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Abstract 

Using renewable energy is increasingly prevalent as part of a global effort to safeguard 
the environment, with a reduction in CO2 being one of the primary objectives. A biogas 
plant provides an opportunity to produce green energy, but its profitability prevents 
it from being utilized more frequently. A suitable response to this economic issue 
would be flexible biogas production to exploit fluctuating energy prices. Nevertheless, 
the complex nature of the anaerobic digestion process that proceeds within the biogas 
plant and the wide range of substrates that may be utilized as the plant’s feeds make 
it challenging to achieve flexible biogas production truly. Most plant operators will 
rely on their experience and intuition to run the plant without knowing exactly 
how much biogas they will produce with the feed substrate. This work combines 
a system model estimation and feedback controller to provide an intuitive yet precise 
feedback control system. The system model estimation represents the biogas plant 
mathematically, and a total of six distinct approaches have been compared and evalu-
ated. A PT1 model most accurately approximated the step-down and the step-up 
by the time percentage method, with the Akaike Information Criterion as the primary 
evaluation criterion for selecting the best model. The downward model was controlled 
by a discrete PI controller modified with the Root Locus Method and an Anti-Windup 
scheme, and the upward model was controlled by a state space controller. The qual-
ity of the controller was evaluated in both simulation and at the actual biogas plant 
in Grub, and the controller was able to reduce the biogas production rate approaching 
the setpoint in the expected period. Furthermore, the developed feedback control 
system is effortless enough to be installed in many biogas plants.

Keywords: Model estimation, Discrete controller, Feedback control system, Flexible 
biogas production, Anaerobic digestion

Introduction
Alternatives to fossil fuels are essential for the continued sustainability of our planet. 
The country amended the (Renewable Energy Sources Act) with the EEG to provide 
the groundwork for Germany to achieve carbon neutrality more quickly. One of the key 
objectives is to reach at least 80% renewable energy coverage of gross power consump-
tion by 2030 [1, 2]. To replace fossil fuels with more ecologically friendly and sustainable 
forms of energy generation, biogas plants must be considered an alternative.
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A biogas plant is a facility where anaerobic digestion may take place. Five primary 
sections comprise a biogas plant: Substrate management area, Feeding area, Anaerobic 
digestion area, Gas storage area, and Digestate storage area [3, 4]. The substrate man-
agement area stores biogas substrates consisting of animal dung, residual garbage, and 
renewable resources like maize and grass silage.

The heart of the plant, where fermentation occurs, is the anaerobic digestion section. 
Fermentation includes the hydrolysis phase, the acidogenic phase, the acetogenic phase, 
and the methanogenic phase [5]. These are referred to as the "four phases of degrada-
tion," and methane is produced as a result. The gas storage facility will hold the pro-
duced methane or biogas until needed. Usually, the gas will be sent to a combined heat 
and power (CHP) facility, where it will be converted into electricity and heat.

Electricity and gas prices fluctuate more due to Russia’s invasion of Ukraine, and run-
ning a biogas plant without government support in Europe is becoming increasingly 
unprofitable. Thus, it is necessary to find strategies to find new feasible business models 
for biogas plants. The ability to maximize the production of sustainable energy while 
also providing financial benefits to the owners of biogas plants is one of the significant 
advantages of having flexible biogas production. The initial step in achieving this flexibil-
ity is creating a mathematical biogas plant model and a suitable feedback control system.

Literature overview
First, a system model of the biogas plant must be created. The White-Box, Grey-Box, 
and Black-Box methods can be used to construct a system model. The White-Box 
approach necessitates an understanding of physiology and fundamental system analysis. 
The ADM1 model [6], based on an anaerobic digester’s biochemical and physiochemical 
processes, is the most widely used biogas plant model from the White-Box method.

Due to its widespread adoption, the ADM1 model has undergone various modifica-
tions. For instance, it has been extended to simulate thermophilic anaerobic digestion 
of thermally pretreated waste-activated sludge [7], to simulate methane production 
and volatile fatty acid (VFA) concentrations at different ammonium concentrations [8], 
for the discontinuous feeding process [9], and for modeling municipal primary sludge 
hydrolysis [10].

The precision of this model is what gives it its popularity, but its tremendous complex-
ity comes at a cost. If exclusively differential equations express the model, the ADM1 
model has 32 dynamic concentration state variables. As a result, various studies have 
been done to simplify the ADM1 model [11–14]. Additionally, different investigations 
were conducted to calibrate the ADM1 model in a steady state to minimize the model 
complexity [15, 16].

Another significant drawback from a practical standpoint is the necessity of measuring 
several states and characteristics, mostly with laboratory equipment. This issue has been 
addressed in a variety of methods, including by using Biochemical Methane Potential 
(BMP) test data for calibrating the model [17] and using a biochemical or kinetic param-
eter estimation approach in batch experiments [18–21].

On the other hand, there have been experiments to estimate parameters using 
mathematical estimation methods, including particle swarm optimization [22], 
the aspen plus constrained simplex derivative-free algorithm [23], the combined 
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correlation-based parameter estimation with sequential single parameter estima-
tion [24], Kalman Filter [25, 26], Robust Internal Observer [27], and Sliding Mode 
Observer [28].

Despite all the advancements, finding an adequate White-Box method model is still 
challenging because it either has an excessive level of complexity or many restrictions 
on its use. Even if a completely functioning model using the White-Box method can be 
developed, it still does not consider the digester’s mixing quality, which might signifi-
cantly impact biogas output [29–31].

This indicates that to develop a 3D model of the anaerobic digestion process in the 
digester, the White-Box model must be expanded to include space–time dynamics using 
a system of partial differential equations [32, 33]. Developing a feedback control system 
for such a complicated system with space–time dynamics is challenging. This model 
is frequently constructed to establish a digital twin of the biogas plant rather than to 
design a system model for a feedback control system.

