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Abstract

Calibration of complex system models with a large number of parameters using
standard optimization methods is often extremely time-consuming and not fully
automated due to the reliance on all-inclusive expert knowledge. We propose a
sensitivity-guided iterative parameter identification and data generation algorithm. The
sensitivity analysis replaces manual intervention, the parameter identification is realized
by BayesFlow allowing for uncertainty quantification, and the data generation with the
physics-enhanced latent space variational autoencoder (PELS-VAE) between two
iteration steps enables inference of weakly identifiable parameters. A complete
calibration experiment was conducted on a thermal model of an automotive cabin. The
average relative error rate over all parameter estimates of 1.62% and the mean absolute
error of calibrated model outputs of 0.108 ◦C validate the feasibility and effectiveness of
the method. Moreover, the entire procedure accelerates up to 1 day, whereas the
classical calibration method takes more than 1 week.
Keywords: Sensitivity analysis, Weak identification, BayesFlow, PELS-VAE

Introduction
By standard techniques, a model is calibrated by adjusting selected parameters to obtain
a best fit between the model response and the measurement [1]. For non-linear models
with possibly algebraic loops and weakly identifiable parameters, the adjustment can
only be achieved through an iterative and repeated approach. Therefore, the approach
is time-consuming when applied to a complex model. Mostly, only a local optimum can
be reached. Besides, due to the difficulty in uncertainty quantification in this procedure,
it is difficult to determine whether parameter estimates are reliable. In addition, for the
selection of parameters of interest, diverse expert knowledge and experience are required,
including how each parameter could possibly affect dynamic or static characteristics of
the model and the dependency between the parameters.
To overcome the above-mentioned shortcomings of the classical calibration method

in terms of time-consumption, demand of manual intervention and reliability, Bayesian
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inferencemethodswith deep learning can be applied to estimate the density of parameters
from observations and prior knowledge. Bymeans of this, the density estimate is provided
with a confidence interval by its nature, which indicates the trustworthiness of parameter
identification results. An ensemble learning method integrating stochastic components
into neural networks, the Bayesian neural network (BNN) [2] has been proved to ful-
fill high accuracy and more robustness in out-of-distribution samples [3]. Furthermore,
BNNs enable better identification of stochastic dynamical systems [4]. Another expres-
sive probabilistic modeling and inference method, normalizing flow (NF) [5] has been
deeply explored and widely applied, as summarized in [6,7]. NFs model a complex target
density from a base density (e.g., Gaussian), which is realized by the invertible neural net-
works (INNs), equipped with structural invertibility and tractable Jacobian computation
[8]. In particular, the conditional invertible neural networks (cINNs) were developed for
mapping observations of a physical system to unknown input distribution parameters.
Even with deep learning methods, identification of numerous parameters from the

observed data of a complex model could be challenging, especially in the presence of
weakly identifiable parameters. Primarily, a large dataset is required to train a deep learn-
ing model to map the relationship between the observed data and the large number of
parameters. Furthermore, theweakly identifiable parameters usually have inadequate sen-
sitivities thus negligible contribution to the gradient, resulting in an ill-posed problem.
Theoretically, this can be solved by training the deep learning model on a large enough
dataset. However, in practice, both data generation and training are burdensome due to
the complexity of the physical model and the resulting deep learning model.
Getting inspiration from the iterative calibration approach, it is also advantageous to sort

the parameters in advance under the guidance of the parameter identifiability. Moreover,
investigation of parameter identifiability supports a reasonable selection of parameters of
interest without the preliminary comprehension of the model. This is commonly accom-
plished through local or global sensitivity analysis. To specify, parameter identifiability
refers to the ability to accurately and uniquely estimate the parameters in a physical
model based on the available data, whereas parameter sensitivity measures the influence
of changes in parameters on outputs of a physical model. For a problem with large varia-
tion in parameter ranges, it’s more important to pay attention to global sensitivity [9,10];
while in order to focus on how the variation in a parameter affects the response of a
dynamic model, local sensitivity is supposed to be analyzed [11,12]. Sometimes, both
local and global sensitivity analyses are necessary to clarify the importance of parameters
thoroughly [13,14].
In this paper, we put forward amethod combining sensitivity analysis and deep learning

based Bayesian inference for parameter identification, namely sensitivity-guided iterative
parameter identification and data generation. This method is built up with three funda-
mental pillars. Firstly, the selection of identifiable parameters is under the guidance of
sensitivity analysis in the use of first-order Sobol indices [15]. Secondly, BayesFlow [16]
is employed to identify parameters. Thirdly, for the purpose of fast generation of trans-
formed time series from the still unidentified variables, the physics-enhanced latent space
variational autoencoder (PELS-VAE) [17] is applied andmodified into a Teacher–Student
Architecture [18]. Especially, the iterative approach avoids time-consuming preparation
of a large training set and further facilitates accurate and reliable identification of param-
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eters from the dynamic observations of highly complex physical models step by step, even
those which are weakly identifiable.

Preliminaries
In the following, the three parts of the proposed method are summarized. Parameter
identifiability in “Parameter identifiability” section assesses the ability of accurately and
uniquely estimating parameters from the observations. The identifiability is distinguished
by sensitivity analysis in “Sensitivity analysis” section. Based on this, the strongly iden-
tifiable parameters can be directly learned by a (NFs)-based Bayesian inference method,
namely BayesFlow [16] in “BayesFlow” section; while the weakly identifiable parameters
can only be obtained once the strongly identifiable parameters have been determined.
Between the inference steps, a data update is required, in which the already identified
parameters are set to estimated values, and the observations are transformed as well.
This transformation is not calculated through the original physical model simulation,
but rather facilitated by a deep generative model, namely Physics-Enhanced Latent Space
Variational Autoencoder [17] in “Physics-enhanced latent space variational autoencoder”
section.

