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Abstract

Solving multiphysics-based inverse problems for geological carbon storage monitoring
can be challenging when multimodal time-lapse data are expensive to collect and
costly to simulate numerically. We overcome these challenges by combining
computationally cheap learned surrogates with learned constraints. Not only does this
combination lead to vastly improved inversions for the important fluid-flow property,
permeability, it also provides a natural platform for inverting multimodal data including
well measurements and active-source time-lapse seismic data. By adding a learned
constraint, we arrive at a computationally feasible inversion approach that remains
accurate. This is accomplished by including a trained deep neural network, known as a
normalizing flow, which forces the model iterates to remain in-distribution, thereby
safeguarding the accuracy of trained Fourier neural operators that act as surrogates for
the computationally expensive multiphase flow simulations involving partial
differential equation solves. By means of carefully selected experiments, centered
around the problem of geological carbon storage, we demonstrate the efficacy of the
proposed constrained optimization method on two different data modalities, namely
time-lapse well and time-lapse seismic data. While permeability inversions from both
these two modalities have their pluses and minuses, their joint inversion benefits from
either, yielding valuable superior permeability inversions and CO2 plume predictions
near, and far away, from the monitoring wells.

Keywords: Fourier neural operators, Normalizing flows, Multiphysics, Deep learning,
Learned surrogates, Learned constraints, Inverse problems

Introduction
In this paper, we introduce a novel learned inversion algorithmdesigned to address inverse
problems based on partial differential equations (PDEs). These problems can be repre-
sented using the following general form:

d = H ◦ S(K) + ε. (1)
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In this expression, the nonlinear operatorS represents the solution operator of a nonlin-
ear parametric PDEmapping the coefficientsK to the solution. Given numerical solutions
of the PDE, partially observed data, collected in the vectord, aremodeled by compounding
the solution operator with the measurement operator, H, followed by adding the noise
term ε with noise level of σ—i.e., ε ∼ N (0, σ 2I). This problem is quite general and perti-
nent to various physical applications, including geophysical exploration [88,89], medical
imaging [4], and experimental design [1].
Without loss of generality, we focus on time-lapse seismic monitoring of geological

carbon storage (GCS), which involves underground storage of supercritical CO2 captured
from the atmosphere or from industrial smoke stacks [22]. We consider GCS in saline
aquifers, which involves multiphase flow physics where CO2 replaces brine in the porous
rocks [64]. In this context, the PDE solution operator, S , serves as the multiphase flow
simulator, which takes the gridded spatially varying permeability in the reservoir, K, as
input and produces nt time-varying CO2 saturation snapshots, c = [c1, c2, · · · , cnt ], as
output. The governing equations for the multiphase flow involve Darcy’s and the mass
conservation law. Detailed information on the governing equations, initial and bound-
ary conditions, and numerical solution schemes can be found in [78] and the references
therein. To ensure safety, conformance, and containment of GCS projects, various kinds
of time-lapse data are collected to monitor CO2 plumes. These different data modalities
include measurements in wells [21,62], and the collection of gravity [2,63], electromag-
netic [14,106], and seismic time-lapse data [5,57,101] that can be used to follow the plume
and invert for reservoir properties such as the permeability, K. The latter is the property
of interest in this exposition.
Overall, solving for the reservoir model parameter, K, poses significant challenges for

two primary reasons:

• the forward modeling operator, H ◦ S , can be ill-posed, resulting in multiple model
parameters that fit the observed data equally well. This necessitates the use of regu-
larizers [23,89] in the form of penalties or constraints [73].

• The PDE modeling operator S , and the sensitivity calculations with respect to the
model parameters can be computationally expensive for large-scale problems, lim-
iting the efficacy of iterative methods such as gradient-based [49] or Markov chain
Monte Carlo [16] methods.

To overcome the second challenge, numerous attempts have beenmade to replace com-
putationally expensive PDE solves with more affordable approximate alternatives [6,79],
which include the use of radial basis functions to learn the complex models from few
sample points [75] or reduced-order modeling where the dimension of the model space
is reduced [55,81]. More recently, various deep learning techniques have emerged as
cheap alternatives to numerical PDE solves [30,35,40,56,71,76,77]. After incurring initial
training costs, these neural operators lead to vastly improved computation of PDE solves.
Data-driven methods have also been used successfully to learn coarse-to-fine grid map-
pings of PDEs solves. Because of their advertised performance on approximating solution
operators of the multiphase flow in porous media [25,91,92,94,97,98], we will consider
Fourier neural operators (FNOs, Li et al. [46], Kovachki et al. [39]) in this work even
though alternative choices can be made. Once trained, FNOs produce approximate PDE
solutions orders of magnitude faster than traditional solvers [18,25,46,47]. In addition,
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Yin et al. [102], Louboutin et al. [52] and Louboutin et al. [54] demonstrated that trained
FNOs can replace PDE solution operators during inversion. This latest development is
especially beneficial to applications such asGCSwhere trained FNOs can be used in lieu of
numerically costly flow simulators [27,48,78]. However, despite their promising results,
unconstrained inversion formulations offer little to no guarantees that the model iterates
remain within the statistical distribution on which the FNO was trained initially during
inversion. As a consequence, FNOs may no longer produce accurate fluid-flow simula-
tions throughout the iterations, which can lead to erroneous inversion results when the
errors become too large, possibly rendering surrogate modeling by FNOs ineffective. To
avoid this situation, we propose a constrained formulation where a trained normalizing
flow (NF, Rezende and Mohamed [80]) is included as a learned constraint. This added
constraint guarantees that the model iterates remain within the desired statistical distri-
bution. Because our approach safeguards the FNO’s accuracy, it allows FNOs to act as
reliable low-cost neural surrogates replacing costly fluid-flow simulations and gradient
calculations that rely on numerically expensive PDE solves during inversion.
The organization of this paper is as follows: First, we introduce FNOs and explore the

possibility of replacing the forward modeling operator with a trained FNO surrogate.
Next, NFs are introduced. By means of a motivational example, we demonstrate how
these learned generative networks control the prediction error of FNOs by ensuring that
themodel iterates remain in distribution. Based on thismotivational example, we propose
our novel method for using trained NFs as a learned constraint to guarantee performance
of FNO surrogates during inversion. Through four synthetic experiments related to GCS
monitoring, the efficacy of our method will be demonstrated.

