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Abstract

In the present work, we introduce a novel approach to enhance the precision of
reduced order models by exploiting a multi-fidelity perspective and DeepONets.
Reduced models provide a real-time numerical approximation by simplifying the
original model. The error introduced by the such operation is usually neglected and
sacrificed in order to reach a fast computation. We propose to couple the model
reduction to a machine learning residual learning, such that the above-mentioned error
can be learned by a neural network and inferred for new predictions. We emphasize
that the framework maximizes the exploitation of high-fidelity information, using it for
building the reduced order model and for learning the residual. In this work, we explore
the integration of proper orthogonal decomposition (POD), and gappy POD for sensors
data, with the recent DeepONet architecture. Numerical investigations for a parametric
benchmark function and a nonlinear parametric Navier-Stokes problem are presented.
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Introduction
Multi-fidelity (MF) methods emerged as a solution to deal with complex models, which
usually need a high computational budget to be solved [1]. Such a framework aims to
exploit not only the so-called high-fidelity information, but also the response of low-
fidelity models in order to increase the accuracy of the prediction. This feature plays a
fundamental role, especially for outer loop applications such as uncertainty propagation
and optimization, since it allows to achieve good accuracy without requiring evaluating
the high-fidelity model (typically expensive) at every iteration. Thus, its employment
is widespread for optimization purposes, and among all the contributions in literature,
we highlight the successful application to naval engineering problems [2–4], to multiple
fidelities modeling [5], and in the presence of uncertainty [6]. All these cases, as well as
many others, build the correlation between the different fidelities by involving Gaussian
process regression (GPR). Another approach with nonlinear autoregressive schemes is
described in [7,8], whereas in [9] a possible extension for high-dimensional parameter
spaces is investigated. Recently, an alternative to such a probabilistic framework is offered
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by neural networks, where the mapping between the low-fidelity model and the high-
fidelity one is learned by the network during the training procedure [10–12]. Among
the different types of architecture, DeepONet [13,14] has been proposed to approximate
operators and it has been successfully applied to MF problems in [15,16]. It has also
been successfully used to create a fast PDE-constrained optimization method in [17].
Another type of architecture that has been successfully applied tomulti-fidelity data is the
Bayesian neural network [18], resulting in a framework robust to noisymeasurements.We
also highlight the employment of multi-fidelity techniques for uncertainty quantification.
We cite [19,20] for a Bayesian framework capable to deal with model discrepancy using
different fidelities, whereas we refer to [21] for an analysis of the trade-off between high-
and low-fidelity data in a Monte Carlo estimation.
Reduced order modeling (ROM) [22–24] is a family of methods that aims at reducing

the computational burden of evaluating complex models. Instead of combining data from
heterogeneous models, ROM builds a simplified model, typically from some high-fidelity
information. Also, in this case, the capabilities of ROM led to its diffusion in several
industrial contexts [4,25,26], especially for optimization tasks [27–32] or inverse prob-
lems [33,34]. In the ROM community, proper orthogonal decomposition (POD) is one of
the most employed methods to build the reduced model [35–39]. Given a limited set of
high-fidelity data, POD is able to compute the reduced space of an arbitrary rank which
optimally (in a least squares sense) represents the data. In the last years, its diffusion led
to several variants including shifted POD [40,41], weighted POD [42,43], and gappy POD
[44–47]. This latter exploit a compressive sensing approach [48–50], in order to use only
a few information at certain locations of the domain (sensors) to compute the approx-
imation. A generalization of gappy POD can be found in [51], where linear stochastic
estimation allows the reconstruction of the linear map between the available data and
the system state by an l2 minimization. A novel approach where such a relation between
sensor data and the reduced state is approximated in a nonlinear way employing neural
networks can be found in [52].
In the present contribution, we explore the possibility of coupling these two method-