The high complexity of the system model is one of the main justifications for modeling 
a biogas plant using the Black-Box method. Using statistical data, this approach looks 
for a connection between input and output, in this example, between substrate feeding 
and biogas generation. The most frequently utilized technique for predicting biogas pro-
duction using this method is incorporating artificial intelligence (AI) [34–37]. The most 
significant drawback, nevertheless, is the volume of data required. The data collection 
required for this Black-Box method to develop a model will take ample time.

As a result, this paper proposes employing the Grey-Box method to represent the 
biogas plant system. Combining both strategies, the Grey-Box method may benefit from 
the best of both worlds. The primary concept behind this strategy is to estimate the 
parameters using the data (Black-Box method) and the model structure from the White-
Box method. This concept has been tried [38–40], but the algorithms were solely tested 
on a test plant or simulation, not an actual biogas plant. Additionally, the concept has 
only been studied for a single substrate. It is still unknown how different substrate inter-
actions would affect the results.

The feedback control may be constructed once the system model has been established. 
It is the typical procedure to either utilize the traditional way from control theories, such 
as PI-Controller [41] and PID-Controller [42], or to employ modern approaches, such 
as Model Predictive Control (MPC) [43–45]. At first glance, utilizing MPC rather than a 
traditional PI(D)-Controller should yield superior control outcomes since MPC is a mul-
tivariable discrete controller that can manage restrictions. However, according to Hau-
gen et al. [46], the performance of MPC is only significantly superior to PI-Controller in 
setpoint tracking. If the setpoint is constant, the PI-Controller competes well with the 
MPC. Given that the setpoint can typically be considered consistent for a given amount 
of time and that installing a PI-Controller in an actual biogas plant is significantly easier 
than an MPC, it’s unquestionably a substantial advantage for the classical controller.

The real-world implementation of a feedback controller is crucial in determining 
which feedback control system needs to be further investigated. Therefore, experiment-
ing with a fuzzy logic control system makes perfect sense [47, 48]. Implementing a Fuzzy 
Logic Control System is undeniably a viable option. Yet, the controller may be unstable 
since the Fuzzy Control relies on human experience, often that of the plant operator. If 
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the plant is in a situation where something has yet to occur before, fuzzy control may 
result in a non-optimal control, and the control outcome may be nonsensical.

Methods
The project’s primary objective is to develop a feedback control system for demand-
driven biogas production. The control system must be precise enough to operate the 
biogas plant and simple enough to be installed in many biogas plants and used by the 
plant manager. This section comprises biogas plant and feeding substrates, data preproc-
essing, model estimation, and feedback control design.

Methods 1: Biogas plant and feeding substrates

The system model and the feedback control system will be compared and evaluated in 
the biogas plant Grub. The Free State of Bavaria commissioned the construction of the 
biogas plant Grub, one of Germany’s most cutting-edge agricultural biogas plants. The 
plant consists of a 75 kW gas engine CHP unit, a 1206 m3 digester with concrete cover, 
and 2714 m3 fermentation residue storage [49].

Siemens Programmable Logic Controllers (PLC) control the plant semi-automatically. 
This implies that although the plant has an automated feeder, the plant operator must 
manually determine how many substrates will be supplied. The PLC also provides access 
to sensors installed in the plant for temperature, pressure, and gas flow rate.

The feeding substrates used by this plant include slurry (liquid manure), corn, cattle 
manure, sheep manure, grass silage, and fodder residues. The biogas plant Grub is often 
supplied with many substrates at once, unlike many lab-scale biogas plants employed in 
the literature. The primary issue with many studies is that the models are only created 
for inputs of a single substrate rather than for combinations of many substrates (sub-
strate mixtures).

Instead of utilizing each substrate individually as input, this study suggests using the 
substrate mixtures as one input of the system model with the Grey-Box method. For 
instance, the substrate combinations in the biogas plant Grub include slurry, corn, 
manure, grass silage, and fodder residues (Table 1). The slurry is continuously fed to the 
plant, and the remainder can be blended as follows:

The percentages are selected with the plant operator’s advice rather than randomly. The 
plant operator can define multiple substrate combinations that may be supplied to the 
plant. Different substrate combinations are required since the feeding constantly depends 
on the feeding storage. For example, in the event of adverse weather, substrate mixture 1 
(u1) will be utilized if access to substrate mixture 2 (u2) with 70% corn is not possible.

Table 1 Substrate mixtures in the biogas plant Grub

Substrate mixtures, u Corn Manure Grass silage and 
fodder residues

1 55% 33% 12%

2 70% 25% 5%

… … … …
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Methods 2: data preprocessing

Before designing the feedback control system, the biogas plant’s system model must first 
be created. As previously noted, this paper suggests using the Grey-Box method to esti-
mate the plant.

The Grey-Box method combines the White-Box method, which employs an analyti-
cal and physical description of the plant, and the Black-Box method, which relies purely 
on statistical correlation. The White-Box method necessitates the usage of the ADM1 
model, which, when implemented as a system of differential equations, has 32 dynamic 
concentration state variables. Several laboratory measurements are then required to 
measure all the necessary parameters to complete the ADM1 model. The Black-Box 
model analyzes statistical data to assess the relationship between input and output data. 
This paper uses first and second-order differential equations as the basic model. The 
concept originated from the ADM1 model, which mainly comprises first and second-
order differential equations. Then, the model’s parameters are determined based on the 
relationship between input and output data. The modeling method used in this paper is a 
Grey-Box method since the structure of the model derives from the White-Box method, 
and the model parameters are estimated using the Black-Box method without perform-
ing any laboratory measurements.