Fourier neural operators
There is an extensive literature on training deep neural networks to serve as affordable
alternatives to computationally expensive numerical simulators [11,35,38,40,56]. With-
out loss of generality, we limit ourselves in this exposition to the training of a special
class of neural operators known as Fourier neural operators (FNOs). These FNOs are
designed to approximate numerical solution operators of the PDE solution operator, S ,
by minimizing the following objective:

minimize
θ

1
N

N∑

j=1
‖Sθ(K(j)) − c(j)‖22 where c(j) = S(K(j)). (2)

Here, Sθ denotes the FNO with network weights θ. The optimization aims to minimize
the �2 misfit between numerically simulated PDE solutions, c(j), and solutions approxi-
mated by the FNO, across N training samples (permeability models), {K(j)}Nj=1 compiled
by domain experts. Once trained, FNOs can generate approximate PDE solutions for
unseen model parameters orders of magnitude faster than numerical simulations [18,25].
For model parameters that fall within the distribution used to train, approximation by
FNOs are reasonably accurate—i.e., Sθ∗ (K) ≈ S(K), with θ∗ being the minimizer of Eq. 2.
We refer to the numerical examples section for details calculating these weights. Before
studying the impact of applying these surrogates on samples for the permeability that are
out of distribution, let us first consider an example where data is inverted using surrogate
modeling.
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Inversion with learned surrogates
Replacing PDE solutions by approximate solutions yielded by trained FNO surrogates has
twomain advantageswhen solving inverse problems. First, asmentioned earlier, FNOs are
orders of magnitude faster than numerical PDE solves, which allows for many simulations
at negligible costs [15,42]. Second, existing software for multiphase flow simulations may
not always support computationally efficient calculations of sensitivity, e.g. via adjoint-
state calculations [13,34,74] of the simulations with respect to their input. In such cases,
FNO surrogates are favorable because automatic differentiation on the trained network
[26,52,54,99,102] readily provides access to gradients with respect to model parameters.
As a result, the PDE solver, S , in Eq. 1 can be replaced by trained surrogate, Sθ∗—i.e., we
have

minimize
K

‖d − H ◦ Sθ∗ (K)‖22 (3)

where θ∗ represent the optimized weights minimizing Eq. 2. While the above formulation
in terms of trained surrogates has been applied successfully during permeability inversion
from time-lapse seismic data [44,54,102], this type of inversion is only valid as long as the
(intermediate) permeabilities remain within distribution during the inversion. Practically,
thismeans two things. First, the data need tobe in the rangeof permeabilitymodels that are
in distribution. This means that there can not be toomuch noise neither can the observed
data be the result of an out-of-distribution permeability. Second, there are no guarantees
that the permeability model iterates remain in distribution during inversion even though
some bias of the gradients of the surrogate towards in-distribution permeabilities may be
expected. To overcome this challenge, we propose to add a learned constraint to Eq. 3
that offers guarantees that the model iterates remain in distribution.

Learned constraints with normalizing flows
As demonstrated by Peters and Herrmann [72], Esser et al. [20], Peters et al. [73] regular-
ization of non-linear inverse problems, such as full-waveform inversion, with constraints,
e.g., total-variation [20] or transform-domain sparsity with �1-norms [45], offers distinct
advantages over regularizations based on adding these norms as penalties. Even though
constraint and penalty formulations are equivalent for linear inverse problems for the
appropriate choice of the Lagrange multiplier, minimizing the constraint formulation
leads to completely different solution paths compared to adding a penalty term to the
data misfit objective [29]. In the constrained formulation, the model iterates remain at all
times within the constraint set while model iterates yielded by the penalty formulation
does not offer these guarantees. Peters and Herrmann [72] demonstrated this importance
difference for the non-convex problem of full-waveform inversion. For this problem, it
proved essential to work with a homotopy where the intersection of multiple handcrafted
constraints (intersection of box and size of total-variation-norm ball constraints) are
relaxed slowly during the inversion, so the model iterates remain physically feasible and
local minima are avoided.
Motivated by these results, we propose a similar approach but now for “data-driven”

learned constraints based on normalizing flows (NFs, Rezende and Mohamed [80]). NFs
are powerful deep generative neural networks capable of learning to generate samples
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from complex distributions [19,54,68,86]. Designed to be invertible, theseNFs require the
latent and model spaces to share identical dimensions, which confers several advantages:

• unlike variational autoencoders [36] or generative adversarial networks (GANs,
Goodfellow et al. [24]), which both have a lower-dimensional latent space, NFs do
not impose any intrinsic dimensionality constraints. This flexibility lets NFs capture
model space characteristics across high dimensions [37]. Relevantly, concurrent lit-
erature has delved into the intrinsic dimensionality of NFs, indicating the potential
to using NFs to generate models with inherently lower dimensions [31].

• NFs’ inherent invertibility negates the need to store state variables during gradi-
ent calculations, enabling memory-efficient training and inversion in large-scale 3D
applications, such as in geophysics [43,83,84,86,103–105] and ultrasound imaging
[66–70,93].

• because of their invertibility NFs guarantee unique latent codes for all model space
samples, including out-of-distribution ones. Therefore, they can still be used to invert
for out-of-distributionmodel parameters, while othermethods like GANsmay intro-
duce bias [7].

Aside from being invertible, NFs are trained to map samples from a target distribution
in the physical space to samples from the standard zero-mean Gaussian distribution noise
in the latent space. After training is completed, samples from the target distribution are
generated by running the NF in reverse on samples in the latent space from the standard
Gaussian distribution. Below, we will demonstrate howNFs can be used to guarantee that
the permeability remains in distribution during the inversion.

Training normalizing flows

Given samples from the permeability distribution, {K(j)}Nj=1, trainingNFs entails minimiz-
ing the Kullback–Leibler divergence between the base and target distributions [3]. This
involves solving the following variational problem:

minimizew
1
N

N∑

i=1

(
1
2
‖G−1

w (Ki)‖22 − log
∣∣∣det JG−1w (Ki)

∣∣∣
)
. (4)

In this optimization problem, G−1
w represents the NF, which is parameterized by its net-

work weightsw, while JG−1w denotes its Jacobian. Byminimizing the �2-norm, the objective
imposes a Gaussian distribution on the network’s output and the second log det term pre-
vents trivial solutions, i.e., cases where G−1

w produces zeros. To ensure alignment between
the permeability distributions, Eq. 2 and Eq. 4 are trained on the same dataset consisting of
2000 permeability models examples of which are included in Fig. 1. Each 64 × 64 perme-
ability model of consists of a randomly generated highly permeable channels (120mD) in
a low-permeable background of 20mD, where mD denotes millidarcy. Generative exam-
ples produced by the trained NF are included in the second row of Fig. 1, which confirm
the NF’s ability to learn distributions from examples. Aside from generating samples from
the learned distribution, trained NFs are also capable of carrying out density calculations,
an ability we will exploit below.
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Fig. 1 Permeability models. First row shows the realistic permeability samples for FNO and NF training. Second
row shows the generative samples from the trained NF