ologies, MF and ROM, to enhance the accuracy of the model. ROM indeed creates a
simplifiedmodel from a few high-fidelity data. Such approximation can be considered the
low-fidelitymodel, because of the projection error introduced by theROM. In this context,
MF could be adopted in order to find the correlation between the original model and the
ROM one, resulting in a more precise prediction. We can therefore exploit twice the col-
lected high-fidelity data: initially, it is used to build the reduced model, then again during
the computation of the MF relation. From this point of view, the proposed improvement
does not need any additional high-fidelity evaluations. Here we take into consideration
the POD with interpolation or the gappy POD as low-fidelity modeling techniques and
the DeepONet to learn the residual. POD with interpolation [53–56] is applied here for a
completely data-driven approach, while gappy POD is used in order to make the pipeline
applicable even for sensor data. The framework aims then to exploit the capability of POD
models for linear prediction, adding the nonlinear term through the DeepONet, which
can be viewed as a data-driven closure model. See [57] for another data-driven modelling
approach to close ROMs, while for other recentworks that propose nonlinearmodel order
reduction, we cite [58–64].
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The manuscript is organized as follows. In Sect. we present the end-to-end numerical
pipeline, with a focus on POD, gappy POD, and DeepONets. We continue in Sect. by
showing the numerical experiments, and finally we conclude with Sect. by summarizing
the results and drawing some future extensions.

Methods
This section is devoted to present the numerical methods used within the proposed
approximation scheme, together with the methods used for comparison. We describe
their integration in order to provide a global overview, then we discuss in the following
sections the algorithmic details.
Proper orthogonal decomposition (POD) is a widespread technique providing a linear

model order reduction, particularly suited to deal with parametric problems [24,65,66].
Such a representation is computationally very cheap to acquire, however, it suffers from
the linear limitations of POD that may decrease its accuracy, especially when dealing with
nonlinear problems.
We are interested in efficiently computing a parametric field u(μ) with u : P → V ,

whereP is the parametric space,V a generic normequipped vector spacewith dim(V) = n.
POD-based ROMs compute the approximation uPOD(μ) such that:

uPOD(μ) ≈ u(μ) = uPOD(μ) + r(μ), (1)

where r : P → V is the projection error introduced by the model order reduction, which
we assume here to be dependent on the parameter. In a classical POD framework, this
residual r is usually neglected, due to its marginal contribution. In the present contri-
bution, we aim instead to learn it by means of machine learning techniques, in order to
improve the accuracy of the final prediction. Artificial neural networks (ANNs) can be
used tomodel it, thanks to their general approximation capabilities, learning it by exploit-
ing the snapshots already pre-computed to build the ROM. In particular, dealing with
parametric problems, we exploit the DeepONet architecture to learn the residual. The
light computational demand to infer the DeepONet enables a nonlinear but still real-time
improvement of the PODmodel, at the cost of additional training during the offline phase.
The only input needed by the proposedmethodology is the numerical solutions database

{μi,u(μi)}Ni=1 computed by sampling the parameter space and exploiting any consolidated
discretization method (e.g. finite element or finite volume method). These snapshots are
combined in order to find the POD space, which can be used for intrusive or non-intrusive
ROM. We explore in this contribution only the non-intrusive (data-driven) approach,
while future works will study the application to POD-Galerkin contexts. We investigate
two options for the non-intrusive ROM:

• POD with radial basis functions (POD-RBF) interpolation, which enables the pre-
diction of new solutions (for new parameters) by means of the above-mentioned
interpolation technique. In this case, the ROM takes as input the actual parameter
providing as output the approximated solution.

• Gappy POD, which allows us to compute the approximated solution by providing
only some sensor data thanks to a compressing strategy.

Once the ROM is built, we can exploit it to compute the low-fidelity representation of the
original snapshots by passing the corresponding parameters (or sensor data). The high-
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Fig. 1 Scheme for the multi-fidelity POD framework. The arrows indicate the relationship between the different
methods. In the blue box the dashed arrows indicate the online phase when the input parameter is provided. In
the purple box the dotted arrows indicate the information flow if only sensor data are provided. The central red
frame emphasizes the computationally expensive offline phase

fidelity and low-fidelity databases are then used to learn the difference between them
through the DeepONet network with the final aim of generalizing such residual even to
unseen parameters and improving the final prediction. It is important to note that typically
the space V is obtained by discretizing a generic Rd space. Depending on the complexity
of the equation to solve and on the target accuracy, this kind of space can exhibit a high
number of degrees of freedom.
Approximating the error over suchahigh-dimensional spacewith aneural network leads

to twomajor issues: i) the number of the neurons in the last layer is equal to the number of
degrees of freedomof the spaceV , resulting in amodel too large to treat; ii) the parameter-
to-error relation becomes too complex to be efficiently learned. Thuswe extract the spatial
coordinates of the degrees of freedom of V . Since we know the error (the difference
between the original snapshots and the POD predictions) in any of these coordinates, we
can arrange the data in the format {(xi,μj , r(μj)i) | xi ∈ V ⊂ R

d,μj ∈ P, r(μj)i ∈ R}where
i = 1, . . . , n and j = 1, . . . , N , to isolate the spatial and parametric dependency of the
error. We can use such a dataset to learn the scalar error rnet : Rd × P → R given the
parametric and spatial coordinates. In this way, the network maintains a limited number
of output dimensions, improving the identification of spatial recurrent patterns. The loss
function which is minimized during the training procedure is then:

L = 1
N

N∑

i=1
‖rNN(μi) + uPOD(μi) − u(μi)‖2, (2)

where rNN(μ) is not the high-dimensional output of a single network evaluation, but the
array containing the result of the network inference for any spatial coordinates belonging
to the discretized space such that rNN(μ) ≡

[
rnet(x1,μ) rnet(x2,μ) . . . rnet(xn,μ)

]
, where

xi ∈ R
d for i = 1, . . . , n. In the case of gappy POD, it is important to note that the

DeepONet takes as input the sensors data and not the actual parameters. We emphasize
that the DeepONet training does not need any additional high-fidelity solutions besides
those already collected for the POD space construction.
For the prediction of solutions for new parameters, the non-intrusive POD model and

the DeepONet are finally queried, as sketched in Fig. 1. POD returns the low-fidelity
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(linear) approximation by providing the test parameter or sensor data, while the neural
network returns the nonlinear residual. In some sense, this pipeline aims to exploit the
advantages of the consolidated POD model, but at the same time improves it by adding a
nonlinear term. So it can be also seen as a closure model.

Proper orthogonal decomposition for low-fidelity modeling

POD is a consolidated technique widely used for model order reduction. In this section,
we briefly introduce how to compute the POD modes, and we devote section to present
the gappy POD variant in detail.
The method consists of the computation of the optimal reduced basis to represent the

parametric solution manifold through a linear projection. Let ui ∈ R
n be the discrete

solution corresponding to the i-th parameter, and U = [u1, . . . , uN ] ∈ R
n×N be the

snapshots matrix, whose columns are the solution vectors. We want to find a linear
approximation such that:

ui ≈
r∑

k=1
aki ψk , for r � n, and for i = 1, . . . , N, (3)

where ψi ∈ R
n are the vectors comprising the reduced basis, the so-called modes, and

ai :=
(
a1i , a

2
i , . . . , a

r
i

)
∈ R

r are the coordinates of the corresponding solution at the
reduced level, called modal coefficients or latent variables. These reduced variables are
obtained by a projection of the solution snapshots onto the modes.
The POD modes can be obtained from the matrix U in different ways: by computing
its singular value decomposition (SVD), or by decomposing its correlation matrix [67].
Moreover, all the modes have a corresponding singular value, which represents their
energetic contribution. By arranging these modes in decreasing order (with respect to the
singular values), we can express the original system with a hierarchical basis, from which
we can discard the less meaningful modes. The energy criterion based on the singular
values decay reads as

∑r
j=1 σj

∑N
j=1 σj

> ε, (4)

where σj is the j-th singular value, and ε is a tolerance, usually set ≥ 0.99. In other words,
by providing some samples of the solution manifold, POD is able to detect correlations
between the data and reduce the dimensionality of these discrete solutions. This the
approach becomes a fundamental tool for solving parametric partial differential equations
(PDEs) in a many-query context, mainly due to the high-dimensional discrete spaces
involved.
The POD space can be exploited in a Galerkin framework, by projecting the differential

operators, or in a data-driven fashion by coupling it with an interpolation (or regression)
technique. In this case, the database of reduced snapshots {μi, ai}Ni=1 is used as input to
build the mapping I : P → R

r such that I(μi) = ai for i = 1, . . . , N , which is used
for interpolating the modal coefficients for any new parameter. Depending on the chosen
regression technique, the equality could not hold in principle, and we have I(μi) ≈
ai. Finally, exploiting such a mapping, we have the possibility to query for the modal
coefficients at any test parameter belonging to the space P and finally exploit the POD
modes to map back the approximated solution in the original high-dimensional space.
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Gappy POD for sensors data

The main assumption for using gappy POD is to have access to only some sensor data.
These sensors are placed at specific locations, given by the projection matrix, or point
measurement matrix, C ∈ R

c×n, with c � n, which contains 1 at measurements location
and 0 elsewhere. Using the canonical basis vectors of Rn it takes the following form

C =
[
eγ1 eγ2 · · · eγc

]T
, (5)

for some indices γi ∈ [1, . . . , n], with i ∈ [1, . . . , c]. The measurements ũ∗ ∈ R
c of a

generic full state vector u∗ ∈ R
n are thus given by

ũ∗ = Cu∗. (6)

If we now consider a parametric framework we can collect the parameter–solution
snapshot pairs {μi, ui}Ni=1, whereμi ∈ P ⊂ R

p, and ui ∈ R
n is the corresponding full state.