The model’s (Fig. 1) input is the rate at which the substrate mixture is fed (u) and its 
output is the rate at which biogas is produced (y) . In actuality, the production of biogas 
depends not only on the feeding of the substrate but also on the condition of the plant, 
such as temperature, the amount of dry matter present, and the ratio of volatile fatty 
acids to total alkalinity (VFA/TA ratio).

However, the PLC’s temperature control ensures that the digester’s temperature 
stays consistent. The dry matter content is approximately 10%, and the VFA/TA ratio is 
around 0.2. This was the outcome of samples obtained over time from the biogas digester 
and measured in a lab. As a result, it is possible to consider the biogas plant’s status to 
remain constant for the time being or to alter minimally. These constraints, which will be 
described in greater detail later, can be considered the system model’s operating point.

The step method from control theory is suggested in this study as a way to construct a 
mathematical connection between input (u) and output (y) . A step denotes a significant 
change, and when an input is abruptly changed, the output will show a step response. 
Based on this step response, a differential Eq. (1) can be derived that represents the out-
put trajectory.

(1)
an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = b0u+ b1

du

dt
+ · · · + bm−1

dm−1u

dtm−1
+ bm

dmu

dtm
.

Fig. 1 System model based on the Grey-Box method
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It is vital to remember that biogas creation is a latent and slow process before adopt-
ing the step method in the biogas plant. Not only does the present input affect the gas 
production, but also the historical input from the previous hours or days. As a result, 
advanced planning is required.

For instance, the biogas plant was fed with the substrate mixture 1 (Table 1) during the 
experiment with the following scenario:

• 9 t
d
 for Sunday–Wednesday: consisting of 5 t

d
 corn, 3 t

d
 manure, and 1 t

d
 Grass silage 

and fodder residues.
• 3 t

d
 for Thursday–Saturday: consisting of 1.66 t

d
 corn, 1 t

d
 manure, and 0.33 t

d
 Grass 

silage and fodder residues.

This scenario ensures that there was no significant change in the substrate feeding 
rate prior to the desired step. Subsequently, this scenario was applied at the biogas plant 
Grub, and the results of a downward step action (beginning at approximately 08:00 on 
Thursday, 29 September 2022) were as follows (Fig. 2).

The blue line on the graph’s left ordinate shows the biogas production rate, while the 
red line on the right ordinate represents daily accumulated substrate mixture feeding. 
The abscissa contains date and time information, and the experiment was carried out 
between 29 September and 1 October 2022. Nonetheless, it is difficult to determine the 
step and the step response. Preprocessing procedures must thus be conducted.

First, preprocessing will be performed on the measured biogas production rate. On 
this measurement, a high amplitude of noise is visible. This leads to discrete low-pass 
and smoothing filters [50, 51]. Low-pass filters allow signal components below their 
cut-off frequency to pass almost unattenuated while attenuating higher-frequency com-
ponents. The low-pass filter’s primary function is to reduce the most prominent peaks 
every 2/3 h. The mixing processes cause these systematic and periodic peaks. This low-
pass cut-off frequency has been determined so that the peak frequency will be 60  dB 
weakened. Subsequently, the data will be flattened using the moving average filter.

Fig. 2 Biogas production rate and substrate feeding before preprocessing
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Substrate mixture feeding will then undergo preprocessing. It can be recognizable 
in Fig. 2 that the value of this daily accumulated substrate feeding is reset at midnight. 
Therefore, the substrate feeding’s absolute value does not provide much information. 
The feeding rate is the critical information that must be extracted from this measure-
ment. The first-order discrete derivative will thus be carried out. In this case, only posi-
tive derivatives are considered. Since negative derivatives are just the outcome of the 
reset action at midnight. Due to non-causality and the potential to amplify noise, using 
a derivation on actual data is only occasionally advised. Therefore, following the deriva-
tion, further processing steps must be conducted to ensure the output is coherent and 
consistent.

To complete the preprocessing step, both data sets will be resampled and interpolated 
into one time series (Fig. 3).

The discrete derivative of the measured substrate feeding provided the substrate feed-
ing rate (red line). Here, the experiment’s step is identifiable. On 29 September, the sub-
strate feeding rate substantially decreased from around 1.19 t

3h
 to roughly 0.4 t

3h
 . The 

plant operator was in charge of the unanticipated increase on 30 September since it was 
a Friday, and preparations for the weekend were underway. This will be deemed a dis-
ruption and will be covered in greater depth in the next section.

The biogas production rate (blue line) is the response to the abrupt change in the sub-
strate feeding rate. The filtered data still contains a negligible amount of noise. Nonethe-
less, the amplitude is low and only affects the measurement inadequately.

Methods 3: model estimation

The system model will now be estimated using the filtered measurement data. Sev-
eral estimating techniques, including the PT1-approximation, time percentage 
method, turning tangent method, the sum of time constants method, PT1-estimator, 
and PT2-estimator [52–54], have been examined in this research. For clarity, only the 
PT1-approximation and the time percentage method are discussed in detail in this 
subsection.

Fig. 3 Biogas production rate and substrate feeding rate after preprocessing
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PT1‑approximation

PT1-approximation refers to using a first-order differential equation to predict the tra-
jectory of the biogas production rate Eq. (2).

Figure 4 shows the visualization of the PT1-approximation method. If a PT1-Sys-
tem is stimulated with a step function as the input function (u) , the step response 
as the output function (y) is an exponential curve as illustrated in Fig.  4. The value 
(y∞ = y(t → ∞)) is the saturation or final value of the step response and is assumed 
to be known or measurably known.

The parameters of the PT1 differential Eq.  (2) may be derived using the equations 
K =

�y
�u and T = T63% − T0 . The amplitude of the step function is referred to as �u , 

and �y denotes the difference between the final value y∞ and the initial value y0 , prior 
to the step process beginning. The parameter T0 is the starting time of the step pro-
cess, and in this case T0 = 0 . The parameter T63% indicates the time at which the step 
response reaches 63% of its final value.