Fig. 2 Sample permeability models in the physical and latent space. a An in-distribution permeability model. b
An out-of-distribution permeability model. c An in-distribution permeability model in the latent space. d An
out-of-distribution permeability model in the latent space
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Fig. 3 Projections onto increasing �2-norm balls for the in- and out-of-distribution examples of Fig. 2. Top row:
projections of in-distribution sample. Bottom row: projections of out-of-distribution sample. Each column
corresponds to setting α = 0, 0.1, 0.2, 0.4, 1 in Eq. 6

Fig. 4 Latent space projection experiments. a Relative �2 reconstruction error and FNO prediction error for
in-distribution sample. b The same but for out-of-distribution sample. The blue curve shows the relative �2 misfit
between the permeability models before and after latent space shrinkage. The orange curve shows the FNO
prediction error on the permeability model after shrinking the �2-norm ball. The red dashed line denotes the
amplitude of standard Gaussian noise

Trained normalizing flows as constraints

As we mentioned before, adding constraints to the solution of non-convex optimization
problemsoffers guarantees thatmodel iterates remainwithin constrained sets.When solv-
ing inverse problems with learned surrogates, it is important that model iterates remain
“in distribution”, which can be achieved by recasting the optimization problem in Eq. 3
into the following constrained form:

minimizez ‖d − H ◦ Sθ∗ ◦ Gw∗ (z)‖22 subject to ‖z‖2 ≤ τ . (5)

To arrive at this constrained optimization problem, two important changes were made.
First, the permeabilityK is replaced by the output of a trained NF with trained weightsw∗

obtained by minimizing Eq. 4. This reparameterization in terms of the latent variable, z,
produces permeabilities that are in distribution as long as z remains distributed according
to the standard normal distribution. Second, we added a constraint on this latent space
variable in Eq. 5, which ensures that the latent variable z remains within an �2-norm ball
of size τ .
To better understand the behavior of a trained normalizing flow in conjunction with

the �2-norm constraint for in- and out-of-distribution examples, we include Figs. 2 and 3.
In the latter Figure, nonlinear projections (via latent space shrinkage),

K̃ = Gw∗ (αz) where z = G−1
w∗ (K) (6)
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Fig. 5 FNO prediction errors for the latent space shrinkage experiment in Eq. 6 for 50 random realizations of
standard Gaussian noise

are plotted as a function of increasing α. We also plot in Fig. 4 the NF’s relative nonlinear
approximation error, ‖K̃ − K‖2/‖K‖2, and the corresponding relative FNO prediction
error,‖Sθ∗ (K̃)−S(K̃)‖2/‖S(K̃)‖2 as a function of increasing 0 ≤ α ≤ 1. From these plots,
we can make the following observations. First, the latent representations (Fig. 2c and d)
of the in- and out-of-distribution samples (Fig. 2a and b ) clearly show that NF applied
to out-of-distribution samples produces a latent variable far from the standard normal
distribution, while the latent variable corresponding to the in-distribution example is
close to being white Gaussian noise. Quantitatively, the �2 norm of the latent variables
are 0.99‖N (0, I)‖2 and 3.11‖N (0, I)‖2, respectively, where ‖N (0, I)‖2 corresponds to the
�2-norm of the standard normal distribution. Second, we observe from Fig. 3 that for
small �2-norm balls (α � 1) the projected solutions tend to be close to the most probable
sample, which is a flat permeability channel in themiddle. This is true for both the in- and
out-of-distribution example. As α increases, the in-distribution example is reconstructed
accurately when the �2 norm of the scaled latent variable, ‖αz‖2, is close to the ‖N (0, I)‖2.
Clearly, this is not the case for the out-of-distribution example.When ‖αz‖2 ≈ ‖N (0, I)‖2,
the reconstruction still looks like an in-distribution permeability sample and is not close
to the out-of-distribution sample. However, if α = 1, which makes ‖αz‖2 well beyond the
norm of the standard normal distribution, the out-of-distribution example is recovered
accurately by virtue of the invertibility of NFs, irrespective on their input and what they
have been trained on. Third, the relative FNO prediction error for the in-distribution
example (Fig. 4a) remains flat while the error of the FNO surrogate increases as soon as
α ≈ 0.25. At that value for α, the projection, K̃, is gradually transitioning from being in-
distribution to out-of-distribution, which occurs at a non-linear approximation error of
about 45%. As expected the plots in Fig. 4 also show a monotonous decay of the nonlinear
approximation error as a function of increasing α. To further analyze the effects of the
nonlinear projections in Eq. 6, we draw 50 random realizations from the standard normal
distribution, scale each of them by 0 ≤ α ≤ 2, and calculate the FNO prediction errors on
these samples. Figure 5 includes the results of this exercise where each column represents
the FNO prediction error calculated for 0 ≤ α ≤ 2. From these experiments, we make the
following two observations. First, when α < 0.8, the FNO consistently makes accurate
predictions for all projected samples. Second, as expected, the FNO starts to make less
accurate predictions for α > 1 with errors that increase as the size of the �2-norm ball of
the latent space expands, demarcating the transition from being in distribution to being
out-of-distribution.
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In summary, the experiments of Figs. 2, 3, 4 indicate that FNO errors remain small
and relatively constant for the in-distribution example. Irrespective of the value of α,
the generated samples remain in distribution while moving from the most likely—i.e., a
flat high-permeability channel in the middle, to the in-distribution sample as α increases.
Conversely, the projection of the out-of-distribution examplemorphs frombeing in distri-
bution to being out-of-distribution for α ≥ 0.25. The FNO prediction errors also increase
during this transition from an in-distribution sample to an out-of-distribution sample.
Therefore, shrinkage in the latent space by multiplying with a small α can serve as an
effective projection that ensures relatively low FNO prediction errors. We will use this
unique ability to control the distribution during inversion.