We arrange the snapshots by column in U as

U =
⎡

⎢⎣
| | | |
u1 u2 . . . uN
| | | |

⎤

⎥⎦ . (7)

We take the r-rank SVD of the snapshots matrix U and compute the POD modes �r , so
we can project the full states to their low-rank representation a ∈ R

r×N :

U = ��VT ≈ �r�rV T
r , U ≈ �ra. (8)

In the classical POD setting, where we deal with the full snapshots, we would just use the
modal coefficientsmatrix a to describe the solutionmanifold. For the gappy POD, instead,
we have to consider the point measurement matrix. So, putting all together we have

Ũ ≈ (C�r)a, (9)

where Ũ is thematrix containing the sensors measurements {ũi}Ni=1 arranged by columns,
as done for the snapshots matrix. For a generic snapshot ũi we have:

ũi ≈ C
r∑

k=1
aki ψk , (10)

whereψk are the columns of�r , and aki are the modal coefficients, that is the i-th column
of a. A possible solution to find the modal coefficients is to minimize the residual in a
least-squares sense using the L2 norm over the sensors locations whichmeans considering
the following quantity [68]

∫

supp[ũi]

(
ũi −

r∑

k=1
ãki ψk

)2

. (11)

There are many ways in the literature to select the locations of the sensors: optimal
sensor locations that improve the condition number of C� [45,69], which are robust to
sensor noise, the sample maximal variance positions [70], or using information contained
in secant vectors between data points [71], for example. In this work, we are going to
use the sparse sensor placement optimization for reconstruction described in details in
[69] and implemented in PySensors [72]. The main idea is to find C that minimizes the
reconstruction error using the modes �r as in the following

C∗ = argmin
C

‖U − �r(C�r)†Ũ‖22, (12)

where the symbol † stands for the Moore-Penrose pseudoinverse.
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Fig. 2 The DeepONet scheme

DeepONet for residual learning

DeepONet [13] is a neural network architecture able to learn nonlinear operators. Refer-
ring to the original work for all the details, we emphasize its architecture composed by
two separate networks whose final outputs are multiplied to obtain the final DeepONet
outcome. The two networks, called trunk and branch, can be any available architecture
—e.g. convolutional network, graph network—. In this work we consider feedforward
networks (FFNs). The networks are trained simultaneously during the learning loop: the
input is indeed divided into two independent components, x ∈ R

Nx and y ∈ R
Ny , which

feed the two networksNNx andNNy, respectively. The outputsNNx(x), NNy(y) ∈ R
Np are

finally multiplied to approximate the operator G:

G(x)(y) ≈
p∑

i=1
[NNx(x)]i[NNy(y)]i. (13)

We underline that the choice of the two networksmust satisfy the dimensional constraint:
they have to produce outputs with the same number of components such that it is possible
to compute their inner product. The scheme in Fig. 2 graphically summarizes the structure
of the DeepONet.
In this work we adopt it to approximate the residualR(x)(μ) = u(x,μ) − uPOD(x,μ) in

a multi-fidelity approach. We can think at the mapping between the low-fidelity model
(the POD/gappy POD) and the high-fidelitymodel as a parametric operatorR(x)(μ). This
operator is numerically approximated by means of the DeepONet, using as dataset the
low- and high-fidelity databases already computed. This architecture has demonstrated a
great capability in fighting overfitting issues [13], allowing to generalize the residual even
with a limited set of information

Numerical results
In this sectionwe present the numerical results obtained by applying the proposed numer-
ical framework to a simple algebraic problem and to a Navier–Stokes problem in a 2D
domain. We are going to compare the proposed method with the POD model, the gappy
POD model, and with the pure deep learning approach by using DeepONet, aiming for
a fair comparison with two state-of-the-art techniques for (linear and nonlinear) data-
driven modeling. All the computations are performed using PyTorch [73] for the artificial
neural networks, EZyRB [74] for the PODwith interpolation and gappy POD calculations.
To solve the Navier-Stokes equations with the finite element method we use FEniCS [75].
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Algebraic parametric problem