The number 63% derives from the solution of the PT1 differential Eq.  (2). Assum-
ing that the input variable (u(t)) is a unit step function, then the solution will be as 
follows:

Due to the unit step function, where �u = 1 , K = �y = y∞ − y0 . In this case, it 
is assumed that y0 = 0 , consequently K = y∞ . The previous equation may then be 
changed to:

For t = T :

(2)T ·
dy(t)

dt
+ y(t) = K · u(t).

y(t) = K ·

(
1− e

−t
T

)
.

y(t) = y∞ ·

(
1− e

−t
T

)
.

Fig. 4 Visualization of the PT1-approximation method [53]
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Since it may be inferred to obtain the time constant of the PT1-system (T ) , T63% 
must thus be computed.

This theory will now be applied to the actual measurements. The output variable (y) 
reflects the preprocessed biogas production rate, while the input variable (u) indicates 
the substrate feeding rate. The parameters K  and T  can be calculated from (Fig. 3). The 
difference in biogas production rate before and after the step process is referred to as �y 
and subsequently �u for substrate feeding rate. The step process begins on 29 Septem-
ber at around 08:00 (Fig. 3). Although it is a descending step as opposed to the upward 
step in Fig. 4, the modeling principle remains the same.

It is not suggested to compute �y and �u using only the first and last elements of the 
measurement data, as the outcome might not be optimal. This is one conclusion of the pre-
liminary study, which is not displayed in this paper. Therefore, �y and �u will be determined 
by averaging the first and last p-elements from both measurement data (Algorithm 1, lines 3 
and 4). The available data P must be considered while adjusting the hyperparameter p.

After calculating K  and T  , the differential Eq.  (2) has been established. After that, it 
is possible to construct the continuous transfer function in the s-Laplace domain. This 
transfer function will be then converted into a discrete transfer function in the z-Laplace 
domain [55]. Finally, this discrete transfer function will be transformed back to the dis-
crete-time domain, resulting in a difference Eq. (3).

K  , T  and the sampling time Ts may be used to derive the parameters a and b . Pseudo 
Code (Algorithm 1) illustrates the whole PT1-approximation estimation procedure.

The algorithm’s first two inputs are the biogas production rate (yk) and substrate mix-
ture feeding rate (uk) . Although both measurements are discrete, they will be handled as 

y(t = T ) = y∞ ·

(
1− e

−T
T

)
= y∞ ·

(
1− e−1

)
= 0.63 · y∞.

(3)ỹk + a · ỹk−1 = b · uk−1
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continuous signals to determine the PT1 continuous transfer function. The outputs are 
the discrete transfer function (Gd(z)) and the estimated biogas production rate (ỹk) . The 
discrete transfer function is crucial for the feedback control design in the following sub-
section. The estimated biogas production rate (ỹk) can be compared with the measured 
biogas production rate (yk) to evaluate the estimation accuracy.

Time percentage method

The measured biogas production rate will be approximated using the second-order dif-
ferential Eq. (4) in the second approach based on the time percentage method.

An advantage of this approach is more degrees of freedom compared to the PT1-
approximation, and it is based on a second-order differential equation. However, hav-
ing more degrees of freedom does not always imply that the time percentage method 
is more suited for modeling a biogas plant than the PT1-approximation. The modeling 
quality of all estimation methods will be provided in the “Results and discussion”.

Figure 5 shows the visualization of the time percentage method. The input function (u) 
is a step function, same as the input function in Fig. 4. The step response (y) will reach 
the setpoint or final value y∞ outside of the displayed region. Because of clarity con-
cerns, it is intended not to depict the whole step response.

The parameter K  was computed in the same way as with PT1-approximation (Algo-
rithm 1, lines 3–4). The time point that occurs when the biogas production rate reaches 
72% of the intended setpoint is T72% , which is analogous to T63% from the previous tech-
nique. It is also possible to refer to the time at the first characteristic point (T72%) as t1 
and to deduce the time at the second characteristic point t2 = 0.2847 · t1 from it. The 
multiplication factor and the table (Table 2) were derived from the literature [52].

The next step is to read the biogas production rate (y2) by the time at the second charac-
teristic point (t2) . Since y∞ is accessible from the chart (Fig. 3), it is possible to determine 
the ratio y2/y∞ . This ratio can be considered as an index for the lookup table (Table 2). The 

(4)(Ta.Tb) ·
d2y(t)

dt2
+ (Ta + Tb) ·

dy(t)

dt
+ y(t) = K · u(t).

Fig. 5 Visualization of the time percentage method [52]
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row that corresponds to the calculated ratio will be selected and the values TA/t1 and TB/t1 
can be extracted. Determining the time constants TA and TB comes as the last step.

The resulting continuous transfer function

is a PT2 element that consists of 2 PT1 elements connected in series. The whole procedure 
of the time percentage method is illustrated in the following Pseudo Code (Algorithm 2).

Summary of model estimation methods

The following estimation techniques are the turning tangent method and the sum of 
time constants method. The turning point and turning tangent of the measured biogas 
production rate are crucial for the turning tangent method. The sum of time constants 
approach combines the time percentage method with the turning tangent method. The 
final techniques are PT1- and PT2-estimator, which differ significantly from the earlier 
estimating techniques. In this instance, the Least Squares (LS) approach will be applied 
to find the best fit to characterize the trajectory of the biogas production rate.

Gc(s) =
K

(TA · s + 1) · (TB · s + 1)

Table 2 Time constants for the time percentage method

y2/y∞ TA/t1 TB/t1

0.3000 0.7950 0.000875

… … …

0.1610 0.3979 0.3979
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For this work, six estimation techniques have been implemented and compared. 
However, not all of them are covered in length in this paper for clarity. The opti-
mum estimation model will then be determined by comparing the outcomes of these 
various estimation approaches. This will be explored in further detail in the section 
“Results and discussion”.

