as well. The hyperparameters of the LSTM network for Stoker’s
problem are summarized in Table 8.
The models are trained in batches of size 15, and the loss values for both training

and validation converge in 2400 epochs. The model with the least validation loss has a
lookback window of size 10 and 2 LSTM layers with hidden dimensions of 125 each. The
extrapolation (Fig. 15) and error plots (Fig. 16) obtained from these models show that the
LSTM model accurately estimates the solution vectors for time-steps within the training
domain (i <= 250), but fails outside the training domain, as the relative error reaches
25% for the 150th time-step post-training.

TCNmodel

The TCN model also receives a sequence Z ∈ R
m×nt and forecasts zi+1 ∈ R

m, with the
dilated convolutions operating on the temporal axis, and the latent dimension passed as
a channel. The model contains three temporal blocks “Temporal Convolution Network
(TCN)” section, with the same kernels and channels in each, and dilations that increase in
size by a factor of two in subsequent blocks. The hyperparameters for the TCN network
are listed in Table 9.
Model training and validation loss reach convergence by 1000 epochs when training and

validation are performed in batches of size 15. The best model (with the least validation
loss) accommodates a sequence of vectors with a lookback window of size 20, and 125
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Fig. 16 Stoker’s problem: L2 relative error of the auto-regressive predictions with increasing time for the LSTM
model

Table9 Stoker’s problem: hyperparameters for the TCN network

Hyperparameters Values

Sequence length (nt ) 5, 10, 20

TCN block channels [100, 100, 100], [200, 200, 200]

Latent dimension (m) 25,50,125

Kernel size (k) 3, 5, 7, 9

Activation tanh

Loss function MSE

Learning rate 3 × 10−4

Max model parameters (nt = 20,m = 125) 727,725

Min model parameters (nt = 20,m = 125) 213,925

latent modes. Each temporal block contains kernels of size 3 and has 200 channels. The
extrapolation (Fig. 17) and error plots (Fig. 18) obtained from these models indicate that
similar to the LSTM, the TCN also predicts the solution vectors with acceptable accuracy
for time steps within the training domain (i <= 250), but the solution stops propagating
further in the extrapolative domain, and so the error increases to 23%.

CNNmodel

The proposed CNNmodel takes the transposed vector sequenceZT ∈ R
nt×m to produce

zi+1 ∈ R
m, with 1D convolutions operating on the spatial axis or latent dimension, and

the nt latent vectors present on separate channels. The CNN model consists of three
residual blocks “A proposed Convolution Neural Network (CNN) for time forecasting”
section, each with the same kernel size and number of channels. The hyperparameters for
the CNN model are summarized in Table 10:
The training and validation loss converges at around 1000 epochs when batches of size

16 are used. The model with the highest accuracy (least validation loss) has a lookback
window of 20 steps, with 125 nodes in latent vectors at every step. Each of the three
blocks possesses a kernel of size 3 and 100 channels in the 1D convolution layers. The
extrapolation (Fig. 19) and error plots (Fig. 20) indicate that the CNN model is capable
of modeling the latent dynamics since accurate forecasts are produced for time steps
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Fig. 18 Stoker’s problem: L2 relative error of the auto-regressive predictions with increasing time for the TCN
model

Table10 Stoker’s problem: hyperparameters for the CNN model

Hyperparameters Values

Sequence length (nt ) 5, 10, 20

CNN block channels [50, 50, 50], [100, 100, 100], [200, 200, 200]

Latent dimension (m) 25, 50, 125

Kernel size (k) 3, 5, 7, 9

Activation tanh

Loss function MSE

Learning rate 3 × 10−4

Max model parameters (nt = 20,m = 125) 618,804

Min model parameters (nt = 20,m = 125) 42,204

beyond the training domain. The error values increase over time, reaching 5%, which is
remarkably lower than earlier models.

Application to a hypothetical dam-break in a river

To assess its effectiveness in conducting a forecasting analysis in a river with complex
bathymetry, the most accurate (i.e., least relative error on extrapolation) forecasting
model, i.e. the CNN future step predictor with a CAE autoencoder approach is imple-
mented in this third test case. This test focuses on a section of the Milles-Iles River in
the province of Québec, Canada, which includes a dam depicted in Fig. 21. The Com-
muneauté Métropolitaine de Montréal (CMM) has provided the data on bathymetry and
roughness coefficient based on measurements and observations. The study area consists
of an unstructured triangular mesh comprising 16,763 elements and 10,200 nodes, where
accurate solutions of the quantities of interest are obtained using an in-house multi-GPU
finite volume solver specifically designed for shallow water equations [35]. For a compre-
hensive understanding of the physical domain of this test case, a detailed description was
provided in [36].
An imaginary breach scenario was initiated in a hypothetical dam, as indicated by the

line in Fig. 21b, where both sides have unequal water levels. The downstream section of
the dam is assumed to be dry, while the free surface of the upstream section is treated as a
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Fig. 20 Stoker’s problem, L2 relative error of the auto-regressive predictions with increasing time for the CNN
model