The first test case is a simple benchmark problem inspired by [76]. The high-fidelity
parametric function f H : � × P → R is defined as

f H (x;μ) := 1
2
(μ1x − 2)2 sin(12x − 4) + sin(μ2 cos(5x)), (14)

where x ∈ � = [0, 1] ⊂ R, and μ = (μ1,μ2) ∈ P = [2, 15]× [3, 20] ⊂ R
2. The first step is

to compute the function value in some points in order to build the high-fidelity database.
We use different sampling strategies for the spatial and parametric domain:

• we collect n = 500 equispaced samples {xsi }ni=1 in �;
• we collect 36 samples using the latin hypercube sampling, plus 4 additional samples

at the corners of the domain, for a total of N = 40 points {μs
i }Ni=1 in P.

We thus compose the snapshots matrix, varying the parametric coordinates along the
columns as follows:⎡

⎢⎢⎣

f (xs1,μ
s
1) . . . f (xs1,μ

s
N )

...
. . .

...
f (xsn,μs

1) . . . f (xsn,μs
N )

⎤

⎥⎥⎦ ∈ R
n×N . (15)

Regarding the residual learning, we use the DeepONet model structured as follows:
the spatial network (branch) is composed by 2 inner layers of 30 neurons each, with
the softplus activation function, which is the smooth version of the Rectifier Linear Unit
(ReLU) [77]; the parametric network (trunk) counts 2 inner layers with 30 neurons and the
softplus function.Theoutput layer has 30neurons for bothnetworks,without applying any
additional function at this layer. The learning rate is equal to 0.005, the L2−regularization
factor is 0.0001.
We propose a comparison between the MF approach, POD, and DeepONet in terms

of accuracy on test parameters with a fixed input database of solutions. We use different
POD spaces in the comparison by selecting an increasing energetic threshold for the
modes selection, aiming to analyze the difference in the error by varying the accuracy of
the original POD model before getting improved by MFDeepONet1. We emphasize that
no preprocessing or data centering is performed on the snapshots matrix, resulting in
the first mode representing a large amount of energy. This corresponds to the minimal
tolerance (0.99) in the experiments below. Regarding the DeepONet architecture, we
employ the one described above also to learn the target function without the MF setting,
such that the network learns the actual unknown field instead of the residual. In this way,
we want to investigate the benefit of using the two methodologies (POD and DeepONet)
in a multi-fidelity fashion instead of only separately. We measure the relative error on an
equispaced grid of 20 × 20 parametric points.
PODwith energy threshold 0.99 For thePODmodel,we select an energy threshold ε = 0.99
corresponding to N = 1 mode and radial basis function (RBF) interpolation to approx-
imate the map between the parameters and the latent variables. The training for Deep-
ONet and MFDeepONet lasts 10,000 epochs. Figure 3 shows a quantitative comparison
of the three investigated techniques, presenting the relative error in the whole parametric
domain, the high-fidelity samples, and the error distribution. The last plot (bottom right
corner) graphically shows the technique which best performs in all the tested parameters.

1For the remaining of this work, withMFDeepONet we are going to refer to the proposed technique.
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Fig. 3 Comparison between POD (0.99 energy threshold), DeepONet, and multi-fidelity DeepONet. From top to
bottom, we have the relative error in the parametric domain, the location of the high-fidelity samples in the
parametric domain, the relative error distribution, and the best performers

In this experiment, the proposed methodology outperforms both POD and DeepONet.
The relative error distribution suggests that mixing the techniques helps in terms of
accuracy. Indeed, even if the error shows a greater variance, the MFDeepONet is able
on average to achieve the best precision among the tested methods, resulting the better
approach in almost all the parametric domain. We can also note that a direct correlation
between the samples location and the error distribution is not visible, confirming the
DeepONet capabilities in terms of generalization and making the proposed framework
effective also during the testing phase.
POD with energy threshold 0.999 In this experiment, we replicate the previous settings
with the exception of the new energy threshold for POD modes and a higher number of
epochs for themachine learningmodels (DeepONet andMFDeepONet).Herewe increase
it to ε = 0.999 (N = 6 modes), addressing a more accurate original model, and balancing
it with longer training.
Figure 4 illustrates the error obtained after a 20,000 epochs training. The results of