Parameter identifiability

From the perspective of frequentist statistics, parameter identifiability means that a dis-
tinct parameter θi yields a distinct probability distribution Pθi of the observed data x
[19]. For a partially observable physical system, the observed data is x(θ, t) with given
θ = [θ1, . . . , θD]T . In general, parameter identifiability is divided into structural identifi-
ability, which is related to the model structure but not the observed data, and practical
identifiability, which is dependent on the amount and quality of themeasured data as well
[20,21].
Structural identifiability refers to the unique parameterisation for any given model out-

put, whereas practical identifiability can be defined as the ability to estimate a given set of
parameterswith an adequate accuracy [22]. A parameter θi is structurally non-identifiable,
when the observation x does not change if the parameter value alters. This implies the
existence of a manifold in parameter space upon which the observation x is unchanged.
Re-parameterization of such models has been proved to be efficient and effective to solve
the problem by Joubert et al. [23], through substitution of all unidentifiable parameters
with new parameters.
A structurally identifiable parameter may still be practically non-identifiable, when the

estimate has large confidence intervals with current available measurements. On the one
hand, this can result from the insufficient amount of data or low signal-noise-ratio of the
measurements, which could be resolved by increasing the amount of data and improving
signal processing methods. On the other hand, practical non-identifiability occurs when a
parameter is so insensitive in comparison to others that its impact is negligible. Therefore,
it’s necessary to analyze sensitivity in order to extract information aboutwhich parameters
have the largest impact on the output.
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Sensitivity analysis

In terms of range of variation, sensitivity is categorized as local and global. Local sensitivity
is analyzed to determine the effect of small parameter variations on model output, while
global sensitivity is applied to evaluate the influence of parameters within their possible
value ranges on the model output. The first-order local sensitivity [24] of parameter θi
from the observed data θ is calculated by

Slocal,i(t) = ∂x(θ, t)
∂θi

. (1)

Different from the derivative-based local sensitivity analysis, the global sensitivity anal-
ysis is usually based on variance. A commonly used method is Sobol indices [15]. For a
parameter θi, the first-order Sobol indices are calculated by

Sglobal,i(x(t)) = Vi
V[x(θ, t)] , (2a)

Vi =
∫

E
2
i [x(θi, t)]dθi. (2b)

Sglobal,i indicates the contribution of variance due to the parameter θi towards the total
variance in the observations.
Typically, the statistical metrics including the partial variance Vi and variance V is

obtained byQuasiMonte Carlo Sampling [25,26], which is faster than the standardMonte
Carlo method through variance reduction techniques.

BayesFlow

BayesFlow [16] is a Bayesian inference method based on cINNs [8,27], aiming to learn a
global estimator for the probabilistic mapping from observed data x to underlying model
parameters θ. The invertibility of (cINNs) is facilitated by (NFs) [5], whereby a simple
probability density is implicitly transformed into a complex one by applying a sequence of
invertible structures. In this way, the network is used in both directions with the help of
a latent variable zθ with a simple density. In the forward process, it is trained to map the
parameter θ to zθ-space under the condition of x, whereas in the inverse process, under
the same condition x, θ can be inferred from the zθ-space.
Bayesian inference [28] decides which estimate of posterior p(θ|x) best reproduces the

observed data x from the family of likelihoods p(x|θ) with given prior p(θ). With Bayes’s
rule, the posterior is expressed by

p(θ|x) = p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

. (3)

The posterior distribution provides the estimates of parameterŝθ, taken as themean value,
as well as confidence intervals indicating the reliability of the estimate.
In order to avoid information loss through restrictive hand-crafted summary statistics

of x, BayesFlow applies a separate summary network to extract information from x, and
a cINN to learn the transformation between the distributions of θ and the latent variable
zθ . The architecture of BayesFlow is presented in Fig. 1.
The summary network and cINN are optimized jointly via back-propagation by min-

imizing the Kullback–Leibler divergence [29] between the true and the model induced
posterior of θ. Then the network parameters are optimized by

φ̂, ψ̂ = argmin
φ,ψ

Ep(x)[KL(p(θ|x) ‖ pφ,ψ(θ|x))]. (4)
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Fig. 1 BayesFlow architecture. ψ, φ denote the network parameters of the summary network and the cINN,
respectively. The blue arrows stand for the forward training process; the red arrows stand for the inverse inference
process. In the inverse process, only the cINN part is inverted, and the summary network part remains the same as
that in the forward process

The summarynetworkhψ is supposed tobe adjusted to theobserveddatax. For example,
a long short-termmemory (LSTM) layer [30] is a typical architecture for time-series data.
In this way, the compressed data x̃ with informative statistics is passed through the cINN,
and taken as the condition while inducing the posterior of physical parameters θ, namely,
pφ(θ|̃x = hψ(x)).
The cINN, assumed as an invertible function fφ, is built up with a chain of conditional

affine coupling blocks [27]. This structure ensures the neural network to be invertible,
bijective and to have easily calculable Jacobian determinant |detJ fφ | [8]. In the forward
direction, the input is the physical parameters θ ∈ R

D, while the output is the latent
variable zθ , which by default follows a standard normal distribution p(zθ) = ND(zθ|0, I).
Via the change-of-variables formula of probability, the posterior is reformulated as

pφ(θ|̃x) = p(zθ)|detJ fφ |, (5a)

zθ = fφ(θ; x̃). (5b)

Approximating the expectations by the Monte Carlo estimation for a batch ofM samples
(x(m), θ(m)), m = 1, . . . ,M from the dataset, Eq. (4) becomes

φ̂, ψ̂ = argmin
φ,ψ

1
M

M∑
m=1

(

∥∥∥fφ(θ(m); hψ(x(m)))
∥∥∥2

2
− log |detJ fφ |). (6)

After the BayesFlow network is well trained, in the inverse direction, a single parameter
estimate for the test observation x(k)(t) can be derived by sampling the latent variable zθ

for one timewith the optimized network parameters φ̂, ψ̂.When zθ is sampled forB times,
the posterior distribution pφ̂,ψ̂(θ