Inversion with progressively relaxed learned constraints

Our main objective is to perform inversions where the multiphase flow equations are
replaced with pretrained FNO surrogates. To make sure the learned surrogates remain
accurate, we propose working with a continuation schemewhere the learned constraint in
Eq. 5 is steadily relaxed by increasing the size of the �2-norm ball constraint. Compared to
the more common penalty formulation, where regularization entails adding a Lagrange-
multiplier weighted �2-norm squared, constrained formulations offer guarantees that the
model iterates for the latent variable, z, remain within the constraint set—i.e., within
the �2-norm ball of size τ . Using the argument of the previous section, this implies that
permeability distributions generated by the trained NF remain in distribution as long as
the size of the initial �2-norm ball, τinit, is small enough (e.g., smaller than 0.6‖N (0, I)‖2,
following theobservations fromFig. 5). Taking advantageof this trainedNF in ahomotopy,
we propose the following algorithm:

Algorithm 1: Inversion with relaxed learned constraints
1 Input: initial model parameter K0 ∈ R

N , observed data d, noise level σ
2 Input: trained FNO Sθ∗ , trained NF Gw∗
3 Input: number of inner-loop iterationsmaxiter
4 Input: initial �2 ball size τinit, multiplier β > 1, final �2 ball size τfinal
5 z = G−1

w∗ (K0)
6 τ = τinit
7 while ‖d − H ◦ Sθ∗ ◦ Gw∗ (z)‖2 > σ‖N (0, I)‖2 and τ ≤ τfinal do
8 for iter = 1 : maxiter do
9 g = ∇z‖d − H ◦ Sθ∗ ◦ Gw∗ (z)‖22

10 z = Pτ (z − γ g)
11 end
12 τ = βτ

13 end
14 Output: inverted model parameter K = Gw∗ (z)

Given observed data, d, trained networks, Sθ∗ and Gw∗ , the initial guess for the perme-
ability distribution, K0, the initial size of the �2-norm ball, τinit, and the final size of the
�2-norm ball, τfinal, Algorithm 1 proceeds by solving a series of constrained optimization
problems where the size of the constraint set is increased by a factor of β after each iter-
ation (cf. line 12 in Algorithm 1). The constrained optimization subproblems themselves
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(cf. line 8 to 11 of Algorithm 1) are solved with projected gradient descent [10]. Each iter-
ation of the projected gradient descent method first calculates the gradient (cf. line 9 of
Algorithm 1), followed by themuch cheaper projection of the updated latent variable back
onto the �2-norm ball of size τ via the projection operator Pτ (cf. line 10 in Algorithm 1).
This projection is a trivial scaling operation if the updated latent variable �2-norm exceeds
the constraint—i.e.,

Pτ (z) =
⎧
⎨

⎩
z if ‖z‖2 ≤ τ

τz/‖z‖2 if ‖z‖2 > τ
(7)

A line search determines the steplength γ [87] for each iteration shown in line 8 to
11. As is common in continuation methods, the relaxed gradient-descent iterations are
warm-started with the optimization result from the previous iteration, which at the first
iteration is initialized by the latent representation of the initial permeability model, K0
(cf. line 5 in Algorithm 1). Practically, each subproblem does not need to be fully solved,
but only need a few iterations instead. The number of iterations to solve each subproblem
is denoted by maxiter in line 8 of Algorithm 1. This continuation strategy serves two
purposes. First, for small τ ’s it makes sure the model iterates remain in distribution, so
accuracy of the learned surrogate is preserved. Second, by relaxing the constraint slowly,
the data residual is gradually allowed to decrease, bringing in more and more features
derived from the data. By slowly relaxing the constraint, we find a careful balance between
these two purposes as long as progress is made towards the solution when solving the
subproblem (cf. line 8 to 11 in Algorithm 1). One notable distinction of the surrogate-
assisted inversion, compared to the conventional inversion with relaxed constraints [20],
is that the size of the �2-norm projection ball cannot increase far beyond the �2-norm of
the standard Gaussian white noise on which the NFs are trained. Otherwise, there is no
guarantee the learned surrogate is accurate because the NFmay generate samples that are
out-of-distribution (cf. Fig. 5). This is explicitly incorporated into the stopping criteria,
τ ≤ τfinal, in line 7 of Algorithm 1.

Numerical experiments
To showcase the advocacy of the proposed optimization method with relaxed learned
constraints, a series of carefully chosen experiments of increasing complexity are con-
ducted. These experiments are designed to be relevant to GCS, which in its ultimate form
involves coupling ofmultiphase flowwith thewave equation to perform end-to-end inver-
sion for the permeability given multimodal data. To convince ourselves of the validity of
our approach, at all times comparisons will be made between inversion results involving
numerical solves of the multiphase equations and inversions yielded by approximations
with our learned surrogate.
For all numerical experiments, the “ground-truth” permeability model will be selected

from the unseen test set and is shown in Fig. 6a. The inversions will be initiated with
the smooth permeability model depicted in Fig. 6b. This initial model, K0, represents
the arithmetic mean of all permeability samples in the training dataset. To ensure
that the model iterates remain in distribution, we set the starting �2-norm ball size to
τinit = 0.6‖N (0, I)‖2—i.e., 0.6× the �2-norm of standard white Gauss noise realizations
for the discrete permeability model of 64 by 64 gridpoints. To gradually relax the learned
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Fig. 6 Permeability models. a unknown “ground-truth” permeability model from unseen test set, where the
symbols � and � denote the CO2 injection and brine production location, respectively; b initial permeability
model,K0

constraint, the multiplier of the projection ball size is taken to be β = 1.2, and we set
the ultimate projection ball size τfinal in Algorithm 1 to be 1.2 times the norm of standard
white noise. To limit computational costs of solving the subproblems, we allow each con-
strained subproblem (cf. line 8 to 11 in Algorithm 1) to perform 8 iterations of projected
gradient descent to solve for the latent variable. From practical experience, we found that
the proposed inversions are not very sensitive to the choice of these hyperparameters.
To simulate the evolution of injected CO2 plumes, we make use of the open-source

software package Jutul.jl [60,61,100], which for each permeability model, K(j), solves
the immiscible and compressible two-phase flow equations for the CO2 and brine sat-
uration. As shown in Fig. 6a, an injection well is set up on the left-hand side of the
model, which injects supercritical CO2 with density 700 kg/m3 at a constant rate of
0.005 m3/s. To relieve pressure, a production well is included on the right-hand side of
the model, which produces brine with density 1000 kg/m3 with a constant rate of also
0.005 m3/s. This finally results in approximately a 6% storage capacity after 800 days of
CO2 injection. From these simulations, we collect eight snapshots for the CO2 concen-
tration, c = [c1, c2, · · · , cnt ] with nt = 8 the number of snapshots that cover a total time
period of 800 days. The last five snapshots of these simulations are included in the top
row of Fig. 6a. Due to buoyancy effects and well control, the CO2 plume gradually moves
from the left to the right and upwards.
Given these simulated CO2 concentrations, the optimized weights, w∗, for the FNO

surrogate are calculated by minimizing Eq. 2 for N = 1900 training pairs, {K(j), c(j)}Nj=1.
Another 100 training pairs are used for validation. After training with 350 epochs, an
average of 7% prediction error is achieved for permeability samples from the unseen test
set. As observed from Fig. 7, the approximation errors of the FNO are mostly concen-
trated at the leading edge of the CO2 plumes. The same permeability models are used to
train the NF by minimizing Eq. 4 for 245 epochs using the open-source software package
InvertibleNetworks.jl [95]. We use the HINT network structure [41] for the NF. Three
generative samples are shown in the second row of Fig. 1. From these examples, we can see
that the trained NF is capable of generating random permeability models that resemble
the ones in the training samples closely, despite minor noisy artifacts.