Methods 4: feedback control design

After a few examinations, two system models-one for the step upwards (second 
order differential equation) and one for the step downwards (first order differential 
equation)-are selected. The “Results and discussion” section will provide a detailed 
explanation, but the general idea is that two feedback controllers should be developed 
for each upward and downward model.

Feedback control system for downward model

This study suggests utilizing the Root Locus method and the Anti-Windup Scheme 
to develop discrete PI controllers [56] for the downward model. This subsection will 
present detailed steps to design this feedback control system.

The discrete transfer function

corresponds to a first-order differential equation model. This model Eq. (5) will be con-
trolled by a PI-Controller Eq. (6) consisting of sampling time (Ts) , proportional (KP) and 
integral (KI ) elements.

To reduce the degrees of freedom, the integral element KI =
1
Ts

 is chosen so that 
KI · Ts = 1 . The PI-controller can be simplified to

The next step is calculating the proportional element KP , for which one of the Root 
Locus construction rules is required [56].

Rules 1: Loca�on of breakaway points

The breakaway points z (different from the zeros ( ) and poles ( ) of the open loop system 

( ) = ( ) ∙ ( )) of the actual and complementary root locus follow from

∑
1

−
= ∑

1

−

(5)Gd(z) =
b

z + a
,

(6)GPI (z) = KP + KI · Ts ·
1

z − 1
.

(7)GPI (z) = KP +
1

z − 1
=

KP · z − KP + 1

z − 1
= KP ·

z + 1−KP
KP

z − 1
.
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Implementing Rules 1 to Eqs. (5) and (7) leads to the following equation

The Eq. (8) can be simplified as follows:

Equation (9) illustrates that the change in KP will cause the breakaway point to shift. 
Since it is a discrete model with a discrete controller, the optimal place for a breaka-
way point would be at the origin [57]. As a result, the KP will be computed appropri-
ately. Given that a is known, Eq. (9) can be transformed to solve for KP:

Following establishing the breakaway point, moving the closed loop poles to the ori-
gin would be the next step. This necessitates the requirement for another Root Locus 
construction rule [56].

Rules 2: Parameteriza�on of the root locus curve

The gain for a point 1 of the root locus is given by

=
∏| 1 − |

∏| 1 − |

The point z1 = 0 in this case, since the goal is to move all closed-loop poles to the 
origin. Implementing Rules 2 to Eqs. (5) and (7) results as follows:

The PI-Controller has now been configured using the Root Locus method. Before 
designing the controller, it is vital to remember that the actual biogas plant has 
manipulated variable limitations. Some maximum and minimum values constrain the 
substrate mixture feeding rate. PI-Controller use in a system with a manipulated vari-
able limit caused a Windup effect [58].

Consequently, an anti-Windup strategy must be established in the controller. Back Cal-
culation (Fig. 6) is a traditional Anti-Windup approach proposed in this study that serves 
as a foundation for Anti-Windup in discrete controllers [59, 60]. The main concept is to 
avoid winding up the integrator component by subtracting the difference between the sat-
urated and unsaturated manipulated variables. The Anti-Windup-Feedback is deactivated 
If there is no saturation. In the event of saturation, the Anti-Windup-Feedback limits 

(8)
1

z + a
+

1

z − 1
=

1

z + 1−KP
KP

.

(9)z2 − 2 ·
1− KP

KP
· z − (1− a) ·

1− KP

KP
+ a = 0.

−(1− a) ·
1− KP

KP
+ a = 0 ⇒ KP = 1− a.

KRL · b · KP =
|0+ a| · |0− 1|∣∣∣0+ 1−KP

KP

∣∣∣
⇒ KRL =

−a

(1− KP) · b
.
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the integrator state. By setting the Anti-Windup-Gain to the inverse of the I-Controller 
KAW = 1

KI
 , the whole feedback system will have the quickest step response possible [57].

Feedback control system for upward model

The primary principle for creating a feedback control system for an upward model is the same 
as for a downward model: design the controller so all closed loop poles are located in origin. 
Nevertheless, since the upward model is based on the second-order difference equation

the upward model has a higher complexity than the downward model. This complexity 
pushes the root locus method to its limits. It is still possible to design a feedback control 
system using the root locus method, but moving all of the closed loop poles to the ori-
gin is impossible, even using a PID controller. Therefore, a state space controller will be 
designed for the upward model.

As this controller requires a system model in the state space form, Eq. (7) must first 
be transformed into a system of difference equations.

This Eq.  (11) consists of a system matrix (A) , input matrix (B) , and output matrix 
(C) . The controller is a gain matrix K  such that the eigenvalues of A− B · K = 0 [56]. 
These eigenvalues represent the closed-loop poles of the feedback control system and 
should lie at the origin, as mentioned earlier.

The structure of the state space controller is similar to that of the PD-controller, and 
the absence of an I-controller could result in a steady state error. Therefore, a pre-fil-

ter is required to drive this steady-state error to zero F =

[
C · (B · K − A)−1 · B

]−1

 . 

Figure 7 shows the design concept of this controller.

(10)Gd(z) =
e · z + f

z2 + c · z + d
,

(11)

xk+1 =

[
a1 a2
a3 a4

]

︸ ︷︷ ︸
A

·xk +

[
b1
b2

]

︸ ︷︷ ︸
B

·uk

yk = [c1 c2]︸ ︷︷ ︸
C

·xk

Fig. 6 Feedback control loop using modified PI-Controller (downward model)
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Summary of feedback control design

Two controllers have been developed in this study: the modified PI controller for the 
downward model and the state space controller for the upward model. The subse-
quent algorithm (Algorithm 3) displays a Pseudo Code for both controllers.