(k)|x(k)(t)) can be obtained. The estimates of parameters
are taken as the mean of the implicit posteriors:

θ̂ = 1
B

B∑
b=1

f −1
φ̂

(zθ
(b); hψ̂(x)). (7)

Physics-enhanced latent space variational autoencoder

A well-known generative model, the variational autoencoder (VAE) [31] constructs a
probabilistic representation of the observations x, by fitting a recognitionmodel as proba-
bilistic encoderqζ(zx|x) to the intractable posterior as decoderpξ(x|zx). The latent variable
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Fig. 2 PELS-VAE with regression model in Teacher–Student Architecture. ζ, ξ, ϕ denote the network parameters
of the encoder, decoder and the regression model respectively. The linear layer stands for: y = wT x + b. The
components “layers” consist of a series of linear layers with each linear layer following a ReLU activation function.
In the training process, the switch connects the encoder and the decoder. And the outputs of regression model,
i.e., μϕ , σϕ are compared with the outputs of the encoder μ, σ , respectively. After the three parts are well trained,
the switch turns to the output of the regression model

zx is a lower-dimensional compression of x, which is re-parameterized by the mean μ,
variance σ2 returning from the encoder, and an auxiliary noise variable ε ∼ N (0, I),

zx = μ + σ � ε. (8)

The network parameters ξ and ζ are optimized bymaximizing the variational lower bound
L,
ξ̂, ζ̂ = argmax

ξ,ζ
L(ζ, ξ; x) = argmax

ξ,ζ
Eqζ (zx |x)[log pξ(x|zx)] − βKL(qζ(zx|x) ‖ pξ(zx)), (9)

where the hyperparameter β weights the importance of the KL-divergence term, thus
playing a role in disentangling the latent representation [32].
In order to model the observations x and the latent variable zx conditioned on the

physical parameters θ, θ is introduced into both the encoder and decoder by Martı́nez-
Palomera et al. [17] as Physics-Enhanced Latent Space VAE (PELS-VAE), illustrated in
Fig. 2. In addition, a separate regression model is required to project the physical param-
eters θ to the latent variable zx bypassing the observations x. In the original paper [17],
the regression model is individually designed and trained after the VAE is well trained.
To save the costs of training and network design, the regression model in our method is
designed the same as the encoderwithout the LSTM layer(s), and trainedwith the encoder
simultaneously. In this way, the encoder (as a “teacher”) and the regression model (as a
“student”) in parallel build up a Teacher–Student Architecture, which is widely used in
semi-supervised learning [18,33]. The difference between the outputs of these two parts
is supposed to be minimized. As a result, the overall network is optimized by

ξ̂, ζ̂, ϕ̂ = argmin
ξ,ζ,ϕ

− L(ζ, ξ; x, θ) + MSE(μ,μϕ) + MSE(σ, σϕ), (10)

where μϕ and σϕ are obtained from the regression model, while L(ζ, ξ; x, θ) is the lower
bound from Eq. (9) with θ as an additional variable.
After the PELS-VAE model is well trained, the regression-decoder part f̂ϕ,̂ξ is used to

generate new time series with physical parameters that are comparable to those used in
the training set. In other words, the regression model f̂ϕ is able to represent and thus
replace the encoder f̂ζ , as expressed in the equation,

f̂ϕ(θ) = zx = f̂ζ(x, θ). (11)
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Methods
Due to the different identifiability of each parameter, we propose the sensitivity-guided
iterative parameter identification and data generation method. In each step, the strongly
identifiable parameters are preliminarily selected through a sensitivity analysis. Further,
these parameters are trained and validated by a BayesFlow model. If the model does
not show a tendency to learn all parameters simultaneously during the initial training
epochs, only the potentially well-estimated parameters should be selected. We call this
process trial inference. Then, the confirmed parameters are learned and estimated by
another BayesFlow model. After the strongly identifiable parameters are inferred, the
weakly identifiable ones can only become strongly identifiable when the variance of the
determined parameters is eliminated from the model observations. For this reason, we
apply a generative model, PELS-VAE, to generate a new training set for the inference
model BayesFlow. In both trial and formal inference, the corresponding training data is
generated by a previously well-trained PELS-VAEmodel from the remaining unidentified
parameters. The advantages of this method are threefold: first, the number of parameters
to identify in each step is reduced, and thus the size of the required training set and
complexity of the corresponding networks also scale down; second, with the sensitivity
analysis hypothesizing the identifiability of parameters, the inference model becomes
well-conditioned by ignoring the weakly identifiable parameters; third, as the strongly
identifiable parameters in the previous step(s) are fixed, the initially weakly identifiable
ones can make distinguishable contributions to the variance of the model response, and
thus their identifiability is improved in the present step.
In the following, the overall algorithm is at first introduced in “Sensitivity-guided iter-

ative parameter identification and data generation” section, then the parameter selec-
tion algorithm and the iterative workflow with fixed parameter selection are separately
explained in “Selection of practically identifiable parameters by global sensitivity analysis”
and “Iterative parameter identification and data generation” sections. It is worth men-
tioning that, in the following, θ stands for the variable or the data set of parameters, like
θ(o) for the test sample, and θ̂

(o) for the estimate . In addition, for the convenience of set
algebra, � serves as an abstract set of parameters.