https://github.com/sintefmath/Jutul.jl
https://github.com/slimgroup/InvertibleNetworks.jl
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Fig. 7 Five CO2 saturation snapshots after 400, 500, 600, 700, and 800 days. First row shows the CO2 saturation
simulated by the PDE. Second row shows the CO2 saturation predicted by the trained FNO. Third row shows the
5× difference between the first row and the second row

Unconstrained/constrained permeability inversion from CO2 saturation data

To demonstrate that permeability inversion with surrogates is indeed feasible, we first
consider the idealized, impossible in practice, situation where we assume to have access
to the time-lapse CO2 concentration, c = [c1, c2, · · · , cnt ], everywhere, and for all nt = 8
timesteps. In that case, the measurement operator,H in Eq. 1, corresponds to the identity
matrix. GivenCO2 concentrations simulated from the “ground-truth” permeability distri-
bution plotted in Fig. 6a, we invert for the permeability by minimizing the unconstrained
formulation (cf. Eq. 3) for the correct, yielded by the PDE, and approximate fluid-flow
physics, yielded by the trained FNO. The results of these inversions after 100 iterations
of gradient descent with back-tracking linesearch [87] are plotted in Fig. 8a and b. From
these plots, we observe that the inversion results using PDE solvers delineates most of
the upper boundary of the channel accurately. Because there is a null space in the fluid-
flow modeling—i.e., this null space mostly corresponds to regions of the permeability
model that are barely touched by the CO2 plume (e.g. bottom and right-hand side of
the channel)—artifacts are present in the high-permeability channel itself. As expected,
the reconstruction of the permeability is also not perfect at the bottom and at the far
right of the model. The inversion result with the FNO surrogate is similar but introduces
unrealistic artifacts in the high-permeability channel and also outside the channel. These
more severe artifacts can be explained by the behavior of the FNO approximation error
plotted as the orange curve in Fig. 8e. The error value increases rapidly to 13%, and finally
saturates at 10%. This behavior of the error is amanifestation of out-of-distributionmodel
iterates that explain the erroneous behavior of the surrogate and its gradient with respect
to the permeability.
Inversions yielded by the relaxed constrained formulationwith the trainedNF (seeAlgo-

rithm 1), on the other hand, show virtually artifact free inversion results (see Fig. 8c and
d) that compare favorably with the “ground-truth” permeability plotted in Fig. 6. While
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Fig. 8 Permeability inversion from fully observed time-lapse CO2 saturations. a Inversion result with PDE solvers.
b The same but via the approximate FNO surrogate. c Same as a but with NF constraint. d Same as b but with NF
constraint. e The FNO approximation errors as a function of the number of iterations for the result plotted in b
and d
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adding the NF as a constraint obviously adds information, explaining the improved inver-
sion for the accurate physics (Fig. 8c), it also renders the approximate surrogates more
accurate, as can be observed from the blue curve in Fig. 8e, where the FNO approxima-
tion error is controlled thanks to adding the constraint to the inversion. This behavior
underlines the importance of ensuringmodel iterates to remainwithin distribution. It also
demonstrates the benefits of a solution strategy where we start with a small τ , followed by
relaxing the constraint slowly by increasing the size of the constraint set gradually.

Unconstrained/constrained permeability inversion fromwell observations

While the example of the previous section established feasibility of constrained perme-
ability inversion, it relied on having access to the CO2 saturation everywhere, which is
unrealistic in practice. To address this issue, we first consider permeability inversion from
CO2 saturations, collected at three equally spaced monitoring well locations, for only the
first 6 timesteps over the period of 600 days [59]. In thismore realistic setting, themeasure-
ment operator, H in Eq. 1, corresponds to a restriction operator that extracts simulated
CO2 saturations at each well location in first six snapshots. The objective function reads

minimizez ‖dw − M ◦ Sθ∗ ◦ Gw∗ (z)‖22 subject to ‖z‖2 ≤ τ , (8)

where dw represents the well measurements collected at three well locations through the
linear restriction operator M. The goal is to invert for the permeability by minimizing
the misfit of the well measurements of the CO2 saturation without and with constraints
on the �2-norm ball in the latent space. The results of these numerical experiments are
included in the first row of Fig. 9, where the differences with respect to the ground truth
permeability shown in Fig. 6a are plotted in the second row. Because the part of the
permeability that is not touched by the CO2 plume lives in the null space, we highlight the
CO2 plume in the difference plots by dark color and focus on analyzing errors within the
plume region. As expected, the unconstrained inversions based onPDE solves (Fig. 9a) and
surrogate approximations (Fig. 9b) are both poorly resolved because of the limited spatial
information on the saturation. Contrasting these unconstrained inversions with results
for the constrained inversions for the PDE (Fig. 9c) and surrogate (Fig. 9d) again shows the
importance of adding constraints to the inversion. Figure 9i clearly demonstrates that the
FNO prediction errors remain relatively constant during constrained inversion while the
error continues to grow during the unconstrained iterations eventually exceeding 14%.
Both constrained results improve significantly, even though they converge to different
solutions in the end. This is because history matching is typically an ill-posed problem
withmany distinctive solutions [12]. This observation furthermotivates us to consider the
experiment below, where time-lapse seismic data are jointly inverted for the subsurface
permeability.