Fig. 21 Sketch of the reach of the Mille-Iles River with a close-up view of the studied zone. The cross-section line
and the gauging points represent locations where results are represented as a function of the longitudinal
direction and time, respectively

random input parameter. The values of this parameter are uniformly generated within a
plausible range of variability, denoted as ηup ∈ U (29, 32) m. To create a snapshot matrix,
the numerical solver is executed for each randomly selected value of the upstream free
surface from the generated sample set. This process is carried out for 100 simulation time
steps (T = 100) spanning the temporal domain (t ∈ [0, 50]s). For each combination of
parameter and time, a high-fidelity solution is stored in a vector of dimension 10,200,
representing the free surface values at each node in the computational domain.
The dataset for the 2D CAE-CNN architecture is generated after interpolating unstruc-

tured data vectors onto a background structuredmesh, by using SciPy’sGriddata function.
This interpolation technique is particularly effective since the data on nodes are irregu-
larly spaced and do not form a regular grid suitable for CNN. The method parameter in
the Griddata function specifies the interpolation method, which was set as ’linear’ in our
case. The output of the Griddata function is an array of 2D solution matrices of dimen-
sion ns × ns containing the interpolated values from the unstructuredmesh to the regular
structured mesh.
Thus100 solutionmatrix [v1, v2, ..., vT ] of dimensionns × ns = 256×256weregenerated

via interpolation. These matrices are further compressed by the trained 2D CAE network



Bhatt et al. AdvancedModeling and Simulation in Engineering Sciences          (2023) 10:17 Page 27 of 35

Table11 2D River problem: training, validation and testing dataset

Dataset Samples Input Output

Training 1 [z1 , ..., znt−1 , znt ] znt+1

2 [z2 , ..., znt , znt+1] znt+2

... ... ...

50 [z50 , ..., znt+48 , znt+49] znt+50 (training end)

Validation 51 [z51 , ..., znt+49 , znt+50] znt+51

... ... ...

60 [z60 , ..., znt+58 , znt+59] znt+60

Testing 1 [z1 , ..., znt−1 , znt ] [znt+1 , ..., z99 , z100]

Table12 2D River problem: hyperparameters for the 2D CAE network

Hyperparameters 2D convolutional CAE

Encoder layers channels [16, 32, 16]

padding mode Replicate

Latent dimension (m) 32x32

Activation relu

Loss function MSE

Learning rate 3 × 10−4

Model parameters (m = 32 × 32) 19,138

to produce latent matrices [z1, z2, ..., zT ] of dimensionm × m = 32 × 32. Eighty solution
matrices, at random time steps, train the 2D CAE network, and the remaining 20 vectors
are used for the validation. The 2D CNN model is trained by the first 80 compressed
samples and validated using the remaining 20. During testing, the first nt latent matrices
are utilized to predict vectors at subsequent time steps via auto-regression (Table 11).

2D Convolutional autoencoder for spatial compression

A similar methodology to previous test cases is adopted for training the 2D CAE model.
The model also has a similar architecture, with the encoder consisting of three 2D convo-
lution layers, each followed by activation and 2D max pooling layers. Another 2D convo-
lution layer is used at the end to obtain a 2D latent vector consisting of a single channel.
The latent vector obtained is not further compressed or flattened to a single dimension
and the model is also devoid of any dense layer. Therefore during compression, the local
spatial information is preserved to facilitate the modeling of latent dynamics by the CNN
model since it convolves on the spatial axis of thematrix and utilizes information from the
neighboring nodes to predict the future timestep value at a specified node. The decoder
has a mirror architecture to the encoder.
The 2D CAE effectively transforms the 2D solution matrix to a reduced 2D latent space

of dimension 32× 32, since they produce fine reconstruction for solutionmatrices within
as well as outside of the training domain of the model. The hyperparameters for the
employed 2D CAE architecture are listed in Table 12.