Sensitivity-guided iterative parameter identification and data generation

Taking the advantages of sensitivity analysis, which provides guidance on parameter selec-
tion, and thus obviously reduces the dimension of an inference model, the decision of
identification order can be integrated into the iterative workflow of parameter identi-
fication and data generation. The overall algorithm is encapsulated in Algorithm 3 in
Appendix A.1 and visualized in Fig. 3.
Sensitivity analysis and parameter identification are achieved synchronously in a divide-

and-conquer paradigm. Nevertheless, the selected parameters by sensitivity analysis are
not guaranteed to bewell-identified. To compensate for the inconsistency, a trial inference
procedure is inserted after selection by sensitivity according to Algorithm 1 in “Selection
of practically identifiable parameters by global sensitivity analysis” section before the for-
mal inference. During the trial inference, the same training set is applied as the formal
inference, which is generated by a well-trained PELS-VAE model according to Algo-
rithm 2 in “Iterative parameter identification and data generation” section. Through the
trial procedure, the well-converged parameters are taken as actually identifiable ones �n.
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Fig. 3 Sensitivity-guided iterative parameter identification and data generation. In the loop step n, θ̃n stands for
the set of possibly identifiable parameters, �n for the the set of filtered truly identifiable parameters, and θ̂ [�n]
for the estimates of the filtered parameter with the subset �n . PELS-VAE stands for a well-trained model with
network parameters ϕ̂, ξ̂. In each step n, first, the potentially identifiable parameters �̃n are selected with
sensitivity analysis according to Algorithm 1 in “Selection of practically identifiable parameters by global
sensitivity analysis” section. Second, except step 1, the training and test samples, which are denoted as
x|� \ (�1 ∪ · · · ∪ �n−1), are transformed by the well-trained PELS-VAE model. Third, �̃n is filtered by trial
inference. At last, the parameter set �n can be identified by training a BayesFlow model. Further details are
shown in Algorithm 2 in “Iterative parameter identification and data generation” section

Subsequently, �n is supposed to be learned and estimated by another BayesFlow model.
Assuming all parameters are practically identifiable, the procedure stops when there is no
remaining unidentified parameters.

Selection of practically identifiable parameters by global sensitivity analysis

An effective method to calculate global Sobol indices is Saltelli Sampling [34], a quasi-
random samplingmethodwith low-discrepancy sequences. Compared with random sam-
pling, points are chosen from a high-dimensional space in such a way that they fill the
space more evenly. For each parameter, the quasi-random sampling is performed for
S times. Then, with the output calculated by a simulation model, the first-order Sobol
indices at each time step Sglobal,i(x(t)) by Eq. (2) need to be analyzed. For example, when
Sglobal,i(x(t)) keeps unchanged at zero for all time steps, this parameter could be struc-
turally non-identifiable and thus should be excluded from further considerations from
the perspective of practical identification. Moreover, in order to representatively com-
pare the sensitivity among all parameters, for each parameter θi, Sglobal,i(x(t)) is expected
to be averaged over all time steps and all output channels as follows,

Sglobal,i = Ex(t)[Sglobal,i(x(t))]. (12)

The boundary of determination whether a parameter is strongly or weakly identifi-
able depends on the model and its observations. Furthermore, with varying amounts of
unidentified parameters, the sensitivity behavior of the parameters alters consequently
in an unknown manner. Therefore, we develop Algorithm 1 for selecting possibly prac-
tically identifiable parameters with first-order Sobol indices without any insight into the
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physical model. Instead, the selection is based on the comparison of sensitivity among
the parameters. At first, the list of average first-order Sobol indices should be sorted in
descending order, denoted as [S]↓. The threshold K is considered to be the maximally
tolerable drop ratio from the larger Sobol index [S]↓[i−1] to the next smaller Sobol index
[S]↓[i]. Assuming that at least two parameters are chosen, then (1) the ratio between 1
(the theoretical maximum of sensitivity) and the practically maximal sensitivity of these
parameters; (2) the ratio between the maximal and the second maximal sensitivity are
tolerable. The ratio is defined in Eq. (13). The lager value between r(0, 1) and r(1, 2) is
then chosen as the threshold K for the list [S]↓, i.e., K = max(r(0, 1), r(1, 2)).

r(i − 1, i) = log10

(
[S]↓[i − 1]
[S]↓[i]

)
,∀i > 1; r(0, 1) = log10

(
1

[S]↓[1]

)
. (13)

The list [S]↓ is looped through, until the drop from the former one to the latter one exceeds
the threshold, namely, r(i − 1, i) > K .
Algorithm 1: Selection of practically identifiable parameters by global sensitivity anal-
ysis with first-order Sobol indices
Input:
(1) value range of each parameter [θi,L, θi,U ] and the corresponding default value
θi,0,∀i ∈ 1, . . . , D;
(2) identified parameters set �done, unidentified parameters set �todo = � \ �done;
(3) the physical model for generating observations from parameters;
(4) S as the sampling size of each parameter in Saltelli sampling procedure;
(5) minimal average first-order Sobol indices δ.

1 Perform Saltelli’s sampling for S times ∀θi ∈ �todo, |�todo|, θi ∼ U (θi,L, θi,U ), with
∀θj ∈ �done, θj = θj,0.

2 Calculate each simulation output with each parameter set.
3 Calculate the average first-order Sobol indices Sglobal,i,∀θi ∈ �todo with Eq. (2)
and Eq. (12).

4 Sort the average first-order Sobol indices in descending order, obtain the list of sorted
average first-order Sobol indices [S]↓, and the corresponding parameter indices
arg([S]↓).

5 Select the parameters according to average first-order Sobol indices:
6 if length([S]↓) ≤ 2 then
7 �̃ = {�todo[arg([S]↓)]}
8 else
9 K = max(r(0, 1), r(1, 2)) = max(log10 1

[S]↓[1]
, log10

[S]↓[1]
[S]↓[2]

)

10 �̃ = {�todo[arg([S]↓)[1]],�todo[arg([S]↓)[2]]}
11 for i = 3, . . . , length([S]↓) do
12 if [S]↓[i] > δ then
13 if r(i − 1, i) > K then
14 break

15 else
16 add �todo[arg([S]↓)[i]] → �̃

Output: the possibly identifiable parameters, �̃.
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Afterwards, the sorted parameters before the unacceptable drop in sensitivity are col-
lected as strongly identifiable parameters. However, the sensitivity analysis cannot ensure
that the selected parameters are able to be well-estimated in practice. On the one hand,
well-posed inverse problems have to satisfy the three conditions: existence, uniqueness,
and stability of solutions. Satisfaction of all the three conditions is defined as estimability
[35]. But identifiability corresponds mainly to the question of uniqueness. On the other
hand, the global sensitivity, which only considers the contribution of each parameter to
the total variance, cannot characterize the dynamics of the model thoroughly. Hence, an
inference model is necessary to further examine the identification of these parameters.