Multiphysics end-to-end inversion

Next, we consider the alternative setting for seismic monitoring of geological carbon
storage, where the dynamics of the CO2 plumes are indirectly observed from time-lapse
seismic data. In this case, the measurement operator,H, involves the composition of the
rock physics modeling operator, R, which converts CO2 saturations to decreases in the
compressional wavespeeds for rocks within the reservoir [9], and the seismic modeling
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Fig. 9 Permeability inversions from CO2 saturations sampled at three well locations at 6 early snapshots. The
well locations are denoted by the red vertical lines. a Unconstrained inversion result based on PDE solves. b Same
as a but now with FNO surrogate approximation. c Constrained inversion result based on PDE solves. d Same as c
but now with FNO surrogate approximation. e–h The error of the permeability inversion results in a–d compared
to the unseen ground truth shown in Fig. 6a. i The FNO prediction errors as a function of the number of iterations
for b and d

operator,F ,whichgenerates time-lapse seismicdata recordedat the receiver locations and
based on acoustic wave equation modeling [82]. The multiphysics end-to-end inversion
process estimates permeability from time-lapse seismic data via inversion of these nested
physics operators for the flow, rock physics, and waves [44]. Following earlier work by Yin
et al. [102] and Louboutin, Yin, et al. [54], the fluid-flow PDE modeling is replaced by the
trained FNO (cf. Eq. 5), resulting in the following optimization problem:

minimizez ‖ds − F ◦ R ◦ Sθ∗ ◦ Gw∗ (z)‖22 subject to ‖z‖2 ≤ τ , (9)

whereds represents the observed time-lapse seismic data.While this end-to-end inversion
problem benefits from having remote access to changes in the compressional wavespeed,
itmaynow suffer fromnull spaces associatedwith the flow,Sθ∗ , and thewave/rock physics,
F ◦ R. For instance, the latter suffers from bandwidth limitation of the source function
and from limited aperture. Because important components are missing in the observed
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Fig. 10 Seismic acquisition. The white× represents the acoustic sources, and the red lines represent the dense
receivers. The CO2 saturation snapshot at day 600 is plotted in the middle, which is the last snapshot that is
monitored seismically

data, inversion based on the data objective alone in Eq. 9 are likely to suffer from artifacts
that can easily drive the intermediate permeability model iterates out-of-distribution.
To demonstrate capabilities of the proposed relaxed inversion procedure with surro-

gates for thefluidflow,we assume the baseline to be known—i.e,we assume the brine-filled
reservoir with 25% porosity to be acoustically homogeneous prior to CO2 injection with a
compressional wavespeed of 3500m/s.We use the patchy saturationmodel [9] to convert
the time-dependent CO2 saturation resulting in < 300m/s decreases in the wavespeed
within the CO2 plumes. We collect six seismic surveys at the first six snapshots for the
CO2 saturation from day 100 to day 600, which are the same snapshots as the ones used
in the previous experiment. For each time-lapse seismic survey, 16 active-seismic sources
are locatedwithin a well on the left-hand side of themodel.We also position 16 sources on
the top of the model. Each active source uses a Ricker wavelet with a central frequency of
50Hz. The transmitted and reflected wavefields are collected by 480 receivers on the top
and 480 receivers on the right-hand side of the model. The seismic acquisition is shown
in Fig. 10, where the plume at the last seismic vintage (at day 600) is plotted in the middle.
To avoid numerical dispersion, the velocity model is upsampled by a factor of two in

both the horizontal and vertical directions, which results in a 7.5m grid spacing. For the
simulations, use is made of the open-source software package JUDI.jl [53,96] to generate
the time-lapse seismic data at the first six snapshots. The fact that this software is based
on Devito’s wave propagators [51,58] allows us to do this quickly. For realism, we add 10
dB Gaussian noise to the time-lapse seismic data. Given these six time-lapse vintages, our
goal is to invert for the permeability in the reservoir by minimizing the time-lapse seismic
data misfit through the nested physics operators shown in Eq. 9.
Inversion results obtained by solving the PDEs for the fluid flow during the inver-

sion are shown in Fig. 11a and c. As before, the inversions benefit majorly from adding
the trained NF as a constraint. Remarkably, the end-to-end inversion results shown in
Fig. 11a, c, and d are close to the results plotted in Fig. 8a, c, and d, which was obtained
with access to the CO2 saturation everywhere. This reaffirms the notion that time-lapse
seismic can indeed provide useful spatial information away from the monitoring wells
to estimate the reservoir permeability, which aligns with earlier observations by D. Li et

https://github.com/slimgroup/JUDI.jl
https://www.devitoproject.org/
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Fig. 11 Permeability inversions from time-lapse seismic data. a Inversion result using PDE solvers. b The same as
a but for the FNO surrogate. c The same as a but with the NF-based constraint. d The same as a but now for the
FNO surrogate with the NF-based constraint. e–h The error of the permeability inversion results in a–d compared
to the unseen ground truth shown in Fig. 6a. i The FNO prediction errors as a function of the number of iterations
for b and d

al. [44], Yin et al. [102], and Louboutin, Yin, et al. [54]. Juxtaposing the results for the
FNO surrogate without (Fig. 11b) and with the constraint (Fig. 11d) again underlines the
importance of adding constraints especially in situations where the forward (wave) oper-
ator has a non-trivial nullspace. The presence of this nullspace has a detrimental affect on
the unconstrained result obtained by the FNO. Contrary to solutions yielded by the PDE,
trained FNOs offer little to no control on the feasibility of the solution, which explains the
strong artifacts in Fig. 11b. As we can see from Fig. 11i, these artifacts are mainly due to
the FNO-approximation errors that dominate and grow after a few iterations. Conversely,
the errors for the constrained case remain more or less flatlined between 7% and 8%. In
contrast, using the trained NF as a learned constraint yields better recovery where the
errors are minor within the plume region and mostly live on the edges, shown in the
second row of Fig. 11.
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Fig. 12 Joint permeability inversions from both time-lapse seismic data and time-lapse well measurements. a
Inversion result using PDE solvers. b The same as a but for the FNO surrogate. c The same as a but with the
NF-based constraint. d The same as a but now for the FNO surrogate with the NF-based constraint. e–h The error
of the permeability inversions in a-d, compared to the unseen ground truth shown in Fig. 6a. i The FNO
prediction errors as a function of the number of iterations for b and d

Table 1 S/N (in dB) and SSIM values of permeability recovery

Inversion method Well measurement Time-lapse seismic Both

Unconstrained inversion with PDE solvers 9.34 dB/0.67 10.50 dB/0.73 10.70 dB / 0.73

Unconstrained inversion with FNO surrogates 9.64 dB/0.68 11.94 dB/0.72 11.98 dB/0.72

Constrained inversion with PDE solvers 12.2 dB / 0.77 14.18 dB / 0.80 15.20 dB/0.85

Constrained inversion with FNO surrogates 11.06 dB/0.74 14.16 dB/0.81 14.92 dB/0.83

Jointly inverting time-lapse seismic data and well measurements

Finally, we consider the most preferred scenario for GCS monitoring, where multiple
modalities of data are jointly inverted for the reservoir permeability [32,50]. In our exper-
iment, we consider to jointly invert time-lapse seismic data and well measurements by
minimizing the following objective function:

minimizez ‖ds−F ◦R◦Sθ∗ ◦Gw∗ (z)‖22+λ‖dw−M◦Sθ∗ ◦Gw∗ (z)‖22 subject to ‖z‖2 ≤ τ .