Algorithm 3: Feedback controller
Input: ( ), , Fig. 6, Fig. 7
// Downward model = PT1-approximation

1 If Downward model

2 =
1 // Integral element of the PI-controller

3 = 1 − // Proportional element of the PI-controller

4 =
−

(1− )∙
// Root locus gain

5 =
1 // Anti-Windup

6 End
// Upward model = Time percentage method

7 If Upward model
8 Transform the system model to (11)
9 Calculate a gain matrix such that the eigenvalues of − ∙ =

10 Calculate the pre-filter: = [ ∙ ( ∙ − )
−

∙ ]
−1

11 End
// Simulation

12 Insert these parameters into the feedback control scheme Fig. 6 or Fig. 7
13 Simulate and extract substrate feeding plan ( ̂ )

Output: ̂

Results and discussion
The methods have been established, and the outcomes are revealed in this section. First, 
the result of the model estimation will be shown and discussed. Subsequently, the feed-
back control design result will be presented from the simulation and the actual biogas 
plant.

Fig. 7 Feedback control loop using state space controller (upward model)
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Results 1: model estimation

The measurements from Fig. 3 will be inputs (uk , yk) to grade the quality of all model 
estimation methods. Only the best findings are displayed as figures (Fig. 8) in this paper 
for clarity reasons, and in this experiment, the PT1-approximation (Algorithm 1) deliv-
ers the best result.

The biogas production rate (blue line, yk ), the substrate feeding rate (red line, uk ), and 
the estimated biogas production rate (yellow line, ỹk ) are the core information that can 
be extracted from the figure mentioned above. The grey dotted line depicts the biogas 
production rate at T63% , since it was the crucial parameter to be discovered when utiliz-
ing the PT1-approximation approach.

The abrupt change on 30 September represents a disturbance, as was stated in the 
previous section. The model, however, is robust enough and follows a similar trajec-
tory to the actual measurement. This is due to the disturbance occurring after T63% 
and the substrate feeding rate returning to the prior level after the disturbance. The 
computed PT1-parameters K  and T  will therefore be the same as they would have 
been in the absence of any disturbance. The trajectory of the model estimation (yellow 
line) is calculated from the input (substrate feeding rate, uk ) and the discrete transfer 
function Gd(z) . Despite not knowing that the blue line exists, this trajectory (yellow 
line) follows it closely.

Fig. 8 Downward model estimation using PT1-approximation

Table 3 Evaluation criteria for downward model estimation

Estimation method R2(%) SSE(-) P AIC

PT1-approximation 99.04 38,071.82 2 29.38

Time percentage method 98.57 46,332.56 3 31.78

Turning tangent method 98.17 60,688,32 3 32.32

Sum of time constants method 98.17 60,668.62 3 32.32

PT1-estimator 96.03 263,158.74 2 33.25

PT2-estimator 97.78 391,200.21 4 38.04
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In this paper, the Akaike Information Criterion (AIC) [61] is the primary evaluation 
criterion for selecting the best estimation method, a metric suitable for comparing 
regressions on nonlinear models. The sum of squares error (SSE)

and the number of model parameters (P) are required to calculate AIC. The following 
table (Table 3) displays the first experiment’s results, and the coefficient of determina-
tion 

(
R2

)
 may also be obtained for comparison with AIC. The R2 value will not be con-

sidered an evaluation criterion since it is not a reliable indication of the fit quality for 
nonlinear models.

This result (Table 3) supports estimating a downward model using PT1-approxima-
tion since it has the lowest AIC value and, by coincidence, the highest R2 value.

The terms downward and upward models have appeared multiple times through-
out the paper. The downward model is the estimation model from a step experiment 
to reduce the biogas production rate. Using the same analogy, the upward model is the 
estimation model from a step experiment to increase the biogas production rate. The 
distinction between these two scenarios is not required explicitly in a linear system. 
However, the linear models in this study are linearization of nonlinear systems. There-
fore, at the very least, these two cases must be tested. The following figure (Fig. 9) dis-
plays the estimation result for the upward model.

This second experiment was conducted using a similar procedure as the first. The time 
percentage method (Algorithm 2) yielded the best result (Table 4), since it has the lowest 
AIC value. Table 4 shows that the PT2-estimator has the highest R2 value. However, its SSE 
value is significantly higher than the SSE value of the time percentage method. This situa-
tion strengthens the argument for using AIC as the primary criterion rather than R2 value.

The sum of time constants method requires the biogas production rate’s turning point 
to determine the estimation model’s order. Calculating the measurement’s real turn-
ing point is problematic since the biogas production rate exhibits significant amplitude 
noise. The outcome was, therefore, inadequate.

The foundation of the time percentage method is the PT2-approximation, or sec-
ond-order differential equation, with two different time constants TA and TB . One 
main distinction between a step response from a PT1 and PT2 system, is the tangent 
at the origin. It is zero for PT2-approximation and non-zero for PT1-approximation. 
This may explain why the time percentage method is more accurate than PT1-approx-
imation for downward models.

If the substrate feeding were drastically reduced, the biogas production rate would 
almost immediately follow since the microorganisms would no longer have a food 
source and would hence produce less methane. If the substrate feeding were dramati-
cally increased, the microorganisms would first need to digest the nutrition before 
increasing methane production. Or, to put it more simply, the PT1-approximation 
is the most effective for the downward model since the step reaction of a PT1 sys-
tem operates instantly (non-zero tangent at the origin). The time percentage method 
works best for the upward model because the microorganisms need some time to 
produce more methane (zero tangent at the origin).