Iterative parameter identification and data generation

Decoupling the sensitivity analysis from Algorithm 3, the workflow of iterative param-
eter identification with BayesFlow and data generation with pre-trained PELS-VAE is
described in Algorithm 2. The selected parameters of interest in all steps are already cat-
egorized by decreasing sensitivity and denoted as �1,�2, . . . ,�N . This algorithm can be
executed independent of Algorithm 1, when the order of parameter identification is fixed.
The PELS-VAE should be well-trained with the original training set previously.
Algorithm 2: Iterative parameter identification and data generation
Input:
(1) beforehand selected parameter sets �1,�2, . . . ,�N , with� = �1 ∪�2 ∪ · · · ∪�N ;
(2) trained PELS-VAE model ϕ̂, ξ̂ with training set (θ(m), x(m)), m = 1, . . . ,M;
(3) B as the number of samples in BayesFlow for inference of the estimates of
parameters.
Required data:
training set (θ(m), x(m)), m = 1, . . . ,M, test sample (θ(o), x(o)).

1 Initialization: identified parameters set �done = ∅, unidentified parameters set
�todo = �.

2 for n = 1, . . . , N do
3 if �done �= ∅ then
4 Transform training set and test sample applying PELS-VAE model:
5 Compute x(m)

n ,m = 1, . . . ,M and x(o)n according to Eq. 14.

6 Update BayesFlow network parameters φn,ψn with training set
(θ(m)[�n], x(m)

n ), m = 1, . . . ,M by Eq. 6,
7 until convergence to well-trained network parameters φ̂n, ψ̂n.
8 Perform inference for θ̂

(o)[�n] = 1
B

∑B
b=1 f

−1
φ̂n

(z(b)θ ; hψ̂n
(x(o)n )).

9 Add �n → �done, remove �n from �todo.

Output: estimate of parameters θ̂
(o).

In each step n, first, the identified parameters in the training set are fixed with the
estimated values. Correspondingly, the time series from fixed identified parameters is
supposed to be generated by a previously well-trained PELS-VAE model with network
parameters ϕ̂, ξ̂. In this way, the new training set (θ(m)[�n], x(m)

n ), m = 1, . . . ,M are pre-
pared to identify parameters in �n, where xn is
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let θ[�1 ∪ · · · ∪ �n−1] := θ̂[�1 ∪ · · · ∪ �n−1] ⇒ θn,

xn = f̂ϕ,̂ξ(θn).
(14)

Here, θn denotes the transformed parameter set with fixed identified parameters. It is
different from θ[�n], which means the filtered parameter set with the to be identified
subset in the step n. The test sample x(o) is also transformed in the same way. Second,
a BayesFlow model is trained with the transformed training set. Third, the parameters
of the test sample θ̂

(o)[�n] are estimated with the well-trained BayesFlow by sampling B
parameter vectors from the approximate posterior.
In such a manner, all parameters in � of the test sample can be identified. For other

test samples within the same physical model family, the PELS-VAE model and the first
BayesFlow model, which are both trained with the original training set, can also be used.
On the contrary, the intermediate BayesFlowmodels are all specialized with the identified
parameters of an individual test sample, and thus should be trained afresh.

Experiments
In this section, the thermal model of an automotive cabin and the dataset generated from
it are explained in “Simulation model and dataset” section. Then, the results of model
calibration applying the sensitivity-guided iterative algorithm described in “Methods”
section are demonstrated separately in accordance with the three parts of the methods:
sensitivity analysis in “Sensitivity analysis” section, signal reconstruction performance
withPELS-VAE in “Signal reconstructionwithPELS-VAE” section and the total parameter
inference results with BayesFlow in “Parameter inference with BayesFlow” section.
The sensitivity analysis is implemented with the aid of Sensitivity Analysis Library

(SALib) [36]. The model PELS-VAE is modified on the basis of the published scripts1

into a Teacher–Student Architecture.
The model BayesFlow is developed using the package FrEIA2 with the framework

PyTorch [37], in reference to the published scripts,3 which is developed with the frame-
work TensorFlow 1.0 [38].
Training of the PELS-VAE and BayesFlowmodel is supported by a single GPU equipped

with NVIDIA® A30. For the purpose of better convergence of the training process, the
optimizer Adam is employed with a multi-step learning rate scheduler for PELS-VAE and
an exponentially decayed one for BayesFlow.

Simulation model and dataset

The thermal dynamics of an automotive cabin on an industrial scale is modeled by one-
dimensional heat transfer, pressure loss and air exchange in the use of the Human-
Comfort Modelica-library [39]. More information about the model is available at [40].
Our applied simulation model is based on the single-air-volume approach with the same
component implementations. The model includes stiffness, discontinuities, 2 nonlinear
algebraic loops, 250 states and approximately 14,300 equations. Assuming ideal mixed
air volumes, the temperature development is observed with 8 sensors installed in the
front/rear, left/right, top/bottom of the cabin. With the aim of calibrating the model, 17

1https://github.com/jorgemarpa/PELS-VAE.
2https://github.com/VLL-HD/FrEIA.
3https://github.com/stefanradev93/BayesFlow.