(10)
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This objective function includes both the time-lapse seismic data misfit from Eq. 9 and
the time-lapse well measurement misfit from Eq. 8 with a balancing term λ. While better
choices can be made, we select this λ in our numerical experiment to be 10, so that the
magnitudes of the two terms are relatively the same. The inversion results and differences
from the unseen ground truth permeability are shown in Fig. 12, where we again observe
large artifacts for the recovery when FNO surrogate is inverted without NF constraints.
This behavior is confirmed by the plot for the FNOerror curve as a function of the number
of iterations. This error finally reaches a value over 15%.
We report quantitative measures for the permeability inversions for all optimization

methods and different types of observed data in Table 1 for the signal-to-noise ratios
(S/Ns) and the structural similarity index measure (SSIM, Wang et al. [90]). To avoid
undue influence of the null space for the permeability, we only calculate the S/N and
SSIM values based on the parts of the models that are touched by CO2 plume. From
these values, following observations can be made. First, the NF-constrained permeability
inversion are superior in both S/Ns and SSIMs, which demonstrates the efficacy of the
learned constraint. Second, by virtue of this NF constraint, the results yielded by either the
PDE solver or by the FNO surrogate produce very similar S/Ns and SSIMs. This behavior
reaffirms that the trained FNO behavior is similar to the behavior yielded by PDE solver
when its inputs remain in-distribution, which is controlled by the NF constraints.

CO2 plume estimation and forecast

While end-to-end permeability inversion from time-lapse data provides novel access to
this important fluid-flow property, the real interest inmonitoringGCS lies in determining
where CO2 plumes are and will be in the foreseeable future, say of 100 and 200 days
ahead. To demonstrate the value of the proposed surrogates and of the use of time-lapse
seismic data, as opposed to time-lapse saturation data measured at the wells only, we
in Fig. 7 juxtapose CO2 predictions obtained from fluid-flow simulations based on the
inverted permeabilities in situations where either well data is available (first row), or
where time-lapse seismic data is available (second row), or where both data modalities
are available (third row). These results are achieved by first inverting for permeabilities
using FNO surrogates and NF constraints, followed by running the fluid-flow simulations
for additional time steps given the inverted permeabilities yielded by well-only (Fig. 9d),
time-lapse data (Fig. 11d), and both (Fig. 12d). From these plots, we draw the following two
conclusion. First, the predicted CO2 plumes estimated from seismic data are significantly
more accurate than those obtained by inverting time-lapse saturations measured at the
wells only. As expected, there are large errors in the regions away from the wells for the
CO2 plumes estimated from wells shown in the fourth row of Fig. 13. Second, thanks
to the NF-constraint, the CO2 predictions obtained with the computationally beneficial
surrogate approximation remain close to the ground truth CO2 plume plotted in the first
row of Fig. 7, with only minor artifacts at the edges. Third, using both seismic data and
well measurements produces CO2 plume predictions with the smallest errors, while the
uplift of well measurements on top of seismic observations is modest (comparing the
second and the third rows of Fig. 13). Finally, while the CO2 plume estimates for the past
(monitored) vintages (i.e. first three columns of the third row of Fig. 13) are accurate, the
near-future forecasts without time-lapse well or seismic data (i.e. last two columns of the
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Fig. 13 CO2 plume estimation and forecast using FNO surrogates and NF constraints to invert different
modalities of observed data. The first three columns represent past CO2 saturations at day 400, 500, and 600 of
the first 600 days of CO2 saturation monitored either through the well measurements or time-lapse data. The last
two columns include forecasts for the saturations at future days 700 and 800, where no observed data is available.
The first row shows the past and future CO2 estimates yielded by inverting well measurements only. The second
row is the same but now inverting time-lapse seismic data. The third row is the same but now jointly inverting
well measurements and time-lapse seismic data. The fourth, fifth, and sixth rows show 5× difference between
the ground truth CO2 plume (first row of Fig. 7) and the first, second, third row, respectively. The S/Ns for the first,
the second, and the third rows are 15.26 dB, 20.14 dB, 20.46 dB, respectively

third row of Fig. 13) could be less accurate. This is because the right-hand side and the
bottom of the permeability model are not touched yet by the CO2 plume during the first
600 days. As a result, the error on the permeability recovery on the right-hand side leads to
the slightly larger errors on the CO2 plume forecast. Overall, these CO2 forecasts for the
future 100 and 200 days match the general trend of the CO2 plume without any observed
data despite minor errors. A continuous monitoring system, where multiple modalities of
data are being acquired and inverted throughout theGCSproject, could allow for updating
the reservoir permeability and forecasting the CO2 plume consistently.
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Analysis of computational gains

FNOs, and deep neural surrogates in general, have the potential to be orders of magni-
tude faster than conventional PDE solvers [46], and this speed-up is generally problem-
dependent. In our numerical experiments, the PDE solver from Jutul.jl [60,61,100] cur-
rently only supports CPUs and we find an average runtime for both the forward and
gradient on the 64 × 64 model to be 10.6 s on average on an 8-core Intel(R) Xeon(R)
W-2245 CPU. The trained FNO, implemented using modules from Flux.jl [33], takes 16.4
milliseconds on average for both the forward and gradient. This means that the trained
FNO in our case provides 646× speed up compared to conventional PDE solvers. The
training of FNO takes about 4 h on an NVIDIA T1000 8GB GPU. Given these numbers,
we can calculate the break-even point—i.e., the pointwhere using FNOsurrogate becomes
cheaper in terms of the overall runtime, by the following formula:

Breakeven = Generating training set time + training time
PDE solver runtime − FNO runtime

≈ 3364. (11)

This means that after 3364 calls to the forward simulator and its gradients, the com-
putational savings gained from using the FNO surrogate evaluations during the inversion
process balances out the initial upfront costs. These upfront costs include the generation
of the training dataset and the training of the FNO. Therefore, after this break-even point
of 3364 calls, the use of the FNO surrogate becomes more cost-effective compared to
the conventional PDE solver. Because the trained FNO has the potential to generalize to
different kinds of inversion problems, and potentially also different GCS sites, 3364 calls is
justifiable in practice. However, we acknowledge that a more detailed analysis on a more
realistic 4D scale problem will be necessary to understand the potential computational
gains and tradeoffs of the proposedmethodology. For details on a high-performance com-
puting parallel implementation of FNOs, we refer to Grady et al. [25] who also conducted
a realistic performance on large-scale 4D multiphase fluid-flow problems. Even in cases
where the computational advances are perhaps challenging to justify, the use of FNOs has
the additional benefit by providing access to the gradient with respect to model parame-
ters (i.e. permeability) through automatic differentiation. This feature is important since it
is an enabler for inversion problems that involve complex PDE solvers for which gradients
are often not readily available, e.g. Gross and Mazuyer [27]. By training FNOs on input–
output pairs, “gradient-free” gradient-based inversion ismade possible in situationswhere
the simulator does not support gradients.