the previous experiments are confirmed, even if with a lower overall benefit. The error
distribution in the parametric space illustrates again how theMF enhancement combines
the original methods: the regions of the parametric space where the methods work better
are merged using MFDeepONet, resulting in a globally more accurate model. However,
using amore precise PODmodel (as low-fidelity) reduces the benefits of theMF approach,
even with the higher number of epochs.
Gappy POD Here we propose the same experiments as before, this time in a sensor data
scenario. Here we use 5 sensor locations and a rank truncation equal to 10. The involved
neural networks are trained in this case for 50,000 epochs.
Figure 5 summarizes the accuracy of the three tested methods, which are gappy POD,

DeepONet, andMFDeepONet.The error distributiondemonstrates that themulti-fidelity
approach performs statistically better than the othermethods. Looking at the competition
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Fig. 4 Comparison between POD (0.999 energy threshold), DeepONet, and multi-fidelity DeepONet. From top
to bottom, we have the relative error in the parametric domain, the location of the high-fidelity samples in the
parametric domain, the relative error distribution, and the best performers
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Fig. 5 Comparison between gappy POD, DeepONet, and multi-fidelity DeepONet. From top to bottom, we have
the relative error in the parametric domain, the location of the high-fidelity samples in the parametric domain,
the relative error distribution, and the best performers

between the techniques, we can also note that themulti-fidelity approach reaches the best
accuracy in almost the whole parametric domain, even if at the boundaries there is a
precision decrease. Such an issue could be mitigated by exploiting a better sampling
strategy for the high-fidelity data.
The plots in Fig. 6 provide the comparison in the spatial domain at four test parameters.

The statistical results are confirmed in these examples, with the multi-fidelity approach
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Fig. 6 Examples of prediction using gappy POD, DeepONet, and multi-fidelity DeepONet at different test
parameters. From top to bottom we have: μ = [4, 8], μ = [3, 16], μ = [5, 18], and μ = [8, 11]

that is able to predict most of the oscillations that the target function exhibits, contrarily
to the single-fidelity approaches.

Navier Stokes problem

In the second numerical experiment, we test the accuracy of the proposed method for
solving a parametric nonlinear PDE: the incompressible Navier–Stokes equation on a 2D
domain. The numerical setting is inspired by [78].
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Fig. 7 Domain description

We define the parametric vector field u : � × P → R
2 and the parametric scalar field

p : � × P → R such that:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν
u + (u · ∇)u + ∇p = 0 in�,
∇ · u = 0 in�,
u = μ

{ 1
2.25 (x1 − 2)(5 − x1), 0

}
on�in,

u = 0 on�wall,
ν ∂u

∂n − pn = 0 on�out,

(16)

where x = (x0, x1) ∈ � ⊂ R
2 andμ ∈ P = [1, 80]. The L-shape spatial domain�, together

with the boundaries, is sketched in Fig. 7. For this test case, the parametric solution is
computed numerically by means of finite element discretization. The spatial domain has
been tessellated into 1639 non-overlapping elements, and for stabilitywe apply theTaylor-
Hood P2−P1 scheme. The high-fidelity dataset is composed of 20 equispaced parametric
samples in P, arranged in the snapshots matrix U ∈ R

n×N with N = 20 and n = 1639.
The DeepONet structure for this problem is the following:

• the spatial network (branch) is composed by 3 hidden layers of 50 neurons each;
• the parameter network (trunk) is composed by 3 hidden layers of 20 neurons each.

Also in this case, the last layer of the networks has the same number of neurons, 20. The
activation function used in all the hidden layers is the Parametric ReLU (PReLU) [79],
with the learning rate equal to 0.003 and the L2−regularization factor equal to 0.001. The
learning phase lasted 2.5 × 104 epochs. The accuracy of the MF approach is compared
to the gappy POD and to the standard DeepONet, with the same architecture (single-
fidelity). The relative error is evaluated over 500 testing points, randomly sampled in the
parametric space.
POD with energy threshold 0.99 As before, we start with a relatively poor POD model,
using N = 1 mode selected by the energetic criterion. RBF is employed also here to
approximate the solution manifold at the reduced level. The number of epochs is fixed at
10,000 for the deep learning training.
Figure 8 shows the plot of the mean relative error over the spatial domain for all the