https://github.com/jorgemarpa/PELS-VAE
https://github.com/VLL-HD/FrEIA
https://github.com/stefanradev93/BayesFlow
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Fig. 4 Comparison of average first-order Sobol indices within 19 parameters. The first diagram displays the
sorted parameters by decreasing log10([S]↓). In order to detect the sharp drop in the Sglobal,i , the logarithms of
relative ratios between the former one and the latter one r(i − 1, i) are shown in the second diagram

adjustable parameters are utilized including the internal/external convective heat trans-
fer coefficients (“CF_alpha_internal”, “CF_alpha_external”), insulation and capacity of
the surrounding partitions (“CF_hull_insulation”, “CF_hull_capacity”), air exchange rates
(“CF_airExchangeFBT”, “CF_airExchange*”), the internalmass of seats and center console
(“A_internal_mass”, “CF_alpha_mass”), the pressure loss coefficients (“CF_zeta*”), the air
velocity at the surface of the internal mass (“CF_v_air_mass”) and the weighting factors
of the thermal load position (“ratioBottomUp”, “ratioFrontRear”). These properties are
investigated from the dynamics and steady state of the model response while the model
is (0) passively heating up, then (1) cooling down and (2) heating up again. Each step is
simulated from 0 to 1800 s. For calibration of a model, the latter two processes are usu-
ally inspected. Thus, cool-down and heat-up factors (“CF_coolDown”, “CF_heatUp”) are
designed respectively. Totally, 19 (= 17 + 2) parameters are supposed to be adapted to fit
the simulation model to the measurement. The parameters are listed in Fig. 4.
In practice, the experts calibrate the simulation model from the measurement using

these 19 parameters by observing corresponding cool-down and heat-up processes.
Without specification, the average air temperatures of the steady states and relevant
dynamic values are selected as points of interest to fit the simulation model to the mea-
surement. The following procedure is performed repeatedly. First, “CF_alpha_internal”,
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“CF_alpha_external”, “CF_hull_insulation” are optimized by comparing the steady state
points. Then, “A_internal_mass”, “CF_alpha_mass” are optimized by comparing the
dynamic values. Afterwards, when it is necessary to analyze the internal comfort, then
the temperature difference can be minimized by pressure loss coefficients (“CF_zeta*”).
The other parameters are used for fine-tuning.
Because this procedure is highly empirical, and it usually takes more than one week to

calibrate a model, we evaluate our experiment results with respect to the error between
the estimate and the ground truth of parameters, as well as the error between the model
response from the estimate and that from the ground truth.
The simulation dataset with 2000 samples is split into 1600 samples for training, one

sample for testing and the other 399 for validation. To specify, the validation samples are
not used for the stopping criterion of the training processes. Instead, they support the
evaluation of the trial inference and inference results in each iterative step. Because, for
onlyone test sample, theparameter estimates arehard to evaluate. Each sample contains 19
uniformly sampled parameters, which are all practically identifiable and can be considered
independent of each other according to expert knowledge. The corresponding observation
includes 8 (= 2× 4) time series, which are collected first in a cool-down process then in a
heat-up process from 4 temperature sensors on the left side of the cabin. Only 4 sensors
instead of all 8 sensors are considered because of the symmetry of the left and the right
side of the thermal model. In order to reduce the data dimension, the time series are
sampled with a step size of 18 s (0:18:1800). To sum up, the parameter θ is in the shape of
D = 19, while the observation x is in the shape of 100 × 8.

Sensitivity analysis

Applying the Saltelli sampling with the size of S = 64, the sensitivity of 19 parameters
with first-order Sobol indices is analyzed in a decremental way, throughwhich the relative
strongly identifiable parameters are selected, then the remaining ones together with the
ones ruled out by trial inference are further examined. The parameters are arranged into
5 groups through the iterative procedure. (Figures for the sensitivity analyses of these
groups are shown in Figs. 7, 8, 9, 10, 11, and 12 in Appendix A.2.)
According to Algorithm 1, a parameter can be chosen when satisfying two conditions,

(1) the Sglobal,i reaches the threshold δ = 0.001, (2) the ratio r(i − 1, i) in Eq. (13) should
be restricted by the maximal ratio r(i − 1, i) � K , where K is determined by the first two
indices, namely K = max(r(0, 1), r(1, 2)).
For example, as shown in Fig. 4, among the sorted parameters with index from i = 15

to i = 2, where Sglobal,i > δ = 0.001, the maximal acceptable ratio drop is given
by K = 0.56 = r(0, 1). Then, the parameters “ratioFrontRear”, “ratioBottomUp”,
“A_internal_mass” and “CF_alpha_internal” with their drop ratios not greater than K ,
are chosen as the possibly identifiable parameters. Since the drop ratio at the parameter
“airExchangeFBT” exceeds K , the others including this one are screened out in this step.
Similarly, for further examination, the following parameters can be pre-selected in each
step: the first 9 ones in the group of 15 parameters in Fig. 9 in Appendix A.2, the first 5
ones in the group of 12 parameters in Fig. 10b in Appendix A.2, all the 7 in the group of 7
parameters in Fig. 11b in Appendix A.2 and naturally the last left 2 parameters.
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Fig. 5 Signal reconstruction with PELS-VAE. T1, T3, T5, T7 denote the temperature sensors on the left side. The
blue dashed lines stand for the ground truth generated by simulation model, while the red solid lines are
predicted by a well-trained PELS-VAE model. They are taken as the means of 20 passes. The blue ones overlaps
the red ones because of negligible difference with mean absolute error 0.085 ◦C

Signal reconstruction with PELS-VAE

As shown in Fig. 5, the PELS-VAE model trained with dataset in Eq. (14) performs well in
predictionof time series from theparameters. Thanks to goodpredictionperformance, the
surrogatemodel can be regarded as a simplification of the complicated physicalmodel, and
thus enables the fast generation of new data between iteration steps. Generating a dataset
of 2000 samples with PELS-VAE takes on average 16 s, while running the simulation
model with at first heat-up then cool-down for 2000 times lasts longer than 2.5 h.