Discussion and conclusions
Monitoring of geological carbon storage is challenging because of excessive computational
needs and demands on data collection by drillingmonitor wells or by collecting time-lapse
seismic data. To offset the high computational costs of solving multiphase flow equations
and to improve permeability inversions from possibly multimodal time-lapse data, we
introduce the usage of trained Fourier neural operators (FNOs) that act as surrogates for
the fluid-flow simulations. We propose to do this in combination with trained normal-
izing flows (NFs), which serve as regularizers to keep the inversion and the accuracy of
the FNOs in check. Since the computational expense of FNO’s online evaluation is neg-
ligible compared to numerically expensive partial differential equation solves, FNOs only
incur upfront offline training costs. While this obviously presents a major advantage, the

https://github.com/sintefmath/Jutul.jl
https://github.com/FluxML/Flux.jl
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approximation accuracy of FNOs is, unfortunately, only guaranteed when its argument,
the permeability, is in distribution—i.e., is drawn from the same distribution as the FNO
was trained on. This creates a problem because there is, thanks to the non-trivial null
space of permeability inversion, no guarantee the model iterates remain in-distribution.
Quite the opposite, our numerical examples show that these iterates typically move out-
of-distribution during the (early) iterations. This results in large errors in the FNO and in
rather poor inversion results for the permeability.
To overcome this out-of-distribution dilemma for the model iterates during permeabil-

ity inversion with FNOs, we propose adding learned constraints, which ensure that model
iterates remain in-distribution during the inversion. We accomplish this by training a
NF on the same training set for the permeability used to train the FNO. After training,
the NF is capable of generating in-distribution samples for the permeability from ran-
dom realizations of standard Gaussian noise in the latent space. We employ this learned
ability by parameterizing the unknown permeability in the latent space, which offers
additional control on whether the model iterates remain in-distribution during the inver-
sion. After establishing that out-of-distribution permeability models can be mapped to
in-distribution models by restricting the �2-norm of their latent representation, we intro-
duce permeability inversion as a constrained optimization problem where the data misfit
is minimized subject to a constraint on the �2-norm of the latent space. Compared to
adding pretrained NFs as priors via additive penalty terms, use of constraints ensures that
model iterates remain at all times in-distribution. We show that this holds as long as the
size of constraint set does not exceed the size of the �2-norm ball of the standard normal
distribution. As a result, we arrive at a computationally efficient continuation scheme,
known as a homotopy, during which the �2-norm constraint is relaxed slowly, so the data
misfit objectives can be minimized while the model iterates remain in distribution.
By means of a series of carefully designed numerical experiments, we were able to

establish the advocacy of combining learned surrogates and constraints, yielding solutions
to permeability inversion problems that are close to solutions yielded by costly PDE-based
methods. The examples also clearly show the advantages ofworkingwith gradually relaxed
constraints where model iterates remain at all times in distribution with the additional
joint benefit of slowly building up the model while bringing down the data misfit, an
approach known to mitigate the effects of local minima [20,72,73]. Consequently, the
quality of all time-lapse inversions improved significantly without requiring information
that goes beyond having access to the training set of permeability models.
While we applied the proposed method to gradient-based iterative inversion, a similar

approach can be used for other types of inversion methods, including inference with
Markov chainMonte Carlo methods for uncertainty quantification [42].We also envisage
extensions of the proposed method to other physics-based inverse problems [28,99] and
simulation-based inference problems [17], where numerical simulations often form the
computational bottleneck.
Despite the encouraging results from the numerical experiments, the presented

approach leaves room for improvements, whichwewill leave for futurework. For instance,
the gradient with respect to the model parameters (permeability) derived from the neu-
ral surrogate is not guaranteed to be accurate—e.g. close to the gradient yielded by the
adjoint-state method. As recent work by O’Leary-Roseberry et al. [65] has shown, this
potential source of error can be addressed by training neural surrogates on the simulator’s
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gradient with respect to the model parameters, provided it is available. Unfortunately,
deriving gradients of complex high-performance computing implementations of numer-
ical PDE solvers is often extremely challenging, explaining why this information is often
not available. Because our method solely relies on gradients of the surrogate, which are
readily available through algorithmic differentiation, we only need access to numerical
PDE solvers available in legacy codes. While this approach may go at the expense of
some accuracy, this feature offers a distinct practical advantage. However, as with many
other machine learning approaches, our learned methods may also suffer from time-lapse
observations that are out-of-distribution—i.e., produced by a permeability model that
is out-of-distribution. While this is a common problem in data-driven methods, recent
developments [85] may remedy this problem by applying latent space corrections, a solu-
tion that is amenable to our approach. On the other hand, expanding the latent space’s
�2 norm ball during inversion would allow NFs to generate any out-of-distribution model
parameter. However, in that case the accuracy of the learned surrogate is not guaranteed.
For such cases, transitioning from the learned surrogate to the numerical solver during
later iterations may be advantageous and merits further study. The choice for the size of
the �2-norm ball at the beginning and at the end can also be further investigated [8].
While our paper primarily presents a proof of concept through a relatively small 2D

experiment, our inversion strategy is designed to scale to large-scale 3D problems. NFs,
with their inherentmemory efficiency due to invertibility, are already primed for extension
to 3D problems. For the learned surrogates, Grady et al. [25] showcases model-parallel
FNOs, demonstrating success in simulating 4Dmultiphase flow physics of over 2.6 billion
variables. By combining these strengths, we are optimistic scaling this inversion strategy
to 3D.
To end on a positive note and forward looking note, we argue that the presented

approach makes a strong case for the inversion of multimodal data, consisting of time-
lapse well and seismic data. While inversions from time-lapse saturation data collected
from wells are feasible and fall within the realm of reservoir engineering, their perfor-
mance, as expected, degrades away from the well. We argue that adding active-source
seismic provides essential fill-in away from the wells. As such, it did not come to our sur-
prise that joint inversion of multimodal data resulted in the best permeability estimates.
From our perspective, our successful combination of these often disjoint data modalities
holds future promise when addressing challenges that come with monitoring and control
of geological carbon storage and enhanced geothermal systems.

Abbreviations
FNO Fourier neural operator
GCS Geological carbon storage
NF Normalizing flow
PDE Partial differential equations
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