SSE =
∑

k

(
yk − ỹk

)2
,
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Thus far, the models have been validated using their own training data, which was 
used to determine their model’s parameters. Now, the estimation method will be vali-
dated using a new data set. During the experiment, the plant operator operated the 
biogas plant in such a scenario (Methods), allowing the step procedure to be read-
ily carried out. Outside the experiment, the plant operator often changes the feeding 
rate based on the gas demand and the available substrate feeds. Furthermore, the plant 
operator feeds the plant at will, not adhering to the substrate mixtures (Table 1). The 
validation data was obtained outside of the experiment time since the experiment time 
was limited.

The requirements for validation data are:

• The plant was fed with one of the substrate mixtures (Table 1).
• The substrate feeding rate exhibits step-function behavior.

These considerations led to selecting specific days, from 18 to 20 February, to vali-
date the upward model estimation. However, no validation data was available for the 
downward model estimation. As noted earlier, the upward model estimation was 
selected using the time percentage method, and the validation result is shown in 
Fig. 10.

Fig. 9 Upward model estimation using the time percentage method

Table 4 Evaluation criteria for upward model estimation

Estimation method R2(%) SSE(–) P AIC

PT1-approximation 95.14 13,933.44 2 27.37

Time percentage method 98.73 3159.56 3 26.41

Turning tangent method 72.44 124,340.86 3 33.75

Sum of time constants method 6.91 – 3 –

PT1-estimator 97.65 144,225.25 2 32.05

PT2-estimator 98.94 671,858.91 4 39.13
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As observed, the substrate feeding rate exhibits a step-like behavior in this situation. The 
fluctuation following the step event was modest; therefore, the feeding rate may be pre-
sumed to remain constant both before and after the step event. Fortunately, as the selected 
data occurs one week after the second experiment (Fig.  9), the plant operator continues 
employing identical substrate mixtures as in the second experiment. Since the two require-
ments were fulfilled, 18 February through 20 February was selected as the validation data.

The new substrate feeding rate (red line, uk ) is now used as the input to the system model, 
using the time percentage method. It should be noted that the model’s parameters are not 
modified. They remain unchanged as in Fig. 9. The model’s output is the estimated biogas 
production rate (yellow line, ỹk ) and the trajectory resembles the actual biogas production 
rate (blue line, yk ). Table 5 displays the evaluation values against the new 18–20 February 
data set.

The coefficient of determination 
(
R2

)
 and the mean absolute error (MAE)

are used to quantify the model’s fitting quality, with P = the total number of measure-
ments. The R2 value of 94.9% indicates the similarity of the estimated and the actual 
biogas production rates, and the mean absolute error between them is 4.01 m

3

h
 . This indi-

cates that the model can forecast the actual biogas production rate with an average inac-
curacy of 4.01 m

3

h
 . The AIC values are not displayed in Table  5 since they are used to 

compare models, and in this instance, the model has already been selected.

MAE =

∑P
k=1

∣∣yk − ỹk
∣∣

P
,

Fig. 10 Upward model estimation against a new data set
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Results 2: feedback control design

The system models have been established, and the feedback control design will now be 
evaluated. As previously noted, the downward model (PT1-approximation) is controlled by 
the PI controller using the Root Locus method and Anti-Windup Scheme (Fig. 6). The fol-
lowing figure (Fig. 11) displays the simulation result.

The setpoint is represented as the red line that symbolizes a step down from 126 m
3

h
 to 66 

m3

h
 . The blue line represents the simulated biogas production using a modified PI-controller 

and as a comparison, the simulated biogas production using a deadbeat controller is shown 
with the yellow line. The deadbeat controller is one of the most well-known controllers in 
discrete control theory and is used in this paper for comparing the selected controller with 
a standard one.

The oscillation / Windup behavior is the main drawback of employing a deadbeat con-
troller with manipulated variable limitations. This behavior indicates that the controller’s 
calculated substrate feeding schedule also oscillates. Avoiding this negative behavior at all 
costs is advisable.

The PI controller exhibits quick step responses, non-oscillating behavior, and simple 
implementation. Consequently, it is selected as the feedback controller for the down-
ward model.

The state space controller controls the upward model (Fig. 7), and the following figure 
(Fig. 12) displays the simulation result. The setpoint is a step upward from 64 m

3

h
 to 94 

m3

h
 and is represented as a red line. The green line shows the simulated biogas produc-

tion rate using the selected state space controller. For comparison, the yellow line por-
trays the result from the deadbeat controller, and the blue line is from the modified PI 
controller.

This graph makes it apparent why the state space controller was selected as the 
controller for the upward model in this study. In addition to having the quickest step 
response, it behaves in a non-oscillating and non-all-pass manner.

Having achieved such positive simulation results, the project is progressing with test-
ing the controller on the actual biogas plant. Due to the substrate feeding options availa-
ble then, the experiment could only be conducted using substrate mixture 1 (Table 1). 
The substrate mixture 1 was supplied to the plant three days before the experiment. 
During this preparation stage, the plant operator can flexibly alter the amount of sub-
strate feeding as long as the relative mixtures remain constant. After three days, the 
experiment used a downward model to decrease the biogas production rate. The initial 
biogas production rate was extracted from the PLC 

(
≈ 126

m3

h

)
 and the setpoint will be 

88m3

h
 . This value was primarily decided based on how long it would take for the biogas 

production rate to reach the desired setpoint. The background is purely practical, as the 
plant operator must supervise the entire experiment, and hence, the experiment can 
only be performed during working hours.

Table 5 Evaluation values for upward model estimation against a new data set

Estimation method R2 (%) MAE (m3/h)

Time percentage method 94.9 4.01
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The simulation was run using this setpoint and initial states of the plant, and the out-
come of the controller is a two-hourly feeding schedule (Table  6). Four schedule seg-
ments are displayed on the right side of the table. The schedule changes only between 
the segments, not within one segment. The first segment describes the initial state of the 
substrate feeding rate, and the rest of the segment explains the controller plan to reduce 
the biogas production rate to 88m3

h
.