Parameter inference with BayesFlow

ApplyingAlgorithm3, 19 parameters are identified iteratively in 5 groups using BayesFlow
models. In the iterative process, the first BayesFlow model is trained with the original
training set, while the other 4 models are trained with adapted datasets. Each dataset
is generated with the well-trained PELS-VAE model through fixing already identified
parameters.Hence, the test and validation samples to examine the regression performance
of each BayesFlow model are also different. The regression performance of each model
regarding one test sample and 399 validation samples is visualized in Fig. 14 in Appendix
A.3, with the size of sampling parameter vectors from the approximate posterior B = 100.
In each iterative step, the density estimate results of which are demonstrated in Fig. 13 in
Appendix A.3. The Fig. 6 shows the results in all iteration steps including the selection and
filtering of parameters, the duration of each step, as well as the evaluation of estimates.
The average relative error rate across all parameters achieves 1.62%, among which

parameter 7 (“CF_airExchangeRBT”) with ER = 5.008% in the third step is slightly more
error-prone than the others. Besides, the density estimation allows for uncertainty quan-
tification. Out of the 19 posterior distributions, 16 confidence intervals cover the ground
truth, denoting the reliability of the estimate. On the contrary, the other three distribu-
tions of the parameters 7, 9 and 14 (“CF_airExchangeRBT”, “CF_airExchangeFLR/RLR”
and “ratioBottomUp”) tend to overfit on account of undersized normalized standard devi-
ation.
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Evaluation

PELS-VAE

PELS-VAE

PELS-VAE

PELS-VAE

11 1.952 0.027
14 3.904 0.009
15 0.159 0.009
16 0.344 0.016

12 1.739 0.014
13 0.078 0.021
17 0.363 0.030

6 1.273 0.023
7 5.009 0.015
8 3.948 0.020

10 0.422 0.029
18 1.222 0.017

0 0.695 0.034
1 1.717 0.016
2 2.397 0.031
3 0.454 0.042
4 0.410 0.037

5 0.715 0.016
9 3.830 0.009

Fig. 6 Parameter selection and inference results in each iteration step. The indices are in reference to the
parameter names listed in Figs. 4 and 13 in Appendix A.3. The relative error rate ER = |estimate − ground
truth| /ground truth × 100%. σ is the standard deviation of the posterior distribution normalized by each value
range. The text in magenta shows the duration of a process. S denotes the sampling size of each parameter in
Saltelli sampling procedure, S = 64. The time consumption shown in the figure is summed up to 23.41 h

To further validate the calibration results, the model outputs calculated by the sim-
ulation model from the estimate and the ground truth are compared. For a successful
calibration, the deviation of any air temperature of the steady states and relevant dynamic
values should be within ±0.5 ◦C. The mean absolute error of the time series reaches
0.108 ◦C, which confirms the accuracy of the estimate. Moreover, our approach shows
obvious speed improvements over the classical calibration method. The generation of
dataset (2000× 5 s), then training of the PELS-VAE model (1 h) can be performed during
the first iteration step. Except for the two preparation procedures, execution of the entire
algorithm takes 23.41 h, as shown in Fig. 6.



Zhang and Mikelsons AdvancedModeling and Simulation in Engineering Sciences           (2023) 10:9 Page 16 of 28

Conclusion
In this study, we propose a novel algorithm of automatic, accurate and reliable model
calibration from the point of view of parameter identification. Our contributions are
threefold:

• Foremost, we utilize the relationship between sensitivity, identifiability and estimabil-
ity; that is, the sensitivity analysis indicates whether a parameter is strongly or weakly
identifiable from the observed data, leading to potential estimability, which is then
confirmed by the inference methods. Supported by sensitivity analysis, inference can
be efficiently performed by focusing on strongly identifiable parameters. Thus, the
learning process converges faster because of reduction in the required training data
size and the complexity of the inference model.

• Moreover, we embed a data generation process as a forward problem between the
parameter identification processes as inverse problems. Because for a physical model,
both forward and inverse problems share the same surrogate model, the forward
model assists the inverse model to exclude the influence of the determined param-
eters. Through this iterative process, weakly identifiable parameters become distin-
guishable in the variance of observations.

• In addition, we choose the BayesFlow as the inference model, because, on the one
hand, it is built with a separate summary network and a conditional invertible neu-
ral network. This separation encourages the summary network to extract the most
important information from the observed data, in order to learn the posterior distri-
bution of parameters precisely. On the other hand, the confidence interval obtained
from the distribution provides useful guidance for further processing, as it implies
the credibility of the inference.

Nevertheless, a major limitation of this algorithm is that the deep learning based infer-
encemodel and generativemodel have their inherent constraints on generalization ability
owing to data. Another limitation is that we assume each setting of parameters corre-
sponds to a unique model response. Due to the large amount of parameters and the
complexity of model, it is possible that two settings of parameters coincidentally have the
same model response, which has not been investigated. Besides, it is worth mentioning
the fact that the method can be hard to implement for practitioners without knowledge
of deep learning, as both neural architectures have many tunable hyperparameters which
can affect performance.
In future work, firstly, the optimal size of training set with regard to the number and the

value ranges of parameters should be explored. Secondly, this proposedmethod, although
validatedby the simulationdata, shouldbe examinedon the realmeasurements.Thirdly, in
our research, the overall time series is applied to identify parameters. In order to examine
the steady states and the dynamic behavior closely, the time series, where the sensitivity of
parameters is higher, can be particularly given to the BayesFlowmodel as conditions. Last
but not the least, each part of this algorithm, namely the sensitivity analysis, the PELS-
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VAE model and BayesFlow model can be potentially incorporated with other methods.
For example, the sensitivity analysis can assist experts to arrange the order of parameters
in the classical model calibration method; the PELS-VAE model can also generate data in
use cases where the demand in rapidness is higher than precision; the BayesFlow model
can estimate the properties of products in end-of-line testing [41].