test parameters, reporting also the location of the samples in the parameter space. As
for the previous experiment, the proposed technique is able to keep a higher precision
in the entire domain, without showing a visible correlation between the location of the
high-fidelity data and the error trend, demonstrating its robustness in terms of possible
overfitting. Employing theDeepONet architecture to learn the residual (between the POD
andhigh-fidelitymodels) rather than the target function results in amore efficient learning
procedure, capable to ourperform the single-fidelity approaches in the entire parametric
space here considered.
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Fig. 8 Comparison between POD (0.99 energy threshold), DeepONet, and multi-fidelity DeepONet in terms of
relative error in the parametric domain. The vertical dotted lines indicate the location of the high-fidelity samples
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The 2 dashed vertical lines indicate the test parameters represented in Figs. 10 and 11

0 5 10 15 20
x

0

2

4

y

Velocity along x (µ = 69.12)

10110010−110−210−310−410−510−610−7

Relative error

POD DeepONet MFDeepONet

0

2

4

y

POD

0 10 20
x

0

2

4

y

0

2

4

DeepOnet

0 10 20
x

0

2

4

0

2

4

MFDeepOnet

0 10 20
x

0

2

4

−10.00
3.33
16.67
30.00
43.33
56.67
70.00

−10
6
22
38
54
70

−5
11
27
43
59
75

−10
6
22
38
54
70

0.00

0.06

0.13

0.00

4.08

8.16

0.00

0.04

0.08

Fig. 10 Representation over the spatial domain of the velocity (along x) in the Navier–Stokes testcase for
μ = 69.12. The approximation computed by POD (0.999 energy threshold), DeepONet, and multi-fidelity
DeepONet is shown at the bottom together with the relative error. The distribution of the error is summarized in
the box plot

POD with energy threshold 0.999 As for the previous test case, we repeat the same exper-
iment with a more accurate POD model. Here we use N = 3, raising the training time to
20,000 epochs.
The trend showed in the previous investigations is confirmed, as depicted in Fig. 9. The

MFDeepONet method is able to produce a more accurate prediction in all the testing
points, with no visible correlation with the training data. For a fair comparison, we also
investigated the predicted field in the only point of the parametric domain where the
MFDeepONet shows a slightly higher error with respect to the POD model (whereas the
standard DeepONet performs poorly there).
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Fig. 12 Comparison between gappy POD, DeepONet, and multi-fidelity DeepONet in terms of relative error in
the parametric domain. The vertical dotted lines indicate the location of the high-fidelity samples

Figure 10 shows the x-component of the velocity field for the parameter μ = 69.12
obtained by the three methods, with a statistical summary of the relative error. The MF
approach shows here a smaller spatial variance, even if on average performs equally to the
PODmodel. Looking instead at a different parametric coordinate (Fig. 11), the benefits of
the proposed approach become clear. The considerations regarding the variance of the
error are still valid, but the solution for μ = 39.95 shows a remarkable improvement in
the accuracy over the testing points.
Gappy POD The last numerical experiment focuses on the Navier–Stokes model, for
which sensor data are used by the gappy POD for the low-fidelity approximation. Here
we use 7 sensor locations and a rank truncation equal to 8.We trained the DeepONet and
the MFDeepONet for 50,000 epochs.
Figure 12 reports the relative test error measured in all the test points. In this case,

the standard DeepONet, is able to outperform the POD model in a large region of the
parametric domain, with a relative error that remains close to 0.01. Gappy POD is able
to reach the best precision in a few test points, but also here the MF approach is the best
compromise in terms of global accuracy, even if it is actually less precise than the POD
model for high parameter values (μ > 70).



Demo et al. AdvancedModeling and Simulation in Engineering Sciences          (2023) 10:12 Page 15 of 21