2D CNNmodel

The 2D CNN model consists of three residual blocks “A proposed Convolution Neural
Network (CNN) for time forecasting” section, each having two 2Dconvolution layers, with
the same kernel size and number of channels. It takes the transposed vector sequence
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Table13 2D River problem: hyperparameters for the CNN model

Hyperparameters Values

Sequence length (nt ) 20, 30

CNN block channels [200, 200, 200], [250, 250, 250], [300, 300, 300]

Latent dimension (m) 32 × 32

Kernel size (k) 3

Activation tanh

Loss function MSE

Learning rate 3 × 10−4

Max model parameters (nt = 30) 4,144,204

Min model parameters (nt = 30) 1,862,804

ZT ∈ R
nt×m to produce zi+1 ∈ R

m, with 2D convolutions operating over 2D spatial
domain, and the nt latent matrices present on separate channels. The hyperparameters
for the CNN model are summarized in Table 13:
The training and validation loss converges at around 2000 epochs when batches of size

16 are used. The model with the highest accuracy (least validation loss) has a lookback
window of 30 steps, with the latent matrix having a dimension of 32 × 32. Each of the
three blocks possesses a kernel of size 3 and 200 channels in the 2D convolution layers.
The interpolation curves (Fig. 22) produced by the 2D CNN model are highly accurate
and follow the ground truth as time progresses. The extrapolation prediction (Fig. 23)
further stipulates the capability of the proposed architecture in modeling the dynamics
of the 2D dam-break scenario, since reasonable forecasts are produced for time steps
beyond the training domain as well. The error values (Fig. 24) gradually increase over
time (as expected), reaching 27% at the 100th time-step. These errors can be explained (at
least partially) by the fact that when the water propagates over the dry land, no physical
information, such as the evolution of the bathymetry, is provided to the model on the
downstream side. Therefore, even if the predictor CNN has more potential than the well-
known LSTM or TCN, the forecasting problem may be ill-posed and manifests by the
shown instabilities.

Conclusion
This study proposes a Convolutional Autoencoder (CAE) model for compression and a
CNN future-step predictor for forecasting vector solutions for subsequent time steps to
input vector sequences. The approximation accuracy and time extrapolation capabilities
of the model are evaluated using three advection-dominated flow problems, Burgers’ and
Stoker’s problems, as well as the hypothetical dam break problem in a real river having
a complex 2D bathymetry. All the problems are characterized by sharp gradients. The
models built especially for time-series forecasts, LSTMandTCNmodels with propagation
over time, produce acceptable results within the training domain, but the solution stops
changing during extrapolation. However, when the dilated convolutions propagate on the
spatial axis, the models produce good predictions for extrapolation as well.
The proposed CNN model for forecasting has an architecture (residual blocks with 1D

convolutions propagating along space) similar to that of the TCN model but without
causal padding or dilation. These have been eliminated, as the increasing receptive field
has no significance during convolution in space, and causal padding degrades the results
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Fig. 24 2D River problem, L2 relative error of the auto-regressive predictions with increasing time for the CNN
model

by causing the information extracted from neighboring cells to be shifted or scraped. The
CNNmodel is capable of producing highly accurate predictions for both the 1D test cases,
with less than 5% relative L2 error in the extrapolation domain (≈ 60% of the training time
domain). The results produced by the 2D CAE-CNN model for the dam break problem
are also acceptable with a relative L2 error under 28% in the extrapolation domain (≈ 25%
of the training time domain). However, the CNNmodels (both 1D and 2D) only produce
accurate forecasts if they receive compressed latent vectors from the CAE models (1D
and 2D respectively) since they preserve the local spatial information better than theMLP
encoder during compression. In addition, since the CNN model uses convolutions (like
TCN [34]), the training and evaluation can be done in parallel for long input sequences, in
contrast to the LSTM. Thus, a fast, accurate, and robust framework is provided for order
reduction. The model architecture is flexible and can be extended for three-dimensional
spaces as well, by increasing the dimension of the convolutional filters. Future work will
focus on improving the model by using physical mechanisms to inform the model during
the forecasting phase and considering probabilistic settings to treat the uncertainties.

Appendix: Heat map plots for Burgers’ and Stoker’s problems
See Tables 14, 15.
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Table 14 Burgers’ problem: auto-regressive forecasts for Re= 300 (top) and Re= 600 (bottom) from
the forecasting models when latent vectors are obtained by AE and CAE



Bhatt et al. AdvancedModeling and Simulation in Engineering Sciences          (2023) 10:17 Page 33 of 35

Table 15 Stokers’ problem: auto-regressive forecasts from the forecasting models when latent
vectors are obtained by AE and CAE
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