A schedule should be created as precisely as feasible so the plant operator can oper-
ate it efficiently. Early in the morning, the plant operator would place 2318.7 kg corn, 
1391.2 kg manure, and 463.7 kg Grass silage and fodder residues (Table 6, last row) into 
a mixing tank. The plant operator would then program the automatic feeder to start 
feeding the plant with 758 kg of this mixture at 08:00, 100 kg for the following 8 h, 234 kg 
at 18:00, and 463.6 kg for the remainder of the day until 6:00 the next day. Every plant 

Fig. 11 Modified PI-controller for downward model

Fig. 12 State-space controller for upward model
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operator can follow this schedule; the sole component required is an automatic feeder, 
already present in the biogas plant Grub.

Figure  13 shows the outcome of using the schedule mentioned earlier in the biogas 
plant Grub. The segments of the feeding schedule are displayed beneath the abscissa. 
Since Fig. 13 starts earlier, at midnight (00:00), the first segment is longer than in Table 6 
(beginning at 08:00). During the first segment, the substrate feeding rate remains con-
stant from midnight until 08:00. However, it is apparent that there are minor changes 
within one segment (red line). It is primarily due to uncertainty in the mixing tank’s 
scale and the automatic feeder.

The setpoint (blue line) is an artificial line that displays the biogas production rate’s 
starting point and target value. The biogas production rate (yellow line) gradually 
decreases as it gets closer to the target value. However, since the amplitude of the 
biogas production rate can be influenced by the lowpass and smoothing filter, it could 
be a coincidence that the biogas production rate precisely matches the target value 
at the end of the experiment. Furthermore, since it appears that it has yet to reach 
the saturation stage, a more extended experiment might see a further decline in the 
biogas production rate.

The experiment was terminated on 17 March, at 06:00, since it was a Friday and the 
plant operator needed to prepare for the weekend. This experiment raises questions 
that must be addressed soon, such as why the biogas production rate started declining 
in segment 1 even though the substrate feeding rate remained constant. Additionally, 
the biogas production rate is still falling in segment 4, and an increase in the substrate 
feeding rate from segments 2–4 appears to have little effect on this trajectory.

An improvement would be possible if the initial measurement values for the biogas 
production and substrate feeding rates could be derived in real-time. The biogas 
plant’s data is only updated twice daily, and the initial values may not match the actual 
measurements. Another potential improvement is updating the system model (Fig. 8), 
which was developed six months before this experiment.

The estimation of the model should also take the state of the biogas plant into 
account. The acetic acid concentration, temperature, pH level, VFA/TA ratio, and dry 

Table 6 Two-hourly feeding schedule, the controller output

Time Corn (kg) Manure (kg) Grass silage & fodder residues (kg) Sum (kg)

08:00 421.1 252.7 84.2 758

10:00 55.6 33.3 11.1 100

12:00 55.6 33.3 11.1 100

14:00 55.6 33.3 11.1 100

16:00 55.6 33.3 11.1 100

18:00 130 78 26 234

20:00 257.6 154.5 51.5 463.6

22:00 257.6 154.5 51.5 463.6

… … … … …

1

2

3

4
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matter all have a role in the biogas plant’s state. These values might be measured in 
the laboratory or estimated using a NIR sensor and machine learning [62–65]. The 
state of the biogas plant should be considered while using the system model estima-
tion method as the plant’s operating points of linearization.

Finally, further study is required to discover a single control system that can han-
dle both upward and downward models. The state space controller could also control 
the downward model; however, the absence of an I-controller could result in a steady 
state error. Future research will determine whether a PI-controller, state space con-
troller, and Anti-Windup scheme combination can solve the issue.

Nevertheless, this experiment demonstrated the possibility of controlling a biogas 
plant using a modest feedback control system, and demand-oriented flexibilization 
could be accomplished soon.

Conclusion
The project aims to create an intuitive yet precise feedback control system for demand-
oriented biogas production utilizing actual data from the biogas plant Grub. Before pro-
ceeding to the subsequent phases, the raw data must first be preprocessed. The biogas 
production rate was filtered using lowpass and smoothing filters to reduce heavy noise 
associated with the measurement data. The PLC measures and records the biogas pro-
duction, and a discrete derivative was performed to calculate the biogas production rate. 
The derivation was subsequently examined for coherence and consistency using further 
batch processing.

This study employs the Grey-Box method to take the structure of the anaerobic diges-
tion model from the White-Box method, neglecting the assumed constant parameters so 
that the system model only has one input (substrate mixture feeding rate) and one out-
put (biogas production rate), and then uses statistical data from the Black-Box method 

Fig. 13 Experiment results in the biogas plant Grub using a modified PI-controller
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to identify a correlation between the model’s input and output. This paper differs from 
other literature, considering a mixture of different substrates as one input rather than 
one per substrate. A total of six estimation methods were calculated to determine which 
system model best described the mathematical connection between the substrate feed-
ing rate and biogas production rate.

These estimation methods were based on step inputs and step responses from control 
theory. Steps downward were best approximated with PT1-approximation and upward 
with the time percentage method, based on the second-order differential equation. The 
Akaike Information Criterion is the main factor for determining the optimal approxima-
tion method.

A state-space controller controls the upward model, whereas the downward model 
is controlled by a discrete PI controller using the Root Locus method and Anti-Windup 
Scheme. The simulation outcomes demonstrated that both controllers could determine 
the quickest step response and exhibit non-oscillatory behavior. The algorithm was tested 
in an actual biogas plant in Grub, and the initial evaluation indicated that it could decrease 
the biogas production rate to a level close to the setpoint within the estimated time.
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ADM1  Anaerobic digestion model no. 1
AI  Artificial intelligence
AIC  Akaike information criterion
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MPC  Model predictive control
PI  Proportional-integral controller
PID  Proportional-integral-derivative controller
PLC  Programmable logic controller
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