Table 1 The mean relative error computed in all the experiments

POD DeepONet MFDeepONet

10k 20k 50k 10k 20k 50k

Testcase #1 POD rank = 0.99 0.324 0.270 0.265 0.217 0.293 0.247 0.308

POD rank = 0.999 0.203 0.270 0.265 0.217 0.196 0.193 0.127

POD rank = 0.9999 0.098 0.270 0.265 0.217 0.093 0.104 0.178

Testcase #2 POD rank = 0.99 0.105 0.116 0.068 0.072 0.030 0.022 0.030

POD rank = 0.999 0.033 0.116 0.068 0.072 0.025 0.023 0.009

POD rank = 0.9999 0.011 0.116 0.068 0.072 0.011 0.009 0.009

Gappy POD DeepONet MFDeepONet

10k 20k 50k 10k 20k 50k

Testcase #1 0.260 0.419 0.380 0.278 0.218 0.217 0.197

Testcase #2 0.135 0.035 0.033 0.017 0.029 0.010 0.009

In bold the best results for each row

Summary discussion

This section is devoted to a summary discussion of the results obtained in the numerical
investigations. For a fair comparison, we computed the mean relative test error2 for each
method, reporting the accuracy for different neural networks training times. In addition
to the previous tests, we show in Table 1 the results obtained by employing a POD space
whose modes are selected with an energetic threshold of ε = 0.9999. The error charts for
the missing cases, as well as some graphical representations of the parametric solutions,
are reported in Appendix 4. The latter experiment aims to analyze the final accuracy when
the low-fidelity POD is even more precise: the Mf approach is able to reach the best mean
relative error, but its effectiveness is marginal, confirming the trend already defined in the
previous tests. The combination of the PODmodel and DeepONet in the cascade fashion
is able to reach the best accuracy in almost all the cases, but its improvement becomes
marginal when the POD has good accuracy. Learning the residual however does not seem
to affect the final outcome in a pejorative way, provided that the DeepONet is trained
for a proper number of epochs. This is for sure a critical issue inherited by deep learning
in general: we can indeed see that a longer training step does not always ensure better
accuracy, producing instead over-fitting. On the practical side, the optimal settings of the
network—e.g. training epochs, number of layers, type of activation function—need to be
calibratedwith a trial and error procedure or usingmore sophisticated approaches such as
grid search. This calibration is out of the scope of this investigation where we want to for-
malize the novel framework, but surely sensitivity analysis regarding the hyper-parameters
will be explored in future works. The generalization of the DeepONet, assisted also by the
L2-regularization imposed during the optimization, is able to improve accuracy over the
entire parametric space, without showing a visible correlation between the location of the
high-fidelity snapshots and the relative error spatial distribution.
To conclude, we highlight that the numerical experiments demonstrate a great improve-

ment when the original PODmodel lacks accuracy, resulting in a great tool to treat prob-
lems where POD is not able to capture all the fluid characteristics, due to the complexity
of the mathematical model or to the limited number of high-fidelity snapshots.

2We recall the test error is computed over a 20× 20 regular grid for the algebraic problem, and at 460 random sample
for the Navier–Stokes problem.
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Conclusions and future perspectives
In this work, we introduced a novel approach to enhance POD-based reduced order mod-
els thanks to a residual learning procedure by DeepONet. It operates by building from
a limited set of data an initial low-fidelity approximation exploiting established reduced
order modeling techniques. Then it learns the difference between this low-fidelity repre-
sentationand theoriginalmodel through the artificial neural networks, thatwill be inferred
to predict the solution at unseen parameters. We emphasize that such an enhancement
neither needs any additional evaluation of the original model nor the knowledge of the
high-fidelity model, resulting in a generic data-driven improvement at a fixed computa-
tional budget. This framework has demonstrated its effectiveness in two different test-
cases: a univariate parametric function and a Navier–Stokes problem on a 2-dimensional
domain, showing a higher precision in both experiments with respect to the use of single-
fidelities. We highlight that in these experiments the number of considered POD modes
is voluntarily kept small, simulating a POD model with poor accuracy.
The present work illustrates the pipeline for POD and gappy POD for the construc-

tion of the low-fidelity model and the DeepONet architecture for residual learning. Due
to its modularity, the framework is general, admitting in principle to replace the low-
fidelity models with different ones. Possible future extensions should investigate adaptive
samplings and sensor placement exploiting the proposed numerical framework.

Appendix
This section presents additional plots for the POD energy threshold equal to 0.9999 case,
for the algebraic function (Fig. 13) and for the parametric Navier-Stokes problem (Figs. 14
and 15).
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Fig. 14 Comparison between POD (0.9999 energy threshold), DeepONet, and multi-fidelity DeepONet. From
top to bottom we have the relative error in the parametric domain, the location of the high-fidelity samples in the
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Fig. 15 Comparison between POD (0.9999 energy threshold), DeepONet, and multi-fidelity DeepONet in terms
of relative error in the parametric domain. The vertical dotted lines indicate the location of the high-fidelity
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