Appendix
Algorithm of sensitivity-guided iterative parameter identification and data generation

Algorithm 3: Sensitivity-guided iterative parameter identification and data generation
Input:
for selection of possibly identifiable parameters:
(1) value range of each parameter [θi,L, θi,U ] and the corresponding default value
θi,0,∀i ∈ 1, . . . , D;
(2) the physical model f (·) and its observation function g(·);
(3) S as the sampling size of each parameter in Saltelli sampling procedure.
for iterative parameter identification and data generation:
(4) trained PELS-VAE model ϕ̂, ξ̂ with training set (θ(m), x(m)), m = 1, . . . ,M;
(5) B as the number of samples of BayesFlow for inference the estimates of
parameters. (6) minimal average first-order Sobol indices δ.
Required data:
training set (θ(m), x(m)), m = 1, . . . ,M, test sample (θ(o), x(o)).

1 Initialization: step n = 1, identified parameters set �done = ∅, unidentified
parameters set �todo = �.

2 while �todo �= ∅ do
3 Select the parameters with comparable average first-order Sobol indices with

threshold δ according to Algorithm 1, get �̃n.
4 Transform training set and test sample with PELS-VAE model by computing

x(m)
n ,m = 1, . . . ,M and x(o)n according to Equation (14).

5 Filter selected parameters �̃n by trial inference:
6 Train BayesFlow with training set (θ(m)[�̃n], x(m)

n ), m = 1, . . . ,M,
7 select the parameter, the regression of which tends to converge towards the

ground truth during the first 500 training epochs, �n = {
θi ∈ �̃n : |̂θi − θi| < ε

}
.

8 Inference of �n with BayesFlow:
9 Update BayesFlow network parameters φn,ψn with training set

(θ(m)[�n], x(m)
n ), m = 1, . . . ,M by Equation (6),

10 until convergence to well-trained network parameters φ̂n, ψ̂n.
11 Perform inference for �̂n = θ̂

(o)[�n] = 1
B

∑B
b=1 f

−1
φ̂n

(z(b)θ ; hψ̂n
(x(o)n )).

12 Add �̂n → �done, remove �̂n from �todo.
13 n = n + 1

Output:
the identification order of parameters �1,�2, . . . ,�N ;
estimate of parameters θ̂

(o).
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Results of sensitivity analysis with first-order sobol indices

See Figs. 7, 8, 9, 10, 11, and 12.

Fig. 7 Sensitivity analysis with first-order Sobol indices of 19 parameters from 8 time series with respect to time
from 0 to 1800 s with step size of 18 s
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Fig. 8 Sensitivity analysis with first-order Sobol indices of 15 parameters from 8 time series with respect to time
from 0 to 1800 s with step size of 18 s
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Fig. 9 Comparison of average first-order Sobol indices within 15 parameters. The first diagram displays the
sorted parameters by decreasing log10([S]↓). In order to detect the sharp drop in the Sglobal,i , the logarithms of
relative ratios between the former one and the latter one r(i − 1, i) are shown in the second diagram



Zhang and Mikelsons AdvancedModeling and Simulation in Engineering Sciences           (2023) 10:9 Page 21 of 28

Fig. 10 Sensitivity analysis and comparison of 12 parameters. a Sensitivity analysis with first-order Sobol indices
of 12 parameters from 8 time series with respect to time from 0 s to 1800 s with step size of 18 s. b Comparison of
average first-order Sobol indices within 12 parameters. The first diagram displays the sorted parameters by
decreasing average first-order Sobol indices. In order to detect the sharp drop in the Sglobal,i , the logarithms of
relative ratios between the former one and the latter one r(i − 1, i) are shown in the second diagram
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Fig. 11 Sensitivity analysis and comparison of 7 parameters. a Sensitivity analysis with first-order Sobol indices of
7 parameters from 8 time series with respect to time from 0 s to 1800 s with step size of 18 s. b Comparison of
average first-order Sobol indices within 7 parameters. The first diagram displays the sorted parameters by
decreasing average first-order Sobol indices. In order to detect the sharp drop in the Sglobal,i , the logarithms of
relative ratios between the former one and the latter one r(i − 1, i) are shown in the second diagram
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Fig. 12 Sensitivity analysis with first-order Sobol indices of 2 parameters in comparison with that in the group of
19 parameters, indicating that the sensitivity of originally weakly identifiable parameters has been obviously
improved by the iterative algorithm. a Sensitivity analysis with first-order Sobol indices of 2 parameters from 8
time series with respect to time from 0 to 1800 s with step size of 18 s. b Sensitivity analysis with first-order Sobol
indices of 2 parameters in the group of 19 parameters from 8 time series with respect to time from 0 to 1800 s
with step size of 18 s
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Results of parameter identification with BayesFlow

See Figs. 13 and 14.

Fig. 13 Parameter identification result of a test sample. The red lines stand for the ground truth, while the blue
lines are the mean values of posterior distributions induced by the well-trained BayesFlow models. The green
regions are the 95% confidence intervals given by the distributions. θ̂i denotes the estimated value of θi , σ is the
standard deviation normalized by the value range of θi , and
ER = |estimate − ground truth| /ground truth × 100% is the relative error rate. When the ground truth locates in
the range of 95% confidence interval, the title including the parameter name is shown green; while the
out-of-range parameters are shown in red
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Fig. 14 Parameter inference results of one test and 399 validation samples in 5 groups. In terms of the
regression accuracy between the estimate and the ground truth of the model parameters, root mean squared
error (RMSE), normalized root mean squared error (NRMSE) and coefficient of determination (R2) are standard

metrics. NRMSE =
√

1
M

∑M
m=1(θ

(m)−θ̂ (m) )2

θmax−θmin
, R2 = 1 − ∑M

m=1
(θ (m)−θ̂ (m) )2

(θ (m)−θ )2
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Abbreviations
BNN Bayesian neural network
cINN Conditional invertible neural network
INN Invertible neural network
LSTM Long short-term memory
NF Normalizing flow
PELS-VAE Physics-enhanced latent space variational autoencoder
VAE Variational autoencoder
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